II. THEORY OF PRECIPITATION

IILA. Steps in Precipitation Reactions

The precipitation is a complex process of even an ionic salt. Even though
precipitation is a fundamental chemical operation for both separation and purification it
is not well understood. All too frequently precipitation only gives the desired result if
certain well-established procedures are rigidly aahered to even though, in far too
many cases, the basis of these procedures have evolved empirically and are, at best,
poorly understood.

The simplest case is precipitation from a supersaturated solution which involves
the formation of a new solid phase from solution; purification of sugar is an example of
this. It is convenient to establish the following steps in this process: nucleation,
growth, ripening and aging. In practice, these are not distinct since two, or even all, of
the steps may overlap in time. .

The next complexity in precipitation is illustrated by the mixing of two chemical
solutions to form an insoluble salt. For example, the addition of barium chloride to

sodium sulfate can produce insoluble barium sulfate:

BaCl, + Na,SO, - BaSO, + 2NaCl

The precipitation of BaSO, by the above equation is more complex than from a
supersaturated solution of just barium sulfate since concentrations are changing with

time during the reaction.
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11.A.1 Crystallization from a Homogeneous Solution without Reaction

Crystallization is an old process, dating at least to 1500 BC for the production
of alum (IL.1). However, the science describing the process is a recent development.
Today this process has become quite sophisticated as is illustrated by the figure

reproduced from reference II.1.
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Figure IL1. Interactions within a crystallizer (reference IL1).

The kinetic description of crystal production is analogous to that of the
Anderson-Schulz-Flory (ASF) treatment of Fischer-Tropsch Synthesis.

Rousseau (I1.2) summarized the development of the equations to describe the
size distribution of product crystals.

"We cah derive equations describing the size distribution of product crystals
with the followihg definitions and restrictions:

. The number of crystals is a balanceable quantity.
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. A population density function is defined so that n(L)dL is the number of crystals
in the size range L to L + dL per unit volume magma or clear liquor. We
assume the function to be continuous.

. Crystal growth rate is defined as the rate of change in characteristic crystal
dimension, i.e., G = dL/dt.

. The rate at which crystals grow into the size range L to L + dL is n(L)G(L).

. The rate at which crystals grow out of the size range Lto L + dLis n(L +
dL)G(L +dL).

. Nucleation rate, B®, is defined as the rate at which new crystals are formed in

the crystallizer."
"With these definitions, the population balance on a perfectly mixed crystallizer

can be written as:

on _ onG oV
V(.é7 + E) +n & on-an [L1]

where Q, is the magma flow rate out of the crystallizer. Let us further assume that the
magna volume, V, is constant and perfectly mixed (so that a single residence time, 7,
can be used for all crystals and liquor), and if the feed to the crystallizer is clear, the

population balance may be written as:

on  omG) ,.n _, [IL.2]
ot oL T

Now assuming steady-state behavior and growth that is independent of crystal size,

the population density function can be written as:
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n=n° exp(-L [GT) ‘ [I11.2a]
where n° is the population density of zero-size crystals, often referred to as nuclei
population density."
“Under steady-state conditions in a perfectly mixed crystallizer the total number

production rate of crystals is identical to the nucleation rate. Adcordingly:
B° = = ["ndL = n°G, [1L3]
T Y0

"Analysié of the last two equations shows that we can use a single experiment
to obtain growth and nucleation rates at a single set of conditions. Figure 11.2 shows
a plot of typical population-density data obtained from a crystallizer meeting the

assumptions stated above. The slope of these data may be used to obtain the
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Figure I1.2. Ideal exponential crystal size distribution from perfectly mixed
crystallizer (reference I1.2).
growth rate while the intercept gives nucleation rate. The perfectly mixed crystallizer is

often used to obtain kinetic data for crystallizer design or analysis. Typically, a series
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of experiments is conducted at various conditions to give growth and nucleation
kinetics that may be correlated with system variables. Correlations for nucleation rate

are usually in the form of power law expressions such as:

B® = ky(T,rpm)G'M, ' [11.4]

where i, j and k,, are system-dependent parameters and M is the mass of crystals per
unit volume (magma density). The expression for nucleation rate kinetics usually
contains the growth rate to eliminate the necessity of knowing system supersaturation,
a quantity that is often difficult to measure.

The perfectly mixed crystallizer restricts the degree to which characteristics of a
crystal size distribution may be varied. Such distributions have the following
characteristics:

1. The dominant crystal size, that is, the mode of the mass distribution

function, is L, = 3G.

2. The coefficient of variation of the population density function is 50%;

such a distribution is usually too wide for commercial products.

3. The magma density (mass of crystals per unit volume of slurry or liquor)

may be obtained from the third moment of the population density

function:

M, = 6pk,n°(G)* [ILS]
where p is crystal density and k, is the volume shape factor. Although magma density

is a function of the kinetic parameters n° and G, it can be measured independently of
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crystal size distribution and, where possible, it should be used as a constraint in
evaluating nucleation and growth rates.

4, A pair of kinetic parameters, one for nucleation rate and another for
growth rate, describe crystal size distribution for a given set of crystallizer
conditions. Furthermore, one cannot vary one of the kinetic parameters
without changing the other.

Experimental data for the crystal size distribution of calcium oxalate shows

excellent agreement with the predicted distribution.

§°C, r=4.9min
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Nudeationrate, B = 1.5x10's"'L"
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Figure I1.3. Steady state crystal size distribution of calcium oxalate in a
continuous mixed-suspension mixed-product removal (MSMPR)
crystallizer (9°C, mean residence time (z) = 4.9 min) (reference I1.3).

The similarity between the curve in Figure I1.3 (Ref. I1.3) and a typical ASF is obvious

in Figure I1.4 (Ref. I1.4). The analogy may even be carried further.
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Figure I1.4. Plots of log (N, /Ncl) versus (n-1) for different H,/CO feed ratios
(reference I1.4).

Crystal size distributions produced in perfectly mixed crystallizers are highly
constrained. When a system is operating in a high-yield mode, where no appreciable
supersaturation remains in the effluent liquor, the process is even more severely
constrained. In such circumstances, for example, fixing feed concentration and
crystallizer conditions determine magma density.

Much of this inflexibility can be lessened by incorporation of selective removal
devices into the crystallizer operation. For example, one can add a fines destruction
unit so that fines may be advanced or redissolved and returned to the crystallizer. If
the flow rate of liquor containing fines is (R - 1) times the output flow rate, then the

removal rate of fines below a cut size L; is R times the removal rate of larger crystals.

The crystal size distribution for this system is given by:
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n =ng exp(-RL [Gt); L < L, [11.6]

n =n°exp(-L [Gt); L2 L [IL.7]
Since these two equations intersect, n° is related easily to n%, G, and R. Analysis of
these equations shows that fines destruction leads to an increase in dominant crystal
size and spread of the distribution.
Alternatively, with a coarse product removal system one can remove crystals
above size L from the crystallizer at a rate "z" times the removal rate of smaller

crystals. Under such conditions, the crystal size distribution may be written as

=n°exp(-L [Gr); L < L, [11.8]

n=n°exp(-zL [Gz); L > L, [1L.9]

The product will exhibit a narrower size distribution with a concomitant reduction in
dominant size.

Finally, if we remove both fines and large crystals, the size distribution is given

by:
n = ng exp(-RL [Gt); L < L, [1L.10]
n=n° exp(—f, IG1); Ly < L s L [IL11]
n =n°exp(-zL [Gt); L, < L [IL.12]

Generally, operation with both of these selective removal functions combines the best
features of each: namely, increased dominant size and narrower distribution. Figure

115 illustrates a typical crystal size distribution plot taken from the well-mixed region of
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Figure IL5. Crystal size distribution with combined fines and coarse product
removal (reference 11.2).

a crystallizer having both fines and course selective removal devices. The agreement

of theory and the experimental prediction is illustrated in Figure I1.6.
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Figure I1.6. Effect of size-dependent residence time on the crystal size
distribution of potassium nitrate in a continuous crystallizer

(reference I11.5).
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The analogy between the data in Figure I1.6 for potassium nitrate crystallization (I1.4)

and a typical ASF plot for the FTS products from a continuous stirred tank reactor

(CSTR,) is obvious (Figure I1.7, Ref. 11.6).
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Figure I1.7. Anderson-Schulz-Flory plot of products after ca. 60 days of syngas
conversion (reference IL.6). '

If there is a connection between the two sets of data, the reason for the first alpha plot

would be that gaseous products are removed rapidly from the reactor because of

their volatility and that heavier products are removed from further growth because of

their limited solubility. The two- or multi-alpha ASF plots are considered in more detail

in a later section.

Precipitation of hydroxides is a more complex process since chemical reactions

(e.g., elimination of water, conversion of basic salts into hydroxides) also occur during

formation of the solid phase, depending on the pH value and time. Consequently,

there are as yet very few theoretical schemes for the general treatment of the

precipitation of hydroxides.
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II.A2 Nucleation

The formation of submicroscopic particles (nuclei) of the new phase from a
supersaturated solution is particularly interesting, but relatively difficult to observe
experimentally. It generally begins only when a certain supersaturation has been
reached, and then proceeds very rapidly. The questions that arise in connection with
the formation of a new phase have already been considered in detail by, among
others, Tammann (IL.7), Ostwald (I1.8) and Volmer (I1.9). The kinetics of precipitation
reactions have also been described by Nielsen (I1.10) and Lieser (II.11.). The
following discussion draws heavily upon references I1.10 and I1.11 and in sections
directly quoted from one of these references.

Lieser writes (IL.11): "Nucleation can be either homogeneous (spontaneous) or
heterogeneous. Homogeneous or spontaneous nucleation occurs without the
participating of other substances, by combination of the dissolved ions or molecules
to form larger particles. Heterogeneous nucleation begins on small particles of foreign
matter (seeds), on which ions or molecules are deposited (e.g., by adsorption) until a
nucleus has been formed."

"Relatively high supersaturations are often observed in the absence of seeds.

The supersaturation S is defined by

S = s [IL.13]

The ratio C/C, = S + 1 = S is known as the supersaturation ratio. C is the actual
concentration and C, is the saturation concentration (solubility). The occurrence of

supersaturation can be explained thermodynamically by means of the surface tension.
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The change in free enthalpy AG is given by the difference in the chemical potentials x
of the substance in question per mélecule in the dissolved () and in the solid (z,)

state and by the surface tension o:
AG = -n(g,-p,) + oF [11.14]

n is the number of molecules in a nucleus. - If the nuclei are assumed to be spherical,

then F = n®® f [ = (3V)*® (47)"?; v = volume of a molecule] and

AG = -n(p,-p,) + n%fo [11.15]
The curve in Figure I1.8 shows AG as a function of the number of molecules in a
nucleus. For small values of n, AG is always positive, i.e., very small nuclei redissolve.
A metastable equilibrium exists at the maximum of the curve (d AG/dn = 0); this

corresponds to the critical state for nucleation (denoted hereafter by an asterisk)."
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Figure I1.8. Free enthalpy AG as a function of the number of molecules nin a
nucleus (n* = number of molecules in a critical nucleus) (reference
IL.11).
“A nucleus in which the number of molecules n = n* is known as a critical

nucleus, and particles in which the number of molecules n < n* are called subnuclei
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or embryos. Whereas all nuclei having n < n* redissolve, nuclei with n > n* grow into
crystals. A homogeneously supersaturated solution is therefore thermodynamically in
a metastable state, which can persist for a very long time. A precipitate can form only
when the energy barrier AG* has been overcome; in homogeneous nucleation, for
example, this can occur as a result of random free enthalpy variations in small regions
of the solution.”

“Information about the radius of a critical nucleus and the number of molecules

that it contains can be obtained from the following argument. For spherical particles,

F=3Y [11.16]

Since dV/dn = v (volume of one molecule), it follows from eq. [I1.14] that

dAG 2vo
— = —(p,-1,) + — [IL.17]

In the metastable equilibrium, d AG/dn = 0, and the radius of the critical nucleus is

therefore

I L [IL18]
B~ H,

The number of molecules in a critical nucleus is

e =Y _ _20F° [IL.19]
v 301y

The free enthalpy of the critical nucleus is

AG* = -n*(p,-p,) + oF"*

The surface area F* of the critical nucleus is found with the aid of eq. [II.19] to be
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AG® = - 29F° , pr o 9ET [11.20]
3 3
2.,2
F*=3p——"— . [I1.21]
(p'l-l-‘z)
where 8 is a geometric shape factor:
3
p = [11.22]
27v?

[8 = 16.76 (sphere), 20.22 (icosahedron), 22.20 (dodecahedron), 27.71 (octahedron),
32 (cube), 55.43 (tetrahedron)]."
"“The difference in the chemical potentials is given by the ratio of the activities a
in the solution (a,) and in the solid (a,):
!
B,~B, = kT In — {IL.23]
a,
If the concentration and saturation concentration are used as approximations for the

activities, it follows, with the aid of eq. [II.1], that

BmHy = kT ln(S + 1) [II.24]
and from equations [11.19], [I1.21], and [I1.24]:

n® = 2p — o’v? [11.25]

[AT In(S* + DF

S* = critical supersaturation.
"Equation [I1.25] permits the rough calculation of the number of molecules in a

critical nucleus. Measured values for the surface tension ¢ are available in only a few
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cases; it is of the order of 100 erg/cm? From o and the critical supersaturation S*, we
obtain n* values of the order of 100, i.e., a critical nucleus consists of about 100
molecules and has a diameter of the order of 100 A."

“The radius of a nucleus in a supersaturated solution is given by the Gibbs-

Kelvin equation (reference 11.12)

o 2vo [11.26]
kT In(S + 1)

which follows from equations [I1.18] and [I1.24]. According to this equation at a
certain supersaturation S, only particles of one particular size are present in the
solution, this size decreasing with increasing supersaturation (Figure 11.9)."

“The calculation provides no details on the concentration of subnuclei ina
supersaturated solution, which is very strongly dependent on the supersaturation
(Figure I1.10). The number of critical nuclei also changes extremely rapidly with the
supersaturation, so that S* can be determined relatively accurately by experiment.
Slightly below this critical supersaturation, the number of critical nuclei is still very small

100 H

0= 100erg/cm?

0 5 0 T
§ ——
Figure I1.9. Radius of the nuclei in a supersaturated solution as a function of the
supersaturation S on the basis of the Gibbs-Kelvin equation for
various surface tensions (reference IL.11).
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(i.e., the nucleation rate is very low), whereas only slightly above the critical
supersaturation the number of critical nuclei is so large that precipitation begins

almost instantaneously."

100

1 1 1 —de
1500 50 100 150 200

Figure I1.10. Concentration of subnuclei in a supersaturated solution on the
basis of theoretical considerations (n = number of molecules in a
subnucleus, S = supersaturation; calculated for g = 40, 0 = 50
erg/cm?, v = 10%cm’, C, = 2.5 x 10 mole - 17) after Nielsen
(I1.10).

"The first equation for the nucleation rate was given by Volmer and Weber
(I1.13), and later by Becker and Doring (I1.14); further theoretical treatments were
given by Nielsen (I1.10) and Kahlweit (IL.15). The nucleation rate J (number of riuclei

formed per cm® per sec) can be expressed by

J = J, exp[~AG/kT] [1L.27]

It follows with the aid of equations [I1.20], [I1.21], and [I1.24] that
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A

log J =1log J, - [11.28]
° Mog (S + DP
where
_ _ Bd%? [I1.29]
(T In 10)°
as an approximation
log J = 30 - 4 [11.30]

[log (§ + D
The nucleation rate according to this equation can be found from a diagram (Figure
I1.11; reference 11.10). For spontaneous (homogeneous) nucleation, the experimental

values of J as a function of the supersaturation S lie on a curve having a constant

value for A; it is therefore possible to calculate the surface tension o with the aid of eq.

[I1.29]."
"Figure II1.11 shows that the nucleation rate for relatively wide ranges can be

approximately given by a relation of the form

J=kC"m [IL31]

The exponent m corresponds to the slope d (log J)/d (log c) of the experimental
curve, and also provides information about the size of a critical nucleus; it is found

from equations [I1.28] and [I1.25] that

dlogd _ __dinJ __ 2B _ . [11.32]

dlogc ' dlmn@S+1)  [IPIInG + DP

The surface tension can finally also be determined with the aid of this equation."
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Figure IL11. Nucleation rate (number of nuclei formed per cm®sec™) as a
function of the supersaturation for various values of A (eq. [11.28]

and reference I1.10).

IILA3. Growth

Once a critical nucleus has been formed, it can grow into a crystal in various
ways. The first detailed theoretical treatment of crystal growth was due to Kossel

(I1.16) and Stranski (I1.17); the basic model is shown schematically in Figure IL12.
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Figure IL12. Model of crystal growth according to Kossel (I1.16) and Stranski
(IL.17).
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"According to this model of stepwise growth, there are non-equivalent sites on
the surface of a crystal. A site marked (1) in figure I1.13 is preferred, while the edges
and corners of the crystal are less favorable. The first step in the formation of a new
layer has particularly qnfavorable energy requirements. The particle (2), which is a
surface nucleus, forms a new layer by two-dimensional growth. lt is also possible that
more than one surface nucleus is deposited, and in this case the zones formed by the
two-dimensional growth of these nuclei overlap. If the formation of surface nuclei is

very fast, a new layer is started before the growth of the last layer is complete, i.e., the

(polynuclear) growth takes place in several layers simultaneously one upon another

5=

(Figure 11.13)."

{21

Figure II.13. Polynuclear growth (schematic; the numbers denote
superimposed layers) (reference 11.10).

“As an alternative to stepwise\growth, Frank (I1.18) proposed growth on screw

dislocations (Figure I1.14), where there are always energetically favorable sites for the
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deposition of ions or molecules. The screw dislocation is retained as a crystal

imperfection, and is continuously propagated in the form of a spiral as growth

Figure IL.14. Growth at screw dislocations.

proceeds. The forr;1ation of surface nuclei is no longer necessary, and growth at
screw dislocations can therefore occur even at low supersaturations. In agreement
with this model, spiral growth at screw disloéations has in fact been observed in many
cases."

"Various consecutive processes may be important to the crystal growth: (a)
diffusion of the ions or molecules from the solution onto the surface; (b) adsorption of
the ions or molecules on the surface; (c) transition on the surface; (d) transport on the
surface to a suitable site." Process (b) is very much faster than the other processes,
since it is not inhibited. The processes (c) and (d) are generally indistinguishable, and
are therefore known collectively as the surface reaction. The rate-determining step for
the growth of the crystals may thus be the-diffusion or the surface reaction."

“If the diffusion is rate-determining, the growth rate of a crystal is given by

& 4nD(C-C)r . [IL33]
dt
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This yields the relation given by Neumann (I1.19) for the radius of a particle as a

function of time:

r@t) = 2DUC-C)t [11.34]

V is the molar volume and D is the diffusion coefficient. Eq. [11.34] is valid only when
V (C-C) << 1. If on the other hand the surface reaction is rate-determining, it may
be assumed that the growth rate of a crystal is proportional to the area and to the

concentration difference (I1.15), and one then obtains

% = 4nr’k(C-C) [IL.35]

and
r(t) = kV(C-C,)t [11.36]

Equations [I1.33] to [I1.36] are applicable provided that the linear growth of a crystal
can be followed as a function of time. If growth and ripening overlap, as is usually the
case in the precipitation of sparingly soluble ionic crystals, dn/dt and dr/dt may be
positive or negative for a given crystal."

“In many cases we are interested in the decrease in concentration in the
solution as a result of crystal growth, which can be described by a kinetic equation

J=- _pom [11.37]
dt "
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n, is the number of ions or molecules per cm® of solution. However, Marc (I1.20)
showed that the growth rate for readily and moderately soluble substances satisfies
the equation

J =k (C-C)" [11.38]

The exponent m is usually known as the order of the growth reaction. This is correct
in the sense used in chemical kinetics for a relation of the form of eq. [11.37], but not
for an empirical relation of the type of eq. [11.38}."

"“The progress of crystal growth can also be described by the change in the

supersaturation; the characteristic quantity used (IL.10) is
€ =1-2 [1L39]
SO

S, is the supersaturation at time t = 0. For spherical particles of (average) radius r
and a constant number of particles,

rera [IL.40]

r, is the (average) radius of the crystals at the end of the experiment. For the case

where diffusion is rate-determining, Nielsen (I1.10) derived from this relation
t = K I, [IL.41]

where
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K=o [11.42]
P 3vp(C,-C)

and I is the "diffusion chronomal"

e dx
I = fo e [IL43]

Figure 11.15 shows a as a function of I,. This diagram can be used for the evaluation
of measurements, e.g., by reading off I, for the experimental value of ¢ and plotting it
as a function of time. If the diffusion is rate-determining, as was assumed in the
derivation of eq. [I1.41], this procedure should give a straight line, the slope of which
(1/Kp) should, according to eq. [I1.42], give reasonable values for the diffusion
coefficient D. For aqueous electrolytes, D is of the order of 10° cm? sec™ at room

temperature."

0F

08
I 06

02f

Figure I1.15. Diffusion chronomal after Nielsen (I1.10) (eq. [IL.39] to [I1.43]).
"For the case in which the surface reaction is rate-determining, Nielsen (I1.10)
uses the quantity
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@=1-< [11.44]

and with the aid of eq. [11.40] he obtains the following relations for mononuclear or

polynuclear growth.".
t=K]I andt=K]I, [IL45]

IILA.4. Ripening

Crystals formed by nucleation and growth are usually imperfect. These crystals
are not at thermodynamic equilibrium with the solution, and the deviation increases
with increasing supersaturation of the solution. Thus, the increasing rate of formation
of small crystals with increasing supersaturation increases the deviation from
thermodynamic equilibrium.

"According to Ostwald (I1.8), small crystals pass into solution during ripening,
while the larger crystals continue to grow (Ostwald ripening). Another theory (I1.21)
involves the combination of small particles and growth of the resulting composite
particles into larger crystals (cementation) (I1.11)."

"If we consider the Ostwald ripening mechanism, only some of the crystals
formed in any stage of a precipitation reaction have a chance to grow further. The
remaining crystals redissolve. This is true in particular during the growth stage, since
the supersaturation in the solution often changAes very markedly in this stage."

"The rate of Ostwald ripening is subject to the same considerations as the rate
of growth of the'crystals. The ripening may be divided into the following processes:

(a) dissolution of ions or molecules from small crystals, (b) diffusion of the dissolved
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