APPENDIX A

Co Catalyst Formulations

Catalyst Prep:#	Co.057	Date Tech	Oct- 10-1994	Amount	200.0 g
Сипроин (%wt)	d	<u>Co</u> 20	Re 1	La203	SiO2

Support Silica Davison Grade 952	Amount	156.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hr	
Cobalt Cobalt Nitrate	Amount	197.29 g	
Metal Perrhenic Acid	Amount	3.67 g	
Promotor	Amount		
Promotor La-Nitrate	Amount.	5.31 g	
Promotor	Amount		

PROCEDURE Preparation	X	Incipient Wetness	erentener, et geld ().	Wet Impregnation
x: ?* ***********************************		Ion Exchange		Other
Notes Incipient wetne	ess: aqı	neous solution - ca. 1.2 ml/g	suppor	t
Dry catalyst pr	ecurso	r in an oven at 115°C / 5 hr		
			•	
		2002 C FT		4.
Calcination Te	mperat	ure 300°C Ti	me	2 hr
NT: Loc	- of the	catalyst precursor is not to	ha anlai	nod II.
Notes 50g	g or me	catalyst precuisor is not to	be carci	neu ::
		•		

Co.057:

20 wt% Co 1 wt% Re 1 wt% La₂O₃ Silica

La/Re-promoted SiO_2 -supported catalyst comparable to Co.055 where SiO_2 is used as support instead of Al_2O_3

Preparation Procedure:

Calcine the SiO₂ at 500°C for 10 hrs. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of Co nitrate $[Co(NO_3)_2 \circ H_2O]$, perrhenic acid $[HReO_4]$, lanthanum nitrate, and using an appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

The dried catalyst is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 2 hrs.

Reduction Procedure before Reaction:

Catalyst Prep#	Co.058	Date Tech	Oct. 10-1994	Amount	200.0 g
	¥				17000
Compound (%wt)	1	20		1	Al2U3

Support y-Alumina / Vista-B	Amonni	158.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hr	
Cobalt Cobalt Nitrate	Amount	197.29 g	
			_
Metal	Amount		
			_
Promotor	Amount		
Promotor La-Nitrate	Amonni	5.31 g	
Promotor	Amount		

PROCEDURE Preparation	X	Incipient Wetness		Wet Impregnation
1. Cparation	28	Ion Exchange		Other
Notes Incipient wetne	ss: agu	eous solution - ca. 1.2	ml/g suppor	
A	_	in an oven at 115°C / s		
			•	
Calcination Ten	ıperat	ire 300°C	Time	2 hr
rar r zansz narcani		•		
Notes 50g	of the	catalyst precursor is no	t to be calci	ned !!
1				

Co.058:

1.

20 wt% Co 1 wt% La₂O₃ γ-alumina

La-promoted Al₂O₃-supported catalyst comparable to Co.055 without Re.

Preparation Procedure:

Calcine the γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to 38-63 microns (400-250 mesh).

Impregnate the support with an aqueous solution of Co nitrate $[Co(NO_3)_2 \cdot 6H_2O]$, lanthanum nitrate, and using an appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

The dried catalyst is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 2 hrs.

Reduction Procedure before Reaction:

Catalyst Prep#	Co.059	Date Tech	Oct-10-94	Amount	200 g
Compoun (%wt)	d	<u>€0</u>		Ea203	Al2O3

Support y-Alumina VISTA B	Amount		_
Particle Size 400 - 0 mesh	Treatment	600°C / 2 hrs	
Cobalt Cobalt Nitrate	Amount		\neg
School Control			
Metal	Amount		
			_
Promotor	Amount Amount		
Promotor Lanthanum Nitrate Promotor	Amount		
Nexamane			_

PROCEDURE Preparation	X Incipie	nt Wetness	Wet Impregnation	
	Ion Exc		Other	
Notes Incipient we	tness: aqueous sol	lution of cobalt nitra	te - ca. 1 ml/g	
Dry catalyst	precursor at 120°	C / 16 hrs		
Incipient we	tness: aqueous sol	lution of La		
Calcination	Temperature	300 deg C T	lime 2 hr	
<u> </u>	Temperature cursor is not to be		Time 2 hr	-
ssessina anatomisma sa	•		lime <u>2 hr</u>	
:::.::::::::::::::::::::::::::::::::::	•		Time 2 hr	

Co.059:

20 wt% Co 1 wt% La_2O_3 γ -alumina

Similar to Co.015, but without Ru.

Preparation Procedure:

Calcine the γ -alumina at 600°C for 2 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of Co nitrate $[Co(NO_3)_2 \cdot 6H_2O]$ using an appropriate quantity to get incipient wetness (ca. 1 ml/g) with the desired loading of Co.

Dry the catalyst precursor for 16 hrs at 120°C.

Impregnate the catalyst precursor with an aqueous solution of lanthanum nitrate hexahydrate using an appropriate quantity to get incipient wetness with the desired loading of La_2O_3 .

Dry the catalyst precursor at 90°C with moderate stirring.

Reduction Procedure before Reaction:

Reduce the catalyst in a pure hydrogen flow of 1000 cc/g/hr by heating to 350°C and holding overnight (for 16 hrs).

Catalyst Prep#	Co.060	Date Tech	Oct10-94	Amount	250.0 g
Сотрои	ıd	Co			Al2O3
(%wt)		30			

Support y-Alumina / Vista-B	Amount	175.00 g
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hr
Obalt Nitrate	Amount	369.92 g
vletal	Amount	
romotor	Amount	
romoter .	Amount	
² romotor	Amount	

PROCEDURE				
Preparation	X Incipien	t Wetness	Wet Impregnation	
	Ion Exc	hange	Other	
Notes Incipient wetne	ess: aqueous solu	ntion - ca. 1.2 ml/g - 609	% of loading in first step	
Dry catalyst pr	ecursor in an ove	en at 115°C / 12 hrs - ca	alcine 300°C / 2 hrs	
Incipient wetne	ess: aqueous solu	ntion - ca. 1.2 ml/g - ren	naining 40% of loading	
Repeat drying	and calcination			
Calcination Ten	nperature	Time		
Notes				

Co.060:

30 wt% Co y-alumina

Non-promoted catalyst similar to Co.005, with 30% Co.

Preparation Procedure:

Calcine the γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support in 2 steps with an aqueous solution of Co nitrate $[Co(NO_3)_2 \cdot 6H_2O]$, using an appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with 60% of the desired loading of Co in the first step.

Dry in air at 115°C for 12 hours and calcine in air at 300°C for 2 hours (heating rate of ca. 1°C/min to 300°C).

In the second step, impregnate the remaining 40% of the Co. Repeat the drying and calcination procedures.

Reduction Procedure before Reaction:

Catalyst Prep#	Co.061	Date Tech	Oct-10-94	Amount	250.0 g
Compau (%wt)	999-9 6 000000000000000000000000000000000000	€e 30	Rn 0.5		Al2O3

Support y-Alumina VISTA B	Amount	173.75 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hrs	
Cobalt Cobalt Nitrate	Amount	369.92 g	
Metal Ruthenium Nitrosylnitrate	Amount	4.46 g	
Promotor	Amount		
Promotor	Amount		
Promotor	Amount		

PROCEDURE				
Preparation	X Ir	ncipient Wetness		Wet Impregnation
	Io	on Exchange		Other
Notes Incipient wetness	: aqueo	us solution - ca. 1.2 ml	/g - 60% of	f loading in first step
Dry catalyst pred	ursor in	an oven at 115°C / 12	hrs - calci	ne 300°C / 2 hrs
Incipient wetness	: aqueo	us solution - ca. 1.2 ml	/g - remair	ning 40% of loading
Repeat drying ar	d calcin	ation	•	
Calcination Temp	perature		Time	
Notes				
V.				·

Co.061:

30 wt% Co 0.5 wt% Ru γ-alumina

Ru-promoted catalyst similar to Co.053 with 30% Co.

Preparation Procedure:

Calcine the γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support in 2 steps with an aqueous solution of Co nitrate [Co(NO₃)₂·6H₂O], and Ru nitrosyl nitrate using an appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with 60% of the desired loading of Co and Ru in the first step.

Dry in air at 115°C for 12 hours and calcine in air at 300°C for 2 hours (heating rate of ca. 1°C/min to 300°C).

In the second step, impregnate the remaining 40% of the Co and Ru. Repeat the drying and calcination procedures.

Reduction Procedure before Reaction:

Catalyst Prep:#	Co.062	Date Tech	Oct-10-94	Amount	250.0 g
Compou	nd	Co	Rn K		Al2O3
(%wt)		30	0.5 1.5		

Support y-Alumina VISTA B	Amount	170.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hrs	
			_
Cobalt Cobalt Nitrate	Amount	369.92 g	
Metal Ruthenium Nitrosylnitrate	Amount	4.66 g	
			_
Promotor Potassium Nitrate	Amount	9.71 g	
Premoter	Amomit		
Promotor	Amount		

PROCEDURE				
Preparation	X In	cipient Wetness		Wet Impregnation
	Io	n Exchange		Other
Notes Incipient wetnes	s: aqueo	ıs solution - ca. 1.	2 ml/g - 60% o	f loading in first step
Dry catalyst pre	cursor in	an oven at 115°C	/ 12 hrs - calci	ne 300°C / 2 hrs
Incipient wetnes	s: aqueo	us solution - ca. 1.	2 ml/g - remaii	ning 40% of loading
Repeat drying a	nd calcna	tion		
Calcination	perature		Time	
Notes				
;				

Co.062:

30 wt% Co 0.5 wt% Ru 1.5 wt% K y-alumina

Ru/K-promoted catalyst similar to Co.029 with 1.5% K.

Preparation Procedure:

Calcine the γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support in 2 steps with an aqueous solution of Co nitrate $[Co(NO_3)_2 \cdot 6H_2O]$, Ru nitrosyl nitrate, and K nitrate using an appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with 60% of the desired loading of Co, Ru, and K in the first step.

Dry in air at 115°C for 12 hours and calcine in air at 300°C for 2 hours (heating rate of ca. 1°C/min to 300°C).

In the second step, impregnate the remaining 40% of the Co, Ru, and K. Repeat the drying and calcination procedures.

Reduction Procedure before Reaction:

Catalyst Prep#	Co.063	Date Tech	Nov-07-94	Amount	200.0 g
Compoun (%wt)	d	€e 20	La 8.5		Al2O3

Support y-Alumina VISTA B	Amount	143.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hrs	
Cabalt Cabalt Nitrata	*****	197.29 g	—
Cobalt Cobalt Nitrate	Amount	197.29 g	
Metal	Amount		
W	2.00	107.01	—
Promotor La-Nitrate Promotor	Amount Amount	105.91 g	
Promotor	Amount		

Preparation	X	Incipient Wetness		Wet Impregnation
	******	Ion Exchange		Other
Notes Incipient	wetness: aq	ueous solution of La		
Dry cata	lyst precurso	r in an oven 115°C / 5 h	rs with stir	ring/calcine at 300 °C/2hrs
Incipient	wetness: aq	ueous solution of Co with	h catalyst p	recursor
Dry cata	lyst precurso	r in an oven 115°C / 5 h	rs with stir	ring/calcine at 300 C/2 hrs
Calcination	Temperat	ture 300°C	_ Time	2 hrs
	50 0.7		4 4 . 1	1-0 J 10
₽1.7150 % .7813		e catalyst precursor are r	10t to de ca	icinea !!
Notes	50g of the	b caronal properties and a		
Votes ***	50g of the			
Notes	50g of the	compo processor and a		

<u>Co.063</u>: 20 wt% Co 8.5 wt% La Al₂O₃

La-promoted Al₂O₃-supported catalyst comparable to Co.056 with SiO₂ replaced by Al₂O₃ as the support. One-step impregnation of alumina with lanthanum nitrate followed by one-step impregnation with cobalt nitrate solution.

Preparation Procedure:

Calcine the γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of La nitrate using an appropriate quantity to get incipient wetness with the desired loading of La.

Dry the La-loaded Al₂O₃ in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried support in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 2 hrs.

Impregnate the La-loaded alumina with an aqueous solution of Co nitrate [Co(NO₃)₂·6H₂O] using an appropriate quantity to get incipient wetness with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca.

1°C/min to 300°C and holding for 2 hrs.

Reduction Procedure before Reaction:

Catalyst Prep#	CoW.08	Date Tech	Oct-10-94	Amount	100.0 g
Compou (%wt)	ALE B ANGEOGRAPHIC CONTROLS	€n 30	<u>Си Сг</u> 5 4		Al2O3

Support y-Alumina VISTA B	Amenut	61.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hrs	
			_
Metal I Cobalt Nitrate	Amount	147.97 g	
			_
Metal II Copper (II) Nitrate	Amount	19.01 g	
			_
Metal III Chromium (III) Nitrate	Amount	30 .77 g	
Premoter	Amount		
Promotor	Amount		

Preparation	X Inci	pient Wetness		Wet Impregnation
	Ion :	Exchange		Other.
Notes Incipient wetne	ess: aqueous	solution Cu + Cr	, ca. 1.2 m	l/g
Dry catalyst pr	recursor in an	ı oven 110°C / 16	hrs/Calcine	e 750 °C 24 hrs.
Incipient wetne	ess: aqueous	solution Co.		
Dry catalyst pr	recursor in an	oven 115°C / 5 l	ırs.	
Calcination Te	mperature	300°C	_ Time	10 hrs

30 wt% Co 5 wt% Cu 4 wt% Cr \gamma-alumina

Cobalt impregnation on calcined Cu-Cr/ γ -alumina. Similar to CoW.05, but with 30% Co.

Preparation Procedure

Calcine γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to > 38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of $Cu(NO_3)_2.xH_2O$, and $Cr(NO_3)_3.9H_2O$ using appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Cu and Cr.

Dry the catalyst precursor in an oven for 16 hours at 110°C.

The dried catalyst is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 750°C and holding for 24 hours.

Impregnate the Cu-Cr/Al₂O₃ with an aqueous solution of Co nitrate [Co(NO₃)₂6H₂O] using an appropriate quantity to get incipient wetness with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 10 hrs.

Reduction Procedure before Reaction:

Heat the catalyst in inert gas to 120°C at a rate of 1°C/min then start adding hydrogen to give a concentration of 0.5% at the bed inlet. Raise the catalyst bed temperature to 165°C at a rate of ca. 30°C/hr. When the temperature of the bed has reached 160°C increase the hydrogen concentration in the carrier gas to 1.0%. As the reduction proceeds and the temperature rise begins to diminish, the inlet temperature may be raised to 200°C. The inlet hydrogen concentration can then be increased to about 3-5%, provided that the maximum temperature limit of 230°C is not exceeded. When the reduction appears to be complete the inlet temperature should be raised to 230°C and the inlet hydrogen concentration raised to ca. 20%.

Catalyst Prep#	CoW.09	Date Tech	Oct-10-94	Amount	100.0 g
Compon (%wt)		€6 20	Cu Er 10 8		Al2O3

Support SiO2	Amount	62.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hrs	
			_
Metal I Cobalt Nitrate	Amount	98.64 g	
Metal II Copper (II) Nitrate	Amount	38.01 g	
			_
Metal III Chromium (III) Nitrate	Amount	61 .5 4 g	
Promotor	Amomi		
Promotor	Amount		

PROCEDURE				
Preparation	X In	cipient Wetness		Wet Impregnation
	Io	n Exchange		Other
Notes Incipient wetn	ess: aqueou	s solution Cu + Cr		
Dry catalyst p	recursor in	an oven 110°C / 16	hrs/Calcin	e 500 °C 24 hrs.
Incipient wetn	ess: aqueou	s solution Co.		
Dry catalyst p	recursor in	an oven 115°C / 5	ırs.	
Calcination Te	mperature	300°C	_ Time	10 hrs
Notes				
ľ				

20 wt% Co 10 wt% Cu 8 wt% Cr Silica

Cobalt impregnation on calcined Cu-Cr/Silica. Similar to CoW.06, but with 10% Cu and 8% Cr.

Preparation Procedure

Calcine silica at 500°C for 10 hrs. Use Davisson Grade 952 silica. Presieve to > 38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of $Cu(NO_3)_2.xH_2O$, and $Cr(NO_3)_3.9H_2O$ using appropriate quantity to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Cu and Cr.

Dry the catalyst precursor in an oven for 16 hours at 110°C.

The dried catalyst precursor is then calcined in air by raising its temperature at a heating rate of ca. 1°C/min to 500°C and holding for 24 hours.

Impregnate the Cu-Cr/SiO₂ with an aqueous solution of Co nitrate [Co(NO₃)₂·6H₂O] using an appropriate quantity to get incipient wetness with the desired loading of Co.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 10 hrs.

Reduction Procedure before Reaction:

Heat the catalyst in inert gas to 120°C at a rate of 1°C/min then start adding hydrogen to give a concentration of 0.5% at the bed inlet. Raise the catalyst bed temperature to 165°C at a rate of ca. 30°C/hr. When the temperature of the bed has reached 160°C increase the hydrogen concentration in the carrier gas to 1.0%. As the reduction proceeds and the temperature rise begins to diminish, the inlet temperature may be raised to 200°C. The inlet hydrogen concentration can then be increased to about 3-5%, provided that the maximum temperature limit of 230°C is not exceeded. When the reduction appears to be complete the inlet temperature should be raised to 230°C and the inlet hydrogen concentration raised to ca. 20%.

Catalyst Prep#	CoW.10	Date Tech	Nov-07-94	Amount	100.0 д
Compou (%wt)	nd		Fe Ru 10 0.5		Al203

Support	y-Alumina VISTA B	Amount	79.50 g	
Particle Si	ze 400 - 0 mesh	Treatment	500°C / 10 hrs	
Metal I	Cobalt Nitrate	Amount	49.32 g	
Metal II	Iron (III) Nitrate	Amount	72.31 g	
				Ţ
Metal III		Amount		
Promotor	Ruthenium Nitrosylnitrate	Amount	1.79 g	
Promoter		Amount		

PROCEDURE					
Preparation	X In	cipient Wetness		Wet Impregnation	
	Io	n Exchange		Other	
Notes Incipient wetn	ess: aqueou	ıs solution Fe, Co, I	Ru/Ca. 1.2 1	ml/g	
Dry catalyst p	recursor in	an oven 110°C / 5	hrs/Calcine	300 °C 10 hrs.	
				40.7	
Calcination Te	emperature	<u>300°C</u>	Time	10 hrs	
Notes					
1					

10 wt% Fe

10 wt% Co

0.5 wt% Ru

y-alumina

Ru promoted cobalt/iron impregnated on calcined γ-alumina

Preparation Procedure

Calcine γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of Fe nitrate $[Fe(NO_3)_3.9H_2O]$, Co nitrate $[Co(NO_3)_2.6H_2O]$ and Ru nitrosylnitrate $[Ru(NO)(NO_3)_3.2H_2O]$ using appropriate quantities to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Fe, Co, and Ru.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 10 hrs.

Reduction Procedure before Reaction:

Catalyst Prep#	CoW.11	Date Tech	Nov-07-94	Amount	100.0 g
Compou (%wt)	nd	€e. 10	Fe Ru 10 0.5	K 0.5	Al2O3

-

Support y-Alumina VISTA B	Amount	79.00 g	
Particle Size 400 - 0 mesh	Treatment	500°C / 10 hrs	
Metal I Cobalt Nitrate	Amount	49.32 g	
Metal II Iron (III) Nitrate	Amount	72.31 g	
			_
Metal III	Amount		
Promotor Ruthenium Nitrosylnitrate	Amount	1.79 g	
Promotor Potassium Nitrate	Amount		J

PROCEDURE					
Preparation	X Incipie	ent Wetness		Wet Impregnation	
	Ion Ex	kchange		Other	
Notes Incipient wetnes	s: aqueous so	lution Fe, Co, I	Ru, K/ Ca.	1.2 g/ml	
Dry catalyst pre	cursor in an o	ven 115°C/5]	ars/Calcine	300 °C 10 hrs.	
Calcination Tem	ıperature	300°C	Time	10 hrs	
Calcination Tem	perature	300°C	_ Time	10 hrs	
Calcination Tem Notes	iperature	300°C	_ Time	10 hrs	
Calcination Tem Notes	perature	300°C	_ Time	10 hrs	
Calcination Tem Notes	perature	300°C	_ Time	10 hrs	
Calcination Tem Notes	perature	300°C	_ Time	10 hrs	

10 wt% Fe 10 wt% Co 0.5 wt% Ru

0.5 wt% K γ-alumina

Ru and K promoted cobalt/iron impregnated on calcined γ-alumina

Preparation Procedure

Calcine γ -alumina at 500°C for 10 hrs. Use Vista B alumina. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of Fe nitrate $[Fe(NO_3)_3.9H_2O]$, Co nitrate $[Co(NO_3)_2.6H_2O]$, Ru nitrosylnitrate $[Ru(NO)(NO_3)_3.2H_2O]$, and K nitrate $[KNO_3]$ using appropriate quantities to get incipient wetness (ca. 1.2 ml/g) with the desired loading of Fe, Co, Ru, and K.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 10 hrs.

Reduction Procedure before Reaction:

Catalyst Prep#	CoW.12	Date Tech	Nov-07-94	Amount	100.0 g
Compour (%wt)	nd	€o 10	Fe Ru 10 0.5		SiO2

	Support	Silica Davison Grade 59	Amount	79.50 g	
	Particle Si	ze 400 - 0 mesh	Treatment	500°C / 10 hrs	
	Metal I	Cobalt Nitrate	Amount	49.32 g	
	Metal II	Iron (III) Nitrate	Amount	72.3 1 g	
	Metal III		Amount	4 =0	
		Ruthenium Nitrosylnitrate	Amount	1.79 g	
	Promotor		Amount		
<i>XVIII</i> : ###					

PROCEDURE Preparation X	Incipient Wetness		Wet Impregnation
	Ion Exchange		Other
additional Commence of the control o	aqueous solution Co, Fe, R ursor in an oven 115°C/5 h		300 °C 10 hrs.
Calcination	erature <u>300°C</u>	Time	10 hrs
Calcination Tempo	erature <u>300°C</u>	Time	10 hrs
Calcination Tempo	erature <u>300°C</u>	_ Time	10 hrs
Calcination Tempo	erature <u>300°C</u>	_ Time	10 hrs

10 wt% Fe 10 wt% Co 0.5 wt% Ru Silica

Ru promoted cobalt/iron impregnated on calcined silica

Preparation Procedure

Calcine silica at 500°C for 10 hrs. Use Davisson Grade 952 silica. Presieve to >38 microns (400-0 mesh).

Impregnate the support with an aqueous solution of Fe nitrate [Fe(NO₃)₃.9H₂O], Co nitrate [Co(NO₃)₂·6H₂O] and Ru nitrosylnitrate [Ru(NO)(NO₃)₃.2H₂O] using appropriate quantities to get incipient wetness with the desired loading of Fe, Co, and Ru.

Dry the catalyst precursor in an oven for 5 hrs at 115°C with moderate stirring.

Calcine the dried catalyst in air by raising its temperature at a heating rate of ca. 1°C/min to 300°C and holding for 10 hrs.

Reduction Procedure before Reaction: