APPENDIX A

NUMERICAL BASIS OF PROGRAM MFREK
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There is no way to obtain analytical solution for the hydrodynamic models
described in chapter 2 unless a lot of simplizations are applied to the models and its
applications are very limited. With high speed supercomputer, a very accurately numerical
solution could be obtained. In this study, a program MFREK, based on the hydrodynamic
models, is developed to obtain numerical solution for multiphase flow systems, using
supercomputer. Appendix A describes the numerical scheme while appendix B describes
the organization of the program and appendix C lists the source Fortran code and a sample
input data of the program.

A.1 The Governing Equations

We will consider a multiphase system consisting of several particulate phases and a
continuous phase. In the following equations, gas is treated as continuous phase, but
liquid could be treated as continuous phase too in some particular situations such as
liquid-solid system. The particulate phases could be one or more disperse phases, for
instance, liquid and catalyst in gas-liquid-solid system of chapter 4 and 5, coal and pyrite
in a gas-solid-solid system of chapter 6.

A.1.1 Continuity Equations

Gas Phase:

0 v .

E(ssp )t '(8spsvg) =m,
Liquid and Solid phases: (k=4,s)
0 .
E(skpk)'*.v'(gkpkvk):mk

g,te,+€,=1




A.1.2 Momentum Equations

Gas Phase;

0 .
st-(sgpgvg)+V-(sgpgvgvg )=€pF,+ D B (v, —V )+ VIt J+m v,

m={;s

Liquid and Solid Phases: (k=£,s)

0 .
a(akpkvk )+V-(g,.p v, v )=E,p, F, + ZBlcm Vv )+V{t, J+m, v,

m=g,{;s
A.1.3 Energy Equations

Gas Phase:

bl _ aP.
a(agngg)+V-(sgnggvg)=(—(;5‘—tg—+1’gV-vg)+V-(kgVTg)+<I)g -i-;rigAHig

+ T (B (T =T ) 4B (V=) - H, ]

m=Ls

Liquid and Solid Phases: (k=£,s)

0 .
a(skpkﬂk )+V-(ep Hyv, )=h, (T,-T,)+ ZBkm (V= Vi )2 +m, H,

m=g,;s
+V-(k, VL )+ 1, AH, +®,
i
A.2 Constitutive Equations
A.2.1 Equation of State.

- M.P, -
zRTg

P

A.2.2 Drag Coefficients

pgsklvg _Vkl

(-2 )eubty )

B, =B, =150
& Tl (g4 v,)’ g d, ¥y

sg>0.8

A3



A4

3 pgsklvg_vkls—z.ss

Ba=Bi =ZC” v, g,<0.8

where C, =Ri4—(1+0.15Reﬁ'687)
e

k

=Pg3glvg"vkldk‘l’k
K,

Re, Re,=1000 if Re,>1000

\ PsPESE, lvl —V,

3
=B,,=—(1+e (d,+d,)?
Bls Bst ) 7 P,df'*'Pldf \Ms l)

A.2.3 External Forces Acting on Each Phase

g
F=£
g sg
g 1
F,==(1— Y &.p.)+qkE k=45
€, Prm=gts

A.2.4 Shear Stresses

[TG]={_P3 —gusengg}[l]'*'ugeg[vvg+(va)T]

[Tk]={—1’k 41, +HE, ——g-p.k )V'Vk}[1]+llk[VVk+(Vvk)T] k=t,s

T =10106%*55 k=4,s

Empirical Solids Viscosity and Stress Model (optional, a substitution to kinetic
theory).

B, =5¢, E,=0

VP, =G(g, ) Ve, Gz, )=10%7%04




A.2.5 Enthalpy
Hg =Cp. (Tg _T: )
_Cpk (Tk _Tlg )

A.2.6 Gas-Solid Heat Transfer. (Gunn’s Model)

k ={(2+58;2; )(1+0.7Ref"2Pr% )+('12—5+1.28: )Rea"’Pr% }Sp «

C,.u
Nu, =—%k  Pr=—1t_2 —k
k k! d,

A.2.7 Gas Phase Heat Transfer

T 1.786
k’=8.65x10°%] ——
& 1400

k,=(1—/1-¢, )k’

A.2.8 Particulate Phase Heat Transfer

k_ 5
Fg-_(l— ) k° —+(1-0)— }

k_ 2 [Bas/iy-1) /K B,-1 B+
K’ Akl Ak /) B, A, 2

where

B,

Ak =1—ﬁ
(kk/kg )

10/9
Bk=1.25[-§"—J (143y)
sg
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_ [Eae)(Zewn /i) |
V (Zskpk/ d )

k;, =0.3289 0=7.26x10"°

A.3 Solid Viscosity from Kinetic Theory

A.3.1 Fluctuating Energy Equation. (k=/,s)

3o '
E[_a_t'(skPRGk )+V-(&,p, OV, ):|=V'(Kkv®k )Y« _3Bkg®k +®,

A.3.2 Energy Production Rate
@, =[1, Vv, k=g,{,s

A.3.3 Conductive Coefficient of Fluctuating Energy

2K :
K= (1+ k)gOk 1+g(1+ek )g()kgk} +28kpk xS0k (1+ek)1/

A.3.4 Collisional Energy Dissipation

4"
¥ =3(1— ek)skpkgok {d }

k
A.3.5 Solids Pressure
P, =pk8k®k{1+2(l+ek)g0k8k}

A.3.6 Solids Bulk Viscosity

4 ,@
Ex ='§sipkdkg0k (I+e ), —=
T

A.3.7 Solids Shear Viscosity

2p, { 4 ’ 4, /@
4 1+—(1+ +—g,.p,d 1+e, ), —
(1 e )E0 g( ek)gOkss} Sskpk 1Zoi (1€, T
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Where
% -1
€ 5 75
o™ 1_( Sk:, J Py =§pkdk O, Kig =§pkdk‘\/ 70,
A.4 Reaction and Mass Transfer

A.4.1 General Reactions

N

Yol S'=0 " i=1,2,-- M, k=g/,s
5

r, =F, (P L & s¥esYessYrs-) i=L27--M, k=g/ls

A.4.2 Mass Transfer Between Phases

R} =f1{ ®,,T, ’ak,}’i Vs Y N A sytl; :Y: ”* .’ylgv ) k=4,s
A.5 Species Balances (=1, 2, ..., N)

A.5.1 Gas Phase:

a . M, A . L
E(agpgy’g)w-(egpgyivg)=§1a§gM’ r,.— > MR}

k={s

A.5.2 Liquid and Solid Phases: (k=24,s)

o Moo .

E(akpk}'i'g)"'v'(skpky{cvk)=Za'i'kMJrik+MjR'::
=1

N

dVi=l  k=gks

3 ,

N
A.5.3 Phase Changes: (k=/,s) m,=) MR} i =-)m,
' j k=t,s
A.6 The Finite Difference Equations

The computations are carried out using a two-dimensional Eulerian mesh of non-

uniform size finite-difference computational cells. These cells are rectangles with
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dimensions dx; (or dr;) and dy; (or dz;). A typical mesh with cell flag (define the type of the
cell) and computational cell (i, j) are shown in Figure A.1. The indexes i and j that label
cell (i, j) count cell centers in the x-direction and y-direction, respectively, and assume

only positive integer values. The scalar variables (&, py» P> T, Hy, ¥i., --*) are located

at the cell center and the vector variables (v, , [T, ], --*) at the cell boundaries.

The finite-difference approximations to the hydrodynamic equations form a system
of nonlinear algebraic equations relating quantities at time t=(n+1)dt, where n is zero or a
positive integer and dt is the time increment by which these quantities advance each
computational cycle.

A.6.1 Averaging Process. Quantities in the finite difference equations required
at spatial locations other than where they are defined are obtained by weighted averaging.
(a) Cell Centered Quantities. The cell centered properties Ware defined at the cell center

of (i, j). At other locations averaging is used as follows,

¥

1
2 e

1
IPi J% =EH—1—(&,§+1‘PU +azij;,j+l )

2

_ 1
1.1
wojy 4or 0z
2 2

+or,,0z, ¥, ,, +01,0z, %, .., )

§ Li,j41

(6r;,,62 j+1TiJ +6ri8zj+1\P

i+1,

(b) Boundary Centered Quantities. The boundary centered quantity in x-direction is u

which defined at (i, j+1/2). The averaging is as follows,

— . — 5 S — —
P20 P T T om a BN B4 i T
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Figure A.1 The Computational Mesh
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u =0z, ,u , +0z,u
Wiy 20z, 0 g ;.H-l)
j-{_
2

1
um% _Ej(azj+1(ui _%J+ui %J)+8zj(ui ;# +u Y ))
2

The boundary centered quantity in y-direction is v which defined at (i+1/2, j). The

averaging is as follows,

V.=V
L —( H—-l-,j H—,j+1)
2 2"
1
Vo1 _(8'}+1“,_ 1OV )
HE’H—Z l' 1 l,j-l; l+1,]+—2
i

(3]

1
V‘%J—F(&'m(v e iJ%)"'sri(viM_;'*'va%»

2
A.6.2 Continuity Equations. The continuity equations are differenced fully
implicitly as follows, (k=g,¢,s)

R . Ot 1 Ot n+
(pksk) ! (pksk)m_g«pksk)‘lk), ,jl"'g«pkek)") '

J

+0t- (mk)m

The donor cell differencing aids computational stability without the introduction of
explicit artificial viscosity.

A.6.3 Momentum Equations. The momentum equations are differenced over a
staggered mesh (Figure A.2) using a scheme in which the convective terms are treated

explicitly and all other terms are treated implicitly. the difference equations are,
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(pkskuk):ij:(pkekuk)‘ L ((P ).+1,, (Pk)?f)

2 7 H—

_(wk)Mll g,8t+8t Z (Bmk) 1 [(ll f”l (uk)“’"1 )

m=g/,s

%{(rd()::;‘,j (e )R T,

(pkekvk) —(pkekvk) "8_t'((P )?;:1 )

§

NT...

BUCWLEELD) (Bmk)wg[(vm);;; —(vk):‘fﬂ)

m={,g;s 2 Wy

4——((%)::::1—(@,,()"*“)+8t-(mk);:i(v,‘);jjl
I 2

where for gas phase w,=p, and t,=0, and for particulate phases

e
Wi =P~ DEapn)  k=bs.

] m=g{,s

All the explicit terms are lumped into the “tilde” quantities as shown below,

— n ot n ot n
(prEYU) ny =(p, &, 1, )Hl § _ar_<(pk8kuk u, )i+l,j _aT«pkskuk )vk>i.,l i
2 2 . 2 j 2

.;T.-

e (CHR IO e O RGN )

l+l .| 272 22
2
(P, &LV,) p,.E. V)" E—((psv)u) —6t ((psv)v) 1
kkki,j-&% kkki,j-l%ﬁ k“k"k/Vk zazl k¥k "k k.d.;z
=
2

» n n at n n
ar, Tz )i Lol _('clcrz)i_ld. % J"E((tm )i+,j+1_(1:lm )i,j)
Ji=

272 2
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A.6.4 Energy Equations
(a) GasPhase.
(pgegHg)n+l =(pg& H, )i; +(p & H,);; +0t Z(hvk )i; (LT, )n+1
+8t 2B (=0 )+ =)o@+ Qe

(b) Solid Phases.

(p.&. H, ?,; ! =(pg, H; )x,j +pe H, ).,, +8t(hvk)n,3 (T =T, )n+1 +6t’(Qrk +Qn< ):i

(c) “Tilde” quantities are given by,
T~ ot Lt n+ ot nH ¥y n+
(P2 H) =g P ™ By(n)™), — (o)™ By ()™
J
@), )i,,)+—( )"“[(1;):3‘i —(Pg);jJ)
2 2

( )"“((Pg):il—(l’g):il)

St . nHl ¥y n+; 8t n+lyy n+:
(& H k)i,j or, (expi)™ Hy (uy) 1>i’j o, ((Skpk) "H (Vi) l)i,j
t (K ),, (TL )i+1,j _(Tk )i,j (K )n (-T-;: )i,j _(Tk)i-l,j
o i or R or
2
ot (—T—k | _(Tk)i,j (Tk) ’_(Tk)' -1
+— (K,)* X,)" - == 1+3t(®, )",
azj ( k)i,j+-;- azkl \ ‘k)i,j—; az. ] ( k)I,J
2 2
(uk)n+1 —(uk)n+l (Vk)n+11 (Vk)n+1 ((Tm) )
((Dk)?,j =(1:krr )l,j 2 2 f I’tm)l,j 2

sri . 6zj ' 2(“‘]{)1,_,
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@), =:2"1(rkg)rﬁ(mkg):,— )5y L

if cell (i,j) has no contact
with a heat boundary or block

if cell (i,j) contacts a heat boundary

C.g);
(Cet, )i or block with constant heat flux

(Qfg)?,j ={

n if cell (i,j) contacts a heat boundary
(KBSg(TB _Tg))i § ’

or block with constant temperature

(Q,k);:j=(mk)::,(Hg);:,-+2(rm)?J(AHM):‘J

if cell (i,j) has no contact
with a heat boundary or block

if cell (i,j) contacts a heat boundary

Ce)l
(Cendiy or block with constant heat flux

(Qm );:. =%

if cell (i,j) contacts a heat boundary

K, (T;~T,));
(Ksew(Ty "))‘J or block with constant temperature -

A.6.5 Species Balance. (k=g,/,s), j=the j—th species.

n+! jyn 8 nt: 3 n
(pkgkyk ) ! =(p, &Y )i,, _<(pk8kyk )“k) gz_«PkSkYk )Vk> +6t'(mk)m
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As mentioned before, the flux quantities denoted by (\yuk) and (\wk) are
calculated using donor-cell differencing, where y refers to quantities:

" i j —
ExPys ExPUys P Vi €.P Hys €0 Yilis EPLYi Vi k=g,{,s

The angular brackets represent donor cell differenced quantities as shown below,

w,, if (u) , 20

(lIluI‘)m,P - (uk)m%,p (‘P)m.'.l,P if (uk) 1 <0
m-i-;,p

(T) m-1p

if (u) , 20

_ =P

(uk),,,_;,,, (B, I () ; <O
2

¥, if (v) 20

1

mpi—
(Fi)oy= (I s\ (w0 i (V)1 <0

2
P)py I (vk)m ,p_1.>_0

-(Vi) b 4 if .
m,P—z' ( )m,p I (vk)m,P_1<0

2

The viscous stress components are calculated with standard centered differencing,
ie.,

(“k)H_1

V=% ‘ 8z,

1 J

—(u v —Vv
R R G CO

-
o
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((“k) 1J_(“k) 1 \

(T )i,j =2(uk)i,j 2 or. +(€, l"k).,, V-V, ).,,
\ ' )
((Vk) "(vk) 2

(Tzaz)i,J =2(p, )i,j 52 +(§k "gl»'-k )i,j V-V, )i,j
\ : )

(0 )i 51—y )i (Vi) = (Vi )i
oz ,+dz , or ,+or

. 1
=
\ 2 3 = 2

(Tur )iy =210, )3

(uk)i 1 _(uk) 1 (Vk) el 1'_‘(Vk)m_1

(T 1 1=2(1y)

1.1
ot it Sz 1 or ,
i "2

A.6.6. Fluctuating Energy Equation

2 n+: n+.
—(ekpk®k i —_(skpk® ).,j +(8kpk® );;—Ot(B,); 1(V Vi !
+3t(D, ) e —ot(y, ) —35t(B,, )i; (O, )M1

(&P O, i ='2_8't'<(3kpk )"(0,)" (u, )Ml‘)i,.i

2 ot nt n#
<(8k k) 1(®k) (Vk) 1)
(
ot n 6, )i+1,j —(O, )i,j (o \n (©, )i,j -(O, )i—l,i
+3Ti (s )i%.i or | ‘K")i—;J or |
\ B2 2
p
ot n (01 —(0,);; (. n (0:);;—(0,), 54
'*'gz‘;' (Kk)i’j% azi . \Kk)i&% azi .

\ 2 2




A.7 Solution Technique for Finite -Difference Equations
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An iterative technique is used to solve the difference equations given in the

previous section. The solution technique for finite -difference equations may be applied to

any multiple particulate phases, not limited liquid and solid.

A.7.1 Solution of the Momentum Equations.

To facilitate the particular method of

solution the equations are recast in the following form. The momentum equations in x~direction

could be collected together in a matrix form.

(4) it (U):i.j =(B. )'»1,:'

Agg Agl . A82 AgN
A= A1 A:u A.u A:m
ANg Am ANZ ANN

where

N
Ay =(8kpk )m-1 +ot Z(sz )n —at(mk ) k=gl1,2,-4\N

£=g,1
£k

A,_=A_, =-0tB,)" km=gl2- N m=zk

u 2

A, . I 1

( —— B8t ( o+ n+
(Sgpgug)_ar (Pg +‘cg)i+ll,j —(P8+T%)isjl)
wl

o~ oay ot n+: n+
u, (&.p1y, )_8__((1)1 11y )i+11,j —(By+7)i; l)—(wl )5t

| d i3 .
U | —— &t " wst
(exPnly )—_ar—'((PN ""‘dv)m,j (Pt )iJ
1
e

\

2

_(wg)grat }

)—(wy)e. Bt

)




where for gas phase w,=p, and 7 =0, and for particulate phases

€, Al
wk =:(pk - Zsmpm)

m=g,1

k=1,2,--N.

and similarly, momentum equation in y-direction can be written as,

&) (V) =B, ,

i

( ——— 6t nt.
(Sgp ng)'sT((Pg +Tes);::1 —(®, e T Ta ) hj 1 )—(Wg Je.ot w
n .

. 2
o ot D+ n+
(,p1V, )‘az—'((Pl +To )i — (B + Ty i 1)_(Wk )g.ot
1
2

S ot n+ n+
(8NPNVN)__82 ( (By +Toy )i,j—:l—(P N +Td~:)i,jl)"(wN )g.ot
e

\ 2
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A.7.2 Convergence on Fluid Continuity Equation. The solution process is carried out

in three major steps. First of all, the continuity equations, the momentum equations, and a part of

energy equation are solved simultaneously to establish the pressure and the velocity fields. In this

step only the interface heat transfer part of the energy equation is considered. Secondly, the

remaining parts of the energy equations are solved to establish the temperature profiles. Finally,

the compositions for each phase are solved based on the pressure and the velocity fields, volume

fraction and temperature profiles obtained from the previous steps. The solution procedure of

computational sweep is illustrated in Figure A.3.

The first step proceeds as follows: The calculations are started with a guessed pressure

field that is either the specified initial condition or the pressure field computed in the previous time
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NIT=NIT+1 Next Quter Iteration
N.[UST=IT=0 ‘ Next Cell
KROS=-1
KLOOP=0
LOOPTO
DG
TARGET=(1-W)DG l0-DG|<5¢
D3=DG, P3=P
MUSTIT=1
¢ > NIT=1
Next Inner Iteration NIT>1
D3<TARGET —— D3>TARGET
— — 1
D2=D3, P2=P3 D1=D3, P1=P3
KROS: ~1->1, 0->2 KROS: ~1-30, 1->2
l KROS=2 ——_ KROS=-1,0,1 |
A A
B —(P1-P2)/(D1-D2) NEWI;ROS=3 ewtons | ] )
KROS=3 ioure A 4) METHIOD
P3=P
\  J
Py 9Tg sy sV sE, s Ly sy sV 5€)
———<e————p=(PA+PB)2 |

| D3=DG MUS;.‘IT=O NIT>N'TMAX

_ TARGET=(1-w)DG]| %
KROS=3 LOOP=LOOP-+1

NEXT TIME
e HLO0RSS STEP

Figure A.3 The Computational Sweep
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step. Using this guessed pressure field, the velocities are calculated from the matrices above. The
particulate phase continuity equations are solved using the updated velocities to calculate the

particulate phase volume fractions. The gas volume fraction, €,, is then calculated from the

following equation,
N
g,=1-)g,

Using €, and the updated fluid velocities, the residue of the fluid continuity equations, Dj J is

calculated,
n+] n ot ( ni1 Ot ( n+l . \n
Di,j =—(8gpg i,j1+(8gpg)i,j—8r (sgpg )ug)i,j _82 (sgpg)vg>i,j +8t(mg)g

i ]

Ideally, for a converged solution, D; j should be zero. In the code, D; J is compared with a
very small number. The value of the convergence criterion is,

D, SCONV;:,.+1 =EPSG-(g,p,);;
where EPSG is read in. The default and recommended value of EPSG is 10-.

The computations begin at the left-bottom comer fluid cell. The pressure is corrected in
one cell at a time until convergence is obtained or the number of iterations exceed an inner iteration
limit. The computations proceed from left to right and from bottom to top until the entire
computational regime is covered. At the end of such a computational sweep, if a pressure
adjustment was necessary in any of the cells, the procedure is repeated until simultaneous
convergence in all the cells is obtained. The number of iterations, however, is restricted
by an outer iteration limit.

A.7.3 Pressure Iteration. When D; ; fails to meet the convergence criterion in
any cell, the pressure is adjusted using a combination of Newton's method and secant

method. The initial adjustment of pressure uses Newton's method.




A2]

Dm

B =) oo

where the indices i, j, and n have been omitted. The index, m, indicates the iteration level.

This is equivalent to using Newton's method for each cell, where @ is a relaxation

parameter near unity, and B is computed as,

1 oD, e + o+
Tl (PRSI (SR

once every time step. The sound speed Cij is given by,

. _[ O,
{3

where (6P,/0p,) can be determined from the equation of state.

This formulation is only approximate. Hence, subsequent corrections use the

secant method:

(®)" " -(®)"
Dm-l Dm

@)™ =(E,)" -0 [
The use of secant method is continued until Dij changes sign. Thereafter a combination
of the secant method and a bisection method is used. The method is illustrated in the
Figure A 4.

Given the three pressures P1, P, and P3 of which P| and P9 bracket the desired
pressure and P3 lies between them and the respective mass residtzals D1, Dy, and D3, do
not satisfy the convergence criterion in cell D} > 0, and D2 < 0. With three pressures and

their mass residuals obtained as described, or otherwise a constrained two-sided secant

technique is used to obtain further pressure adjustments. From these pressures and their

T T T T —

r N B
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Figure A.4
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The Secant method for Pressure Iteration
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mass residuals, the pressure Pp and Py are determined by straight line extrapolation and

interpolation, respectively, as follows,

_ (psD,—p,D;)/(D,-D;) for D,#D,
712 +p:)/2 for D,=D,

p,= (psD,-p,D;)/(D,-D;) for D,#D,
2 (py+ps)/2 for D,=D,

The new estimate of the advanced time pressure is then computed as,
m+l 1
(Pg ) =’2'(pA +Pg)

If the pressure, PA should lie outside the interval Py to P3, it is given the value
(PA+PR)/2. After (Pg)m+1 is estimated, point 2 is discarded and points 1 and 3 are
retained as improved bounds for the next pressure estimate. When Dj j changes sign, the

value of B, ; is also updated for future iterations as,

o DPi 7P,
B Dl_Dz

A.7.4 Solution of the Energy Equations. The specific enthalpies H, are
calculated in subroutine IGIL accounting for the mass, momentum and energy exchange
rates. For the iterative part of the solution, a simplified set of energy equations is used,

which is differenced as follows,

n+l /3T n+ n at & n/mp
(sgpg i,jl(Hg)i,j =(8gpg % I(Hg)i,j +'2_Z(hvk )i,j (L —Tg)

k=1

wtg(ﬁkg)?,: {((uk =) Hwn—-v,)r, )’)2}+(Q,g +Q, )7,

T +1 n 8 nm . a n
(&P );‘,; ! (Hk)i,j =(g,Py )?,j H, )i,j 1 t(hvk )i,j (Tg =T )+(Q, +ka)i,j
2 .
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Note that only half the effect of the interface heat transfer is considered here. Thus H is some

intermediate value between H and HOt1 defined as,

ﬁk =Hy +(T;< -T.)Cy
where, Cy. is the specific heat of the fluid or the particulate phases. Rearranging, we get,

Tt ey

Cu

Thus we get,
! (Hg )?,j +(Qrg +Qfg );l,j +

(egpg )?sl(ﬁg )i,j =(8gpg )?,j
E A n (ﬁk)iJ _(Hk ):j ST P (ﬁg )i,j —(Hg):j (T \0
> Z(hvk )i ,j[ C. +(T, )i,j C \Tg )i,j)

k=1

g

43 B (g~ (=700}
(&P ):: ! (ﬁk)i,j =(&,Py ):; ! (Hk)?,j +(Qrk +Qa: )::]
((Hg )u —(Hg )?,j ; ’Tg ):j (Hk )u —(Hk )?,j (Tk ):’)
C, C,

n

o
"—zt(hvk)i,j
(Ah)i,j (ﬁ)i,j =(Bh)i,j

In matrix form,
Note that (g, p,.), k=g,{,s are evaluated at time (n+1) and Hy, Ty, hyi are evaluated at time n.
( 5t & 3t St S5t
8gpg +— hvk vl hvz o th w
2C,ia 2C, 2C, A 2C,
B . eprih, 0 0
A 2C, 2C,
( h)u - 6t hvz 0 Szpz 1 8t hvz 0
2€, . 26, .
5t ) i ' 5t
0 0 -« gxpyt+—h
2Cg vN NpN ZCN vN) N
i
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P
A
H,
(.H)i,j= ﬁz
\ﬁN)iJ
( \
H
N
(sgpg)H +(Q +Qfg)+-—2_ Cg Ck
k=1
By ( (W —1,)*+(v,—v,)’)
/
H
(e, ), + b, | TL—E4 —T)
(Bb)i,j= 2 C1 Cg
6t (EH, H
(e.0,)H, *'?hvz K'C'—:_C_g'*‘Tg "Tz)
ot fH H,
(enpy)Hy+—h | =E——F4T -T
2 kC C, ).
i

After the converged solution is obtained for the continuity and momentum
equations, the solution of the energy equations is completed. The part of the energy
equation solved during the iterative solution of the momentum and continuity equations is
subtracted from the complete energy equations. Assuming that

(T,~T)~(T,-T,)™
we get,

nHl .
T"“ E_H_.,.T
Ck

(agp g Ml(H )iJ—(Sgp g)n+1((H )m (H )lu)+(sgpg)u (H )I»J +(Sgp ng)u

Hk;:u H. Hgi,j_Hgi,j w A 5 \n
Z(hvk)?,j(( C( )J ’T ) (H,) C( ) (Tg );JJ'*'(Q,g-l'Qrg)iJ
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(ekpk o (H, ?} ! =(&,Py )nﬂ((ﬁk )i,j —(H, );l,j)+(8kpk ):, H, ):, +(g,.p Hy )i,j

"'-(hvk)i,j

((H) (| = -,

HT, )iJ C T.); )'*'(Q.-k +Qrk)i,j

Solution procedure is same as the one discussed above.

A.8 Boundary Conditions

The rectangular region in which calculations are to performed is partitioned into

cells of sizes dx; (or drj) in x (or r)-direction and dy; (or dz;) in y (or z)-direction. A

perimeter of fictitious (dummy) boundary cells surrounding the computing mesh is used to

enforce boundary conditions. Several boundary conditions around the computing mesh

perimeter are programmed in the code. The cell flag types are indicated by IFL(T, J).

Flag Cell Type

1

2

7

8

Fluid cell

No-slip rigid walls

Free-slip rigid walls for gas/liquid phases, and Partial-slip rigid walls for
solid phases

Continuous outflow,

Prescribed inflow rate,

Prescribed pressure inflow,

Prescribed pressure outflow with particulate outflow,

Prescribed pressure outflow with no particulate outflow,

s

In the bottom row and left column of boundary cells, any number of inflow

openings can be specified using flag types 5 and 6. Similarly, in the top row and right

column of boundary cells, any number of outflow openings can be specified using flag
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types 4, 7 and 8. Flag types 2 and 3 may be prescribed on any of the four boundaries to
represent rigid (solid) cells. Obstacles blocks within the computing mesh are built from
rigid cells, flag types (IFL = 2 or 3).

The position of all blocks must coincide with rectangular cells within the.
computing mesh. Calculations are not performed in the obstacle cells, only in the
remaining fluid cells within the computing mesh. Cell flag type (IFL =1) is a
computational cell.

A.8.1 Rigid Cells. Three types of boundary conditions may be specified for a
rigid (solid) cell: free-slip, no-slip or partial slip (IFL =2 or 3). In two dimensions, a free-
slip boundary represents line of symmetry and a non-adhering boundary that exerts no
drag on the fluid; a no-slip' boundary represents a viscous boundary that exerts a drag on
the fluid.

Consider cell (i, j), which is a _ﬂuid cell, an inflow boundary cell, or an outflow
boundary cell. An adiabatic rigid cell is said to be a corner cell if and only if it has at least
two adjacent édges, each of which is shared with a fluid cell, an inflow boundary cell, or
an outflow boundary cell.

If right cell (i+1, j) or left cell (i-1, j), is a rigid cell, then for all time levels n

ml
(uk)&%d—o
) for IFL=2
W =
el —(vk)::j : for IFL=3
2

Similarly, if top cell (i, j+1) or bottom cell (i, j-1), is a rigid cell and if free-slip boundary

conditions (IFL = 2) or no-slip boundary conditions (IFL = 3) are imposed, then for all o,
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()", for IFL=2
( n+l - H-z"l
k i-%,j:!:l —(u, )", for IFL=3
i+?i

n+l
()75 =0

If any one of the cells (i, j+1), (i+1, j), (-1, j), or (i, j-1) is both a rigid cell and a
corner cell, then, for all free-slip, no-slip and partial-slip boﬁndary conditions, all its
velocity components located at the center aré set equal to zero.

A.8.2 Inflow Boundary Cells. For each inflow opening a pressure, Pg, velocities
ug and v, and volume fractions, €, for all phases (k=g,/,s), temperature of all phases T}
(k=g,l,s), composition, y; (k=g,¢,s), and solids granular temperature ®, must be
specified in the input data, as necessary.

The types of inflow boundary conditions used are inflow prescribed (IFL 5); or
inflow pressure prescribed, (IFL = 6). The pressure, Pg, is required for -both (IFL = 5)
and (IFL = 6) to compute the mass fluxes. However, when the inflow pressure is
prescribed, the radial or axial velocity components are computed using momentum
equations.

A.8.3 Outflow Boundary Cells. For each outflow opening, a pressure, Pg may
be specified at the beginning of each computation cycle. For constant boundary
conditions, the value of Pg is that specified in the input data. The types of outflow
boundary conditions used are: pressure prescribed outflow with particulate outflow
(IFL=7), or no particn;late outflow (IFL = 8); or continuous outflow (IFL = 4).

For both pressure-specified and continuous outflow boundary conditions, the

volume fractions, for a given cell of an outflow opening, is obtained by reflection. The

e e o e e -



A29

tangential components of the velocities are set to zero. A numerical screen is used to keep
particulate phases from leaving the fluidized bed for (IFL = 8).

Therefore, at the top outflow boundary, where (i,j)=(, JB2); (i+1/2, j)={, JB2); (i,
j+1/2)=(1, IB2); (i, j-1)=({, IB2); and (i, j-1/2)=(, JB1), we have,

" for IFL=7/8
®)ii =
(P ) for IFL=4

(ek)lJ-l for IFL=4/7
n+1 k=
(ek) . kig for  IFL=8$
g
(uk)n+l _0

(vg)::l =(8gpg)id—l (v )nﬂ / (sgps nﬂ
2

vy )Hlx =
i 0 for IFL=8

( xPx )n:jl(vk)nﬂ /(Skpk)n+1 for IFL=4/7
2
At the right outflow boundary, where G, )=(B2, j); (+1/2, )=(B2, T); (-1,

jF(IBLY); (-1/2, j)=(BL, J); and (-1, j=(IB1, J).

P )= for IFL=7/8
( ) (P )i—lJ for IFL=4

" isk):u ] for IFL=4/7
(ek) - 0 k;g for IFL=8
g

(ll )n+l _(sgpg :1_+11d(u )n+1 /(sgpg n+1

(1, )™ '_ (ekpk)?-?,j(uk)nﬂ /(Skpk ot for IFL=4/7
H—J for IFL=8
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n+l __
(Vk)m% =0

A.9 Inmitial Conditions

At the beginning of the simulation the distribution of all field variables is given by
the initial conditions. Uniform and simple non-uniform initial conditions can be specified
using the input data. Fluid blocks IFL = 1) with the field variables may be defined in
similar manner as the obstacle blocks are defined. Complex non-uniform initial conditions
should be programmed.

The pressure in the axial direction is initialized by the gravity head of the fluid
or/and particulate phases. If (IPRES = 0), pressure profile is obtained using fluid phase
only and the weight of the particulate phases is not supported by fluid phase. If JPRES =
1), the fluid phase supports the weight of the complete bed.

The pressure distribution in all fluid cells is computed recursively from the weight

of the bed as follows,

(8ePy), 1 for ~ IPRES=0
2

i (&wpy)

~k=g,l

(®,); =(Pg)i+l,j _gzazj A 3
2

for IPRES=1

i,j+%
where pressure in the top most cell J = JB2 is given by (Pg)i,j+1 /2=Pp. For density of
fluid, equation of state may be used. Since this density may depend on the pressure in cell
(i, j) which is yet to be calculated, a quadratic equation must be solved in a general case.

In a rigorous approach, the pressure distribution in a two-dimensional region must
be computed by solving the finite differenced continuity and momentum equations with

initial values of volume fractions, velocities and temperatures of all required phases.



