3.0 PROCUREMENT OF FISCHER-TROPSCH MATERIAL (TASK 1.0) UOP procured several materials from the product pool of a fixed-bed commercial Arge reactor. The fixed-bed Arge Fischer-Tropsch process operates at lower temperatures when compared to the circulating bed Synthol process. The product distribution ranges from methane to C_{250+} hard waxes (5). Typical product selectivities from a commercial fixed bed reactor are shown in Table 3.1. Gasoline from a fixed-bed process has a very low octane value. This gasoline fraction requires upgrading using processes such as UOP Platforming before inclusion in a typical gasoline pool with an unleaded octane specification of 89. Diesel from a fixed-bed process, on the other hand, is of extremely high quality with very high cetane numbers. This diesel fraction can be blended with low-value refinery products such as LCO to increase the volume of the diesel pool. The carbon number fraction, higher than diesel, from the Fischer-Tropsch reactor is labelled reactor wax. The Fischer-Tropsch Arge wax from a commercial operation was used as feedstock for the hydrocracking work described in Task 3.0 and the characterization program described in Task 2.0. # 3.1 DESCRIPTION OF PRODUCTS FROM A COMMERCIAL ARGE UNIT (6,7) In a commercial Arge unit, the liquid F-T synthesis product is separated into three process streams: reactor wax, hot condensate and cold condensate (Refer to Figure 3.1). The tail gas, before being sent to the reformer, is washed with heptane to recover hydrocarbons as rectisol condensate, followed by a methanol wash to remove carbon dioxide. The hot and cold condensate are combined in a commercial Arge facility and sent to the atmospheric column, where they are separated into the desired product fractions. Atmospheric bottoms, containing 650°F plus material is blended back into the reactor wax to produce the desired product wax properties. Note that for <u>Task 3.0: Wax Hydrocracking</u>, this atmospheric bottoms fraction was not blended into the reactor wax feedstock to the pilot plant. #### 3.2 MATERIALS PROCURED Table 3.2 lists all the procured products from a commercial Arge fixed-bed process, as well as some pilot-plant produced waxes used in Task 2.0: Wax Characterization and refinery LCOs used in Task 4.0: Blending Study. #### 3.2.1 Commercial Arge Unit As mentioned earlier, the Arge wax was used in Task 2.0: Wax Characterization and Task 3.0: Wax Hydrocracking. Table 3.3 summarizes the commercial wax properties. For the purpose of the blending study, hot condensate and cold condensate were combined and separated into desired fractions. Table 3.4 lists properties of hot and cold condensate before and after blending. C5/C6 material was fractionated from the rectisol condensate and used as feedstock to the oligomerization pilot plant as described in Task 4.0: Blending Study. Table 3.5 lists properties of the Rectisol condensate as received from the commercial Arge unit and also, the composition of the C5/C6 material from the Rectisol condensate. Oligomerized Fischer-Tropsch C5/C6 product is a good blending component for maximum diesel fuel production. #### 3.2.2 Pilot Plant Waxes Three other waxes were also procured in this program (Table 3.3). These waxes were produced in pilot plants at Union Carbide Corporation, Air Products and Chemicals, Inc. and Mobil Corp. All these waxes were fully characterized but, only the Mobil wax was hydrocracked in Task 6.0 to compare processibility with commercial Arge wax. The Air Products wax was produced with a promoted cobalt catalyst at approximately 500°F, 1.0 CO/H2 feed ratio and 300 psig reactor pressure (8). The Union Carbide wax was produced with promoted cobalt catalysts in a series of pilot plant runs at approximately 465-500°F, 1.0 CO/H_2 feed ratio and 300 psig reactor pressure (9). The Mobil wax was produced in a two-stage slurry reactor system at approximately $535^{\circ}F$, a low H_2/CO ratio of 0.7, 165 psig and with a precipitated iron catalyst (10). ### 3.2.3 Refinery LCO's Three refinery LCO's (Table 3.6) were procured to increase the volume of diesel pool. LCO represents low-value refinery blend components and offers a source of aromatics in the blends. Table 3.1 Fixed-Bed Arge Reactor Product Distribution * Non acid chemicals Table 3.2 Materials Procured | Material | Quantity | Source | |--|---|--| | Commercial F-T Products | | | | F-T Arge Wax
Hot Condensate
Cold Condensate
Rectisol Condensate | 500 gallons
60 liters
60 liters
240 liters | Arge Commercial Unit
Arge Commercial Unit
Arge Commercial Unit
Arge Commercial Unit | | LCOs for Blending Study | | | | Light Cycle Oil 1
Light Cycle Oil 2
Light Cycle Oil 3 | l gallon
1 gallon
1 gallon | Clark Refinery
Ashland Refinery
Union Refinery | | Pilot Plant F-T Products | | | | Union Carbide F-T Wax
Air Products F-T Wax
Mobil F-T Wax | 550 grams
800 grams
42 kg | Union Carbide
Air Products
DOE/PETC | Table 3.3 Product Properties Fischer-Tropsch Waxes | Analysis Type | Commercial | Union | Air | Mobil | |--|---------------------|----------------|-----------------|---------------------| | | Arge Wax | <u>Carbide</u> | <u>Products</u> | Wax | | API | 22.3 | 29.9 | 39.0 | 20.4 | | Specific Gravity | 0.9200 | 0.8767 | 0.8299 | 0.9317 | | IBP, "F | 597 | 547 | 417 | 518 | | Carbon, wt-%
Hydrogen, wt-%
Elemental Oxygen, wt-% | 85.2
14.7
0.1 | 85.3
14.7 | 85.2
14.8 | 84.4
15.3
N/A | | Sulfur, ppm | 80 | <100 | <100 | 4 | | Nitrogen, ppm | 36 | 0.1 | 10 | 3 | | Aniline Point, 'F | 293 | 258 | 239 | 298 | | Me'ting Point, 'F | 220 | 196 | 156 | 203 | | Viscosity, cSt @ 25C'F | 7.59 | 3.70 | 2.31 | 12.44 | | Conradson Carbon, wt-% | <0.1 | <0.1 | <0.1 | <0.1 | | n-C-H ₁₆ Insolubles, wt-% | 24.4 | 0.44 | <0.1 | 22.6 | | Metals, ppm | 5.9 | 3.5 | 1.7 | 135* | N/A Not Available ^{* 133} ppm iron Table 3.4 Product Properties | Hot Condensate | | |--|---| | API | 45.9 | | Distillation, *F | | | IBP
10%
30%
50%
70% | 475
538
581
617
657 | | <u>Cold Condensate</u> | | | API | 53.8 | | Distillation, °F | | | IBP
10%
30%
50%
70% | 214
286
361
423
486 | | Hot + Cold Condensate | | | API
Specific Gravity | 48.3
0.7870 | | Distillation, *F | | | IBP
10%
30%
50%
70%
90%
95%
EP | 302
379
473
540
603
689
698 | | Cetane Number
Flash Point, *F
Pour Point, *F
Viscosity cSt @ 100*F
Bromine Number
Smoke Point, mm | 74.9
102
80
2.16
7.1
>50 | Table 3.5 Product Properties | Rectisol Condensate | SIMDIS | <u>(D-86)</u> | |---|--|---| | Distillation, "F | | | | 180
10%
30%
50%
70%
90%
EP | 23
149
207
248
264
345
907 | 129
167
208
237
266
331
421 | | GC Analysis, wt-% (paraffins/naphthenes) | | | | C4
C5
C6
C7
C8
C10
C11
C12
C12
C12 | 1.3
4.7
13.7/0.1
24.8/0.4
25.2/0.4
14.9/0.2
5.8/0.1
8.3 | | | Gravity, AP! @ 60°F
Carbonyl Mumber
Bromine No.
Diene Value (Maleic Anhydride)
Sulfur (Houston-Atlas), ppm
Total Nitrogen, wt-ppm
Water, wt-% | 66.9
63
58.4
12.2
<0.1
1.22
0.19 | | | <u>C5/C6 Fraction from Rectisol Condensate</u> (Feed to Oligomerization Plant) | | | | Feed Composition, wt-%* | | | | Total C3's Total C4's Total C5's Total C5's Total C6's Total C7's Total C7's | 0.3
13
34.0
44.6
8.0
0.1 | | Paraffin/Olefin distribution could not be determined due to interferance from oxygenates Table 3.6 Product Properties Refinery Light Cycle Oil Analysis* | | LCO 1 | LCO 2 | LCO 3 | |---|---|---|---| | API | 21.1 | 16.1 | 14.1 | | Distillation, *F | | | | | IBP 5% 10% 30% 50% 70% 90% 95% EP | 437
489
504
550
572
601
640
662
689 | 435
482
496
534
559
595
644
660
693 | 477
498
513
554
592
637
687
702
723 | | Cetane Number | 27 | 21 | 17 | | Aromatics, wt-%
Paraffin/Naphthane, wt-%
Olefins, wt-% | 63.8
36.2 | 72.6
20.6
6.8 | 79.1
18.2
2.7 | | Freeze Point, *F Pour Point, *F Flash Point, *F Smoke Point, mm | +24
+10
163
6 | +29
0
204
5 | +17
-25
191
4 | | Viscosity, cSt, @ 100°F | 3.343 | 3.932 | 3.226 | ^{*} LCO is a Fluid Catalytic Cracking (FCC) Unit Product Figure 3.1