APPENDIX A

Co Catalyst Formulations

Catalyst Prep#	WGS.09	Date Tech	Jul-13-94	Amount	500.0 g
Compou (%wt)	nd	Cu 5	Cr 4		Al2O3

Support y-Alumina VISTA B	Amount	455.00 g	
Particle Size 400 - 0 mesh	Treatmen	500°C / 10 hrs	
Metal I Copper (II) Nitrate	Amount	95.03 g	
Metal II Chromium (III) Nitrate	Amount	153.85 g	
Promotor	Amount		
Promotor	Amount		
Prometer	Amount		
			T

Preparation	X Incipi	ent Wetness		Wet Impregnation
	Ion Ex	xchange		Other
Notes Incipient wet	ness: aqueous	solution Cu +	Cr, ca.	1.2 ml/g
		n oven 110°C/	•	5
	··			
·				
Calcination Te	mperature	500°C	Time	24 7
- I C	mperature	200 0	Time	24 hrs
		200 0	111116	24 hrs
Notes	_		Time	24 III'S
	_	200 0	Time	24 III'S
	_	200 0	Time	24 IIrs
-4	_		1 me	24 III'S

WGS.09 5 wt% Cu

4 wt% Cr γ-alumina

Preparation Procedure of Cu-Cr/γ-alumina

Calcine γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of $Cu(NO_3)_2$ x H_2O , and $Cr(NO_3)_3.9H_2O$ using appropriate quantities to yield 5 wt% Cu, and 4 wt% Cr and to get incipient wetness (ca. 1.2 ml/g).

Dry the catalyst precursor in an oven for 16 hours at 110°C.

The dried catalyst is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 500°C and holding for 24 hours.

Reduction Procedure before Reaction:

Heat the catalyst in inert gas to 120°C at a rate of 1°C/min then start adding hydrogen to give a concentration of 0.5% at the bed inlet. Raise the catalyst bed temperature to 165°C at a rate of ca. 30°C/hr. When the temperature of the bed has reached 165°C increase the hydrogen concentration in the carrier gas to 1.0%. As the reduction proceeds and the temperature rise begins to diminish, the inlet temperature may be raised to 200°C. The inlet hydrogen concentration can then be increased to about 3-5%, provided that the maximum temperature limit of 230°C is not exceeded. When the reduction appears to be complete the inlet temperature should be raised to 230°C and the inlet hydrogen concentration raised to ca. 20%.

Catalyst Handbook 2nd ed. Martyn V. Twigg J. Catal. 137, 408-422 (1992)

Catalyst Prep:#	Co.055	Date Tech	July 12-1994	Апонн	200.0 g
Composition (%wt)	nd	€e 20	Re 1	La203	Al2O3

Support y-Alumina / Vist	ta-B	Amount	156.00 g	\neg
Particle Size 400 -		Treatment	500°C / 10 hr	
Cobalt Cobalt Nitrate		Amount	197.29 g	
Metal Perrhenic Acid		Amount	3.67 g	
ETHTE				_
Promotor		Amount		
Promotor La-Nitrate / Mol	lycorp C5247	Amomit.	5.31 g	
Promotor		Amount		

Preparation	X	Incipient	Wetness		Wet Impregnation
		Ion Exch	ange		Other
Notes: Incipient wetne	ess: aqu	ieous soluti	on - ca. 1.2	ml/g suppo	rt
Dry catalyst pr	ecurso:	r in an ove	n at 115°C /	5 hr	
			· ·		
Calcination Ter	mperat	nre	300°C	Time	2 hr
Caichiach	urperac	ui C	300 C	rime	
	шрегас	٠.	300 C	IIIIC	- ···
···· · · · · · · · · · · · · · · · · ·	-		ecursor are		
a	-				
	-				
	-				

Co.055:

20 wt% Co

1 wt% Re (molar ratio of Re/Co = 1/63)

1 wt% La₂O₃

[patent uses a mixture of RE oxides (66% La₂O₃, 24%

 Nd_2O_3 , 8.2% Pr_6O_{11} , 0.7% CeO_2 and 1.1% other

oxides)(Molycorp 5247)]

y-alumina

Based heavily on Eri et al., U.S. Pat. No. 4,880,763 (1989).

Preparation Procedure:

Calcine the γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to 38-63 microns (400-250 mesh).

Impregnate the support with an aqueous solution of Co nitrate $[Co(NO_3)_2 6H_2O]$, perrhenic acid $[HReO_4]$, lanthanum nitrate, and using an appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

The dried catalyst is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 2 hrs.

Reduction Procedure before Reaction:

Reduce the catalyst in a pure hydrogen flow of 3000 cc/g/hr by heating at 1°C/min to 350°C and holding for 10 hrs.

 Caralyst
 Co.056
 Date
 Jul-12-94
 Amount
 200.0 g

 Prep:#
 Tech
 La
 SiO2

 (%wt)
 20
 8.5

Support	Silica Davison Grade 952	Amount	143.00 g	
Particle Size	400 - 250 mesh	Treatment	500°C / 10 hrs	
				_
Cobalt	Cobalt Nitrate	Amount	197.29 g	
				_
Metal		Amomt		
				_
Promotor	La-Nitrate/Molycorp	Amount	105.91 g	
Promotor		Amount		
Promotor		Amount		

Preparation	X	Incipient Wetness		Wet Impregnation
The state of the s		Ion Exchange		Other
Notes Incipient wetr	iess: ac	queous solution of La		
Dry catalyst p	recurs	or in an oven 115°C / 5 h	rs with stir	ring/calcine at 300 °C/2hrs
		queous solution of Co with		
		or in an oven 115°C / 5 h		
Calcination To	empera	iture 300°C	_ Time	2 hrs
Notes 50	g of th	e catalyst precursor are 1	10t to be ca	lcined !!
The control of the smaller	Ū			

Co.056: 20 wt% Co 8.5 wt% La SiO₂

La-promoted SiO₂-supported catalyst comparable to Co.025 where Zr is replaced by La. One-step impregnation of silica with lanthanum nitrate followed by one-step impregnation with cobalt nitrate solution.

Preparation Procedure:

- # Calcine the SiO₂ at 500°C for 10 hrs. Presieve to >38 microns (400-0 mesh).
 - Impregnate the support with an aqueous solution of La nitrate using an appropriate quantity to get incipient wetness with the desired loading of La.
- # Dry the La-loaded SiO₂ in an oven for 5 hrs at 115°C with moderate stirring.
- # Calcine the dried support in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 2 hrs.
 - Impregnate the La-loaded silica with an aqueous solution of Co nitrate $[\text{Co(NO}_3)_2\text{-}6\text{H}_2\text{O}]$ using an appropriate quantity to get incipient wetness with the desired loading of Co.
- # Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.
- # Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 2 hrs.

Reduction Procedure before Reaction:

Reduce the catalyst in a pure hydrogen flow of 3000 cc/g/hr by heating at 1°C/min to 250°C and holding for 10 hrs.

CoW.07

20 wt% Co 5 wt% Cu 4 wt% Cr Silica

Cobalt impregnation on calcined Cu-Cr/Silica. Similar to CoW.06, but Cu-Cr/SiO2 calcined at 750°C.

Preparation Procedure

Calcine silica at 500°C for 10 hrs. Use Davisson Grade 952 silica. Presieve to > 38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of $Cu(NO_3)_2.xH_2O$, and $Cr(NO_3)_3.9H_2O$ using appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Cu and Cr.

Dry the catalyst precursor in an oven for 16 hours at 110°C.

The dried catalyst precursor is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 750°C and holding for 24 hours.

Impregnate the Cu-Cr/SiO₂ with an aqueous solution of Co nitrate [Co(NO₃)₂·6H₂O] using an appropriate quantity to get incipient wetness with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 10 hrs.

Reduction Procedure before Reaction:

Heat the catalyst in inert gas to 120°C at a rate of 1°C/min then start adding hydrogen to give a concentration of 0.5% at the bed inlet. Raise the catalyst bed temperature to 165°C at a rate of ca. 30°C/hr. When the temperature of the bed has reached 160°C increase the hydrogen concentration in the carrier gas to 1.0%. As the reduction proceeds and the temperature rise begins to diminish, the inlet temperature may be raised to 200°C. The inlet hydrogen concentration can then be increased to about 3-5%, provided that the maximum temperature limit of 230°C is not exceeded. When the reduction appears to be complete the inlet temperature should be raised to 230°C and the inlet hydrogen concentration raised to ca. 20%.