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10. LIST OF FIGURES

Fig. 3.1. Schematic of the 0.108 m diameter bubble column along with air supply
loop, temperature and pressure measuring circuits and liquid circulation loop:
(1) air compressor, (2) surge tank, (3) refrigerator drier, (4) oilscer filter, (5)
pressure regulator valves, (6) gate valves, (7) rotameter, (8) pressure gauge, (9)
one-way valve, (10) bubble cap distributor, (11) perforated-plate distributor, (12)
stainless steel wire cloth, (13) water inlet, (14) thermocouples, (15) Plexiglas
column, (16) water outlet, (17) disengaging section, (18) liquid drain, (19)
purgemeters, (20) trap bottles, (21) manometers, (22).data acquisition system, (23)
computer, (24) keyboard, (25) disc drive, (26) monitor, (27) printer, (28) plotter,
(29) liquid storage tank, (30) liquid circulation pump, (31) stirrer and (32)
venturimeter.

Fig. 3.2. Design details of the bubble column cap air distributor plate for the
calming section (A), and of the air distributor plate for the slurry bubble column
(B). All dimensions are in cm.

Fig. 3.3. Schematic of the pressure measurement and control systems.

Fig. 3.4. Design details of the heat transfer probe (A), mounting clamp (B),
orientation of the five-tube bundle (C), and bubble column with the tube-bundle.

Fig. 3.5. Design details of the 31.8 mm heat transfer probe (A), and of the heated
section (B). All dimensions are in mm.

Fig. 3.6. Design details of the 50.8 mm heat transfer probe (A), and of the heated
section (B). All dimensions are in mm.

Fig. 3.7. A sectional top view through the center of the probe bundle comprising
of seven simulated heat transfer probes arranged in an equilateral triangular
configuration. (1) heat transfer probe, (2) ring clamp, (3) spacer plates, (4) locating
stud, (5) telescopic locating stud, (6) column surface, (7) Teflon rounded cap, (8)
stainless steel spring, (9) locking pin, (10) calrod heater, and (11) brass tube.

Fig. 3.8. Design details of the radial thermocouple probe. (1) copper-constantan
thermocouples, (2) thermocouple well, (3) Silicone rubber, (4) Acryhc tube, (5)
column wall, and (6) Swagelock connector. All dimensions are in mm.

Fig. 3.9 Design details of the thermocouple probe: (1) copper constantan
thermocouple, (2) thermocouple well, (3) copper cement, (4) Teflon plug, (5)
stainless steel tube, (6) column well, (7) Swagelock connector, (8) front ferrule,

(9) back ferrule, (10) shrink tube, (11) thermocouple leads. All dimensions are in
mm.
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Fig. 3. 10. Schematic of the D. C. power supply system for the heater probes.
Fig. 3.11. Detailed schematic of the texhperature meésuring system.

Fig. 3.12 Schematic of the 0.305 m diameter slurry bubble column along with air
supply loop, temperature and pressure measuring drcuits. (1) air compressor, (2)
refrigerator drier, (3) oilscer filter, (4) pressure regulator valve, (5) rotameters, (6)
pressure gauge, (7) gate valves, (8) one-way valve, (9) liquid drain, (10) conical
section, (11) bubble-cap distributor plate, (12) perforated plate distributor, (13)
stainless steel wire cloth, (14) metal inserts, (15) glass column, (16) diverger
section, (17) trap bottles, (18) purgemeters, (19) manometers, (20) pressure sensor,
(21) pressure monitor, (22) on-off valve, (23) data acquisition system, (24)
computer, (25) key-board, (26) disc drive, (27) monitor, (28) printer, and" (29)
plotter. : e

Fig. 3.13A. Design details. of the bottom end assembly of the 0.305 m diameter
slurry bubble column. (1) gas inlet pipe, (2) Teflon coated nut, (3) liquid drain
adapter, (4) liquid drain, (5) gaskets, (6).flanges., (7) soft inserts, (8) conical glass
section, (9) bubble cap distributor plate, (10) cylindrical holder, (11) perforated
plate distributor, (12) stainless steel wire cloth, (13) spacer studs, (14) locating pins,
and (15) metal insert. All dimensions are in mm. : -

Fig. 3.13B. Arréngement of the bubble-caps on the distributor plate. All
~ dimensions are in mm. S

Fig. 3.13C. Design details of the perforated gas distributor plate for the.0.305 m
diameter slurry bubble column. (1) perforated distributor, (2) stainless steel wire
cloth, (3) bottom conical section, (4) flange, (5) gasket, (6) metal insert., (7) soft
inserts, and (8) glass column. All dimensions are in mm. - :

Fig. 3.13D. Design details of the diverger section at the top end of the 0. 305 m
. diameter slurry bubble column. (1) stainless steel perforated plate, (2) diverger
section, (3) gaskets, (4) flange, and (5) glass column. All dimensions are in mm.

Fig. 3.14. (A) Three-arm locating clamp, (B) single heat transfer probe, (C)
orientation of .thermocouples for the 0.305 m diameter bubble column. All
dimensions are in mm. (A): (1) ring clamp, (2) screw, (3) radial arms, (4) Teflon
rounded cap, (5) column surface, (6) telescopic arms (7) spring, (8) locking pin,
and (9) front end of the telescopicarm. . . . . .. ; L :

Fig. 3.15. Design details of the radial thermocouple probe. (1) oopper-cohstantan
thermocouples, (2) thermocouple well, (3) Silicone rubber, (4). . ,
ceramic tube, (5) column wall, and (6) swagelock connector. All dimensions are
- in mm. . : o

Fig. 3.16. Design details of the radial therfﬂoooupié probe. (1) copper-constantan
thermocouples, (2) thermocouple well, (3) Silicone rubber, (4) stainless steel, (5)
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column wall, and (6) swagelok connector. All dimensions are in mm.

Fig. 3.17. Orientation of heater and heat transfer probes in tube bundles. Single
~ heat transfer probe (A), four heater and single heat transfer probe (B), three
heater and four heat transfer probes (C), location of heater section in the single
heat transfer probe (D), and location of four heater sections in the four heat
transfer probe bundle (E). T SRR S

Fig. 3.18A. Design details of the heated section of the heat transfer probes and
“thermocouple locations-used in the thirty-seven tube bundle. :

‘Fig. 3.18B.-" A sectional view of the tube bundle through plane aa in the figure,
not to scale. All dimensions are in mm. T

Fig. 3.18C. The plan view of the thirty-seven tube bundle.
- Fig.3.18C. A photographic view of the thirty-seven tube bundle.

" Fig. 319A. Design details of the radial thermocouple probe.” (1) copper-costantan
thermocouples, (2) thermocouple ‘well, (3) copper cement,, (4) céramic tube, (5)
column wall, and (6) Swagelok connector. All dimensions are in mm.

Fig. 3.19B. Design details of the radial thermocouple’ probe. (1) copper-
constantan thermocouples, (2) thermocouple well, (3) copper cement, (4) ceramic
- tube, (5) column wall, and (6) Swagelok connector. All dimensions are in mm.

Fig. 3.19C. Design details of the radial thermocouple probe. (1) copper-
constantan thermocouples, (2) thermocouple well, (3) copper.cement, (4) ceramic
tube, (5) column wall, and (6) Swagelok connector. All dimensions are in mm.

“*Fig. 3.19D. ' Design details of the radial thermocouple probe. (1) copper-
constantan: thermocouples, (2) thermocouple well, (3) copper-cement, (4) ceramic
tube, (5) column wall, and (6) Swagelok connector. All dimensions are in mm.

- Fig. 3.20. 'Block d_iagrain of the heater controllers including switches and
- thermocouple connections. ST SR .
Fig. 3.21. Block assembly representation of the d?a'ta“'acq\iisiﬁc-m and analysis
system. ’ ’ , , .

~ Fig. 322. Schematic of gas supply system to the two slurry bubble columns.

Fig. 41. Variation of gas holdup with increasing and decreasing air velocity for
different slumped water column height (A) average, (B) local.

Fig. 4.2.- ‘Variation: of air holdup with air velocity and’ slhmped water column
height: (A) average, (B) local.
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Fig. 43. Variation of average air holdup with air and 'lliqtii‘d“vélodlt‘iq.‘ -
Fig. 4.4. Dependence of average air holdup on air velocity and tube bundle size.
Fig. 4.3. Variation of € g with increasing and decreasing U at various V.

Fig. 4.5. Variation of average air holdup for increasig and decreasing nitrogen
velocity and diferent slumped liquid column height.. ST o

Fig. 4.6. Dependence of nitrogen holdup on decreasig nitrogen velocity for heat
transfer probes of different diameters and seven-tube bundle. ~ -~ - -~ .-

Fig. 4.7. Variation of average red iron oxide, water and air holdups as a function

of decreasing air velodity in the column at 295K with a coaxial heat transfer probe
(A) dp = 1.02 um; and (B) dp = 2.38 um.

Fig. 4.8. Variation of average solids, liquid and gas holdup as a function of
decreasing air velicty and solids concentration for glass beads of (A) 50.0 um, (B)
117.6 um, and (C) 143.3 pm. T T S e

Fig. 49. The effect of slurry concentration on air holdup for the 7TB
arrangement: (A) 50 pm, (B) 119 um, and (C) 143 pm. =~ °

Fig. 4.10. Dependence of air holdup on air velocity and slurries of different
particle sizes and concentrations. Data are also compared with the predictions of
three models. .

Fig. 4.11. Dependence of air holdup on particle diameter in the slurry as a
function of air velocity. ‘ N e

Fig: 4.12. Dependence of air holdup on air velocity, particle di‘ameter and
concentration in' the slurry. : : ' M

Fig. 4.13. Dependence of nitrogen holdup on nitrogen velocity 'a.x}d- | slu_rryvb
concentration as determined in a bubble column equipped with' heat transfer .
probes of different diameters and a seven-tube bundle. o

Fig. 4.14. Variation of holdup for nitrogen-Therminol-red iron oxide systern fdr!
different internals and nitrogen velocity. ' ‘ L o
Fig. 4.15. Influence of nitrogen velocity and solids 'éénqentra‘t.iori"bri nitrogen
holdup for the nitrogen-Therminol-magnetite (36.6 um) system for the three
probes. - - - 0,

50, weight percent smooth plots.

Fig. 4.16. Effect of particle diameter on nitrogen holdup for the 31.8 mm probe
internal at solids concentration in weight percent of (A): 15, (B): 30, and (C): 50.
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Fig. 4.17. Effect of probe diameter on nitrogen holdup at different solids
concentrations in weight percent of (A): 0, (B): 15, (C): 30, and (D): 50.

Fig. 4.18. Variation of column temperature as a function of radial distance from
the probe surface at various air velocities.

Fig. 4.19. Variaﬁon of heat transfer coeffident with time at different air velocities
at two different locations in the column: (A) 0.57m, and (B) 1.18m above the
distributor plate. _ o

Fig.4.20. Variation of the heat transfer coefficient with time at different air
velodity for the water flow rate of 6.8 mm/s (A), and 11.9 mm/s (B).

Fig. 4.21. . Variation of the heat transfer coefficient and average. air holdup as a
function of air velocity for three heater locations in the column.

Fig. 4.22. Dependence of heat transfer coefficient for the central tube in the
bundle on air velodity.

Fig; 423, Dependence of heat transfer coefficient on heater location in the bundle
and air velocity.

Fig. 4.24. Variation of the heat transfer coefficient at 307K with air velocity at
different water flow velocities.

Fi'g. 425 Dependenoe of heat transfer coefficient on the nature of internals in the
column.

Fig. 4.26. Variation of heat transfer coefficient with air velocity at three
concentrations of slurry of 1.02 ym mean iron oxide particles in water at 313K.,

Fig. 4.27. Variation of heat transfer coefficient with air velocity at three
concentrations of slurry of 2.38 um mean iron oxide particles in water at 313K.

Fig. 428. Dependence of heat transfer coefficient on air velocity and solids
concentration for- particles of diameter (A) 1.02 pm, and (B) 2.38 pm, in the

slurry.

Fig. 4.29. Heat transfer coefficient dependence on (A) particle size and solids
concentration in the slurry, and (B) nature of internals in the column. :

Fig. 4.30. Variation of heat transfer coefficient with superficial air velocity for
slurries of different solids concentrations and particle size.

Fig. 4.31. Variation of heat transfer coefficient with superficial air velocity for
slurries_ of different particle sizes at the solid concentration of 104 kg/m3.
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Fig. 4.32. Influence of slurry concentration on heat transfer coefficient for

particles of mean diameter (A).50 um, (B) 119 um, and (C) 143 um.

Fig. 4.33. Dependence of heat transfer coefficient on air velocity and particle

diameter in ‘the‘ slurry.

Fig. 4.34. Dependence of heat transfer cbefﬁcient on air veibcity and slurry

_concentration for particles of different sizes. -

Fxg 4.35. ‘Dépendéﬁée of heat transfer coefficient on particle ai_amet‘er‘ m the
slurry as a function of air velocity.

'Fi‘g’.u4’.36. Dépén.déhce of heat transfer coefficient on air velocity and particle

diameter for slurries of (A) 10 weight percent, and (B) 30 weight percent.

Fig. 4.37. Dependex{ce of heat dt}anSfer'-c‘cSet"f}‘i‘cieth on- air velocity, particle

- diameter and slurry concentration. T e

Fig. 4.38: Dependence of heat transfer coefficient for nitrogen-Therminol-red
iron oxide on nitrogen velocity and slurry concentration as determined in a
bubble column equipped with heat transfer probes of different diameters and a
seven-tube bundle: D ‘ - S

Fig. 4.39. Dependence of hy on the nature of internals.

Fig. 4.40. Influence of nitrogen Veloci'vry‘ahd solids concentration on heat transfer
coefficient for the nitrogen-Therminol-magnetite (36.6 pm) system for three
probes. v - . A
Fig 441, Effect of particle diameter on heat transfer coefficient for the 31.8 mm
probe at solids concentrations in weight percent of (A): 15, (B): 30, and (C): 50.

Fig. 442. Effect of probe diameter on heat transfer coefficient at different solids

 concentrations in weight percent of (A): 0, (B): 15, (C): 30, and (D): 50..

Fig. 4.43. Variation of average. air holdup with air velocity and initial water
column ‘height. '~ ' . I '

Fig. 4.44. Variation of air holdup in different sections of the larger column with
air velocity. ' T U

Fig. 4.45. Influence of configuration of internals on air holdup as a function of

" air velocity and temperature.

Fig. 4.46. Influence of bubble column diameter and internals on air holdup at
297K as-a function of air velocity. * . . AT |
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Fig. 4.47. Varia_ﬁoi\ of air hbldup with dea'ea_smg .sup_effici‘a\lvair‘_‘vé]odty'for] the
air-water system at four temperatures. @ SET 1, @& SET2, O SET3,
® SETa4. | o

Fig. 4.48. Dependence of air holdup on air velocity and temperature for the
column with thirty-seven tube bundle and air-water system.

Fig. 4.49. Variation of nitrogen holdup with increasing( O , o0, A )and
decreasing ( @ , m , & ) velocity at different temperatures and solids
concentration. : ; '

Fig. 4.50. Dependence of air holdup on air velocity, temperature and slurry
‘concentration. : : : «

Fig. 4.51. Dependence of air holdup as a function of air velocity and temperature
on solids concentration, and its comparison with the predictions of different
correlations. The concentrations of glass beads (dp = 14.3 um) in the slurry is (A)

five (52 kg/m?), (B) ten (110 kg/m3), and (C) twenty (249K kg/m3) weight percent.

Fig. 4.52. Dependence of air holdup on air velocity and tetﬁper_atur»e for (A) 90
um, (B) 50 um, and (C) 50-90 um, average size powders. Experimental data are
also compared with the predictions of different correlations.

Fig. 4.53. Variation of air Holdup for the air-Wat'er~glass bead system with
decreasing superficial air velocity and temperature for slurries of 125 pm
particles at two concentrations. S

Fig. 4.54. Variation of air holdup for the air-water-glass bead system with
decreasing superficial air velocity and temperature for slurries of 212 um
particles at two concentrations. T :

Fig. 4.55. Variation of air holdup for the air-water-glass bead system with
decreasing superficial air velocity and temperature for the large column with
thirty-seven tube bundle. o ' ' '

Fig. 4.56. Effect of particle diameter on air holdup at different temperatures for
two slurry concentrations.

Fig. 4.57. Effect of slurry concentration on air'hblldu'p at different temperatures
and slurry particle sizes. '

Fig. 4.58. Dependence of air holdup on air 'velod'ty,'témperdture, particles size
and slurry concentration. -

Fig. 4.59. Effect of temperature on nitrogen hoidup at different solids

concentrations in the slurry. 0=298K, O = 328K, & =378K, @ =428K,
+=473K, @ =523K
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Fig. 4.60. Radial temperature profile at various air velocities.

Fig. 4.61. Variation of heat transfer coefficient with time at different air
velocities for lower (A), middle (B) and upper (C) regions of the column.

Fig. 4.62. Variation of heat transfer coefficient with air x;eloéity for different .
regions of the column at 297K. :

Fig. 4.63. Dependence of heat transfer coefficient with temperature, air
velocity and tube bundle configuration. ‘ | '

Fig. 4.64. Variation of heat transfer coefficient with decreasing air velocity for
air-water system at four locations in the column and at four temperatures.
o Probel, m Probe2, O Probe3, @ Probe4.

Fig. 4.65. Dependence of heat transfer coefficient on thermal flux as a
function of gas velocity and column temperature: (A) probe-1 and (B) probe-
3.

Fig. 4.66. Axial and radial variation of hyy with Ug at different temperatures. .
Solids concentration = 0 wt%. '

Fig. 4.67. Variation of heat transfer coefficient with gas velocity and -
temperature for (A) probe-1, and (B) probe-3. ' ‘

Fig. 4.68. Variation of heat transfer coefficient with air velocity, temperature
and slurry concentration. ‘ :

Fig. 4.69. Dependence of heat transfer coefficient on air velocity, temperature
and slurry concentration for powders of mean diameter (A) 143.3um, (B) 90
pm, (C) 50um, and (D) 50-143 um. S :

Fig. 4.70. Variation of heat transfer coefficient for the air-water-glass bead
system with superficial air velocity and temperature for heat transfer probes 1
and 3 and slurries of 125 um particles at two concentrations. -

Fig. 4.71. Variation of heat transfer coefficient for air-water-glass bead system
with superficial air velocity and temperature for heat transfer probes 1 and 3
and slurries of 212 um particles at two concentrations. |

Fig. 4.72. Variation of heat transfer coefficient for (A) air-water and (B) air-
water-glass bead systems with superficial air velocity and temperature for heat
transfer probes 1 and 3. : SR .

Fig. 4.73. Effect of particle diameter on heat transfer coefficient at different
temperatures for two slurry concentrations and heat transfer probe 3.
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Fig. 4.74. Effect of slurry concentrations on heat transfer coefficient at
different temperatures and slurry particle sizes for heat transfer probe 3.

Fig. 4.75. Dependence of heat transfer coefficient on air velocity, temperature, -
 particle size and slurry concentration. (A) 50 um and 3 wt %; (B) 90 pum, 5 and
10 wt %. ‘

Fig. 4.76. Axial and radial variation of hyy with Ug at different temperatures.
Solids concentration = 15 wt %.

Fig. 477. Axial and radial variation of hyy with Ug at different temperatures.
Solids concentration = 30 wt %.

Fig. 4.78. Axial and radial variation of heat transfer coefficient with nitrogen
velocity at different temperatures. Solids conc. = 40 weight percent. O = probe 1,
O =probe2, A =probe 3, + = probe 4. ‘

Fig. 4.79. Variation of heat transfer coefficient (probe 1) with nitrogen velodty
and solids concentration at different temperatures. O =0wt%, O =15 wt%,
A =30wt%, @ =40 wt%.

Fig. 4.80. Effect of temperature on heat transfer coefficient at different solids
concentrations in the slurry. (O =298K, O =328K, A = 378K, + =428K,
@ =473K, B =523K

Fig.5.1. Comparison of experimental and computed air holdup values for the
air-water system as a function of superficial air velodity at 309K

Fig. 5.2. Parity plot for gas holdup.

Fig. 5.3. Bubble size frequency distribution in the 10.8 am diameter bubble
column for the air-water system. Air velocity = 3.2 am/s.

Fig. 5.4: Histogram of bubble-size distribution in the 10.8 am diameter bubble
column for the air-water system. Air velocity = 3.2 cm/s. '

Fig. 5.5. Histogram of the bubble-size distribution in the 30.5 cm diameter bubble
column for the air-water system. Air velocity = 3.2 ecm/s.

Fig. 5.6. Bubble size frequency distribution in the 30.5 cm diameter bubble
column for the air-water system. Air-velocity = 3.6 cm/s.

Fig. 5.7. Bubble size frequency distribution in the 30.5 cm diameter bubble
column for the air-water system. Air velocity = 5.8 cm/s.

Fig. 5.8. Bubble size frequency distribution in the 30.5 cm diameter bubble
column for the air-water system. Air velocity = 9.2 cm/s.
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Fig. 59. Comparison of experimental and calcixlated gas holdup values. |

Fig. 5.10. Comparison of experimental air holdup values as a function of air
velodity at different temperatures with the predictions based on different
correlations.

Fig. 5.11. Parity plot for the air-water system gas holdup data. Calculated eg
values are according to Eq. (5.21). o

Fig. 5.12. Comparison of the four sets experimental data of air holdup of air -
water system with the predictions of different models at four temperatures
(1- Experiment, 2- Groveretal., 3- Zou etal, 4 - Reilly etal., 5-Smithetal,
6 - Roy et al.). ,

Fig. 5.13. Comparison of experimental air holdup data with the predictions of -
modified Nicklin's model for air-water and air-water-glass bead systems.

Fig. 5.14. Comparison of 19 mm probe internal nitrogen holdup data with the
predictions. of correlations for nitrogen-Therminol system (A) without and (B)
with solids. : o : :

Fig. 5.15. Comparison of experimental nitrogen holdup data for 19 mm probe
internal with the predictions based on the drift-flux theory. :

Fig. 5.16. Companson of the averaged air holdup values for a range of parhcle
sizes, slurry concentrations and temperatures as a function of air velocity with
the predictions of different correlations.

Fig. 5.17. Comparison of experimental air holdup data with the modified drift-
flux theory approach ‘ .

Fig. 5.18. Comparison of expenmental air holdup data with the predncnons of

different models for the air-water-glass bead system (1 - Expenmenta.l 2- Rexlly' '
et al.[56], 3 - Roy et al.[64], 4 - Smith et al[57).) ,

Fig. 5.19. Parity plot for gas holdup. € gv(calcula,ted) are according to“lhe relation
of Eq. (5 21).

Fig. 5. 20. Companson of averaged expenmental air holdup values with the
calculated values.

Fig. 5.21. Companson of expenmenta] and calculated air holdup values on.
Nicklin's approach. :
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Fig. 5.22. Comparison of air holdup values for air-water-silica sand system over a
range of slurry concentrations and temperatures as a function of air velocity with
the predictions of different correlations.

Fig. 5.23.  Parity plot for the air-water-silica sand system gas holdup data.
Calculated values are based on Eq. (5.21).

Fig. 5.24. Comparison of experimental data ( 0%, O 50%) for the 19.0 mm
probe with the predictions of correlations. I 3

Fig. 5.25. Comparison of experimental and calculated nitrogen holdup values
based on drift-flux theory. o _ T

Fig. 5.26. Comparison of € g With model predictions. A - [64], B - [56], C - [57],
and P- Present data. v o . : _ v

Fig. 5.27. Compaﬁson of experiment and theory [76] for € g

Fig. 6.1. Comparison of the present experimental heat transfer coefficient values
with the measurements of other workers for the air-water system as a function of
superficial air velocity and temperatures in the range 300-344 K.

Fig. 6.2. Comparison of experimental heat transfer coefficient with various
computed sets for air-water system as a function of superficial air velocity at 309

Fig. 6.3. Parity plot of hyy (kw/m2K) for air-water system: (A) power function
and (B) logarithmic function. .

Fig. 6.4. Comparison of the variation of heat transfer coefficient as observed in
the larger column for the air-water system at 297K with the predictions of the
available correlations and models as a function of air velodty.

Fig. 6.5. Dependence of heat transfer coefficient for the air-water system on
air velocity and temperature. Comparison of experimental data with the
predictions of different correlations. : '

Fig. 6.6. Comparison of hyy for a bubble column equipped with tube bundles of
different sizes. S ' T SR
Fig. 6.7. Comparison of experimental heat transfer coefficient data (probe

3) of air-water system with the predictions of different models at four temper-
atures. (1-Experimental, 2-Deckwer, 3-Suh and Deckwer,. 4-Kim et al., 5 Pandit"
and Joshi).

Fig. 6.8. Comparison of experimental heat transfer coefficient data for probe 3
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with the predictions of the proposed semi-empirical correlation.

Fig. 6.9. Comparison of experimental hy data for the 19 mm probe internal with
the predictions of different correlations. ' o -

Fig. 6.10. Comparison of experimental hy data for 19 mm probe internal with
the predictions based on Egq. (6.51). | |

Fig. 6.11. Comparison of hy for 19mm probe internal 'Wit'h\’thosé baséd,_ on Eq..
(6.52). B - ‘ ' o

Fig. 6.12. A plot of heat transfer coefficient (prbbe 1) versus m'trégéﬁ Avelocity, :

shown in logarithmic coordinates at different temperatures. Solids concen-
tration = 0 wt%.

Fig. 6.13. Comparison of experimental hyy values as a function of Ug with the
predictions of four theoretical models for slurries of two different average size

" particles at concentrations of (A) 107 and 108, (B) 231 and 238, and (C) 383 and 404

kg/m3.

Fig. 6.14. Paﬁfy plot of hw (kW/ mzk) for”aif:wéter-red iron oxide bésed on Eq.
(6.51), power function, with the values of the constants listed in Table 6.1.

Fig. 6.15. Parity plot of hyy (kW/m2K) for air-water-iron-oxide based on Eq. (6.54)
logarithmic function, with the values of the constants listed in Table 6.1.

Fig. 6.16. P anty Plbt of hy (kW/mZK) for air-water-iron-oxide system with global
constants: (A) power function, and (B) logarithmic function. -

Fig. 6.17. Parity plot of hy (kW/m?K) for air-water-iron oxide system based on -

Eq. (6.56).

Fig. 6.18. Comparison of hy data for air-water-glass bead system with different -

Fig. 6.19. Parity plot of hyy (kW/mZ2K) for air-water-glass bead system: (A) power
function, and (B) logarithmic function. o

Fig. 6.20. Comparison of experimental and calculated heat transfer coefficient

. values with global constants for power function, Eq. 6.57).

Fig. 6.21. Comparison of experimental and calculated heat transfer coefficient

values with global constants for semi-logarithmic function, Eq. (6.58).

Fig. 6.22. Comparison of experimental and calculated values of heat transfer
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coefficient on the basis of the proposed correlation.

“Fig. 6. 23, Comparison of averaged heat transfer coefficient values as a function of
air velocity with the predictions of different correlations at (A) 297, (B) 323, and

(C) 343K.

Fig. 6.24. Comparison of experimental heat transfer coefficients with the
predictions of different models for the air-water-glass bead system, (1-
Experlmental 2-Deckwer, 3-Suh and Deckwer, 4-Kim et al., 5-Pandit and joshi).

Fig. 6.25. Comparlson of heat transfer data with the predictions of different
models.

Fig. 6.26. Parity plot for heat transfer coefficient (kW/m2K). Calculated values
are based on Eq. (6.51). ,
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