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HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS

ABSTRACT

The objective of this investigation is to convert our “learning gas-solid-liquid” fluidization
model into a predictive design model. The IT hydrodynamic model computes the phase
velocities and the volume fractions of g;.s, liquid and particulate phase. Model verification
involves a comparison of these computed velocities and volume fractions to experimental values.

This report presents the Ph.D. thesis of Mr. Y. Wu. All but a small fraction of his thesis
dealt with the work of this project. A summary of his results are as follows.

A hydrodynamic model for multiphase flows, based on the principles of mass
conservation, momentum balance and energy conservation for each phase, was developed and
applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To
simulate the industrial slurry bubble column reactors, a computer program based on the
hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of
methanol), phase changes and heat exchangers. Also the kinetic theory was programmed to
compute the viscosity of the solid phase.

In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with
a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree
well with thc; measurements obtained at Air Products’ pilot plant. The hydrodynamic model has
more ﬂexil;le features than the previous empirical correlations in predicting the gas hold-up of

gas-liquid two-phase flow systems.




In the simulations of gas-liquid-solid bubble column reactors with and without slurry
circulation, the code computes vc;lume fractions, temperatures and velocity distributions for the
gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, Hp,
CH3O0H, ...), after startup from a certain initial state. A kinetic theory approach is used to
compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are
observed on a color PCSHOW movie made from computed time series data. The steady state and
time average catalyst concentration profiles, the slurry height and the rates of methanol
production agree well with the measurements obtained at an Air Products’ pilot plant. The
temperafure movie shows heat transfer behavior of the internal heat exchangers. The simulations
may be useful as a guide for industrial reactor design such as for determining reactor size,

distributor design, positions of heat exchangers, mixing type, and erosion of heat exchanger tubes.
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ABSTRACT

In this study, a hydrodynamic model for multiphase flows, based on the principles
of mass conservation, momentum balance and energy conservation for each phase, was
developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid
separation. To simulate the industrial slurry bubble column reactors, a computer program
based on the hydrodynamic model was written with modules for chemical reactions (e.g.
the synthesis of methanol)L phase changes and heat exchangers. Also the kinetic theory
was programmed to compute the viscosity of the solid phase.

The slurry bubble column reactor, a typical multiphase flow system, is used to
produce methanol from syn-gas (CO, Ha, ...). 'The hydrodynamic model was used to
simulate the reactor’s time-depended dynamic behavior. The code computes volume
fractions, temperatures and velocity distributions for th_e gas, the liquid and the solid
phases, as well as concentration distributions for the species (CO, H2, CH30H, ...), after
startup from a certain initial state. In this simulation, the gas is treated as a continuous
phase while the solid (catalyst) and the liquid (wax) as a dispersed phase. A kinetic theory
approach is used to compute a solid viscosity due to particle collisions. Solid motion and
gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed
time series data. The steady state and time average catalyst concentration profiles and the
rate of methanol production agree well with the measurements obtained at an Air
Products’ pilot plant. The temperature movie shows heat transfer behavior of the internal

heat exchangers. The simulations may be useful as a guide for industrial reactor design




such as for determining reactor size, distributor design, positions of heat exchangers,
mixing type, and erosion of heat exchanger tubes.

The model was also applied to understand the hydrodynamics of electrostatic
separation of pyrites from coal. The model was modified to include an external electric
force. The kinetic theory has been applied to predict the viscosities for both solid phases,
coal and pyrites. The study showed that pyrites can be removed from coal in an inclined
electro-fluidized bed. A series of pictures from simulations show the hydrodynamic
behavior, such as solid flow patterns and pyrites concentrations, in the electrostatic
separator. This study indicates that dilute feeding results a high coal recovery and leads to

an improved design of electrostatic separators.
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