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ABSTRACT

HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS

The objective of this investigation is to convert our “learning gas - solid - liquid”

fluidization model into a predictive design model. The IIT hydrodynamic model

computers the phase velocities and the volume fi-actions of gas, liquid and particulate

phases. Model verification involves a comparison of these computed velocities and

volume fractions to experimental values.

As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996,

this report presents our measurements of radial distribution function for 450 micron glass

particles in our liquid-solid fluidized bed. The report is in the form of a preliminary

paper. We need the radial distribution function to compute the viscosity and the equation

of state for particles. The principal results are as follows:

1. The measured radial distribution fimction, ~, is a monotonic function of the solid

volume fraction. The values of the radial distribution fimction go are in the range of the

predictions from Bagnold equation and Carnahan & Starling equation.

2. The position of the first peak of the radial distribution fiction does not lie at r = d at

contact (d is particle diameter). This differs from the predications from the hard sphere

model and the measurements in the gas-solid system (Gidaspow & Huilin, 1996). This is

due to a liquid film lubrication effect in the liquid-solid system.



Radial Distribution Function Measurements In A Liquid-Solid
Fluidized Bed

Principal Investigator: Dimitri Gidaspow
Research Associate: Lu Huilin

Department of Chemical and Environmental Engineering
Illinois Institute of Technology

Chicago, IL. 60616

I. Introduction

In the computer simulations of the gas-solid, gas-solid-liquid systems, using codes

such as FLUENT, FLUFIX, the viscosity of the particulate phase was needed as the input

data (Gidaspow, 1994; Sinclair C%Jackson, 1989; Pita& Sandaresan, 1991; %muelsberg

& Hjertager, 1996). Such measured viscosity data are scarce (Schuegel, 1971; Grace,

1982; Chen et al., 1994). Miller and Gidaspow (1992) obtained the particulate viscosity

from a pressure-drop balance in which the particle flux was measured by an extraction

probe and solid volume fi-action by an X-ray densitometer. The prediction equation of the

< particulate viscosity, based on the kinetic theory of granular flow, needs the values of the

radial distribution function.

An extensive literature on the radial distribution function is concerned with both

the experimental prediction (Brown et al., 1976) and theoretical prediction. The radial

distribution function defines the probability of finding a second particle at some position

relative to a first particle located at the origin. The simplest intermolecular potential

energy function that can be used to determine the thermodynamic properties is the hard-

sphere model. The radial distribution fi.mction for this model has been theoretical

determined both by analytical approaches (Thiele, 1963; Wertheim, 1963; Lebowitz,

1964; Baxter, 1968; Danning & Ahrnadi, 1986) and by numerical methods (Alder &

Hoover, 1968; Wood, 1968) involving Monte Carlo methods and molecular dynamics

calculation. Camahan & Starling (1969) proposed a semi-empirical equation of state fi-om

which they obtained the radial distribution function at contact for single-component of

hard-sphere. It can be written in terms of the solid volume fraction z, as

1 3&J 2

(1)go= 1-g$ + 2(1- &,)+ 2(1 :e.)’

Their expression is in almost exact agreement with the “exact” numerical molecular

dynamics calculations for value of c, up to about 0.5. But above this it gives gOthat are
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too low. Danning & Ahamdi (1986) developed a general expression for the equation of

state to overcome this deficiency at the high solid volume fraction as follows:
1+2.5s, +45904sj +4515439sj

go =

[[1]

~ 0.678021 (2)

1.5
Es,m

where s ~~, is the maximum possible random close-pack volume fraction. Comparing Eq.

(1) and (2), it was found that both equations have a significance difference only at the

solid volume fraction larger than 0.57.

We define s as the mean separation between particles, then the (s+d) is the mean

distance between centers. The liner concentration is (d/s). It is related to the linear radial

distribution fimction gOby means of the following relation (Bagnold, 1954):
s+d 1

go=~=

[(1]

3
(3)

1- ~
&s,m

h can be seen that when the solid volume fraction approaches the random-packed volume

fraction, the radial distribution function becomes infinity. The values from Eq. (3) are

much higher than that of Eq. (1) and (2).

Several investigations have been undertaken to measure the liquid-solid

suspension microstructure. Three particularly valuable techniques are as follows: X-ray

difli-action, inelastic scatting of thermal neutrons, and laser-light scatting. The feature of

X-ray scatting experiments is the fact that the energy of the incident radiation is much

greater than the thermal energies of the objective and the scattering is elastic. In the case

of thermal neutrons, the scatting cross-section can be measured as a fiction of energy

transfer as well as momentum transfer. Hence this is an extremely powerfid method of

studying microscopic time-dependent processes. Direct observation by fluorescence

microscopy and quasielastic light-scattering measurement to study particle distribution in

pol~mer latex suspension have been carried out (Yoshida et al., 1990). Radial distribution

functions were determined by measuring interparticle distances on the images.

Until now, there were no reliable data on the radial distribution fhnction for large

particle suspensions. The liquid-glass particIe suspension was investigated in this study.

The hydrodynamic behavior of particles was measured by our CCD camera technique.

II. Experimental Apparatus

The experimental apparatus is shown schematically in Fig. 1. Total height of the

bed was 1.8 m with a 1.2 m height test section, and cross-section was 30.48 cm by 5.0
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cm. The liquid enters the bed through a pipe-type distributor which contains 42 holes of 4

mm diameter and a perforated plate. Water was circulated by a centrifugal pump and

through a surge tank. The fluxrate of water was regulated and measured using a calibrated

rotameter. All liquid velocities mentioned in this article refer to the superficial velocities

unless otherwise noted.

Glass particles with average diameter of 450 micron and density of 2600 kg/ins

were used as the solid phase. The static height in this study was ke~flconstant at 20 cm

fi-omthe perforated plate.

The microstructure of the liquid-glass suspension was investigated using the High

Resolution Micro-Imaging/’Measuring System (Gidaspow & Huilin, 1996). It was first

used by Bahary (1994) and Gidaspow, Bahary and Wu (1995) for measurements in a

three phase fluidized bed. The system consists essentially of two units: a high resolution

micro-image system and a data manage system, see Fig. 1. The high resolution micro-

image system is a 2/3 inch color video camera (DXC- 151A) which uses a Charge

Coupled Device (CCD), a solid stage sensor. This camera has ten electronic shutter

settings and four modes for gain control. The horizontal resolution of the camera is 460

TV line, and a sensitivity of 2000 lux at O dB for gain. The camera adaptor is a Sony

CMA-D2. The captured images were stored at a personal computer which has a Micro-

Imaging Board and a Micro-Imaging software, Image-Pro Plus. These images were

treated for fiuther study.

Fig. 2 shows a typical captured and digitized image for 450 micron glass particles

in a liquid-solid fluidized bed. The centers of each circle correspond to the projection of

the centers of the particles. Thus a single image provides the two-dimensional particle

distribution. The position and area of each particle was determined by software IPPLUS

and stored in a PC computer.

III. Concept of Radial Distribution Function

The radial distribution function defines the probability of finding a second particle

at some position relative to a first particle located at the origin. For a homogeneous system,

the n-particle distribution

particle density as follows:

function g~i”)(r”) is defined

g(/(rn)=PWn)

P“

in terms of the corresponding

(4)

If the system is isotropic, the pair distribution fiction g#l(rl,r2) is a fiction

only of the separation rlz=rl-rz, it is then usually called the radial distribution function
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g(r). From the particle coordinate distribution the radial distribution fimction g(r) was

calculated as follows (Balucani & Zoppi 1994; EgelstaiT 1967; Hunter 1989):
hl

(5)

where N is the total particle number in the AREA, and AN is the particle number in the

computing area. Fig. 3 summarized the concept of the radial distribution fbnction and its

calculation. This method is very similar to the Monte Carlo simulation of the equation of

state (Temporally et al. 1968; Beveridge et al., 1983). The “termination effect” was

eliminated by the method described by Yoshida et al. (1990).

IV. Results and Analysis

A. Microstructure of Liquid-Glass Suspension

A typical image, Fig. 2 taken at instantaneous tinie, shows the views of particle

distribution, and reveals some interesting features. It is clear that particle microstructure

distribution is nonhomogeneous. A porosity structure coexists with disordered particles.

We see coexistence of particles and liquid holes which are bubble-like as the gas-solid

fluidization. Amazingly, the size of the holes is larger than 4 mm in dkuneter. This value

is similar to bubble size in the gas-solid fluidized beds. Needless to say, these holes will

effect the heat, mass transfer and reactions. Such structure nonhomogenties are important

for understanding of dispersions.

B. Radial Distribution Function

Fig. 4a, b, c and d show the measured radial distribution fhnctions. The frost peak

of the radial distribution function represents the nearest neighbors. At higher values of

(r/d), there are oscillations representing more distant neighbors. These oscillations

decrease in amplitude with increasing (r/d), and eventually approach the mean density of

the suspension. The peak intensity becomes higher with increasing particle volume

fraction. This trend is in accordance with numerous scatfkhg data not only in the latex

system (Snook & Megen, 1976) but also in the ion polymer system (Ise et al., 1986).

Fig. 5 shows the comparison the experimental data with computed results as a

fimction of solid vokune fraction using Bagnold equation (3) and Carnahan & Starling

equation (1). The solid volume fraction was measured using a method by Fan et al.

(1985). We see that the measured radial distribution fimction is higher than the values

calculated by Carnahan & Starling’s equation, but smaller than that of 13agnold’sequation.

C. Structure Factor
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The radial distribution fimction can be transformed to the structure factor S(k) by

the inverse Fourier transfer numerically as follows (Egelstaff, 1967; Yoshida et al., 19%;

Balucani & Zoppi, 1994):

J~(k) =1+ P. [g(r) – l]etirdr (6)

where k is the ‘wave’factor. At higher values of lG Structure factor s(k) oscillates, and for

k-+ co, The oscillations damp completely. Fig. 6 shows the structure factor profiles from

the measured radial distribution fbnction. The first peak reflects the existence of a

dominant nearly regular arrangement of the particles in real space. At large ‘wave’factor,

the structure factor s(k) approaches unity. At the opposite extreme, at ‘wave’factor k+ O,

the structure factor s(0) represents the macroscopic property of the system. This quantity

which is related to the isothermal compressibility is defined as (Balucni & Zoppi,

Hunter, 1989):

()@s(O) =m6 ~
T

994,

(7)

where $ is the granular temperature which is analogous to thermal temperature. Fig. 7

shows the profile of the structure factor s(0) with solid volume fraction. As f~ as the

peak and the number of peaks are concerned, this fact implies that, even when broad

scatting peaks as shown in Fig. 6 have been observed, we must admit the existence of a

disordered structure or at least the coexistence of order structure and disordered regions in

this liquid-glass fluidization system. Fig. 8 shows the profile of the major peak with solid

9
volume fraction. Gener speaking, with decreasing solid volume fraction, the particle

structure was more ordered in this system.

D. Mean Force

The mean force acting on particle 1 at position rl can be expressed in terms of

radial distribution function (Hunter, 1989):
m~ &(r)

Fro(r)= ‘—

g(r) C%
(8)

where F~(r) is the mean force needed to move two particles through a liquid from some

initial large separation to a separation r. In a dilute gas? this is just the work done against

the interaction potential between two molecu~ Fig. 9 shows the profile of the mean

force. It can be seen that when r-+ m the fluctuations damp completely. Fig. 10 shows the

minimum mean force (First lower peak) with solid volume fraction. As solid volume

fraction increases, the mean force decreases.

E. Potential of Mean Force
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The potential of mean force, analogous to the molecular theory, is defined as

follow (Egelstaff, 1967):

F~=m@xlng(r) (9)

where FP is the potential of mean force which gives the normalized average force on

particle 1 if particle 2 held fixed at F. Fig. 11 shows the potential of mean force

distribution. As the particla approach, the potential of mean force becomes more and

more negative. Once the particles are separated by a distance less than the minimum in

the potential of mean force, the potential of mean force becomes positive. These curves

are very similar to molecular theory. When distance r+ m, the potential of mean force

approaches zero. Fig. 12 shows the minimum potential of mean force with solid volume

fraction. The depths of well are less than about 2m6.

V. Discussion

From figure 4, we see that the closest interparticle distance shifts fi-om the

position of ~d (d is the particle diameter). This distance should be at the position of ~d

in the theoretical simulation for one-component system. These values, however, are

larger, near 1.5d, in this study. According to hydrodynamics of film thinning, ifs is the

distance between two particle centers, and D=s-d is the net distance, the hydrodynamic

force between the particle surface due to viscous dissipation is (Hunter, 1989):
~ =_3np~d2 dD

v (lo)
2D ~

where p ~ is liquid viscosity. Note that Fv > 0 corresponds to a repulsive force. It is

interesting to note that in Eq. (10) the hydrodynamic force becomes larger and larger

when two particle attract, the lubrication of liquid film obstructs particle contact. The

hydrodynamic force is proportional to liquid viscosity and particle diameter square. These

effects therefore become dominant for large particles and high viscosity fluids. These

influences cause the closest interparticle distance to shift to high values.

VI. Conclusion

In this study, the microstructure of particle distribution was carried out using our

CCD camera technique in a liquid-glass particle fluidized bed. The coexistence of

particles and liquid holes was found horn the images. The properties of these liquid holes

are very similar to gas bubbles in the gas-solid fluidized beds. The radial distribution

function was determined directly from the particle coordinates in the two-dimensional

images. The experimental data are kt.rger than of Carnahan & Starling theoretical

predictions, but smaller than those given by the Bagnold equation.
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The structure factor using the inverse Fourier transform reveals that the liquid-

glass suspension system in this study is disordered, and that there is a coexistence of

ordered and disordered regions. The mean force, like in the molecular theory, shows that

the energy needed to push two particldapart is about 2m6.
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Fig. 2 A Small Portion of Image Captured by
(2CD Camera for 450 Micron Galss Particles
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# particles in shell between r and r+A~

where: N is particles number in the observed area. Thus

Local Density of Particles= (
~A)g(r)

-~
where: r –

To prevent two particles to be at the same location, for r<d (particle size), g(r)=O. As
r+co,

local density = local densityx g(r). Hence, g(r)> 1.0.

Fig. 3 Concept of Radial Distribution Function

.
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