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5. MONTE CARLO SIMULATIONS OF NaI(TL) SCINTILLATION
DETECTORS FOR MULTI-PHASE FLOW MAPPING AND
VISUALIZATION USING CARPT

A Monte Carlo based simulation strategy has been developed for determining the total and
photopeak efficiencies of cylindrical NaI(Tl) scintillation detectors for an arbitrarily
located point γ-ray source in the three-dimensional space. Improved computational
efficiency, in evaluating the intrinsic photopeak efficiency of the detectors, has been
achieved by using Gaussian quadratures for carrying out multi-dimensional integration,
instead of the frequently used uniform sampling in conventional Monte Carlo methods. It
is observed that the photopeak efficiency is not a constant, and varies with the position of
the γ-ray point source. A generalized reduced gradient optimization scheme has been
applied to optimize for the detector gains and dead-times, which are needed for the
construction of a detailed 3-D calibration map to dynamically locate the position of the
radioactive particle. An efficient computational scheme has also been developed to
compute the particle position from the dynamic count data. This scheme uses a chi-square
minimization in conjunction with 3-D interpolation to provide improved accuracy in
locating the particle position.

5.1. Introduction

The Computer Automated Radioactive Particle Tracking (CARPT) has been proven to be
an excellent tool for studying the flow pattern/mixing mechanisms in multiphase reactors
(Devanathan, 1991; Devanathan et al., 1990, Dudukovic et al., 1997). Improvements and
changes in the CARPT facility are made from time to time to make it suitable to study
various reactor systems. One issue that has always been a bottleneck in the use of CARPT,
is the need for an in-situ calibration procedure. Traditional implementation of the
technique requires a tedious and time-consuming calibration at each operating condition in
the reactor geometry under investigation. During calibration for a given operating
condition, the current procedure requires the construction of a distance-count map for
each detector, by placing a radioactive particle, the flow follower, in a few hundred to a
thousand or more known locations over the entire reactor volume. This is currently
achieved by mounting the radioactive particle on fishing lines, fixed between two grids at
the two ends of the reactor, and manually moving the particle to various locations in the
column. All the calibration data are taken at the operating conditions of interest in order
for the distance-count maps to properly reflect the hold-up variations. Once the entire
calibration map is available for each detector, the dynamic position of this tracer particle
can be computed from the instantaneous counts data acquired by the detectors. Time-
differentiation of the instantaneous position data provides the instantaneous velocity of the
particle. The application of the ergodic hypothesis to the ensemble-averaged data results in
the evaluation of the time-averaged velocity and turbulence-parameter fields over the
entire reactor volume.

The Monte Carlo simulation of detector photopeak efficiencies offers an alternative to this
tedious in-situ calibration procedure. It is based on an approach where the radioactive-



40

count received by a detector is modeled, as opposed to a heuristically based current
procedure. When a radioactive particle is used as a phase follower in multiphase flows, the
intervening medium between the point source and the detector consists of the reactor
media and the reactor wall (as well as insulation if present). Thus, appropriate geometrical
arguments have to be used to compute the probability of non-interaction of the γ-ray
photon with the media in between the radioactive source and the detector. Additionally,
the technique has the advantage of determining the dynamic location of the radioactive
particle from the counts registered by all the detectors, using previously constructed
(obtained by using the Monte Carlo simulations) 3-D position-counts map for each
detector. This improves the accuracy of locating the particle position from count data
received by each detector, since 3-D mapping is being used instead of 1-D mapping from
in-situ calibration.

5.2. Research Objectives

The literature on the application of Monte Carlo technique for simulating the photo-peak
efficiency of a cylindrical NaI(Tl) detector in response to a single point source has been
well studied. It is the aim of this work to extend this firm theoretical basis by applying it to
more complex geometries and media configurations, as present in a reactor with multi-
phase flow. Specifically, the objectives are:

1)  Develop Monte Carlo programs to calculate the intrinsic efficiency of a cylindrical
NaI(Tl) detector due to a point source located at any position inside the reactor
volume.

2)  Validate these programs by comparing the simulation results from this work with the
available Monte Carlo simulation as well as experimental data for a point source
located on the axis of a cylindrical detector.

3)  Verify the simulation results by comparing the simulated counts to those measured at a
number of known locations inside a reactor. Optimize detector dead-time constants,
detector gains and the linear attenuation coefficient of the reactor media (function of
the local media density) to best match the experimental and theoretical data.

4)  Develop programs to generate 3-D position-count calibration maps for each detector
using the optimized variables obtained above for each detector.

5)  Generate source codes to dynamically determine the particle position by inverse
mapping the counts from each detector against the position-count map obtained from
Monte Carlo simulations above.

6)  Verify the accuracy of the inverse-mapping programs by comparing the predicted
particle position with its actual position by placing the radioactive particle into several
known locations.

7)  Integrate all the programs developed above to process data from actual CARPT
experiments.
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5.3. Mathematical Description

The basic framework for implementation of this technique has been provided by Beam et
al. (1978). They discuss the application of Monte Carlo simulation for the calculation of
efficiencies of right-circular cylindrical NaI detectors for arbitrarily located γ-ray emitting
radioactive point sources. They successfully show that Monte Carlo calculations can
provide NaI detector efficiencies at any specified energy, without resorting to tedious
experimental measurements. In this work, the framework established by Beam et al. has
been modified to include the presence of the reactor walls, and the two or three phase
mixture in the reactor. A similar implementation of the Monte Carlo approach has been
demonstrated to be successful by Larachi et al. (1994).

The development of Beam et al. (1978) does not include the effects due to the cladding
material encasing the scintillation crystal or the photo-multiplier mounting. At this
moment, these effects are not included in this work either, but some researchers have
shown that these effects may be significant, especially when simulating the entire energy
spectrum (Nardi, 1970; Steyn et al., 1973; Saito and Moriuchi, 1981). On the other hand,
if one is interested in simulating only the photo-peak portion of the energy spectrum, the
results appear to be insensitive to the inclusion or non-inclusion of the effects of the
cladding material in the simulations. Therefore, the non-inclusion of these effects could be
justified for the moment. However, efforts are underway to modify the existing codes to
include the presence of the cladding material in order to quantitatively analyze the effect of
the cladding material. Also, Beam’s analysis considers only Compton and photoelectric
interactions, while the production of secondary electrons is neglected. This implies that the
photon energies should be less than 1 MeV. This is true of the radioactive particles being
used for CARPT (Sc46) and therefore, presents no limitation. In what follows, a brief
description of the theoretical basis for this work is discussed.

The Monte Carlo treatment consists of following and categorizing a large number of
photon histories from emission at the source to absorption within the detector. Random
number and probability theory, combined with known transport distributions are used
to locate the photon collision site, as well as trajectory, energy and direction through each
history. As developed by Beam et al. (1978), three variance reduction steps are employed
during each history:

• Each γ-ray is forced to strike the detector.
• Each γ -ray is forced to interact within the bounds of the detector; i.e., photons are not

allowed to escape from the detector.
• Each interaction is forced to be a Compton Scattering event.

A photon history is terminated when either the weight of a scattering interaction (ratio of
scattering to total cross-section) or the energy of the photon falls below a specified
minimum (e.g. 10-10 or 0.01 MeV). Any possibility of bias due to these variance reduction
techniques is eliminated by calculating the appropriate weights for each of the above
forced events using well-defined physical and geometrical principles.
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5.3.1. Determination of Solid Angle

The determination of the solid angle at an arbitrary point by a cylindrical detector can be
accomplished by a Monte Carlo calculation. Figure 5.1 shows the position of the point
source relative to the detector, which is a known basic input.
The two cases that have to be considered are:

• A point source located in such a position so that the γ-ray photons can enter from the
top as well as the side (Figure 5.1).

• A point source located in such a position so that the γ-ray photons can enter only from
the top (Figure 5.2).

O

S2

S1 ρ

h

B
AE

C
D

rO’
θmin

θmax

θcri

2α max

α

l

Figure 5.1: Notation Used in the Selection of Angles for Monte Carlo Calculations

From Figure 5.1, we see that if ρ is the distance from the center of the detector to a line
parallel to the detector axis, but which contains the point source, and r is the detector
radius, then we can define the angle αmax as

αmax = sin-1 (r/ ρ)

The actual angle α is derived from 
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where, n is a random number selected from a uniform distribution between 0 and 1.
Consequently,

maxmaxmax )1n2( α≤α≤α−−α=α

The weighting factor associated with this selection of α, w (α), is given by
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Figure 5.2: Notation for the Case of a Point Source Located Directly Above the
Circular Face of the Detector

Once α is randomly selected, the points A, B, C, and D in Figure 5.1 define the plane
through which the photon must enter the detector for point sources located at S1 and S2

(Beam et al., 1978). Next, one has to define the angles θmax , θcri and θmin to determine the
position along the plane through which the photon enters. From Figure 5.1, the line
segments OA and OB can be defined as

ΟΑ = ρ cos α + (r2 - ρ2 sin2 α)1/2

ΟΒ = ρ cos α − (r2 - ρ2 sin2 α)1/2

Several cases need to be considered.
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Case I When the source is located above the top plane of the detector, for example at
S1 (i.e., when h ≥ 0)

θmax = tan-1(OA/h) , θcri = tan-1(OB/h) , θmin = tan-1(OB/(h+l))

Case II When the source is located on the top plane of the detector, for example at O
(i.e., when h = 0)

θmax = π/2 , θcri = π/2 , θmin = tan-1(OB/l)

Case III When the source is located below the top plane of the detector, for example at
S2  (i.e., when h < 0)

θmax = π/2 + tan-1(|h|/OB), θcri = π/2 + tan-1(|h|/OB), θmin = tan-1(OB/(l-|h|))

The particular angle θ, which defines the angle along which the photon enters the detector,
is chosen using another rectangularly distributed random number n′ .
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θ  has to be tested to see if the photon enters the top or the side of the detector by
comparing it to the angle θcri defined above. The appropriate weighting factor, w (θ), for
this selection of θ is given by
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Case IV When the source is located on top of the detector face, for example at S3 as in
Figure 2

θmax = tan-1[(r + ρ)/h], θcri = tan-1[(r - ρ)/h] , θmin = 0

Here, the critical angle, θcri defines an angle above which the variation of α is limited to
2αmax and below which angle α may vary over 2π. In the first case, the associated
weighting factor, w (α) is the same as defined before, but for the second case, w(α) is
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simply equal to 1, as αmax is equal to π. Therefore, in this case, θ is calculated first and α is
determined knowing the value of θ. Stated mathematically, it translates to
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Finally, the total weighting factor for any selection of α and θ in Figures 5.1 and 5.2 is
given by

Wi = w (θ) w(α)

Where, Wi represents the solid angle subtended for this particular selection of α and
θ. The estimate of the solid angle, Ω, is given by the mean value
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where, N is the total number of histories.

In our implementation of the Monte Carlo method, instead of choosing the photon
histories along uniformly distributed (rectangular) random directions as in Beam et al.
(1978), the angles α and θ are chosen from the Gaussian distributed pseudo-random
directions. This reduces the computational demands by around an order of magnitude. If i
corresponds to the α−coordinate and j to the θ−coordinate, then

xg(i) = 2n - 1, xg(j) = 2n’ - 1, 1)j(x1,1)i(x1 gg ≤≤−≤≤−

where, the two random numbers, n and n’, are replaced with Gaussian points, xg(i) and
xg(j) respectively. It has been shown in this work that the results for the photo-peak
efficiency are within 1% accuracy with 30 Gaussian points when compared to standard
base results computed using 200 Gaussian points.

5.3.2. Photon Interaction with Reactor Media and Detector Crystal

Once the solid angle computation has been accomplished, the next thing to consider is the
calculation of  the probability of certain type of interaction.  We must assess:

a)  The probability that γ-rays emitted within Ω would not interact with the reactor media
(gas-liquid, gas-liquid-solid mixture) and the reactor wall, fa
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µ i ≡ total linear attenuation coefficient of the material i in the γ-ray path.

α ≡ angle with the line normal to detector axis.

θ ≡ angle with the detector axis.

d i
≡ distance traveled by the gamma-ray in the direction (α,θ) through

reactor media/wall.

 
b)  The probability of interaction (Compton +Photo-Peak) of gamma-rays, emitted within

the solid angle, with the detector crystal, fd

( ) ( )[ ]θαµθα ,exp1, df da −−=

where,

µ
d

≡ total linear attenuation coefficient of the detector crystal.

d ≡ distance traveled through the detector by an undisturbed gamma-ray
in the direction (α,θ)

c)  The probability of photo-peak interaction of gamma-rays, emitted within the solid
angle, with the detector crystal, fp
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where,
w1 ≡ equal to fd.

deff ≡ effective distance traveled by gamma-ray inside the detector.
σ j ≡ attenuation coefficient due to Compton interaction.
τ j ≡ attenuation coefficient due to Photo-peak interaction.
µ σ τj j j= + ≡ total attenuation coefficient.

σ τ µj j j, , ≡ these are all functions of gamma-ray energy, and have to be recomputed after
each Compton interaction which changes the gamma-ray (photon)

Having defined fa, fd and fp, the total and photo-peak efficiencies can be calculated by
evaluating the following 3_D integrals
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r
r ≡ vector from the point source to a variable point p on the exposed detector surface.

rn ≡ external unit vector locally normal to the surface at point p.

ds ≡ differential area element around point p.

The angles α and θ, as described in Figures 5.1 and 5.2 need to be related to the direction
cosines of the γ-ray path from the tracer position to the entry point on the detector
surface. This is necessary for determining the distance a γ-ray travels inside the reactor and
through the reactor wall. Since the detector axis for all the detectors are perpendicular to
the reactor axis, axes rotations and transformations are implemented to make these
calculations tractable.

The origin of the initial coordinate system is the center of the reactor bottom plane, z-axis
is along the length of the column, and the x-y plane forms the horizontal cross-section of
the column. For any particle position (xp, yp, zp inside the reactor) and detector location
(xc, yc, zc outside the reactor), the following axis rotations and transformations are
performed:

1) Rotation on x-y plane by an angle ω' to make the detector axis parallel to the new x'-
axis:
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The particle and detector positions in the new coordinate system are pp yx ′′ ,  and

cc yx ′′ , , respectively (z position is not changed):

′ = +x x yp p pcos ' sin 'ω ω

′ = − +y x yp p psin ' cos 'ω ω

'sin'cos ωω ccc yxx +=′

0=′cy

The distance h between the center of the detector face to the tracer location and the
radius ρ, indicating the distance of the tracer from the detector axis, are given by:

pc 'xxh −′= , ( ) ( )ρ = ′ − ′ + ′ − ′y y z zc p c p

2 2
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The equation of the circle for the reactor perimeter in the horizontal cross section
remains the same, i.e.,

222
iRyx =+  (or 2

0R )

where, Ri and Ro are the reactor inner and outer radii, respectively.

2) Rotation in the y'-z' plane by an angle ω'' to for the projection of the 3-D line
( , , )′ ′ ′x y zp p p  to ( , , )′ ′ ′x y zc c c  on the y'-z' plane parallel to the new z'' axis:

′ ′ =
′ − ′

′ − ′
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The tracer particle (subscript p) and the detector (subscript c) positions in the new
coordinate system are:

′′ = ′x xp p

′′ = − ′ ′′ + ′ ′′y z yp p psin cosω ω

′′ = ′ ′′ + ′ ′′z z yp p pcos sinω ω

cc xx ′=′′

ωω ′′′+′′′−=′′ cossin ccc yzy

ωω ′′′+′′′=′′ sincos ccc yzz

The equation of the circle for the reactor perimeter in the horizontal cross section in the
new coordinate system becomes:

( ) 222 cossin iRyzx =′′+′′−+ ωω (or 2
0R )

The direction cosines (cos α'', cos β'', cos γ'') of the γ-ray path from the tracer location to
the entry point on the detector can now be related to the angles α and θ (from the detector
point of view) by:

cos cos , cos sin sin , cos sin cos′′ = ′′ = ′′ =α θ β θ α γ θ α1 1 1

where, θ1 = θ   if   ′′ ≤ ′′ = −z z otherwisep c , , θ π θ1 .
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After knowing the direction cosines of the path (particle to γ-ray entry point), the path
equations can be written as:

x x tp= ′′ + ′′cosα

y y tp= ′′ + ′′cosβ

z z tp= ′′ + ′′cos γ

where, t is the parameter defining the line in a 3-D space.

These linear equations can be solved along with the reactor circle equation to obtain the
intersection point of the γ-ray path with the reactor inner diameter, ID, and the reactor
outer diameter, OD. Once these parametric equations are substituted into the circle
equation, one gets a quadratic equation in t (parameter defining a line in 3-D) which has
an analytical solution. Once t is known, the equations above, defining the 3-D line, are
used to compute the intersection points with the reactor inner and outer walls. There are
two intersection points for each circle equation. The one closer to the detector is the true
solution, whereas the other is discarded. The distance traveled by a γ-ray inside the reactor
media, dr, and through the reactor wall, dw, can then be determined by the particle position
and intersection points, i.e.

( ) ( ) ( )d x x y y z zr p id p id p id= ′′ − ′′ + ′′ − ′′ + ′′ − ′′
2 2 2

( ) ( ) ( )d x x y y z z dw p od p od p od r= ′′ − ′′ + ′′ − ′′ + ′′ − ′′ −
2 2 2

where, (xid, yid, zid) is the intersection point with the reactor inner wall, ID, and (xod, yod,
zod) is the intersection with the reactor outer wall, OD.
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Figure 5.3: The Four Possible Cases of Travel of Photons Through the Detector

Having calculated the distances a photon travels through the reactor media and through
the reactor wall, one has to determine next the location on the detector surface where the
photon is going to enter the crystal. Subsequently, one needs to determine where the
undisturbed γ-ray is going to exit the detector. Depending on h, α, ρ and θ, there could be
four possible combinations of where a photon enters and where it exits the detector crystal
(Figure 5.3). Through firm mathematical arguments (not presented here), one determines
the effective distance, d, which a photon travels through the detector undisturbed, as well
as the initial direction cosines and the first interaction site of the photon with the crystal
(which is the already known position where the photon enters the crystal).
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With the initial direction cosines and the site of the first interaction known, the locations of
the subsequent interaction sites are obtained from

XN+1 = l’ cosα + XN , YN+1 = l’ cosβ + YN, ZN+1 = l’ cosγ + ZN

In the above equations, cosα, cosβ and cosγ are the direction cosines after the Nth

interaction, l’ is the photon path length between interaction sites, which is determined from
another rectangularly distributed random number between 0 and 1, n”
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The energy of a photon is reduced in accordance with the Klein-Nishina differential
scattering cross-section (not discussed here). The scattered angle θ is given by the
Compton scattering law

cosθ = 1 + 0.511/E0 - 0.511/E

where, E0 is the initial photon energy before scattering, and E is the photon energy
afterwards. The azimuthal angle of the scattered path relative to the incident path is found
at random from 0 to 2π by using another rectangularly distributed random number n’’’

φ = 2πn’’’

The new direction cosines after scattering are

cosα’ = cosα cosθ + (cosα cosγ sinθ cosφ − cosβ sinθ sinφ)/(1 − cos2 γ)1/2

cosβ’ = cosβ cosθ + (cosβ cosγ sinθ cosφ + cosα sinθ sinφ)/(1 − cos2 γ)1/2

cosγ’ = cosγ cosθ − sinθ cosφ (1 − cos2 γ)1/2

However, when (1 − cos2 γ) approaches zero, the following degenerate form is used:

cosα’ = sinθ cosφ 
cosβ’ = sinθ sinφ
cosγ’ = cosγ cosφ

With the new direction cosines, and the coordinates of the new interaction site, the new
distance a photon can travel from the interaction site to the wall of the detector along the
scattering path is required. This is done in the same way as while calculating the distance
d, which a photon travels through the detector undisturbed.

This process of computing new direction cosines, and new interaction sites is continued
until either the photon energy, E drops to 0.01 MeV, or the ratio of scattering to total
cross-section drops to 10-10. This process is repeated for all the Gaussian points in both
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the directions, and the integrals evaluated for the total and photo-peak efficiencies. Table
5.1 lists the differences in our formulation from that of Beam et al. (1978).

Table 5.1: Comparison of Beam’s Formulation to the Formulation Used in This Work
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xg(j), which corresponds .

w jg ( ) ≡

n ≡ number of Gaussian points in each
~ 30 are enough to give accurate values
the multi-dimensional

5.3.3. Computation of Simulated Counts

Once the detector photo-peak efficiency has been simulated, the radioactive counts
registered by each detector are evaluated. The number of γ-ray peaks received by NaI
detector obeys the nonparalyzable model, and the detector count is mathematically
expressed as:

C
T GRP

GRP
=

+
ν
τν

ε

ε

*

*1

T ≡ sampling time.

ν* ≡ number of γ-rays emitted per disintegration (2 for Sc46).

G ≡ detector gain factor.

R ≡ source strength (activity), disintegrations/second.

Pε ≡ photo-peak efficiency or full-energy peak efficiency.

τ ≡ dead time of the detector.


