CHAPTER 5

LOCAL BUBBLE SIZE DISTRIBUTION

A one-dimensional population balance model for determining local bubble
distributions in bubble column reactors is proposed in this chapter. This is also
an example of using the turbulent coalescence and breakup rate models devel-
oped in Chapter 3. Bubble coalescence due to buoyancy is also considered and
discussed.

The predicted results by this model for the air-water system in a tall colurnn
show that the bubble size distributions above the entrance region (H > 30 cm
above the gas distributor) are stable and independent of the size distribution at
the distributor. They show good agreement with those measured by the five-point
conductivity probe technique, especially for the cases at high superficial gas
velocites.

5.1 Introduction

As discussed before, the bubble distributions are of the most basic characteristics
of bubble column reactors. The bubble properties such as size and concentration
are decisive factors affecting the hydrodynamics and transport properties in the
column, and determine averaged properties such as interfacial area or Sauter
mean diameter; values which are often required in engineering problems.
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However, not all bubbles have the same size or the same concentration. A
bubble can vary in size due to changes in local temperature and pressure, and
can disappear due to coalescence or breakup. Thus, there are dismributions of
bubble size and bubble concentration, which are functions of the coordinate. In
order to obtain bubble size distributions, it is necessary to describe the bubble-
bubble interactions such as coalescence and breakage. The most important
deterministic model for doing this is based on the populaton balance concept.
A significant advantage of the population balance is to provide a path to include
the details of the breakage and coalescence processes according to the physical
properties and operating conditions. It has been used for m-ny processes includ-
ing crystallization, polymerization and fermentation.

The population balance concept or technique is very similar 1o other conservaton
ideas such as mass. heat and momenmum. The technique itself may even be even
simpler, since it considers the balance of countable entities such as bubbles,
drops or crystals. The difficulty in the population balance technique is bow to
obtain models describing the birth and death processes for the countable entities
in question.

Early, the concept of a population balance was used in describing processes such
as crystallization, polymerization and fermentation in stiured vessels, where
growth and shrinkage of particles are dominant (Randolph and Larson, 1962,
Behnken er al., 1963; Fredrickson and Tsuchiya, 1963). It was later developed
for determining the drop size distributions in liquid-liquid dispersions (Valentas
and Amundson, 1966: Valentas er al. 1966; Coulalogion and Tavlandes, 1977:
Narsimhan ez al., 1979; Chawi er al., 1989; Charzi and Kiparissides, 1992,
Nambiar er al, 1992), as mentioned in Chapter 3. In these cases, drop coales-
cence and breakup processes exist simultaneously. However, the modeling work
is relatively simple in these systems, because drop size distributions, as well as
drop coalescence and breakage rates, can be considered to be spatially homoge-
neous in a stirred tank.

The situation in bubble columns is more complex since bubble size distributions
usually depend also on the coordinates. Hence, the coalescence and breakup rates
vary spatially, 10o. This may be the reason why linle work has been done for
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predicting bubble size distibutions in bubble columns. Another reason may be
that 1t 1s more difficult to establish models for bubble coalescence and breakup
rates.

Mihail and Straja (1986) used the population balance technigue to analyze the
one-dimensional bubble size distribution in a bubble column. However, as
mentioned in Chapter 3. they had to tune four parameters in their coaiescence
and breakup rate models. Lee er al. (1987b) used a population balance method
for non-coalescing systems, where the bubble escape frequency or bubble rising
velocity was assumed to be constant for all sizes of bubbles. Recenty, Hesketh
er al. (1991b) studied bubble breakup in pipeline flows at very low gas fraction
using a population balance method and specially assumed that the breakage
frequency and efficiency were independent of bubble size.

In this chapter, the local bubble size diswributions are predicted using a one-
dimensional population balance model together with the rate models of bubble
coalescence and breakup developed in Chapter 3.

5.2 Population Balance Model

5.2.1 Equations of balance

A general population balance equation for countable entities was developed by
Randolph (1964). For bubbles of volume v; or diameter d; (i = 1, 2, ..., N), the
number density is n(v,X.?), that is a function of size v, or d,, spatial vector X and
time . According to Randolph (1964), the population equation can be expressed
as

on;
_a_‘w-ﬁn,. - BC+BB-DC-DB (.D
I

where i is the average velocity vector of dispersion, and BC, BB, DC and DB
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are the bubble number birth and death rates per unit dispersion volume for
bubbles of size v; or d; at time r due to coalescence and breakage respectvely.
These are then functions of bubble size v, bubble density r;, spatial vector X and
ume 7.

For simplicity and convenience, the dispersion in a bubble column can be
considered as a series of (one or more) well-mixed cells. For each well-mixed
cell, the bubble number density can be considered to be uniform in the cell. For
a well-mixed cell with constant volume AV, the population balance equanon can
be derived from Equation (5.1) (Randolph, 1964) as follows.

a y 23 -
°M  BC+BB-DC-DB-~ (Qn),, (21,

or AV, AV,

(5.2)

where Q is the volumetric flow rate of dispersion. For this equation, the assump-
tion that bubble number densities are homogeneous in the dispersion has been
used. Obviously, Equation (5.2) can also be obtained directly from the number
balance of bubble i in a well-mixed vessel with volume AV,

In this work, only the change of bubble number density in the axial direction at
steady state is considered. Hence, AVg can be set equal to the volume of a
column section or cell, A AH, as shown in Figure 5.1. If Aff is small enough, the
bubble size change due 1o pressure (for simplification, only isothermal systems
are considered in this work) in the cell is negligible. Thereby the volumetric
flow rates can be considered 1o be constant inside the cell volume and equal

(Din-

For the one-dimensional model, 0 = Q;+@Q, . Therefore, from Equation (5.2), the
population balance equation at steady state can be expressed by

(ug+up);
G Luz(ni

-n, ,) = BC+BB-DC-DB (5.3)

where us = Os/A, and u; = Q;/A_ have been used. It should be noted that BC,
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BB, DC and DB for bubbles of size v; are now only functions of v, and n; at

steady state. They can be expressed by the coalescence and breakup rate models
developed in Chapter 3.

| AH

(QR3) o (Qn;) 4

Ac

Figure 5.1 Sketch of the bubble column cell for population balance.

The birth of bubbles of size v; due to coalescence is from the coalescence be-
tween all bubbles of size smaller than v,. Hence, the birth rate for bubbles of size
v, BC, can be obtained by sumining all coalescence events that form a bubble
of size v;. This gives

v/2
BC - E Qc(vj:v‘.—vj) (54)

'J mun

where v, ., is the minimum bubble size and depends on the minimum eddy size




100 LOCAL BUBBLE SIZE DISTRIBUTION

in a system. It was taken as zero by some investigators like Lee er al. (1987).
Equation (5.4) implies that bubbles of size v; coalesce with bubbles of size (virv;)
to form bubbles of size v;. The upper limit of the sum stems from the symmeury
consideration, or, avoids countung the coalescence between the same pair of

bubble sizes twice.

Similarly, the death of bubbles of size v; due to coalescence is by coalescence
between themselves and other bubbles. Hence, the bubble death rate for bubbles
of size v,, DC, can be caiculated by

pc- Y

¥, ™ Voun

QC(V‘;:VK-) (5.5

where v, is the maximum bubble size in the system. The upper limit indicates
that the bubble volume formed by coalescence will not exceed v, ..

The birth of bubbles of size v, due tc breakage is trom the breakup of all
bubbles larger than v, (Vj 2 v)). The breakage birth rate, BB, can be obtained by
summing all the breakup events that form the bubbles of size v;:

v

BB - Y Qu(v;:v) (5.6)

"'J-"'|

The death of bubbles of volume v; due to breakup is by the breakage of them-
selves, thus

DB = Qg(v,) (5-7)

Hence, Equation (5.3) can be rewritten as
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+ Z QB(Vj:vi) - Qp(v))

r -
LJ I/I

Since Q- and 22, are functons of n, and/or n; (see Chapter 3), Equation (5.8} is
a non-linear system of N equations (for N bubbie size classes).

When solving Equation (5.8) for each column cell, the number density, n (i =
1, 2, ...). and the flow rate, u +u;, at the inlet of the column cell are known to
equal those at the outlet of the previous cell, since the cells are continuous in
series. However, for the first column cell counted from the gas distributor, the
inlet conditions need to be estimated or given, according to the geometry of the
gas distributor and the operation conditions. This will be discussed later.

When the bubble density for a column section or cell, r;, is obtained, the average
gas holdup in the cell and at the outlet can be calculated by

- 3 n, (5.9)

\;‘ -y .

5.2.2 Viscous and buoyancy coalescence

In bubble columns, collisions or coalescence may occur due to a variety of
mechanisms such as turbulence, shear stress and buoyancy (Prince and Blanch,
1990). Turbulent collisions result from the random motion of bubbles due to
marbulence. The second collision mechanism is termed "viscous collisions” or
"shear collisions”, in which bubbles 1n a region of relatively high liquid velocity
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mav collide with bubbies in the slower section of the velocity field, since there
exists a velocity gradient in the liquid (especially with high hiqu:d circulauon).
The third is due to the difference in rise velocities berween bubbles of different
sizes and is called "buovancy collisions”. The turbulent collisions and coales-
cence have been discussed and modeled in Chapter 3. The other mechamsms for
collision and coalescence are discussed in the following.

For viscous collisions. the collision frequency can, as for the turbulent collisions,
be determined by Equation (3.5). However, the approach or collision velocity is
different and can be obtained according an equation developed by Friedlander
(1977). This gives

du,

dar |

u. = 1_6_(d‘.+d‘)

Yoo 3% 1

(5.10)

Since only one-dimensional changes are considered in this population balance
model and the turbulent collision mechanism is thought to dominate, the colli-
sions or coalescence due to the viscous mechanism is disregarded.

For the collisions due 0 buoyancy, the approach velocity between two bubbles
can 2lso obiained from the work of Friedlander (1977)

! v
u; - |"b;"”bj! (5.11}
Where u,, and i, are the bubbie rise velocities in liquid and can be considered
to equal the terminal velocites {Prince and Blanch, 199C).

Knowing the approach velocity due to buoyancy, the ccrresponding collision
frequency can be determined by Equation (3.5). Assuming that Equaton (3.9)
is also sunitable for determining the coalescence efficiency for the bucyancy
coalescence case. the buoyancy coalescence rate can be calculated using the
same procedure as in Chaprer 3. This assumption may be guestionable since the
coalescence time used to develop Equarior (3.9) is based on turbulent mecha-
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nism. Nevertheless, in the atsence of more reasonable models, this is a2 method
giving a first estimate for the coalescence rate due to buoyancy.

5.2.3 Epergy dissipation rate

There are several methods for estimating the energy dissipation rate per unit
liquid mass, €, used in the expressions for coalescence and breakup rates (see
Chapter 3). Prince and Blanch (1990) proposed an equarion for estirnating the
average energy dissiparion rate over the whole column, based cn an expression
for the power input to gas sparged vessels developed by Bhavaraju er al. (1978).
The dissipation rate can also be obtained by integrating the liquid velocity profije
from a liquid circulztion model (Geary and Rice, 1992).

Since the turbulence in bubble columns is usually induced by bubbles, the
epergy dissipatioa rate can simply be estimated from the drag forces and the slip
velocities. In other words, the energy dissipation rate for a bubble is the product
of the drag force and the slip velocity between the bubble and the liquid (Jin and
Kim, 1990). At steady state, the drag force equals the buoyancy force so that the
energy dissipation rate of a bubble can be expressed by Apgvi, . Then the
energy dissipation rate per unit dispersion volume is

g, - Apgz nyu ;= Apgig {5.12)

Thus, the energy dissipation rate per unit liquid mass can be estimated by

E. Apgu,

¥

- (5.13)
PLll-gc)  pyll-gg)

It can be noted thar the real superficial gas velocity varies with the axial position
m a column due to the pressure drop and the gas volume expansion.
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5.2.4 Boundary conditions

As mentioned above, the bubble sizes, number densities and gas holdup close to
or at the gas distributor should be known before the population balance model
can be solved.

Unforwnately, these boundary condidons are usually difficult to predict, due to
the compiexity of the liquid circulation near the gas disaibutor. However, the
bubbie sizes formed by the gas distributor can be estimated from theoretical or
semi-theoretical correlatons (Ramakrishnan er al, 1969; Marmur and Rubin,
1976; Blass, 1990; Geary and Rice, 1991). At a low gas velocity (u;psd,/C < 2,
where u, is the hole gas velocity and d,, 1s the hole diameter), the formed bubble
sizes are ncarly uniform (Blass, 1990). At high gas velocity (uﬁpadklc = 2), two
bubble sizes may simultanecusly be formed (primary and secondary bubble
sizes).

In order to estimate the boundary conditons at the gas dismibutor, a uniform
distributed bubble size, d.,;, . is assumed. Furthermore, it is supposed that there
are only *he bubbles formed by the distributor in the thin layer of height 4.,
close to the distributor. The average gas holdup in the thin layer is therefore
esumated by

3 "
Nimi6) o 2N (dae | (s14)
Acdinlet 3 DC J

€G.inter ~ G min ~

where N, is the hole number for gas flow on the gas distributor. In this equation,
the real void fraction in the thin layer, &5 ;.» should be larger than € ,,,, since
there must exist other bubbles besides the distributed bubtles, due to the effect
of liquid circutation. Hence, if there are large discrepancies between the values
estimated from this equation and the experimental results near 1o the gas disuib-
utor, the estimated values should be given up and more reasonable boundary gas
holdups need to be assumed.
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Knowing the gas holdup close 0 the gas distributor. when the bubble sizes in
the layer close to the distibutor are considered to be uniform, the corresponding
bubble number density, n,,. .. can then be calculated by

%G.int _
inler =~ __CZ_ (315)
(st/6)d.

inler

n

5.3 Results and Discussion

All calculations in this work were done for the air-water system in the bubble
column described in Chapter 2, using a personal compuier. According 10 the
experumental measurements by the five-point conductivity probe technique (see
Chapter 2), the possible maximum bubble sizes were found 0 be about 20 mm.
Herce, considering the computation dme, 50 bubble size classes in the range of
0-20 mm were used in the calculations. There is no doubt that using more
bubble size classes can enbance the computational accuracy, but it will also
rapidly increase computation time. The height of a column cell (well-mixed) was
set to be 2 em.

Figure 5.2 and Figure 5.3 show the calculated bubble size distributions at various
heights in the column for u; = 17 cm/s, with considering the buoyancy coales-
cence. At this gas velocity, the gas flow in the holes of the gas distibutor is in
the "jet regime” (u7pod,/G = 2). According io the results of Blass (1990), the
bubbie sizes formed by a perforated plate distribuior with hole diameter | mm
are in the range 5-9 mm. Lower values may be obtained from other correlaticns
(e.g. Geary and Rice, 1991; Marmur and Rubin, 1976). Hence, the conditions
dinje. = 5 and 9 mm were used for testing. The gas holdup near the distribuior
was set 10 be 0.2 thai is about 1-4 times as £, ... The results were also ccm-
pared to those measured by the five-point probe technique, as shown in the
ficures.
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Figure 5.2 Calculated cumuladve volume percentage at ug = 17 cm/s

using d,,;,, = 5 mm, compared to the measured result.
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From Figure 5.2 and Figure 5.3, it is seen that, at # < 20 cm, the bubble size
distribudons change fast. due to the initial uniform bubbles coalescing into large
bubbles and breaking into smali bubbles. At H = 20-30 cm, the rates of coales-
cence and breakup become equal and the bubble size distributions, for both cases
dipje, = 5 mm and d;;, = 9 mm, show little change with height. From H > 30
cm, the bubble size distnbutions have remains constant. The predicted stabie
bubble size distribution is identical for both cases 2nd is in good agreement with

the result obtained from the probe measurement at H = 200 cm.

Comparing Figure 5.2 and Figure 5.3. it is found that clear differences for the
bubble size distributions for the two cases. 4, ,,, = 5 mm and d,,_, = 9 mm, only
exist in the region H < 3C em. At H = 30 cm, pearly no difference is found
berween the bubble size distributions (This car alsc be seen from Figure 5.4
showing the changes in calculated Sauter mean diameter). This indicates that the
bubble size distributions in the air-water system are not sensitive to the inlet
distribution of bubble sizes. In the other words. the type of gas distributors mnay
have little effect on the bubbie size distributions in such systems where there are
strong coalescence and breakup tendencies. This conclusion agrees with that of
Prince and Blanch (1990).

As seen from Figure 5.2, the predicted bubble size distributions close to the gas
distributor are not representative of the reai cases. This may be caused by the
boundary condition, that is, the uniform bubble size distribution at the distributor
may deviate significantly from reality. These discrepancies may be ignored for
such systems where there are strong bubble coalescence and breakup tendencies
in tall columns, siace in these systems the bubble size distribution above the en-
trance region (aboui: & > 30 cm) is nearly independent of the size distribution
at the boundary. However, for short columns, low turbulence and low coalescing
systems, better or more exact boundary conditons are needed.

From Figure 5.2, the effect cf the constant, ¢, in the coalescence rate model (see
Chaptei' 3) is also found. An increase in the value of ¢, {from 0.4 to 0.6) makes
the coalescence efficiency and thereby the coalescence rate decrease. Thus, more
bubbles with small sizes are obtained.

S I
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Figure 5.4 shows the changes in calculated Sauter mean diameter and the total
bubble number density with the column height, for d,,,, = 5 mm and &, = 9
mm respectively. It is found that the Sauter mean diameters are different and
vary below a height of about 50 cin. Above this level, they become dentical and
slightly change from 6.6 mm to 7.2 mm (this change is caused by the decrease
in pressure). This agrees well both with the result determined by the dynaruc
gas disengagement technique (see Figure 7.3) and that measured vy the five-
point conductivity probe technique (d; = 7.2 mm). The totz: bubtle deasities are
seen to be stable above a height of about 50-60 cm.
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Figure 5.4 Changes of the Sauter mean bubble size and the totai
bubble number density with the column height.

The calculated bubble size distriburions at us = 6 cm/s are also in good agree-
men: with the measured results, as shown in Figure 5.5. However, the predicted
volume fractions for small bubbles (about < 6-8 mm) are lower-than the mea-
sured results. Simiiar variances can also be found in Figure 5.2 and Figure 5.3,
and alsc from the work of Lee ei el {1987b) where bubble coalescence was
disregarded. The discrepancies may mainly be caused by the coalescence rate
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mode! used, since it has not been direcily verified by experiments (Chapter 3). [
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Figure 5.5 Calculated cumulative bubble volume percentage at u; =
8 cm/s using d,,,, = 5 mm. comparing to the measured by the five-
point probe.

In the coalescence rate model, the expression of coalescence efficiency, Equa-
tion (3.6), is in fact an empirical function. The relationship between the efficien-
cy and the inieraction and coalescence times may not be so sumple, as discussed
in Chapier 3. This can also be found from the value change of ¢, which has to
be tuned to 2.5 for ug = 6 cx/s in order to obtain a reasonable fit. This indicates
that ¢, is a parameter depending on the superficial gas velocity cr the flow
regime. In this model, from Equaton (5.13) it is seen that the superficial gas
velocity affects the results through the encrgy dissipation rate, £. This means that
¢; includes the effect of the energy dissipation rate. In 2ddition, the coalescence
time expression (Chesters, 1991) used in the coalescence rate model may not be
completely correct for our system, since the former is derived from the fully-
mobile interface assumption while a partial mobility is more probable for the air-
1ap water system.
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Another reason for the discrepancies may be from the simplificatior in this
population balance model. This model has ignored the radial and backward flows
of the dispersion. In addition, it has assumed that the bubble number densities
are homogeneous in the dispersion flow, Q, which may deviate from reality. For
instance. for bubble i, the number flow rate inta a contro! volume should ke Q:n,
(ZQ; = Q), instead of On;.

Nevertheless, this model does not give unreasonable results and seems to be
better than the models found in the literature so far (e.3. Mihail and Straja, 1986;
Lee er al., 1987b). Especially this model has only cne unknown parameter ¢;,
while the model of Les er ai. (1987) has two adjustable parameters (without
consideration of bubble coalescence) and the model of Mihzil and Straja (1986)
has four parameters.

5.4 Conclusion

A one-dimensional population balance model for determining the bubble size
distribution has been proposed. This model gives an example as to the use of the
coalescence and breakup rate models developed in Chapter 3. The population
balance model has only one unknown parameter, ¢, that is from the coalescence
rate model. The predicted results above the entrance region for the air-water
system in a tail bubble column by this population balance model seem to be 1n
reasonable agreement with the measured results by the five-point conductvizy

probe technique.

The model shows that, for the air-water system, the bubble size distribution
above the entrance region of the column is not sensitive 1o the mlet bubble size
distributicn at the gas dismbutor.

However, the predicted results have snown that ¢ in the coalescence rate model
is a system and flow regime dependent parameter. This may indicate that the
coalescence rate model needs to be further improved. Of course, effects of other
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factors such as liquid viscosity, liquid density and inlet gas holdup (a boundary
conditton) may need to exarnine by this model in the future.

To improve the model further, the effects of hiquid circulauon and non-homoge-
neous distributed of bubble densities in dispersion should be included o the
population balance model, and two-dimensional balance may also be needed.




