#### APPENDIX C

### **SLURRY REACTOR DESIGN STUDIES**

# REVIEW OF FIXED-BED AND SLURRY REACTOR KINETICS

#### Contents

|                                                | Page |
|------------------------------------------------|------|
| Fused Magnetite Catalyst - Slurry vs Fixed-Bed | Ĭ    |
| Cobalt Fixed-Bed Kinetics                      | 1    |
| CSTR Model for Fischer-Tropsch                 | 3    |

#### APPENDIX C

#### REVIEW OF FIXED-BED AND SLURRY REACTOR REACTION KINETICS

When trying to match observed conversions with slurry reactor model predictions (Section 2.4.3) it was found that a new expression for the kinetic constant had to be developed. It was also necessary to get an insight into the differences, if any, between slurry reactor and fixed-bed kinetics, to examine any differences between iron and cobalt catalysts and to look at pressure effects. This review is by no means complete, but some observations were made that could be useful to future investigators.

Fused Magnetite Catalyst - Slurry vs Fixed-Bed - Data of Satterfield, et al (IEC Fund. 24, 450, 1985)

This data was of interest since it consisted of a direct comparison of the same catalyst in a fixed-bed reactor and in a well-mixed slurry reactor. The authors concluded that "...the catalyst activity in the fixed-bed appears to have been moderately greater than in the slurry reactor." They could not ascribe the difference to the higher inlet pressure in the fixed-bed reactor but thought the fixed-bed catalyst might have been reduced in a more optimal manner. Catalyst activity, expressed in µmols of CO + H<sub>2</sub> converted/[min · g of cat · atm of H<sub>2</sub>], varied from 100 to 190 over the temperature range 233 to 250 °C in the fixed-bed measurements. Over approximately the same range, they observed values of 78 and 130 in the slurry reactor.

It was of interest to see whether this same data could be fit to the simplified models discussed earlier in this report. Figure C-1 shows the result of plotting the fixed-bed CO conversion data in the form indicated by the plug-flow model (Model 1). A temperature correction was applied by multiplying GHSV-1 by an exponential activation energy term. An activation energy of 80 kJ/gmol brought the data onto one curve. Values of  $\alpha$  of 0.0 and -0.5 were tested and, somewhat unexpectedly, a value of 0.0 gave the best straight line. The fixed-bed data were obtained on a fine catalyst diluted with inert material and placed in a reactor tube surrounded by a fluidized sand bath. GHSV is expressed in Nm<sup>3</sup>/(h·kgCat).

The slurry reactor data were obtained in a small, stirred autoclave so that mass transfer resistance could be minimized. A CSTR model (Model 3) should be most applicable under these circumstances and one was developed for this project. It is presented at the end of Appendix C. Figure C-2 shows the best straight-line fit to the CO conversion data using this model, which was obtained using an activation energy of 135 kJ/gmol and an  $\alpha$  of -0.6. It is not known why the activation energy was higher than in the fixed-bed case, but activation energies of this magnitude have been reported for the Fischer-Tropsch reaction where mass transfer effects are known to be insignificant.

Cobalt Fixed-Bed Kinetics - Data of Singleton and Regier (Hyd. Proc., p 71 -74, May 1983) - Data of Post, et al (AIChEJournal, 35, 1107-1114, 1988)

The fixed-bed data of Singleton and Rogier are of interest because they represent a new cobalt type catalyst, developed by Gulf before their merger with Chevron, and because a pressure effect is presented. Increased pressure is shown to increase "catalyst activity" but

the effect diminishes with increasing pressure. The authors present a table of CO conversion data taken at low pressure in a 1" diameter, single tube, pilot plant in which space velocity is given per gram of catalyst. They also present 250 psig data which are apparently on a volumetric space velocity basis and can be related to their low pressure data and their reported pressure effect if a catalyst bulk density of roughly 500 kg/m<sup>3</sup> is assumed. The Gulf technology described in this paper was later sold to Shell.

Post, et al, present a review of diffusional effects in fixed-bed F-T catalysts which quantifies the effects of particle size and pore diameter. The catalyst is a Zirconium promoted cobalt catalyst developed by Shell, presumably to be used in their new plant in Malaysia. Some data are given for iron catalysts but not enough to quantify differences. Space velocity and STY are given per m<sup>3</sup> of catalyst, rather than per kg of catalyst, and on this basis there does not appear to be much difference between catalysts at comparable particle size.

Figure C-3 presents a correlation of the Shell data on  $H_2$  conversion and Gulf data on CO conversion using a Model 1 (plug flow) type plot. The value of  $\alpha$  used is that reported by Post, et al. To compare Figures C-1 and C-3, multiply the ordinate in C-3 by the expected catalyst density in kg/m<sup>3</sup>. If, for example, this density is 500, then a coordinate value of 2 on Figure C-3 corresponds to a coordinate value of 4 on Figure C-1. On this basis, conversions are roughly comparable. Figure C-1 mixes  $H_2$  and CO Conversions, which is unfortunate, but can't be helped. It can be stated, however, that with 2.0  $H_2$ /CO ratio feed gas and a catalyst with low water gas shift activity, the two conversions should be of comparable magnitude.

The ARGE design point (precipitated iron catalyst) and the design point selected for this study are also indicated in Figure C-1. It would be of value to have a better definition of space velocity requirement and the pressure effect for various catalysts, but it is felt that the design point represents a reasonable concensus of the above information for a "generic" catalyst..

Table C-1 compares the various kinetic curve fits developed in this report over the temperature range of interest. Columns 2 and 3 represent Figures C-1 and C-2, respectively. Column 4 is the Gulf correlation line from Figure C-3, assuming a catalyst bulk density of 532 kg/m<sup>3</sup>, and column 5 is the ARGE design point. Column 6 represents the equation developed to fit the Rheinprussen laboratory data<sup>5</sup> in Section 2 and is expressed in terms of hydrogen conversion:

 $k'_{H} = k_{H} / (k_{g}Cat/m^{3}) = 3.3 \cdot 10^{9} \cdot e^{(-130,000/RT)}$ 

The slurry concentration and gas holdup correspond to estimated Rheinprussen laboratory conditions.

<sup>&</sup>lt;sup>5</sup> The comparable expression given by Deckwer was expressed in terms of wt% Fe:  $k'_{H} = k_{H} / \text{wt \% Fe} = 112,000 \cdot e^{(-70,000/RT)}$ 

### CSTR MODEL FOR FISCHER-TROPSCH Model 3

Assumptions: Basically the same assumptions as for Model 1 and Model 2, except that both gas phase and liquid phase are fully mixed so that the concentrations in the reactor - both phases at steady state - are those corresponding to the product gas composition. Other assumptions:

- 1. Only gas/liquid mass transfer and the reaction terms are important, liquid/solid mass transfer is negligible.
- 2. Intraparticle diffusion is negligible.
- 3. First order reaction rate,  $r=k_T \varepsilon_L \cdot C_H$ .
- 4. Constant usage ratio, U, (moles of CO consumed per mole of H<sub>2</sub> consumed).
- 5. Stoichiometry handled by means of a contraction factor,  $\alpha$ , which is constant.
- 6. Liquid phase batch (liquid flow can be neglected).
- 7. Catalyst is uniformly dispersed.
- 8. Reaction rate expressed in terms of catalyst loading:  $k_T = k_H = k'_{H'}(k_gCat/m^3) \text{ where } k'_{H} = 3.3 \cdot 10^9 \cdot e^{(-130,000/RT)} \cdot (P/1100)^{0.5}, T \text{ in oK, P in kPa, } k_T \text{ in sec}^{-1} \text{ (Section 2.4.3)}.$
- 9. kLa and EG are established at an average value of superficial velocity ug.
- 10. The correction to kLa for solids content, previously derived, applies.

$$Q^{o.}C^{o}_{HG} - Q \cdot C_{HG} = k_{L}a \cdot (C^*_{HL} - C_{HL}) \cdot V_{L} = k_{r} \cdot \epsilon_{L} \cdot C_{HL} \cdot V_{L}$$

 $He/RT = H_H = C_{HG}/C^*_{HL}$ , where He is Henry's law constant.

By definition of the contraction terms,  $\alpha$  and  $\alpha * = \alpha \cdot (1 + U)/(1 + I)$ :

$$Q = Q^{0} \cdot (1 + \alpha^* \cdot X_H)$$

$$Q^{o.}C^{o}_{HG}.X_{H} = Q^{o.}C^{o}_{HG} - Q\cdot C_{HG} = Q^{o.}C^{o}_{HG} - Q^{o.}(1+\alpha^{*}\cdot X_{H})\cdot C_{HG}$$

$$C_{HG} = C_{HG} \cdot (1 - X_H) / (1 + \alpha^* \cdot X_H)$$

$$k_{La} \cdot (C_{HG}/H_H - C_{HL}) = k_{r'} \cdot \epsilon_{L} \cdot C_{HL}$$

$$C_{HL} = k_L a \cdot C_{HG} / H_H / (k_r \cdot \varepsilon_L + k_L a)$$

$$(Q^{o}/V_{L})\cdot C^{o}_{HG}\cdot X_{H}=((k_{r}\cdot \varepsilon_{L}\cdot k_{L}a)/(k_{r}\cdot \varepsilon_{L}+k_{L}a))\cdot C_{HG}/H_{H}$$

Let  $K_L a = (k_r \cdot \varepsilon_L \cdot k_L a)/(k_r \cdot \varepsilon_L + k_L a)$ 

 $(Q^o/V_L)\cdot C^o{}_{HG}\cdot X_H = (K_La/H_H)\cdot C_{HG} = (K_La/H_H)\cdot C^o{}_{HG}\cdot (1-X_H) \mathbin{/} (1+\alpha^*\cdot X_H)$ 

 $X_H \cdot (1 + \alpha^* \cdot X_H)/(1 - X_H) = (K_L a/H_H) \cdot V_L/Q^o = K_L a \cdot R \cdot T \cdot L/(He \cdot u^o_G) = Stanton \ No.$ 

For  $\alpha^* = -0.5$ 

| $X_{H}$ | Stanton No. |
|---------|-------------|
|         |             |
| 0.95    | 9.975       |
| 0.90    | 4.95        |
| 0.80    | 2.40        |

For  $\alpha^* = 0.0$ 

| $X_{H}$ | Stanton No. |
|---------|-------------|
|         |             |
| 0.95    | 19.0        |
| 0.90    | 9.0         |
| 0.80    | 4.0         |

Figure C-1

### Fused-Magnetite Fixed-Bed Kinetics f(Conv)=(1+alpha)In(1-X)+alphaX



Figure C-2

## Fused-Magnetite Slurry CSTR Kinetics f(Conv)=X(1-alphaX)/(1-X)



Figure C-3

### Cobalt Fixed-Bed Fischer-Tropsch Kinetics f(Conv)=(1+alpha)In(1-X)+alphaX



Table C-1

| Compensation   Part   | Ī             | 1                                         | 2                                                | 3               | 4                                                                                                               | 5                                                 | 6                | 7               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|--------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-----------------|
| 2   Fe Fixed-Bed   Fe Slurry   Co Fixed-Bed   ARCE   Slurry   Model   4/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             |                                           |                                                  | Conversion Da   | ita                                                                                                             |                                                   | H2 Conversion    |                 |
| 3   Source   Salterfinici, et.al. (1983)   Singleton (1983)   ECT Ed.2, Vol.4,   Used for Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                           |                                                  |                 |                                                                                                                 | ARGE                                              |                  | 4/18/90         |
| Pressure-alm   8.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\overline{}$ | Source                                    |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                           |                                                  |                 | Conv/(h KgCat) is                                                                                               |                                                   | (ati)            | Comments        |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6             |                                           |                                                  |                 | 0.438723357                                                                                                     | 0.273470893                                       | 0.056214709      | Divide by 0.7   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | to convert to   |
| 9 220 0.78727001 0.63926718 1.476131273 0.920121827 0.434554363   10 240 1.14307034 1.1994213 2.143256879 1.335963454 0.814749051 Mult. by 31 1 250 1.63617258 2.19689992 3.06782357 1.912276709 1.49129862 to convert 2 20 20 2.31068508 3.93356363 4.332534525 2.700613187 2.668418441 cm3/(s.g.Fl. 13 270 3.2203906 6.90357292 6.041323293 3.765785152 3.716685597   14 Preexponential 1.631076 6.681013 3.9x10*8 1.67x10*9   15 Act Energy k//rr 80 158 80 60 60   15 Act Energy k//rr 80 158 80 60 60   18 200 35.4361994 14.2251521 32.77848444 14.42253315 6.96130652 tmes 2 20 20 80.8893156 7.72640791 7.481762189 3.29197554222 1.15842297 tmes 2 20 220 80.8893156 7.72640791 7.481762189 3.291975564222 1.15842297 tmes 2 2 2 20 80.8893156 7.72640791 7.481762189 3.2919756422 1.15842297 tmes 2 2 2 20 80.73113368 206.798685 160.1298656 70.45714086 100.893411 2 2 2 2 2 2 40 173.113368 206.798685 160.1298656 70.45714086 100.893411 2 2 2 2 2 2 40 173.113368 206.798685 160.1298656 70.45714086 100.89341 2 2 2 2 2 2 40 173.113368 206.798685 160.1298656 70.45714086 100.893411 2 2 2 2 2 2 4 37.913368 206.89868 323.6980961 142.4271623 330.4416073 2 2 2 2 2 487.946753 1188.55903 451.3673989 195.5016546 460.2530371 2 2 2 2 2 487.946753 1188.55903 451.3673989 195.5016546 460.2530371 2 2 2 2 2 450.393.96813 18.5610914 355.6478639 354.1994234 11.27748655 times 3 2 2 2 2 4 2 2 2 2 2 4 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | Nm3/(h kgFe)    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | <del></del>                               | <del></del> _                                    |                 |                                                                                                                 |                                                   |                  | Mult. by 3.6/.7 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{}$ |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | to convert to   |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | cm3/(s gFe)     |
| Technology   Tec |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 15   Act. Energy: Clim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                           |                                                  |                 | kan kanan dan dan dan kanan dan dan dan dan berana banan dan berana dan berana dan berana dan berana dan berana |                                                   |                  |                 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 | Companied Common Colores a Surfaced in 1995 in                                                                  | 200 S. N. 195 March 1950 March 1950 March 1950 M. |                  |                 |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 7.000000 (20.0000000000000000000000000000 |                                                  | ,               | କ୍ଷର୍ଗରେ ବ୍ୟବସ୍ଥାନ । ପ୍ରତିଶ୍ୱର ପ୍ରତିଶ୍ୱର ପ୍ରତିଶ୍ୱର ।<br>                                                        | pagaawaan kaan saa waxaannaa Ariikaa              |                  |                 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | T - oC                                    | Rate Constant                                    | in millimols H2 | +CO Conv/(m KaC                                                                                                 | at atm)                                           |                  |                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   | 6.96130652       | Nm3/(h kgCat)   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | 22.4°60/atm.    |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 | <del></del>                                       |                  |                 |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  | <del></del>     |                                                                                                                 |                                                   |                  |                 |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  | <del></del>     | <del>}</del>                                                                                                    |                                                   |                  |                 |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  | 7.50.500        | 1311331333                                                                                                      | 100100 10011                                      |                  |                 |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | T - oC                                    | Bate C                                           | onstant in Nm3  | /(h m3)                                                                                                         |                                                   |                  |                 |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 | 232,4502589                                       | 5.585948853      | Nm3/(h kgCat)   |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  | <del></del>     |                                                                                                                 |                                                   |                  |                 |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           | <del></del>                                      |                 |                                                                                                                 |                                                   | <del></del>      |                 |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 34         260         1954.08232         373.022565         2304.908367         2295.521209         253.0479697           35         270         2738.7332         650.588117         3213.983963         3200.894429         350.7661073           37         Fract Voids         0.37         0.37         0.37         Slurry Model Used for Design           38         Part. Dens.         1349.20635         3100         844.444444         1349.206349         (no mass transfer resistance)           40         Gas Holdup         0.1664         Preexponential         3300000           41         T · oC         Liq Dens.         Slurry Dens.         Kg Caum3         ko         koxEpsilor           42         200         702.5         794.6905077         99.36810108         0.00172998         0.001442           43         210         696.95         788.6517548         98.61301542         0.003403846         0.002837           44         220         691.4         782.6093307         97.85747071         0.005513473         0.005428           45         230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46         240         680.3         770.5134552         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | E40 thru E47    |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| Second Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                           | <del></del>                                      |                 |                                                                                                                 | <del></del>                                       | <del></del>      |                 |
| 37   Fract Voids   0.37   0.37   0.37   0.37   Sturry Model Used for Design   38   Part. Dens.   1349.20635   3100   844.444444   1349.206349   (no mass transfer resistance)   39 % Sturry   15   Rheinprussen Lab Unit Condition   Preexponential   3300000   40   Gas Holdup   0.1664   Act. Energy   41   T - oC   Liq Dens.   Sturry Dens.   Kg Cat/m3   Ko   KoxEpsilor   42   200   702.5   794.6905077   99.36810108   0.00172998   0.001442   43   210   696.95   788.6517548   98.61301542   0.003403846   0.002837   44   220   691.4   782.6093307   97.85747071   0.006513473   0.005428   45   230   685.85   776.5832319   97.10146652   0.01214194   0.010121   46   240   680.3   770.5134552   96.34500244   0.022083047   0.018408   47   250   674.75   764.4599972   95.58807805   0.03924075   0.032711   48   260   669.2   758.4028544   94.83069292   0.06821642   0.056865   49   266   665.87   754.7667988   94.37604052   0.094108054   0.078448   50   51   T - oC   Rate Constant in s^-1   Hh = He/RT   KoEpsilL/F   52   200   0.01077932   0.00050586   0.006240593   0.004387184   5.825534097   0.00024   53   210   0.0167724   0.00104346   0.009710234   0.006826367   5.561181682   0.0005165   230   0.03856848   0.00407302   0.014846589   0.010437264   5.316602872   0.0010275   52   230   0.03856848   0.00407302   0.0222888   0.015697371   5.09982521   0.001985   56   240   0.05711249   0.00773319   0.033064775   0.023244785   4.879117343   0.003772   57   250   0.08334348   0.01432702   0.04825097   0.033920795   4.682954546   0.006985   57   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466   0.0069855466    |               |                                           | <del></del>                                      |                 |                                                                                                                 | <del></del>                                       | + <del></del>    |                 |
| 38 Part. Dens.         1349.20635         3100         644.4444444         1349.206349 (no mass transfer resistance)           39 % Slurry         15 Rheinprussen Lab Unit Condition         Preexponential         3300008           40 Gas Holdup         0.1664         Cat. Energy         Act. Energy           41 T · oC         Liq Dens.         Slurry Dens.         Kg Cat/m3         ko         koxEpsilor           42 200         702.5         794.6905077         99.36810108         0.00172998         0.001442           43 210         696.95         788.6517548         98.61301542         0.003403846         0.0024384           44 220         691.4         782.6093307         97.85747071         0.006513473         0.005428           45 230         685.85         776.532319         97.10146652         0.01214194         0.010121           46 240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47 250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48 260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49 266         665.87         754.7667988         94.37604052         0.0941080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                           |                                                  |                 | <del> </del>                                                                                                    |                                                   |                  | d for Design    |
| 39 % Slurry         15 Rheinprussen Lab Unit Condition         Preexponential         3300000           40 Gas Holdup         0.1664         Act. Energy         Act. Energy           41 T · oC         Liq Dens.         Slurry Dens.         Kg Cat/m3         ko         koxEpsilor           42 200         702.5         794.6905077         99.36810108         0.00172998         0.001442           43 210         696.95         788.6517548         98.61301542         0.003403846         0.002837           44 220         691.4         782.609307         97.85747071         0.006513473         0.005428           45 230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46 240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47 250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48 260         669.2         758.4028544         94.83069292         0.06821642         0.05685           49 266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         Patential Patential Installation State Installation State Installation State Installation Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                           |                                                  |                 | <del></del>                                                                                                     | 1349,206349                                       | (no mass transfe | r resistance)   |
| 40 Gas Holdup         0.1664         Act: Energy           41 T · oC         Liq Dens. Slurry Dens. Kg Cal/m3 ko koxEpsilor           42 200         702.5 794.6905077 99.36810108 0.00172998 0.001442           43 210         696.95 788.6517548 98.61301542 0.003403846 0.002837           44 220         691.4 782.6093307 97.85747071 0.006513473 0.005428           45 230         685.85 776.5632319 97.10146652 0.01214194 0.010121           46 240         680.3 770.5134552 96.34500244 0.022083047 0.018408           47 250         674.75 764.4599972 95.58807805 0.03924075 0.032711           48 260         669.2 758.4028544 94.83069292 0.06821642 0.056865           49 266         665.87 754.7667988 94.37604052 0.094108054 0.078448           50         T - oC           Rate Constant in s^-1         Hh = He/RT koEpsilL/F           51 T - oC         Rate Constant in s^-1         Hh = He/RT koEpsilL/F           52 200 0.0167724 0.00104346 0.009710234 0.006826367 5.561181682 0.000516           54 220 0.02564438 0.0020902 0.014846589 0.010437264 5.316602872 0.001025           55 230 0.03856848 0.00407302 0.02232888 0.015697371 5.08982521 0.001986           56 240 0.05711249 0.00773319 0.033064775 0.023244785 4.879117343 0.003772           57 250 0.08334348 0.01432702 0.04825097 0.033920795 4.682954546 0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                           |                                                  |                 |                                                                                                                 |                                                   |                  | 3300000000      |
| 41         T - oC         Liq Dens.         Slurry Dens.         Kg Cat/m3         ko         koxEpsilor           42         200         702.5         794.6905077         99.36810108         0.00172998         0.001442           43         210         696.95         788.6517548         98.61301542         0.003403846         0.002837           44         220         691.4         782.6093307         97.85747071         0.006513473         0.005429           45         230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46         240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47         250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48         260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49         266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         To- oC         Rate Constant in s^-1         Hh = He/RT         koEpsilL/F           52         200         0.01077932         0.00050586         0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                           | <del>                                     </del> |                 | <del></del>                                                                                                     | T -                                               |                  | 130             |
| 42         200         702.5         794.6905077         99.36810108         0.00172998         0.001442           43         210         696.95         788.6517548         98.61301542         0.003403846         0.002837           44         220         691.4         782.6093307         97.85747071         0.006513473         0.005429           45         230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46         240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47         250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48         260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49         266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         1         T - oC         Rate Constant in s^-1         Hh = He/RT         kcEpsilL/F           52         200         0.01077932         0.00050586         0.006240593         0.004387184         5.825534097         0.000024           53         210         0.016772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41            |                                           | ļ — — ·                                          |                 |                                                                                                                 | Kg Cat/m3                                         | T                | koxEpsilonL     |
| 43         210         696.95         788.6517548         98.61301542         0.003403846         0.002837           44         220         691.4         782.6093307         97.85747071         0.006513473         0.005428           45         230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46         240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47         250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48         260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49         266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         T-oC         Rate Constant in s^-1         Hh = He/RT         koEpsilL/F           52         200         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000510           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                           |                                                  |                 |                                                                                                                 |                                                   | 0.00172998       |                 |
| 44         220         691.4         782.6093307         97.85747071         0.006513473         0.005429           45         230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46         240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47         250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48         260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49         266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         T - oC         Rate Constant in s^-1         Hh = He/RT         koEpsilL/F           52         200         0.01677932         0.00050586         0.006240593         0.004387184         5.825534097         0.00024           53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.001021           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55 <th></th> <th></th> <th><del></del></th> <th></th> <th></th> <th><del></del></th> <th><del></del></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                           | <del></del>                                      |                 |                                                                                                                 | <del></del>                                       | <del></del>      |                 |
| 45         230         685.85         776.5632319         97.10146652         0.01214194         0.010121           46         240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47         250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48         260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49         266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         T - oC         Rate Constant in s^-1         Hh = He/RT         koEpsilL/F           52         200         0.01077932         0.00050586         0.006240593         0.004387184         5.825534097         0.00024           53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000516           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.00198 </th <th></th> <th><del></del></th> <th><del></del></th> <th></th> <th><del></del></th> <th></th> <th>0.006513473</th> <th>0.005429631</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | <del></del>                               | <del></del>                                      |                 | <del></del>                                                                                                     |                                                   | 0.006513473      | 0.005429631     |
| 46         240         680.3         770.5134552         96.34500244         0.022083047         0.018408           47         250         674.75         764.4599972         95.58807805         0.03924075         0.032711           48         260         669.2         758.4028544         94.83069292         0.06821642         0.056865           49         266         665.87         754.7667988         94.37604052         0.094108054         0.078448           50         T - oC         Rate Constant in s^-1         Hh = He/RT         koEpsilL/F           52         200         0.01077932         0.00050586         0.006240593         0.004387184         5.825534097         0.00024           53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000516           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343 <th></th> <th></th> <th><del></del></th> <th><del></del></th> <th></th> <th></th> <th></th> <th>0.010121521</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                           | <del></del>                                      | <del></del>     |                                                                                                                 |                                                   |                  | 0.010121521     |
| 47 250 674.75 764.4599972 95.58807805 0.03924075 0.032711 48 260 669.2 758.4028544 94.83069292 0.06821642 0.056865 49 266 665.87 754.7667988 94.37604052 0.094108054 0.078448 50 T-oC Rate Constant in s^-1 Hh = He/RT koEpsilL/F 52 200 0.01077932 0.00050586 0.006240593 0.004387184 5.825534097 0.00024 53 210 0.0167724 0.00104346 0.009710234 0.006826367 5.561181682 0.000516 54 220 0.02564438 0.0020902 0.014846589 0.010437264 5.316602872 0.001021 55 230 0.03856848 0.00407302 0.02232888 0.015697371 5.08982521 0.001988 56 240 0.05711249 0.00773319 0.033064775 0.023244785 4.879117343 0.003772 57 250 0.08334348 0.01432702 0.04825097 0.033920795 4.682954546 0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | <del></del>                               |                                                  |                 | <del></del>                                                                                                     |                                                   |                  |                 |
| 48 260 669.2 758.4028544 94.83069292 0.06821642 0.056865 49 266 665.87 754.7667988 94.37604052 0.094108054 0.078448 50 51 T - oC Rate Constant in s^-1 Hh = He/RT koEpsilL/F 52 200 0.01077932 0.00050586 0.006240593 0.004387184 5.825534097 0.00024 53 210 0.0167724 0.00104346 0.009710234 0.006826367 5.561181682 0.000516 54 220 0.02564438 0.0020902 0.014846589 0.010437264 5.316602872 0.001023 55 230 0.03856848 0.00407302 0.02232888 0.015697371 5.08982521 0.001988 56 240 0.05711249 0.00773319 0.033064775 0.023244785 4.879117343 0.003772 57 250 0.08334348 0.01432702 0.04825097 0.033920795 4.682954546 0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47            | <del></del>                               | <del></del>                                      | <del></del>     |                                                                                                                 | +                                                 | <del></del>      |                 |
| 49       266       665.87       754.7667988       94.37604052       0.094108054       0.078448         50       T - oC       Rate Constant in s^-1       Hh = He/RT       koEpsilL/F         52       200       0.01077932       0.00050586       0.006240593       0.004387184       5.825534097       0.00024         53       210       0.0167724       0.00104346       0.009710234       0.006826367       5.561181682       0.000510         54       220       0.02564438       0.0020902       0.014846589       0.010437264       5.316602872       0.001024         55       230       0.03856848       0.00407302       0.02232888       0.015697371       5.08982521       0.001988         56       240       0.05711249       0.00773319       0.033064775       0.023244785       4.879117343       0.003772         57       250       0.08334348       0.01432702       0.04825097       0.033920795       4.682954546       0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _             |                                           | <del></del>                                      |                 | <del></del>                                                                                                     | <del></del>                                       | <del></del> _    |                 |
| 50         T - oC         Rate Constant in s^-1         Hh = He/RT         koEpsilL/F           52         200         0.01077932         0.00050586         0.006240593         0.004387184         5.825534097         0.00024           53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000510           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001024           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49            |                                           |                                                  | <del>+</del>    | <del></del>                                                                                                     |                                                   |                  | 0.078448474     |
| 51         T - oC         Rate Constant in s^-1         Hh = He/RT         koEpsil/F           52         200         0.01077932         0.00050586         0.006240593         0.004387184         5.825534097         0.00024           53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000510           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _             |                                           |                                                  |                 |                                                                                                                 |                                                   |                  |                 |
| 52         200         0.01077932         0.00050586         0.006240593         0.004387184         5.825534097         0.00024           53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000510           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | T - oC                                    | Ra                                               | te Constant in  | s^-1                                                                                                            |                                                   | Hh = He/RT       | koEpsilL/Hh     |
| 53         210         0.0167724         0.00104346         0.009710234         0.006826367         5.561181682         0.000510           54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             | <del></del>                               | 0.01077932                                       | 0.00050586      | 0.006240593                                                                                                     | 0.004387184                                       |                  | 0.00024755      |
| 54         220         0.02564438         0.0020902         0.014846589         0.010437264         5.316602872         0.001021           55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 210                                       | <del></del>                                      |                 | <del></del>                                                                                                     | <del></del>                                       | 5.561181682      | 0.000510224     |
| 55         230         0.03856848         0.00407302         0.02232888         0.015697371         5.08982521         0.001988           56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                           |                                                  |                 |                                                                                                                 |                                                   | <del></del>      | 0.001021259     |
| 56         240         0.05711249         0.00773319         0.033064775         0.023244785         4.879117343         0.003772           57         250         0.08334348         0.01432702         0.04825097         0.033920795         4.682954546         0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             | <del></del>                               | <del></del>                                      |                 | <del></del>                                                                                                     |                                                   | <del></del>      |                 |
| 57 250 0,08334348 0.01432702 0.04825097 0.033920795 4.682954546 0.006985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _             |                                           |                                                  |                 |                                                                                                                 |                                                   | 4.879117343      | 0.003772901     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 7           | <del></del>                               |                                                  |                 | <del>,</del>                                                                                                    |                                                   |                  | 0.006985139     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58            | 260                                       |                                                  |                 | 0.069445358                                                                                                     |                                                   |                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59            | 266                                       | 0.15914547                                       |                 | <del></del>                                                                                                     |                                                   | 4.396043873      | 0.017845244     |