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ABSTRACT

The main aim of the present work has been 1w study in what way the addition of 2 second
metal influences the CO hydrogenation rate over alumina supported cobalt catalysts.

Temperature programmed reduction swudies (298 - 1173 K) show that calcined 9%CofAlL O,
conuins two main cobah phases: Crystalline Coy0, pamicles and 2 cobalt oxide layer
contzining cobalr ions interacting with the alumina support surface. Some amounts of heavily
reducible CoAl,O, are also present in the catalyst Addition of 9.1 and 1.0 wt% Pt from a
chloride commining precursor lowers the temperamre for Co,Q, reduction with about 80 K,
while the reducdon remperamre of the oxidic cobalt surface layer is lowered with 100 - 200
K compared 10 the monometallic cobalt catalyst. The temperanwre shift increases with
incyeasing platinum amount. | wi% Pt from a chloride free platinam precursor increases the
shift for the reduction of Co;0, 10 140 K. while reduction of the cobalt surface phase is
shifted 100 K compared to the monomerallic catalyst.

Other second metals (Pd, Ru, Ir or Re) also lowers the cobalt reduction temperamure. The size
of the shift dependens on the type of metal. It is suggested that the second metal must be
reduced itself before it promotes the reduction of cobalt

It is found that the bimetallic CoPt and CoRe camlysts are reduced to a larger extent
compared 10 the monometallic cobalt catalyst during an isothermal reduction for 16 hours at
623 K. In the bimerallic catalysts the oxidic cobalt surface layer are reduced, while this is not
the case for the monomenallic caralyst

Both the extent of decomposition of cobalt nitrate during the calcination and the reductive
decomposition temperanure are unaffect=d by additon of a second meral.

Temperature programmed reduction also shows thar increasing the calcination temperature
from 573 10 698 K increases the extent of oxydative decomposition of cobalt nitrate, and
lowers the amount of oxidic cobalt surface layer. The amount of cobalt as Co,0, particles
remains constant with increasing calcinzation temperature in this range. It is assumed that Co®*




diffusion from the surface laver into the alumina lattice increases with increasing calcination
temperature, giving more heavily reducible CoAl,O,.

Volumetric chemisorption measurements at 298 K show thar both Pt and Re additon o
9% Co/Al,O; results in a large increase in CO adsorption. The Ha adsorption increases also
with addition of Pr and Re, but the increase is smaller for Re addition compared to Pt
addition. The difference berween the rwo promoted catalysts is assumed 1o be due to hydrogen
adsorption on PL Both CO and H, adsorption increases with increasing amount of Pr addition.

The CO:H adsorpton ratio increases in the order
Col0Rc > ColOPt > Col.5Pt > Co.

Chemisorption of H, on chioride containing. plazipnm promoted camlysts shows that these
catzlysts adsorb somewhat less hvdrogen compared with the monomerallic cobalr catalyst
Increased calcination wemperature of the 9% Co/Al,O5 catalyst zlso slightly decteases the H,
uptake on the cawmlyst.

Activity measurements done with differentdal conditions at 473 K and 1 bara show that
promotion of the cobalt catalyst with Pt or Re increases the rate of CO conversion to
hydrocarbons. Re addition gives the largest increase. The increase in CO conversion over the
rhenium promoted catalyst is larger than the increase in H, uptake. The increase in CO
conversion rate over the platinum promoted catalyst is in agreement with the observed
increase in depxee of reduction and the increase in H, uptake. However, some of the hydrogen
uptake was considered to be on platinum. Promotion with rheniom as well as platinum then
gives increased turnover frequency on the cobalr sites. The results therefore indicate that the
increase in rate for both the Pt and the Re promoted catalysss is due to increased number of
active sites, and also probably 10 increzsed intrinsic acdvity.

Activity measurements done with differential conditions at 513 K and 7 bera did not show
any differences between the unpromoted and the promoted caralysts. It is suggested that the
reaction rates in this case are limited by the reactan: diffusion through liquid produocts present
in the catalyst pores.



Selectivity measarements did not show significant differences in hydrocarbon chain length
between the unpromoted and platinum promoted cobalt catalysts, but 2 decreased a-olefin/n-
paraffin ratio could be observed with increasing platinum additon.
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