CHAPTER 4

APPROACH OF TWO FLUID PARTICLES

This chapter gives a fundamental analysis on the approach of two unequal or
equal sized fluid particles and proposes two models based on the parallel film
concept. A simple parzliel film model giving an expression for the interaction
time. disregarding all external forces, is developed based on the conservation of
energy. It indicates that the interaction time is independent of the initial apprcach
velocity and gives a good explanation why the effective virtual mass coefficient
changes with the radius rato of particles in the model of Chesters and Hofman
(1982). A more general parallel film maodel 1s proposed based on the balance of
forces acting on the particles. The numerical solutions of this model show how
factors such as the initial velocity, the radius ratio and the buoyancy affect the
interaction tme, approach velocity and film arca. Both models are compared to
the experimental daia of Scheele and Leng (1971) for the collisions of equal
sized drops in the znisole-water system. The comparisons show that the general
parallel film model, for the prediction of film zrea is in good agreement with the
experimental data, but does not predict the interaction time well, possibly due
to the oscillations of the drops themselves. This simple model can only be used
to estimate the interaction time.

The expression of interactior: time in the simple parallel film model has been
used for deterruning the bubble coalescence efficiency in Chapter 3.
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4.1 Introduction

Binary and interfacial ccalescence of bubbles or drops is encountered in many
industmal processes such as two and three phase separators in the pewoleum
industry, in extraction, absorption and dicallaton equipment as wel! as in gas-
liquid or liquid-liquid reactors. It may often be a decistve factor in the design of
equipment.

The coalescence of two bubbles {or drops) in liquids is usually considered to
occur in three steps. First. the bubbles collide, trapping a small amount of liquid
berween them. This liquid then drains out untl the liquid film separating the
bubbles reaches a critical thickness at which film rupture occurs, resulting in
coalescence. As a corsequence, the coalescence process is analyzed by examin-
ing the rate of collision events and the probability of a collision resulting in
coalescence. The latter depends on the ume of imeraction duning a collision
(approach) compared to the time of drainage and rupture of the film {for bubble
coalescence. rupture tirne is usualiy negligible compared to drainage ume). In
other words. the interaction time is one of the determining factors for coales-
cence probability, as pointed out by Chesters (1991).

Much work has been done on determining :he interaction time. However, most
of it concerns the approach (or collision) processes between two equal sized
particles, and the parucle-interface case. For instance, Kirkpatrick and Lockett
(1974) studied the bubble-bubble and bubble-interface approach and coalescence.
They gave nurnerical solutions for the variation in the film thickness during the
approach process. in absence of external forces and based on a paralle] film
model. Jeelani and Hartland (1991a) have proposed a model which predicts both
the variation in the film area and the approach velocity during a collision and
have discussed the influence of the imtal approach velocity and the constant
external forces acting on the particles.

Up ull now, perhaps due to the complexitv, very litle work has been done on

the interaction time for collisions between two uneqgual sized fluid particles, even
though this case is very often encountered in practice. Therefore, in order 1o

. l
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determine coalescence probability, people have had io resort to assumptions. For
example, 2 common assumption used for the approach of bubbles or drops in
tarbulence (Levich, 196Z: Coulaloglou and Tavlarides, 1977; Lee et al.. 1987,
Prince and Blanch. 1990), is that the interaction time is proportional to the
characteristic life time of an eddy with size equal the sum of the approaching
particles:

t, - [ (R, <Ry /e|™ (4.1)

In fact, this hypothesis was made by Levich (1962) mainly from dimensional
analysis.

Based on the paraliel film concept for equal sized particles in the case of very
small Weber number, Chesters and Hofman (1982) and Chesters (1991) dis-
cussed the coalescence of two unequal sized parucles, by subsutunng an equiva-
lent radius in the expressions for equal sized panticles, and by nwroducing an
equivalent coefficient of virtual mass. However, even this was only for determin-
ing drainage time or coalescence tme instead of inieraction time.

The purpose of this work is to develop a more fundamental interaction model for
the approach process valid for boith two unequal and equal sized particles. The
method used is based on the paraliel film concep: since this is the simplest, but
still quite effectuve.

4.2 Simple Parallel-Film Model

4.2.1 Expression for film area

Consider. as shown in Figure 4.1. that an apprcach of two spherical bubbles (or
drops) of radii R, and R, with a given initial approach velocity « q takes place
under the influence of external forces including drag force. Let u; and u, denote
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the velocities, relative to the mean flow of the surrounding fluid, of the centers
of mass of particle / and 2 respectively, while v, and v, denote the relative
velocities of the centers of mass of particle 7 and 2 referring to the center of
mass of the two-particie system.

= Mg =Ugg- Ung =t U =U,-u,

Figure 4.1 Skeich of the parallel film model

Both the two velocities, u and v, are directed along the line passing through the
two paricie centers of mass. At, and after the onset of flattening, they are related
by the following equations,

u, = v, +u (4.2)

¢m Uy = Va=U,,

and

W, = Uy =Us = V-V, 4.3)
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where u, is the relative velocity between the two centers of mass of the individu-
al particles and u_,, is the velocity of the center of mass of the two-panicle
system. The center of mass of the two-particle system moves with the velocity:

TR, (T,
11 272
U, _ o= —_ (4.4)

- 1y
The iniual relative velocity can also be expressed by the individual velocities:
Uy = Upq - Usg. Where u; and uoy usually need to be known. For the approach
of equal sized parucles, u,; = -i»; = «,/2 and the system center of mass will not
move (u,,, = 0). For the approach of a particle to an interface. u,, = 0 and
m,/m~ — 0 so that u,,o = 0. also in this case.

Assuming that the separaung film thickness & and the radius r of the deformed
area are much less than the particle sizes, the increase in surface area due to the
deformanon can simply be expressed by

As - As; +As, - R L (4.5)

5

(R R:

The corresponding increase in surface free energy is GAs. For the approach of
equal sized particles or a particle to an interface. it can be considered. as done
by Chesters (1991), that the initial approach velocity is arrested at the last
flartenung stage. Assuming negligible drag, the initial kinetic energy is then fully
mansformed into excess surface tree energy. However, for unequal sized parti-
cles. only a part of the initial kinetic energy is available for increasing the
surface energy even if the effect of the drag force 1s disregarded. Thus 15 because
the unequal particle system has a motion of the center of mass relative to the
surrounding envirenment, ie. u, ¥ 0.

The kinetic energy of a particle system can be expressed as the sum of the
internal and the translational {or orbital) kinetic energies {Alonso and Finn,
1982). For a two-particle system, this gives
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1

£

1
2

-

(m1u12+m2u22} -E i (m, +m2}u (4.6)

om

From the above equation and Equation (4.4), the internal kinetic energy can be
determined by

1 2 [ 2
Ek.iru - Zmzq(ul—ul) - Zmequr _ (4'7)
where
2m m,
m - (4.8)
eq ™ oam.
1 2

is the equivalent mass of the two-particle system. In the above equation m; (i =
1 or 2) 1s the actual plus the virwal mass of a particle:

[

Here 7 is the coefficient of virnal mass normally taken to be a constant between
0.5 and 0.8 (Jeelani and Hartland. 1991a). A value of 0.5 has been deduced
theoretically for spherical rigid particles in potential flow (Maxey and Riley,
1983) and 0.25 was used by Cook and Harlow (1986) for deformed bubbles in
water. Geary and Rice (1951) and Jeelani and Hartland (1991a) suggested 0.69
for spherical bubbles and Chesters (1991) has used 0.75 for the same case.

Combining Equations (4.8) and (4.9) the equivalent mass of a two-particle
sysiem can be expressed by

my = T 8% g3 PalPenY (4.10)
23 3 3 c'tl =3
1-£ I+
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where the particle radius ano. g = R/R..

Now, considenng that the increase in surface energy at the final flantening stage,
when the maximum film area is obtained, stems from the loss of initial internal
kinetic erergy, 6As = E .. this gives

Frag 2 p-2 1 2
e R Rs lo - a0 (4.11)

It can be seen that this energy balance relanonship reduces to that for two equal
sized particles developed by Chesters (1991). as R = R, m| = m, and i = -u,,
= u,/2. and 1o that for a particle moving towards an interface as R, — <o, m, —
e and u,q = U (usg = 0).

Denoting A = (r/Rl): and u¥ = u,(p._,Rllcs)m, the energy balance reladonship,
Equation (4.11). 1s rewnuen as

2
m_u
A - g o - AWe (4.12)

n(R,” «R,°)R,'G

where
5, - _Bleaec ) 4.13)
3(1+8711+8%)
and
We - 1Pk us? (4.14)
o)
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Since the value of 4 is approximately between 1/3 and 4/3, the requirement, r, ..
< R,. corresponds to the condition of the Weber number being very small.

2.2 Expression for interaciion time

Denoting z as the distance berween the centers of the two bubbles, as shown in
Figure 4.1, then

<= RI+R2-%Q1(1"'5)("/R]): - R, +R2—%R1(1+§)A C(4.15)

Assuming. analogous to Chesters (1991), that the centers of mass of the two
particles are the same as thir geometrical centers. then R,+R,-z, . indicates the
distance that the two particles have moved when the film area reaches its
maximum. The time needed for this approach process, to Which was defined
as the interaction time by Chesters (1991), is found to approximately'equal
(R +Ry-z, , Wi o Here Z, _ can be determined by Equations (4.12) and (4.15)
setung I = I, and A = A_,.. Hence, the interaction time can be expressed in
dimensionless form as

1= La.n (4:16)

max

(]|

where the dimeansionless ume, T, is defined by

G 172

3 “4.17)
" pc‘RI

In Equation (4.16) it is assumed that the ume for the film area to go from zero
o its maximum equals the time for the reverse process back to zero and indi-
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cates that the intsraction time not orly dzpends on the properues of the fluids
used. but also on the radius rauo of the two approaching particles. It also shows
+ha* the interaction tirne is the same for £ = 1 (rwo equal sized particles) and ¢
= ( (a parucle to an interface). However, the dimensionless interaction tume is
independent of the initial approach velocity.

Often. for both equal and unequal sized particles, the centers of mass of the two
particles are di:ferent from their geometrical centers due to parucle deformation.
When this variation is considered. it can be shown that the approach distance
that the two particles have moved is better expressed by

3 (K] 2
:muhf—(l’q)RlAmax (4.18)

Ky~R,-
1772 6

Taking this into acccunt, the dimensionless interaction time becomes
- -

(1 —E‘,*iz)y’lw_eJl*—i)vT (4.19)

This result shows that since the Weber number in this simple parallel film model
should be very small. the influence of the variation of the centers of mass due
to particle deformation on the interaction time may be ignored.

4.2.3 Virtual mass coefficient

As discussed above. for two unequal sized particles, not all the iniual kinetic
energy is transformed to increase the surface energy. In order to describe the
case of unequal sized particles (for discussing the film drainage), Chesters and
Hofman (1982) and Chesters (1993) introduced an effective coefficient of virtual
mass, Y, to describe the available kirenc energy. £, ;. leading to the increase
in surface energy:
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T 32
Ef i - Yo7 PeRegito (4.20)

where

2R\R. 2R,
- . 4.21)
““ R, ~R, 1+E

is the equivalent radius defined by Chesiers and Hofman (1982). The authors
found that the effective coefficient of virual mass changed with the particle
radius ratio and 2l:0 gave some values for various radius ratios using an indirect
method. Tke values given were about 1 for £ = 1 and about 1/4 for g —0.

Tn fact, since the available kinetic energy is only the internal pam, or E  u=
E, .- the effective coefficient of virtual mass can be expressed as

(1-5(py/p, +¥) (4.22)
3(1-§-8%

Yef =

Taking y = 0.69, for bubbles, the values of the effective coefficients calculated
by the above relationship are 0.92 and 0.23 for £ = 1 and & — © respectively,
and if taking ¥ = 0.75, the results are 1.0 and 1/4. The laner results correspond
to those obtzined by Chesters and Hofman (1982). Therefore, this model gives
a theoretical explanation why the effective coefficient of virtual mass introduced
by Chesters and Hofman (1982) is a function of the particle radius ratio. That
is. there is a fraction of the initial kinetic energy that does not convert into the
excess surface energy for two unequal sized particles. This fraction is dependent
on the radius ratio.
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4.3 General Parallel-Film Model

Because the assumpton, r, . < R, (R; £ R;), has been employed in the simpli-
fied paraliel film model developed above, the expressions of interacton time and
film area are, as menticned, only suitable for cases with very smzll Weber
numbers. This can not be satnsfied for many practical processes and it 1s there-
fore necessary 10 develop a more general model without this assumpuon.

According to Figure 4.1. a general force balance in the direction along ine line
passing through the particle centers of gravity zives

m3 _F-F.-F, 4.23)

dir

The drag force can be expressed as F, = 121u Ru and the restoring force (capil-
lary force) as F_ = Bonr/R. Here B is a parameter determining the excess
pressure in the film (Jeelani and Hartland, 1991a) and depends on the real radii
of curvarure of the film and thereby changes with dme (Chesters and Hofman,
19%2). In the paraliel film model. for simplification, it is usually assumed to be
constant. For a plane film B = 2 but for a convex film B is less than 2. A value
8 = 1 was used by Jeelani and Hartland (1991a) for a deformed interface when
a particle approaches an interface. However, the parameter may pe larger than
2 for a concave film.

By insertung the force terms for the individual bubbles, the above equaton can
be wrinen as

-

du ROor*
ml..._i - F —_ﬁ_‘?__— 2np R, u, (4.24)
"1

and

/
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du- B.mor- -
m,_ = = F,-_= _____ -12nu R.u, (4.25)
- dr 2 R, Hefats

Submacdng Equation (4.25) from Equation (4.24). an equation describing the
approach motion berwvsen two unequal sized particles, after the onset of flatten-
ing. is cbhiained:

du, ) Fl—QEF: i KGrB(BI*B:é4) . 27y R, (u, —ézuli (4.26)

m R, m,

The change of the radius ratio. £. with ume has been ignored and the rejation-
ship. m,/m- = Z°. has been used in the above equation. In reality. the particle
shapes vary with time due to the deformation during an approach and then the
radius ratio may change with tume for uneyual sized particles (For equal sized
parucles, no matter the degree of flarteninz of the individual particles. the radius
raue keeps constant at unity (S = 1) because the deformation is identical for both
parucles). For unequal sized particles. the radius change of the smaller particle
1s greater than that of the larger one, and thereby the smaller the inita} radius
rauo. the greater the change of radius rato with ime. However, the change is
usually insignificant when A « 1. For examrle. even if S = 0 and A = 09. the
radius ratio vaniaton from its tnitial value is only about 11%. Therefore the
omission of the change in radius ratio in Equation (4.26) seems acceptable.

The parameters. 3, = B, = 2. for a plare film. but §, = B, for a deformable film.
If B, is less than 2 (convex film for bubble /) then B, will be larger than 2

(concave for bubble 2).

Combining Equations (4.4) and (4.2) with Equaton (4.3) gives

(4.27)
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Therefore, Equanon (4.26) may be rewritien in dimensionless form as

dur i . (4.28)
- -AA-MSu=-rSu= ~F"
pr 1 Ay Aot Fy

where

7 -3
- 075 P P25 (4.29)
PP Y
. (1427
PSR A b (4.30)

hoy = 9(_1-_5_*_)_ (4.31)
. pd/pf+y
. 0.75(F, -2 F,) 4.32)

! ! 1
TR, G(p, /P, + Y]

and the surface force number (a kind of capiilary number) is defined by

=172 ‘
Sf - uc(pch 0') {4.33)

Equation (4.28) is the general approach equauon of two equal or unegual paru-
cles based on the parallel film model. However, this equation is only valid for
values of A less than unity suice the change of the radius rauo is disregarded.

Denoting : as the distance between the centers of mass of the two particles. the
instantanenus relative velocity can then simply be determined by u, = -d=/dr. The
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negatve sign is set so that the velocity is positive when the two particles move
close. When thc deformation of the smaller particle or the value of A is not too
large. it 1s possible 1o assume that the centers of mass of the individual particles
de not change with time during the flatiening process, and remain the same as
their geometncal centers. However, for larger value of A, the variations of the
centers of mass from the corresponding geometrical centers are significant and
the center of mass for teth partcles uvsually shifts to their rear. Thus. the
distance between the centers of mass of the two particiss, z. can be expressed by
two parts: ule disiance berween their geometrical centers and the shifts of the
centers of mass from their geomerrical centers:

(1-2%)a* (4.34)

where the first two terms on the nght hand consttute the distance berween the
geometical centers cf the particles.

Therefore, the instanianeous velocity can be written as

i 1

In‘

_ dA
-0.75(1-8%)A (4.35)
D( )

* -
L,

The center of mass cf a system of particles movss as if it were a parucle of
mass equal to the total mass of the syvstem and subject to the external forces
applied to the system (Alonso and Finn, 1982). Hence for a two-particle system,
the equaton of mouon is

du__ .
- msy, —— - (Fy-Fy)-12mp (R, - R, )u,, (4.36)

Its dimensionless form 1s
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d:fn = Fyp-Agspu, (4.37)
where
. N = (4.38)
(palpc-1)(1-5 2%
and

«F, )52
Fr- 0.75(F, + F,)% | (4.39)

7R, 6(1-2%)p,/p +7)

When the change in radius rato is negligible, an analytical solution for Equa-
tion (4.37) can be obtained

Fr F= 1 .40

- - u* .-
cm =< cm0
AsSy L A, S,

l
4

Equations (4.28; and (4.35) are a set of two first order ordinary differennal equa-
tions and can be expressed as one second order ordinary differential equauon,
which can easily be solved by using Runige-Kutta methods. Some of the numen-
cal results will be discussed in tre following secuon.

These equations reduce to the equation for the approach of rwo equal sized
particles or a bubble 10 an interface developed by Jeelani and Hartland (1991a)
when § = I (here I~ = -F|) or § = 0 (here F., = 0). In addition. for these cases.
analvtical solutions for the dimensionless velociry and film area can be obtained
by assuming that 7 < R, and that the drag force is negligible, as done by Jeelani
and Hardand (1991a).
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4.4 Results and Discussicn
4.4.1 Zero external force

The first case discussed here is when extemnal forces are absent or negligible.
The vanauons of the film area and the approach velocity with time then depend
oaly on the nitial approach velocity and the radius ratio for a given system.

For the case of equal sized bubbles of air in water, Figure 4.2 and Figure 4.3
show how the values of the dimensionless approach velocity, u¥, and the dimen-
sionless film area, A, change with the dimensionless time, T, at various inital
approach velocities u¥,; u¥ decreases from its initial value 10 zero and then
becomes negative when the bubbles rebound until the negative maximum is
reached. On the other hand, the corresponding value of A increases from zero up
to 2 maximum value A, when u?¥ equals zero (the kinetic energy of the relative
motion berween the two bubbles is zero) and then decreases to zero when u*
becomes a negative extreme. because the bubbles rebound and the excess surface
energy is wansformed back into kinedc energy.

P. = 1000 [kg/m] ufo= 1.0

H.=0.001 Pas] ui.o:g.;'s
Tast N ReTI® Ggmy i
z L \ 6 =0072 [N/m] ’
—; 1—‘—"‘-\__- \
; 1) ‘-“:} A
) AN |
ER N Tl -
3+ d;=0.001 [m] \ —— -
Z i =10 : l
£ yoos

F;: F;lz(j
|
-1 l - L .
o 03 I 15 2

Dimensionless time T

Figure 4.2 Variation of u* with 1
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However, when the value of A retumns to zero the absolute value of u¥* is not
restored to its original initial value, since some of the initial kinetc energy has
been consumed by the viscous resistance against the relative motion between the
two bubbles (there is no relatuve motion between the center of mass of the two-
bubble system and the surrounding liquid since we here consider the case of two
equal sized bubbles).

0435

d, = 0.001 [m) |
< 03 1.0 ;
s_=, ‘ 0.5 '
: 0.15 ]:Fl']=0
= 1/ "

-{_; 0
?E':; 015 p, = 1000 [kgjm-:} uj:o= 1-0_
= ' u.=0001 [Pas] 777 uf°= 0.75 e ..
03 F P =129 [kg/m) . :2: 825
6 =0.072 [N/m] ~
-0.45 . . '
0 0s 1 1.5 2

Dimensionless time t

Figure 4.3 Variation of A with T

The vaiuve of A, obtainable increases with increasing ininal approach velocity.
u¥,. This is reascnable since larger values of u¥, supply higher initial kinetic
energy. In addition, the dimensionless ume needed for the film area to reach
Ao, from zero. 1, is independent of the initiz2l approach velocity. This time
is the same as the definition of interaction time in the simple parallel film model
expressed by Equation (4.16). Equatior: (4.16; also shows that 7 only relies
on the radius rano and the coefficient of virrual mass and is independent of the
particle size. R, in the absence of external forces. When A, 15 not (00 large
(< 0.5). the interaction times estimated by Equation (4.16) are usually less than,
but close to ihose found by the numerical solut;on of the general parallel film
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model, e.g. the values of T, for the air-water system are approximatelv 0.58
and 0.62 estimated by the former and the latter respectively, when y = 0.5 and
§ = i or 0. This discrepancy is reasonable since the interaction time estimated
by the simpie parallel film modzl assumes a constant appreoach velocity with the
same value as the imual one instead of 2 variable approach velocity decreasing
with time as in the general parallel film model.

The results show that the effect of viscous drag may not be negligible even for
low viscosity systems as air-water, especially for small fluid particle sizes. The
effects of liguid viscosity and surface tension on both u* and A are presented in
Figure 4.4 and Figure 4.5. An increase of viscosity and a decrease in surface
tension make u}¥ and A decrease. The effect on 1., is a small reduction. This
effect of surface tension on 1, . can also be found ir the simple parallel film
model through the Weber number in Equation (4.19). According to Figure 4.4
and Figure 4.5, viscosity has a more significant effect than surface tension.

The effect of the bubble radius ratic on u* and A ar a given size of bubble 7 (4,
= 0.00]1 m) is shown in Figure 4.6 and Figure 4.7. Reducing the radius ratio, &,
leads 1o a slower decrease in u¥ and an increase T, . After reaching a radius
rago of 0.3, u* dacreases quicker with time again. At radius ratos above 0.5 the
initial approach velocity is contributed to by the two bubbles and the smaller
bubble moves wath the larger one. relative to their surrounding liquid. The ap-
proach veiocity will thereby decrease more slowly with decreasing & When the
radius ratio 1s very small the initial approach velocity is determined by the
smaller bubble since it has a mass much smaller than the larger one (at £ = 0 the
velocity of the iarger bubble 1s 2210 — the case of a bubble approaching an
interface) and then the approach velocity decreases faster again. thus reducing
Tmae 1D the absence of external forces. when £ — 0 the curve for the velocity
is the same as that for S = 1.

The maximum value of A. however, always increases with decreasing radius
rato. This is understandable. because in reaching the same film area (the same
excess surface energy). the smaller the radius ratio, the more the bubble with
radius R, "invad=s” into the iarger bubble. 2s shown in Figure 4.1.
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If one assumes an initual approach velocity independent of bubble size, the
bubble size itself has nearly no efect on A, & and T, for a given initial
approach velocity, according to the numerical results of the general parallel film
model (not shown by figures). However. in fact, the inival approach velocity and
external forces are almost always dependent upon the particle sizes. Thus the
effect of particle sizes is reflected by the initial approach velocity and/or the
external forces.

The simple paralle! film model also shows only a2 small effect of parucle sizes
on T,,,.. as expressed by Equation (4.16) or (4.19). However, this does not mean
that the particle size has a small effect on the imieracuon ume since 7, =

Tmm(pchg’/c)“:'

The periodic propcnty of the curves of A and u} with ome is a mathematical
consequence of the parallel film model used.

4.4.2 Effect of external forces

For manv cases in pracuce. the effect of external forces acung on the approach-
ing particles is not negligible, e.g. in the approach of a bubble 10 an interface the
buoyancy force clearly exists. In addiuon. the exwemnal forces acting on the
particles are usually connected to the particle sizes, e.g.. the buoyancy for
partcle / is (/6)d ;:‘Apg. Figure 4.8 and Figure 4.9 show the effect of external
forces in the air-water system for the case of equal sized parucles where £ = -
F,. and with values of forces independent of particle size. The 7 .nensionless
force. F}. indicates the ratio of external forces to surface forces. An increase in
F¥ always makes 17, .1 and T, increase. When FT < Q.1. the effect of the
external forces is negligible. When the external forces are of the same order as,
or larger than the surface forces (F7 = 1 or > 1). u* will increase with time. for
a short period a1 the be:inning of the bubble approach.
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In the general parailel film model. both the initial approach velocity and the
externai forces are important for the film area and the interaction tume if their
magnitudes are of ine same order. Only when F} > u}, may the effect of the
initial approach velocity be negligible. This contradicts the conclusion of Jeelani
and Hartland (1991a) who stated that the initial approach velocity could be
disregarded compared to the buoyancy in the case of a bubble approaching <a
interface. For example. for a bubble with diameter 0.001 m moving towards an
interface in ihe air-water system, F¥ = 0.0681 and u}; = 0.316 so that the
external forces could be disregarded instead of the initial approach velocity.

o, = 1000 [kg/mY]
H.=0.001 [Pas)
Py =129 [ke/mv)

S0 =0072 [N 0%

¢}

-0.25

Dimensionless velocity u
Dimensionless film arca A

Dimensionless ume T

Figure 4.10 Variation of u* and A with T

4.4.3 Effect of virtual mass

Figure 4.10 shows the effect of the coefficient of virtua! mass. v, for the air-
water svstem with £ = 1 in the absence of external forces. The effect is very
significant in this gas-liquid system. An increase in y will make the effecuve
mass of the particles larger. making u* decay slower due to large inerta. and
increasing the maximum value of A obtainable due to increased imitial kinetic
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energy. The effect of y is expected to be less significant in a liquid-liquid system
since the effective mass is proportional to PAEY, where the relative increase
of the effective mass is about 13%. In the air-water system it is about 40% when
v shufts from 0.5 o 0.69.

In our models, the density of the dispersed phase, p, is always combined with
the coefficient of virtual mass, ¥, so that its effect is similar to that of the coeffi-
cient of virtual mass. However, for gas-liquid systems at low pressure, the effect
of changes in the gas density can be disregarded.

4.4.4 Comparison with experimental data

Unfortunately no approach darta for two unequal sized particles have been found
in the literature. Approach data for equal sized anisole drops in water have been
reported by Scheele and Leng (1971), and are compared to the parallel film
model results as shown in Table 5.1. The authors recorded the collision process-
es by using a high speed camera and reported 23 runs of collisions resulting in
7 cases of coalescence and 16 rebounds. Only the 16 rebound data are used for
comparnson because orly for these are the values of A, and T, available. The
drop diameters for all the runs were 0.00634 %= 0.00015 m and the physical
properties used in the calculations were given by the authors: p.=997.5 ke/m’,
Ps = 988.6 kg/m’. y_ = 8.94x10™ Pass and ¢ = 0.0255 N/m. The coefficient of
virtual mass used for modeling was 0.5.

From Table 4.1. it can be seen that the predictions for A, are quite good when
using the general parallel film model (GPFM). If tuning the drop sizes in the
range of 0.0034 + 0.00015 m even betier fits for A, can be obtained. The
predictions for 7,.. are not so good and the errors seem to occur randomly.
However. an explanation for the discrepancies in the predictions of T,pax May be
sought in the effect of the drop oscillation phase angle, B, at the moment of
contact berween the drops. Very clear oscillations of the drop size in the direc-
tion of moticn were reported by Scheele an¢ Leng (1971), while the models in
this work do not include this phenomenon. However, the etfect may be consid-

| g
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ered by introducing an additional oscillation force or velocity, as done by
Jeelani and Hartland (1991b). They have shown that an addiuonal oscillanon
force with five tuning parameters, which were different for the various runs,
could well fit the data of Scheele and Leng (1971).

Table 4.1 Comparison with the experimental data of Scheele and Leng

{1971)
Daw measured by Scheele and Leng (1971) “ GPFM I SPEM
Run 8 uro A hax Tmar Ama T max | A max T s
2 60 0386  0.299 1135 [ 072 109 | 0385 0997
3 207 0438 0299  0B87 | 0309 109 | 0437 0997

= 210 0.436 0.5312 0.693 0.308 1.09 | 0435 0.997
5 7 0475 0.29% 0.707 0333 1.09 0473 0.997
6 220 HELL] 0.360 0599 G514 1.09 0434 0.957
7 180 0361 0.256 1248 . 0254 1.09 0.359 0.997
150 0.35= 0.274 1.465  0.278 1.09 0.393 0.957
165 0.356 G.280 1.364 0279 1.09 0.394 0997
10 180 0378 0.374 1291 0.266 1.09 0.377 0.937
12 285 0.261 0221 279 0.183 1.09 0.260 0.997
13 336 0.2:2 0233 2547 0.170 1.09 0242 0.957
14 345 0368 0.585 224 0598 1.09 0.865 0.957
20 345 0.774 0.621 2576 0539 1.09 0772 0.997
xz 315 0568 0.426 2,460 0.400 1.09 0.566 0.997
23 230 Q.262 0.256 2.063 a.184 1.09 0.261 0.997
23 330 0.157 0.109 1.898 0.110 1.09 0.157 0.997

In the measurements of Scheele and Leng (1971), the pairs of drops were
simultaneously launched from two opposing nozzles controlled by magnetc
variable pulse generators. This may be the reason why such strong oscillations
appeared. The phase angle at contact of two drops was found to be a very

significant parameter in determining the occurrence of coalescence, e.g. for all
7 cases of coalescence 8 was between 0° and 127°. For the 16 rebounds, 6 was
between 150° and 345°. For phase angles of 0-180° the drop front surfaces will
retreat as a result of the oscillaion during the approach process. This may result
in a lower effective approach velocity for the drop front surfaces and a slower
increase in film area (Scheele and Leng, 1971) and thereby a longer interaction
time with an increased chance for coalescence. However, the oscillations of the
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drop surfaces have linle effect on the initial kineric epergy in an approach
process and are not important for determining A, ..

Figure 4.11 shows the phase angle at contact for the drop pairs of Scheele and
Leng (1971). From this figure, some indications concerning the discrepancies
between the expernimental interaction times and the predictions can be obtained:
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Phase angle at contact

Figure 4.11 The sketch of oscillaton of drops versus phase angie.

(1} For runs 3-6 it is not unreasonable that the measured values of 1, (about
0.6-0.9) are on the lower side compared to the predicted value of 1.09. Their
phase angles are 1n the range of 207-230° meaning that they are in a process of
size expansion in the approach direction. This equivalently increases the ap-
proach velocity between the drop front surfaces and thereby makes the film area
increase faster. Thereby the film area can reach its maximum earlier than without
oscillatons. For the collision of run 3, as an example, & = 207°, and the size
expansion in the approach direcdon will contnue for a time interval, At =
0.05*(360-207)/360 = 0.0213 s (under the experimental conditions, 360° = 0.05
s) or AT = 1.54. Hence. within the tme interval of 1, = 0.0123 s (1, = 0.887)
the drop front surfaces willi always be expanding and this results in a faster

HEEEEL |
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increase in film area.

(2) For runs 12-14, 20, 22 and 24 that have phase angles in the range of 285-
345°, the drop front surfaces first tend to expand, which increases the approach
velocity between the front surfaces. However, after AT = 0.15-0.75, which is only
8-27% of the comesponding values of T, (about 1.9-2.8), the front surface
expansion shifts to retreat for the remaining part of the approach, unul a2 maxi-
mum film area is reached, thereby giving experimental values of 1,,, higher than
the predictions, which do not consider the oscilianons.

(3) For runs 7-10 that hcve phase angles berween 150-180° at the moment of
contact. the drop front surfaces first tend to retreat, which lowers the approach
velocity for the front surfaces and thereby retards the increase in film area.
However, since the phase angles for the runs are close to 180°, the drop front
surfaces first retreat slowly, but soon shift to expansion (within At = 0.0042 s or

7 = 0.3). This reduces the chances for coalescence and may be the reason why
the total discrepancies between experimental and predicted results are acceptable
for the runs. and also explain the slight high values obtained (t,,,, about 1.2-1.5
compared to 1.09).

If one uses y = 0.69 instead of 0.5, then 1,,,, will increase from 1.09 to 1.16 and
A, will be about 6% higher as those when y = 0.5. This shows that the effect
of v is fairly insignificant for this liquid-liquid system.

Clearly, the predicted values of A, by Equation (4.12) of the simple parallel
film model (SPFM) for all cases are too large. This is thought mainly due to the
model requirement, r,_,. < 1. However, the discrepancy in prediction of T,
between the GPFM and the SPFM is not very large. This may be the result of,
at the same time using u,, as the approach velocity for the whole approach
process instead of a decreasing approach velocity, while

R,A
tae = (1+E) ;um“ (4.41)
0
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for this model. Hence, the simple parallel film model may be used to estimars
the interaction time when an algebraic expression for the time is desired.

4.5 Conclusion

The models developed tempt 1o give more a fundamental analysis of the ap-
proach process of two unequal or equal sized particles by using the parallel film
concept. The influence of the special characteristics of the unequal sized particle
system, such as the motion of the center of mass and the variation of the center
of mass of a particle from its geometrical center, has been considered.

A simple algebraic expression for the interaction time, T o €Xcluding the
influence of extemnal forces has been developed based on the conservation of
energy. The simple expression indicates that the irteraction time is independent
of the initial approach velocity in absence of external forces, which is in agree-
ment with the numerical solution of the general parallel film model proposed. It
also gives a good explanation why the effective coefficient of virtual mass
changes with the radius ratio of particles in the model of Chesters and Hofman
(1982).

A general parallel film model for the approach between two unequal or equal
sized particles is proposed based on the balance of the forces acting on the
particles during the approach process. The numerical solutions of this model
show how vanables such as the initial velocity, the radius ratio of particles and
the buoyancy affect the interaction time, approach velocity and the maximum
film area. :

Both models have been compared with the experimental data of Scheele and
Leng (1971) for collisions between equal sized drops in the anisole-water
system. The comparison shows that the general parallel film model predictions
for the maximum film area, A, agree well with the experimental data but that
significant deviations occur for the interaction time, 7, .. The discrepancies can

- i
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in part be explained by the shape oscillations of the drops in the approach direc-
ton. However, it is possible 1o consider the oscillation effect by intoducing an
additional oscillaton force, or velocity, into the general parallel film model
(Jeelani and Hartland, 1991b).

The prediction results for the interaction time, T,,, by the simpie parallel film
model of Equation (4.12) are close to those obtained by the general parallel film
model. Hence. this equation can be used as an estmate of the interaction time.




