APPENDIX

CONVERSION AND SELECTIVITY CALCULATIONS

CALCULATIONS USE ON LINE GAS ANALYSES C = CONCENTRATION IN MOLE %

CONVERSIONS

CONVERSION (CO) =
$$\frac{\left(\frac{C_{co}}{C_{Ar}}\right)_{Feed} - \left(\frac{C_{Co}}{C_{Ar}}\right)_{Feed}}{\left(\frac{C_{co}}{C_{Ar}}\right)_{Feed}}$$

CONVERSION (E) =
$$\frac{\left(\frac{C_{H_{L}}}{C_{A_{l}}}\right)_{\text{Feed}}}{\left(\frac{C_{H_{L}}}{C_{A_{l}}}\right)_{\text{Feed}}}$$

CONVERSION (CO + H₂) =
$$\frac{\left(\frac{C_{co} + C_{H_2}}{C_{Ar}}\right) - \left(\frac{C_{co} + C_{H_2}}{C_{Ar}}\right)}{\left(\frac{C_{co} + C_{H_2}}{C_{Ar}}\right)} \text{Prod}$$

SELECTIVITIES

$$s_{i} = \frac{\left(\frac{C_{i}}{C_{Ar}}\right)_{PRoll}}{\left(\frac{C_{co}}{C_{Ar}}\right)_{Froll}}$$

The equation above yields <u>carbon-based</u> selectivities. Before being used the selectivities were corrected for carbon dioxide formation in all cases except for that of carbon dioxide itself. Since carbon dioxide selectivities were usually about 50%, the corrected selectivities were about twice as high as they would have been if the carbon going to carbon dioxide had been taken into account in their calculation.

