CHAPTER 3

COALESCENCE AND BREAKUP

In this chapter, rate models for turbulent bubble coalescence and breakup, as
well as the daugbter bubble size distmbution for breakage, are developed based
on the principles ¢f molecular collision, isotropic turbulence and probability.
Unlike previous work. thus coalescence rate model has only one unknown
constant and shows that the coalescence rate as a function of bubble size may
appear a clear maximuem.

The theoretcal bubble breakage rzte model has no adjustable parameters and all
the constarts in the model are calculaic-3 from the constants of isomopic turbu-
lence theory. The breakage daughter bubble size distributions can be derived
directly from the breakage rate mode! and show very good agreement with the
experimental results of Hesketh er al. (1951a).

The developed rate models may aiso be spplied to turbulent liquid-kquid dispér-
sions.

3.1 Introduction

Turbulent gas-liguid dispersed flow not only is of the most basic characteristics
of bubble column reactors, but is 2lso ofter 2ncountered in many other industrial
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34 COALESCENCE AND BREAKUP

devices such as sieve plate columns for distlladon or gas purification and
floatation tanks for ore-concentration. In most of these devices, the main purpose
of the gas dispersion is to achieve large gas-liquid interfacial areas and thereby
to obtain rapid mass transfer. The gas dispersion also greatly enhances heat
transfer rates to solid surfaces and is thus also important for highly exothermic
reaction processes. The rate of interfacial ransport of mass and heat is often a
key design criterion and may limit productivity and control reactuon selectivity.
Much of the uncertainty related to the transfer rates is buried in the lack of
confident information on the bubble size distributions and the gas-liquid interfa-
cial structurs. In current design of bubble columns, the information is mainly
determined by direct experimentation or based on empirical correlagons.

Bubble coaiescence and breakup are basic processes taking place, and are
specific characteristics of a given gas-liquid dispersion. They are increasingly
considered as important processes, because they not only govern the bubble size
distribution but also directly affect interfacial mass transfer by the renewal of
bubble surfaces. For exampie, a balance, or an equilibrium, between rates of
coalescence and breakup may be considered to control the bubble size dismbu-
tion in a bubble column system, as done by Prince and Blanch (1990). The
modeling of bubble coalescence and breakup raies is very complex and is based
on the knowledgz of collision or breakup frequencies, breakage daughter bubble
size distributions and probabilities of coalescence and breakup. At present the
understanding of these underlying processes is still insufficient.

Some effort has been directed at establishing coalescence and breakup models
for fluid particles in dispersions. However, most of the work has been concerned
with liquid drops in stirred tank systems. Some of the early work aimed at estab-
lishing methods for estimation of stable bubble or drop sizes. For example,
Hinze (1955) made a semi-quantitative analysis on the forces controlling defor-
mation and breakup of fluid particles and developed methods to estimate a stable
bubble or drop size in 2 dispersion system relying on two dimensionless groups:
a Weber group and a viscosity group. Hughmark (1971) proposed a semi-empiri-
cal correlation to predict the stable drop size in turbulent pipe flow based on the
work of Hinze {1955).
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The analysis and modeling of the coalescence and breakup rate processes has
been paid greater attention. Valentas and Amundson (1966) gave a detailed
analysis of the processes of drop coalescence and breakup in stirred tanks. For
the coalescence processes, they proposed the concepts of collision frequency and
coalescence cfficiency, the latter assumed to be a function of the difference
between the individual drop sizes and the stable drop size. For the breakup
processes, a breakup model was proposed where the rate was assumed to be
inversely proportional to the characteristic breakage time. a tuning parameter. At
the same time, combined with a mean number of drops formed per breakage, a
daughter droplet size distribution, or breakage kemel, was proposed and was
assumed to be a deltz funcdon or a normal density function (Valentas er al.,
1966). This concept was utilized by some of the later investigators. Mihail and
Straja (1986) also proposed beth coalescence and breakage efficiency models for
bubbles in bubble columns, analogous to the work of Valentas and Amundson
(1966). They introduced the collision and breakup efficiencies as functions of the
difference between the individual bubble sizes and a maximum size using four
tuning parameters.

Some work has been done to obtain efficiencies or rates of coalescence and
breakup through more fundamental analyses instead of by direct assumptions.
Kuboi er al. (1972b) used an empirical correlation including a “modified kinetic
energy” as a variable for estimating the coalescence probability for binary equal
sized drop collisions in turbulent Liguid flows.

Coulaloglou and Tavlarides (1977) éssumed identical kinetic energy distributions
for drops and turbulent eddies in order to develop drop breakup efficiencies.
They also assumed the moticn of daughter drops to be similar to that of turbu-
lent eddies and could thereby estimate the “characteristic breakup tme”. Based
on this, for stirred tanks, 2 drop breakup model with two unknown parameters
was proposed. The breakage daughter drop size distribution was by the authors
assumed to follow a normal density function. In addition, they proposed a
pheromenological model with two unknown parameters for binary drop coales-
cence using the dimensional analysis developed by Levich (1962) to estimate the
interaction time between two colliding drops, together with the relationship given
by Chappelear (1963) for estimating the coalescence time of drops.
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36 COALESCENCE AND BREAKUP

Chatzi er al. (1989) proposed drop coalescence and breakup models based on,
and very similar to, the models of Coulaloglou and Tavlandes (1977). Pnnce and
Blanch (1990) also followed the same procedure as Coulaloglou and Tavlarides
(1977) in order to develop efficiency models for bubble coalescence and break-
age. They used 2 different energy distribution function in the breakage efficiency
model and a different coalescence time relatonship in the coalescence efficiency
model.

Narsimhan et al (1979) have given a more theoretical analysis, based on proba-

“bility theory, and have proposed a binary drop breakage model based on such
assumptions as the number of eddies arriving on the surface of a droplet being
a Poisson process, the arrival frequency of eddies being constant and a uniform
daughter droplet size distribution. Lee er al. (1987a) also proposed bubble
coalescence and breakage models. The bubble breakage model was developed
based on the work of Narsimhan ef al. (1979) and used the similar assumptions.
In their coalescence model, the interaction time coitelation proposed by Levich
(1962) according to dimensionless analysis was used.

Recently, Nambiar et al. (1992) have developed a drop breakage model for
stirred tanks based on the interaction between a drop and the eddies of length
scales smaller than the drop diameter. They have concluded daughter drop size
distributions completely contradicting the normal or uniform density functions
usually assumed

Many of the models mentioned above are inconsistent with each other and have
two or more unknown parameters. This is mainly due to the general lack of
information making it necessary 1o resor io many assumptions, some of which
even contradicting experimental evidence. For example, the breakage daughter
bubble or drop size distribution has usvally been assumed to be a delta or normal
function, having the highest probability for the equal-sized breakage. However,
recent experimental work of Hesketh ez al (1991a) has shown that the equal-
sized breakage in turbulent flow has the lowest probability. The daughter bubble
or drop size distributions will be discussed in detail later in this chapter.

The work in this chapter is aimed at deveioping fundamental rate models for the
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bubble coalescence and breakage processes in turbulent gas-liquid dispersion
systems such as bubble columns.

3.2 Binary Bubble Coalescence

It is usually considered that coalescence of two bubbles in liquids occurs in three
steps. First, the bubbles coilide. rapping a small amount of liquid between them.
This liquid then drains out until the lignid film separating the bubbles reaches
a crtical thickness, at which film nipture occurs, resulting in coalescence. Since
two bubbles must collide and then keep in contact for a sufficient time for
coalescence to occur through the processes of film drainage and rupture, the
coalescence process can be analyzed by examining the collision events and the
efficiency (probability) of a collision resulting in coalescence. In other words,
the rate of bubble coalescence will depead on the collision frequency and the
fraction of collisions resulting in coalescence (the so-called coalescence efficien-
¢y or coalescence probability). Thus, for the coalescence between bubble i and
bubble j with sizes v; or d; and v; or d; respectively the coalescence rate can be
expressed by

Qc(v‘.:v_‘-) = (Vv Pe(viv)) 3.1)

where @ and P are the collision frequency and the coalescence efficiency of
bubbles respectively. The collision frequency is a complex function of the bubble
or drop number densities, the size diswibutions and of the flow structure of ths
conunuous phase. For example, an increase in the approach velocities can
increase collision frequency and thereby increase the coalescence rate. However,
it can also supply the two bubbles with sufficient energy to cause a rebound
before coalescence can occur, resulting in a lower coalescence efficiency and
thereby decreasing the overall ccalescence rate. The coalescence efficiency
depends on the forces acting on the colliding bubbles during the approach
process since the interaction time between two bubbles is tied to these forces
(Chapter 4; Chesters, 1991; Jeelani and Hartland, 1991).
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Bubble coalescence in gas-liquid dispersions has been considered to take place
due to a variety of mechanisms such as turbulence, shear stress and buoyancy
(Friedlander, 1977; Prince and Blanch, 1990}, However, regardless of mecha-
nism. collision is the first step and a necessary condition for coalescence to
occur. In addition. since the collisior of three or more bubbles at the same time
has a very small probability, only binary collisions or binary coalescence is
usually considered. This is also done in the present work.

3.2.1 Binary bubble collision frequency

Turbulent collisions result from the more or less random motion of bubbles due
to turbulence in a dispersed two-phase system. However, due to the complexity
of turbulerce, to determine the mean relative velocity between bubbles involved
in murbuient collisions, some simplifications have to be made.

Firstly, to make the problem tractzble, the turbulence is usually assumed to be
isotropic (e.g. Lee er al. 1987a; Prince and Blanch, 1990). Although the turbu-
lence in bubble columns is usually non-isotropic as shown by Menzel (1990), the
tsotropic turbulence assumption is also used by this work. This is because
theoretical considerations and experimental evidence has shown, as concluded
by Hinze (1959), that the fine-scale struciure of most actual non-1sotropic trbu-
lent flows is locally nearly isotropic. Many features of isotropic turbulence may
thus apply 1o phenomenra in actual turbulence that are determined mainly by the
fine-scale swmucture (Hinze, 1959). Furthermore, even an actual turbulence
sitnarion with a non-isotropic large-scale structure or which is non-isotropic
through an essential part of its spectrum, can often as a first approximation be
treated as if it were isotropic. The differences between results based upon the
assumned isotropy and actual resulis are often sufficiently small to be disregarded
compared to the uncertainty of the experimental data (Hinze, 1959).

Another assumpiion used in this work is that the bubble sizes lie in the inertial
subrange of isotropic turbulence, as also done by the authors mentioned above.
The criteria for the inertial subrange are
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k,e<k<ky, or A, >A>2, (3.2)

where k, and A_ are the wave number and the size of the large energy contatning
eddies respectively, and k, and A, are those eddies where the viscous dissipauon
takes place. Since A, = (v,*/e)"* or k; = (ev, ) and A, is of the same order
as the scale of equipment, the bubble sizes can uvsually satisfy these criteria in
practice, that 1s, be much larger than the micro scale of turbulence and much less
than the diameter of the equipment Hence, this assumption may be reasonable.

In order to determine the mean approach velocity of bubbles in turbulent colli-
sioms, it is assumed that the colliding bubbles take the velocity of the turbulent
eddies having the same size as the bubbles (e.g. Coulaloglou and Tavlarides,
1977; Lee er al. 1987a; Prince and Blanch, 1990). Considering that a small eddy
does not contain sufficient energy to affect bubble motion and that an eddy much
larger than the bubble nearly has no effect on the relative motion of bubbles, this
assumption may also be acceptable.

The mean turbulent velocity of eddies with size A in the inertial subrange of
1soiropic turbulence can be expressed by (Kuboi, er al., 1972a,b):

—_— 2 L
83";; - % (El)lf} - BIQ(E}L)IB

(3.3)

where the constant, B = (3/5)I'(1/3)x (hete o is a universal constant in rurbu-
lence theory), as given by Batchelor (1953) using turbulence theory, is about
2.41 as o = 1.5 (Tennekes and Lumley, 1972). The measured value of § is 2.0
according to Kuboi er al. (1972a). When the above equation is used to determine
bubble velocities, the eddy size, A, is substituted by the bubble diameter.

Assuming that the bubble velocities due to the turbulent eddies are statistically
non-correlated in space, analogous to the motion of ideal gas molecules, the
mean approach velocities of the bubbles in turbulent collisions can be determined
by the mean square root of the bubble velocities (Kuboi er al., 1972b; Lee ez al..
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1987a; Prince and Blanch, 1990), that is

w1487 G4

where the size ratio, §; = d/d, and g or g; is the bubble velocity calculated by
Equation (3.3) substituting d; or d; for A.

Knowing the approach velocity for the turbulent collisions, the collision frequen-
cy can be calculated using an expression developed by Saffman and Turner
(1956) for binary drop collisions in turbulent air, analogous to that for collisions
of gas molecules:

0 - ;(di.dj)znjnjﬂlj (3.5)

This expression for the collision frequency of bubbles or drops has been verified
by Kuboi er al. (1972b) using the experimental results for the collisions of equal-
sized drops in benzene-water and cyclohexanone-water systems and has been
used by authors such as Lee er al. (187a) and Prince and Blanch (1990).

3.2.2 Coalescence efficiency

Up to now, coalescence efficiency models arc mainly based on the phenomeno-
logical analyses. Avzording to coalescence theory (Ross er al, 1978; Chesters,
1991), coalescence w.ll occur for a collision of two bubbles provided that the
contact time (interaction tme), 1;, exceeds the coalescence time, 7, required for
drainage of the liquid film between them to a cntical rupwre thickness. The rato
11, can thus provide s first indication of whether coalescence will or will not
occur under given conditions, that is, a coalescence efficiency (coalescence
probability) going to zero for large values of this ratio and to unity for small
ones can be defined A simple function satsfying these characteristics is
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Fe = exp e (3.6)

This concept has been used by many authors (e.g. Coulaloglou and Tavlarides,
1977; Ross, er al., 1978: Lee, er al.. 1987; Prince and Blanch, 1990; Chesters,
1991), but the various authors have used different interaction and coalescence
times. Obviously, this is an empirical relationship in reality. Nevertheless, it may
be a better approximation when more fundamental knowledge on the coalescence
efficiency is in the lack. Therefore, it is still used in this work.

Once Equation (3.6) is acceptable, the predominant problem becomes how to
obtawn the correct interaction and coalescence times. These times are dependent
on the collision forces and the approach velocities. In addition, the surface
properties of the bubbles are also important and significantly affect the coales-
cence tume. Hence, the coalescence efficiency will be a functon of the relative
importance of the various coalescence mechanisms and of the surface situation.
In practcal gas-liquid dispersions, collisions or coalescence is usually between
equal or unequal-sized bubbles with deformable and partially mobile interfaces.
Unfortunately, most of the research work on the coalescence time available from
the hiterature is for the equal sized bubbles or drops with fully mobile interfaces.
However, a coalescence time expression developed by Chesters (1991) for the
coalescence between deformable and fully mobile interfaces due to turbulence
in the inertial subrange has been considered to be also suitable for the unequal
sized cases. Hence, although many cases encountered in practice are partial-fully
mobile interfaces, this expression is still used in this work. It can be written as

Prud; ' 3.7

Ie =05 ————
(1+C_U-)'O

For the interaction time in turbulent systems, most of the previous studies used
the relationship developed by Levich (1962) based on dimensional analysis. An
equation for the interacton time was proposed by Chesters (1991), but it is only
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suitable for equal sized fluid particles. In order to find a more reasonable and
fundamental expression for the inieraction time of two equal and unequal sized
fluid particles, a bubble or drop approach model has been developed in Chapter
4, based on the parallel film concept. This model gives an equation for determin-
ing the interaction time as follows,

(Pg/PL*Y) PLd,'3 (3.8)
J30-Eya-g) ©

fp o= 2y = (145

where t___ is the ime betweer. the first contact and when the film area between
the two colliding bubbles reaches its maximum value (see Chapter 4).

Substituting Equations (3.7) and (3.8) into Equation (3.6), the coalescence
efficiency can be obtained as follows

- 2 3 2
0751+ &1 1o (3.9)

P - expi-¢ = 3 i
(/P =TV (1+E,)

Here c, is a unknown constant of order unity and has to be adjusted. The Weber
number, We,; 1s defined by

-2
we. - Prdisy (3.10)
iy 0

Equation (3.9) gives the coalescence efficiency is a function of the Weber
number, the bubble size ratio, the virtual mass coefficient and the physical
properties of the system.

Now, the coalescence rate can be calculated by Equations (3.1), (3.9) and (3.5),
if the bubble number densities are krown.
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3.3 Mode! for Bubble Breakup

As mentionied before, the bubbles in a rurbulent dispersion are not only exposed
to a turbulent field, but will also be subject to both inertial and viscous forces.
However, when concernsd with bubble breakage, the viscous forces can usuaily
be neglected since the bubbles are much larger than the microscale of turbulence
(Shinnar, 1961; Narsimhan er ai., 1979). In such a case. a bubble of sufficient
size will oscillate around its spherical equilibrium. The oscilladons are brought
about by the kinetic energy of the turbulent motion in the continuous phase or.
by the reladve velocity fluctuations betrween points near the vicinity of the
bubble surface. In other words. the kinetic energy of the turbulent motion brings
about an increase in the surface energy of the bubble through deformations.
Fragmentation of the bubble occurs if the turbulent motion provides an increase
in surface energy sufficient to cause breakage.

In a wrbulent field, velocity fluctuations at a point can be thought of as due 10
the amival of eddies of different scales (frequencies). Similarly, the relative
velocity fluctuations around the surface of a bubble exposed to a turbulent field
can be viewed as caused by the arrival of eddies with different scales and
frequencies at the surface of the bubble. This is equivalent to the "bombarding”
of eddies or the bubble surface.

Analogous to droplets in turbulence (Narsimhan ez al, 1979), oscillations of a
bubble induced by a particular eddy may be interrupted by the arrival of subse-
quent eddies. Whether or not this occurs, is governed by the relative magnitudes
of the time scales of, (i} the eddy arrival process and (ii) the oscillations of the
bubble. If the two time scales are comparable the effects of successive eddies
continually interfere with each other. Since oscillations of a bubble, that may
make the bubble break. are caused only by the hitting of eddies with the scale
similar or smalier than the bubble diameter, the smaller bubbles require very
small eddies to induce the oscillavons. Furthermore, the ume scale of oscillations
should be inversely proportional to the eddy frequency. Thus the smaller eddies
may be expectec to create high frequency oscillations.
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In what foliows, the assumption, which was also used by Narsimhan er al
(1979) and iec er al. (1987a), is employed. This 1s that the time scale of the
oscillation is smalier than that associated with eddy amival, so that once an eddy
of sufficiently high energy arrives, the bubble will certainly break.

533.1 Arrival or bombarding frequency of eddies

The arrival frequency of eddies with a special size A on the surface of bubbles
with size d; is equivalent to the collision frequency between the eddies and the
bubbles (or the bombarding frequency of the eddies on the bubbles). The colli-
sion frequency of eddies of a size between A and A+dA on bubbles of size d; can
be expressed by

g, = —}(d.-*k)ziln,ﬁl (3.11)

where 7, is the number of eddies per unit reactor volume of size between A and
A+dA and &, is the turbulent velocity of eddies of a size A, given by Equa-
gon (3.3), for the eddies in the inertial subrange.

The energy spectrum, E(k), indicates the kinetic emergy of eddies of wave
number between % and k+dk or size between A and A+dA per unit mass
(Tennekes and Lumley, 1972). When this is known, a relationship between 7,
and E(k) can be cbtained as follows '

-2
u .
mp g - dh = E(R)p,(1-56)(-dh) (3.12)

where g is the local gas fraction.

The functicnal form of the energy spectrum for the whole range of isotropic
wurbulence is not available, but in the ipertial subrange it is well described
(Tennekes and Lumley, 1972) by
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The relationship berween the wave number and the size of an eddy is k=21/A
(Tennekes and Lumley, 1972). Therefore, the number of eddies of sizes between
A and A+dx per unit reactor volume, or the number density of eddies, is

2 1-
i o f2l-g) (3.14)

A l 4
where

G- 2% . 1 = 0822 3.15)

202m)PR 202m)RT(1/3)

Equation (3.14) indicates that smaller eddies have higher number densities. How-
ever, the equation is only valid for eddies in the inertial subrange of isotropic
turbulence because the used turbulent energy spectrum function and the turbulent
velocity are only valid in this subrange. This limitatjon will probably have an
insignificant effect on the eddy bombarding consideration, since the very small
eddies have very low energy contents and very short lifetimes.

Consequently, the bombarding frequency for the eddies with size between A and
A+dA on bubbles of size d; can be expressed as

(1+8)°
d?gns

Wgy = Op: ~ cy(1-gg)n,(ed) (3.16)

where that § = A/d, is the stze ratio between an eddy and the bubble, and

¢y = c,nB2/a = 0923 (3.17)
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3.3.2 Breakage probability (efficiency)

For a particular eddy hitting a bubble, the likelihood of bubble breakage depends
not only on the energy contained in the arriving eddy. but also on the minimum
energy requirement by the surface area increase due to bubble fragmentauon.
The latter is determined by the number and the sizes of the daughter bubbles
formed in the breakage processes.

In a breakage, a bubble may break into two or mors bubbles with equal or
unequal volumes, depending on the breakage type. It is common opinion that
there exist two types of breakage for drops or bubbles in urbulent pipeline flow.
These are murbulent (deformation) breakage and viscous shear (tearing) breakage
(Sleicher, 1962; Collins and Knudson, 1970; Walter and Blanch, 1986 and
Hesketh er al., 1991a,b). In the former, the breakage is caused by fluctuating
eddies bombarding the bubble surface (Walter and Blanch, 1986) causing
oscillations (or deformatons) of the bubble surface. Usually, binary breakage
occurs in this case. For the latter type, bubbles may break into several bubbles
with varyicg volumes due to viscous shear. Since viscous forces have already
been assumed to be of little importance in mrbulent dispersions, as discussed
before, only the binary breakage is considered to be significant. This consid-
eration is reasonable according to the recent experimental results of Hesketh er
al. (1991a). They found that all bubble and drop breakage events were binary in
turbulent pipeline flows. -

For binary breakage, a dimensiomess vanable describing the sizes of daughter
bubbles, the breakage volume fraction, is defined as

- (3.18)

where d, and d,; are the diameters (corresponding to volumes v, and v;,) of the
danghter bubbles in the binary breakage of a parent bubble with diameter 4;. The
value interva! for the breakage volume fraction should be 0 < fzy < 1 (fzy = 0.5
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means an equal binary breakage and fjg,, = 0 or 1 means no breakage). Hesketh
er al. (1991a) found that the value range of fg, was independent of the size of
parent bubble. For instance, large bubbles of diameter 6 mm were observed to
break into bubbles with fg,, values of 0.1 and 0.9, and 0.5 and 0.5. The same
values of fg,, were aiso obtained for a small bubble of 2.5 mm. Thus, it is
reasonable to assume that the vanation range of fj, is independent of the
original bubble size.

To determine the energy contained in eddies of different scales, a distribution
funcuon of the kineuc energy for eddies in turbulence is required. Lee er al.
(1987a) used the Maxwell’s law for this function. However the Maxwell's law
is especially for free gas molecular motion and may not be suitable for turbulent
eddies. Angelidou er @l (1979) have developed an energy distribution density
functon for fluid panicies in liquids, which satsfies a natural exponential func-
uon. Actually, for the kinetic erergy of murbulent eddies, this exponential energy
density funcuion is found to be equivalent 0 the common assumption that the
velocity distribution of turbulent eddies is a normal density function (Saffman
and Tumer, 1936; Coulaloglou and Tavlandes, 1977; Narsimhan e al., 1979).
This assumption of a normal velocity distribution is also supported by the
experimental resulis of Kuboi er al (1972) for a wrbulent liquid-liquid disper-
sion system. Hence. this -distnibution function is also used in the present work 1o
describe the kinetic enerzv distibuuon of the eddies in turbulence, that is

exp(-x) . x - =& (3.19)

Pelx) - e(h)

1
e(d)

where the mean kinetic energy of an eddy with size A, &), is given by

Ny 3
er) - p, _g_ -*_:_ - anL(Ed )J3d3§n/3 | (3.20)

When a bubble of size d, breaks into tx3 pubbles with a given value of fj,. the
increase in surface energy is
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E(dl) = [fleffs +(] _va)m -1 }Rdjzc)' - cfn_;d‘zc (3.21)

where < is defined as the surface area change coefficient that is
213 3 “
¢ = fav +(1-fav) -1 (3.22)

. As seen. ¢; denends only on the breakage volume fraction, fgy, and is a function
symmertrical about fg, = 0.5.

Since the time scale of bubble oscillation is assumed to be smaller than that
associated with the eddy bombardment, such that once an eddy of sufficiendy
high energy amrives this leads to certain bubble breakage, then the condition for
an oscillating deformed bubble to break is that the kinetic energy of the bom- -
barding eddy exceeds the increase in surface energy required for breakage:

e(h) 2 2(d) - ¢nd]c (3.23)

Consequently, according 10 probability theory, the probabilily for 2 bubbie of
size v, or d; o break into a size of v; = vfpy when the bubble is hit by an
arriving eddy of size A, will be equal to the probability of the arriving eddy of
size A having 2 kinetic energy greater than or equal to the minimum energy re-
quired for crzaticg the bubble breakup. This gives

PB(V.-':vifBV'l) - P‘[e(l)z-é‘-(d,-)] - P[x2x.] (3.24)
- 1-Plxsx.]

where the dimensionless critical breakup energy. X. is given by

?‘-(d'-) l2cf__“/3
() We, %

t

(3.25)

Y owm
"

C
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where

we - Prdii (3.26)
‘ G

Then the conditional breakage probability, Pg(vivfp,.A), can be expressed as

X,
Pp(vivifard) = l—fexp(-x)dx - exp(-~%,) (3.27)
0

3.3.3 The expression for breakage rate

Since only eddies with size smaller than or equa! to the size of a bubble can
cause the bubble to oscillate, the breakage rate for bubbles of size v, forming
bubbles of size v, = v/fp, can be expressed as

dl
Qv vifay) = [ Polv,¥ifgy A @p 5 A (3.28)
2

“mn

The lower limit in the above integrai should actually have been the microscale
of eddies, A, but it has been replaced by the minimum size of eddies in the
inertial subrange of isotropic turbulence, A, . - The reason is that the expressions
ior bombarding frequency of eddies and breakage probability developed above
are only valid for this subrange. However. as discussed previously, this change
1s acceptable since the very small eddies have very low energy contents and very
short lifetimes thereby baving a negligible effect on the breakage of bubbles.

Tennekes and Lumley (1972) have given the minimum size of eddies in the
inerda subrange as 2mA /A, = 0.2-055or A, /A, = 11.4-31.4.
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Substituting Equations (3.16} and (3.27) into Equauon (3.28), the breakup rate
of bubbles of size v, or d, into a size of vfg, can be obtained as

1
, LBy e
Qu (v, vifgy) - e5(1-egIm(erd])” f.(l_‘gl)_l;dg (3.29)
S

where £ = A_./d;

The integrand in Equation (3.29) can be expressed by the incomplete gamma
functions and is then easy fo calculate.

Stace fpy 15 a value in the interval (0,1) and independent of the oniginal bubble
size, the total breakage rate of bubbles of size v; or d; can be obtained by
integratung the above equation in this interval. Hence, the total breakage rate of
bubbles of size v; or 4, is expressed as

1
Qu(v) - .% fQuviivf (3.30)
' 0

where 1/2 is used to consider thart the effective range of fgy is either 0-0.5 or
0.5-1 (the integrand is symmetrical with fg, = 0.5).

3.3.4 Breakage Lernel or breakage size distribution

The breakage kernel, n(v;:v,), was first introduced by Valentas er al. (1966) to
describe the size dismibuion of daughter drops or bubbles. It was also called a
"breakage size function” (Hesketh er al.. 1991b) or a "daughter droplet distibu-
tion" (Nambiar er al., 1992). For a continuous breakage kemel. n(v;v)dv,
represents the fraction of bubbles of size v; that break into bubbles of a size
between v, and v4+dv,.

.
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However, as menticned before, the breakage kemel has usually been more or
less arbitrarily chosen by previous authors. For binary breakage, Valentas et al.
(1966) assumed a delta function as the discrete breakage kernel and a truncated
normal density function as the continuous breakage kemnel. The truncated normat!
function was aiso used by other avthors such as Coulaloglou and Tavlarides
(1977), Chatzi er al (1989) and Chatzi and Kiparissides (1992). However,
Narsimhan er al. (1979) and Randolph (1969) assumed that a uniform distribu-
ton could be used, while Lee er al. (1987b) used a beta distribution functon. All
the functions mentioned above, except the uniform distribution, have the same
charactenistics; a decreasing breakage percentage appears when vi > 0orv,
while the equai sized breakage has the highest probability.

As pointed out by Nambiar er al. (1992), the models that have hitherto assumed
a uniform or a mruncated normal function-like distribution, centered at v/2 for the
daughter bubble or drop size, may not be representative of the underlying physi-
cal situation. The physical situation is clear; more energy is required for binary
equal sized breakzge than binary unequal sized breakage. This physical concept
is also supported by the experimental results of Hesketh er al. {1991a) for bubble
and drop breakage in turbulent flow. These results show that equal sized break-
age has the lowest breakage probability while the highest breakage likelihood
occurs when v; — 0 (or v)). '

Henve, Hesketi: ez al. (1991b) proposed a so-called 1/X-shaped kernel function
with. an adjustable parameter determined by a best fit to their experimental data.
However, the 1/X-shaped function has a zero probability for equal sized break-
age, which 1s in cortradiction with their own experimental results. Recently
Nambiar er al. (1992) proposed a method to predict the breakage kernel for drop
breakage in turbulent stirred dispersions dbased on an eddy interaction model, but
this method stull predicts a zero possibility for equal sized breakage.

Unlike previous work, the present model does not need any prior assumption as
10 the distmrbution functon for the breakage kernel. It can be calculated direcly
from the developed rate function. Qg(v;:vfg,). describing the rate at which
bubbles of size v; or 4, break into a size of v, = vfy,. Together with the total

O p—
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breakup rate of bubbles of size v; or d;. g(v,), this gives

1
5 J’(l +§)2§'”‘3e -xcdg

niv;ivy) = ] T'““ (3.31)
v‘.f f( L +E)2E 1R KgEdfy,
0 S

3.4 Results and Discussion
3.4.1 Coalescence efficiency

An illustration of the influence of bubble size and energy dissipation rate per
unit mass on the bubble coalescence efficiency, using the air-water system as an
example, is shown in Figure 3.1 and Figure 3.2.

As can be seen from Figure 3.1, for collisions between bubbles 4; and 4, the
coalescence efficiency generally decreases with an increase in bubble sizes. For
a given bubble size d,. and with a very small d,, less than about 0.5 mm for
instance, the efficiency is very high. However, 1t decreases very fast with
increasing 4;. This is because the coalescence time, as expressed by Equa-
tion (3.7). increases much faster than the increase in the interaction time, as
expressed by Equarion (3.8). when one of the two colliding bubbles is very
small. When the value of d, is close to that of d,, the coalescence and interacuon
times reach a similar rate of increase and the coalescence efficiency remains
nearly constant. Above this range, with d; becoming larger and larger, the
interaction lirne wiii approach a coastant vaiue for a given d,, which can be
found from Equation (3.8). However, the coalescence time still increases, and the
coalescence efficiency will decrease again.
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L

Figure 3.2 shows the variation in coalescence efficiency with d; when 4, = 3
mm. and with the energy dissipation rate per unit mass. €, as a parameter. An
increase in the energy dissipation rate causes the coalescence efficiency to de-
crease. The reasons are that the appioach velocity of two bubbles in murbulence
increases with the energy dissipation rate, and that the coalescence time increases
with it. The interaction time is nearlv independent of the approach velocity (see
Chapter 4).

The effect of other factors such as the physical properties and the constant, ¢,,
on the bubble coalescence efficiency is not shown in the figures, but can be seen
direcdy from Equation (3.9). It shows that the efficiency decreases with the
Weber number. Hence, any increase in liguid density or decrease in surface
tension will reducz the efficiency. The value of the constant, ¢, has a similar
effect as that of the Weber number. An increase in the density rauo, p/0, or the
virtual mass coefficient, ¥, will cause the bubble coalescence efficiency to
Increase.

3.4.2 Specific coalescence rate

Figure 3.3 and Figure 3.4 show the effects of bubble size and ¢, on the specific
bubble coalescence rate. Q/(n), which is the coalescence rate divided by the
product of number densities of bubbles i and j. For each given value of 4, three
regions can be identified for the change in the specific coalescence rate with 4.
When 4, is very small, the bubble coliision frequency, W, increases with d;, but
the coalescence sfficiency, P, decreases rapidly, as discussed before. This
results in a rapid decrease in the specific coalescence rate, QcJ(n,nj), in this

region. However, the smaller the value of d;, the narrower this region. For small
values of d. e.g. d; < | mm, the region may be disregarded. Above this regioa,
the coalescence efficiency decreases more slowly or is even approximately con-
stant. Then the increase in collision frequency becomes important, and makes the
specific coalescence rate increase until a maximum is reached. Above this
region, the specific coalescence rate decreases again due to the dominating de-
crease in the coalescence efficiency. At ¢, = 1, the maxima in the specific
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coalescence rate are located approximately at d; = d; for the large bubble sizes.
For d; = 1 mm, the highest specific coalescence rate is found at d, = 2.5 mm.
The result that small bubbles or drops coalesce more rapidly with large particles
15 a well known fact in water/oil separations.
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Figure 3.3 Effect of bubble size on the specific bubble coalescence
rate, QCJ(nir:j). in the air-water system as ¢, = 1.0.

As can be seen by comparing Figure 3.3 and Figure 3.4, the specific coalescence
rate is very sensitive to the value of ¢,. and the dependency on bubble size also
changes.

In general. the change in the specific coalescence rate with the bubble size as
predicted by the present model, differs from the results of Lee e al. (1987). In
their model. the specific coalescence rate increased monotonously with d, after
the initial minimum was reached.

The effect of the energy dissipation rate on the specific coalescence rate is
shown in Figure 3.5 and Figure 3.6. The larger the energy dissipation rate, the
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lower the specific coalescence rate. This shows that the coalescence efficiency
is the more sensitive to changes in the energy dissipation rate as it decreases
with increasing dissipation rate. whereas the collision frequency increases. For
the air-water system and small bubble sizes (d, = 1| mm). the smaller energy
dissipauon rates may make the change in the specific coalescence rate with dj
monotonous even for ¢ = 1.0.

The effects of physical properties such as liquid density and surface tension on
the specific coalescence rate are qualitatively similar to those for the coalescence
efficiency, as discussed before.
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Figure 3.4 Effect of bubble size on the specific bubble coalescence
rate. Q/(nn). in the air-water system as ¢, = 0.5.
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3.4.2 Breakage kernel

Differing from the previous models for bubble or drop breakage, the present
mmodel for bubble breakup rate has no unknown or tuned parameters. The break-
age rate and the daughrter bubble or drop size distribution can also be predicted,
given the operating conditions and the fluid system.

The present model shows that the breakage kernel is usvally a function of the
original bubble size, the energy dissipation rate and the physical propertes. The
dimensionless breakage kemel, My, for the air-water system, is illustrated in
Figure 3.7. It shows that the dimensionless breakage kernel is a U-shaped
function and that the lowest possibility is found for equal sized breakage for any
given size. This agrees with both physical intuiton and the experimental results
obiained by Hesketh (1991a.b).
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Figare 3.7 Effect of bubble size and energy dissipation rate per unit
mass on the dimensionless breakage kemel for the air-water system.
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The breakage kemel depends, as mentioned above, not only on the energy dis-
sipation rate, but also on the original bubble size. For larger bubbles, the effect
of the energy dissipation rate becomes insignificant and the daughter bubble size
distribution terds to become flat. This situation can be seen more clearly in
Figure 3.8, where the breakage fracton over every interval 0.05 of fg,, is given.
This is reasorable, because there is a wider size range of eddies affecding the
larger bubbles and then a higher chance for breaking them into daughter bubbles
with close to egual sizes. An increase in the energy dissipation rate also makes
the distributon flarten since this is equivalent 10 providing a higher energy for
breakage.

Alir-water system W J,=0003m £=0.5 mrfs?
8 q,=0006m, £=0.5 /s’
3 d,=0003m. £=1.0 nris’
3 d,=0006m. £=1.0 n/s

Breakage fraction

0025 0075 0135 0175 025 0275, 0325 0375 0425 0475
Breakage volume fracton fgy

Figure 3.8 Breakage fraction versus the breakage volume fraction with
the energy dissipation and bubble size as parameters.

In order 10 test the bubble breakage model, the predicted breakage fractons for
the air-water system in pipeline flows has been compared with the measured
results of Hesketh ez al. (19912a,b), as shown in Figure 3.9. The predicted results
by the model of Hesketh et al. 11991a,b) are also illustrated in the figure. It can
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be seen that the agreement between the predicted results of the present model
and the experimental results is surprisingly good. In addition, it can be found
that, under the high energy dissipation rates, £ = 13.3 m%/s°, prevailing during
the xperiments, the original bubble size, 4, has nearly no effect on the daughter
huoble discibution or breakage kernel. Furthermore, unlike the models of
Heskath er af. {1991b) and Nambiar er al. (1992), the present model shows that
the fracton of egual sized breakage is not zero, except for very small bubbles
or very low energy dissipaton rates. This is supported by the experimental
results of Hesketh er al. (1991a).

. B Data of Hesketh et al. (1991b)
{f d;=0003m. g=133 mY¥s’
£ d,=0006m. £=13.3 m¥s?
| 3 Model of Hesketh et al. (1991b)
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Figure 3.9 Companson of the predicted breakage fracuon by this
model with the measured data of Hesketh (1991a).
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3.4.4 Specific breakage rate

The wnfluence of bubble size and energy dissipation rate on the specific breakage
rate. Qp/[(1-g5)n,], is shown in Figure 3.10 with the air-water system: as an
example. The larger the bubble size and/or the energy dissipation rate. the higher
the specific breakage rate. Thus 1s reasonabie since a larger bubble can be hit by
a wider range of eddies. and a larger energy dissipation rate means a higher
energy content per unit mass of eddies. The specific breakage rate of very small
bubbles 1s close to zero, because the eddies capable of causing the bubbles ro
oscillate are too small to make them break. As the energy dissipation rate
increases, the bubble size, under winich no breakage occurs, 1s decreased.
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Figure 3.10 Effect of the energy dissipation rate per unit mass on the
specific breakage rate, Q/[(1-£-)n;]. in the air-water system.
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3.5 Conclusion

A semi-theoretical turbulent bubble coalescence rate model and a theoreucal
bubbie breakup raie model are developed respectively, based on the pnnciples
of molecular ccilision. probability and wrbulence. The bubble coalescence rate
model has only one unknown parameter. and the bubble breakage rate model has
none unknowr. parameters and all the consiants in the model are determined
from the isotropic turbulence theory. '

The theoretical bubble breakup rate model has no unknown parameters. The
daughter bubble size distribution can directly be derived from the breakage rate
model. It has shown verv good agreement with the experimental recuits of
Hesketh e al. {19%1ab).

The developed models may also be applied to rrbulent Liquid-liquid dispersions.

However, Equation (3.6). which has been used in describing the coalescence
efficiency by many previcus investigators and also by this work, is more or less
empirical and may de not representative for the real conditions. Besides this, the
models of coalescence time and interaction time used in this work also have
certain limitations. For instance, Equation (3.7) was developed by Chesters
(1991) based on an analysis of equal sized bubble or drop coalescence and
assumed the particles having fully mobiie interfaces. Equation (3.8) developed
in Chapter 4 is based on the paralle] film concept which may not be valid for
cases when the size difference between two colliding parucles is very large.
Hence, the coalesceace rate model needs further improvement

A benter way of utilizing the 1 and z; concepts may be to directdy apply such a
condition for coalescence occurrence as

r_, > fc-.

similar to the modeling method for bubble breakage. More detailed models for
to are under developmeat (BRIFE/EEC program. Chesters, 1991), also taking
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mass transfer inio account. They may be available at a later stage.

Another way is tc¢ simultaneously study each individual bubble collision and —_
liquid film drainage process, instead of obtaining the interaction time and the
coalescence time separately as usuval.




