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4. TERRESTRIAL ENDPOINTS

The guotient method, as discussed in Sect. 3.1, consists of
dividing the amwbient concentrations of toxicants by the concentration
at which some toxic effect is induced. It is used in this section to
provide an indication of the likelihood of effects due to emissions of
the individual RACs. The other risk analysis metheds are not readily
applicable to terrestrial organisms because of the small toxicological
data base for most terrestrial taxa, the lack of standard tests and
toxicological benchmarks in the data base, and the lack of agreed-upon
standard responses for terrestrial biota.

4,1 VEGETATION

The phototoxicity data for the gaseous and volatile RACs are
presented in Table B-1, the concentrations in ambient ground-level air
are in Tables 2.3-1 and 2.3-2, and the quotients of the ratios of these
values are in Tables 4.1-1 and 4.1-2. The ambient concentrations are
the increment of the entire RAC to the background concentration at the
point of maximum ground-level concentration (Sect, 2.3). It is assumed
that the RAC is composed entirely of the representative chemical and
that the background concentration is zero. Quotients were calculated
from two classes of data: (1) the lowest toxic concentration found in
the literature for any flowering plant species, as an indication of
maximum toxic potential of the RAC, and {2) the range across studies of
the lowest concentrations causing effects on growth or yield of the
whole plant or some plant part. The latter set of responses is
relatively consistent and closely related to crop and forest yield.

The worst atmospheric toxicants in the emissions of both
technologies are hydrocarbon gases {RAC 6). This rank is biased, since
the worst-case representative chemical (ethylene) is a plant hormone,
whereas most members of this RAC are essentially inert (National
Research Council 1976)., However, since atmospheric ethylene has caused
significant damage to crops near urban areas and near petrochemical
plants (National Research Council 1976), the emission rate of this gas
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should be specifically considered in the future. The most serious
phytoxicants in air (ignoring ethylene) are SOX and NOX. The
maximum annual average concentrations predicted for 502 (RAC 2) from
Lurgi and Koppers-Totzek are within a tenth of those that cause visible
injury to needles of sensitive white pines, and both 502 and NOx
(RAC 3) concentrations are greater than a hundredth of those that
reduce growth or yield of several plant species.

Because of its ubiguity and importance as a phytotoxicant, 502
(RAC 2) has been well studied for its effects on crop yield.,
McLaughlin and Taylor (in press) proposed the following dose-response
relationship for yield reduction in beans as a function of 502
exposure:

% yield reduction = -17.4 + 29.2 (log dose in ppmh) .
This empirical relationship is based on a regression of 20 points from
five field experiments on soybeans and snap beans. Eighty percent of
the variation in yield reduction was associated with variation in
dosage, and the equation was significant at a = 0.0001.

Because SO2 appears to be the most serious phytotoxic air
pollutant, we use this relationship to examine the potential effects
of full-growing-season exposure to SO2 from Koppers~Totzek on
crop yield. If we assume a 200-d growing season for soybeans on
the eastern site and a 12-h exposure day, the 502 dose at
6.87 ug/m3 S0, s 6.25 ppmh. That dose results in a 5.8%
reduction in yield by McLaughlin and Taylor's formula.

This predicted effect is remarkable in that it results from an
502 concentration that is more than 10 times lower than the lowest
concentration reported to affect yield. This anomaly is due %o the
great length of a growing season relative to the length of experiments. -
The longest fumigation available to McLaughlin and Taylor was 337 h.
Thus, use of their formula for a full growing season requires an
extrapolation of almost a factor of 10 in the duration component of the
dose. Because the experimental field fumigations are typically carried
out in the most sensitive stage (assumed to be the pod-fill in the case
of beans), use of the formula for the full growing season prcbab]y
overestimates effects. “
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We might place a lower bound on the level of effect by assuming
that effects occur only during pod-fill. If that stage is assumed to
last 30 d, the dose is 0.99 ppmh. This is less than a quarter of the
threshold dose for effects on yield (3.92 ppmh).

For an actual synfueis plant, this 502 emission would be added
to a background 502 concentration that may reach 80 pg/m3 under
the current annual average ambient air quality standard and would
interact with ozone, which reaches phytotoxic levels in many areas of
the United States. This analytical exercise demonstrates the need for
the full-season field experiments on effects of SO2 and SO2 + 03
originally planned for the USEPA's National Crop Loss Assessment
Network.

The phytotoxicity of materials deposited on the landscape is a
more complex phenomenon than that of qases and vapors. Because the
atmospheric transpori model AIRDOS-EPA has a deposition ve]uéity of
zero for inorganic gases and does not model the formation of aerosols,
it is assumed that RACs 1 through 5 do not accumulate in the soil.

This assumption is likely to be acceptable except in the case of 504
deposition in forests with acid soils. The effects of SO4 deposition
in forests result from regionai-scale emissions and atmospheric
processes and are therefore beyond the scope of this report. Deposited
nongaseous RACs were assumed to accumulate in the soil over the 35-year
life of the tiquefaction plant. Losses due to decomposition

and leaching from the root zone were calculated by the terrestrial food
chain model (Sect. 2.3). The toxicity data (Table B-3) were primarily
derived from exposure of plants or plant parts to solutions of the
chemicals rather than to contaminated soil because few data are
available on toxicity in soil. Whereas the results of tests done in
soil can be directly compared with concentrations in whole soil,
results of tests done in solution must be compared with a calculated
concentration in soil] solution, Because the concentration in soil
solution is more difficult to model than concentration in whole soil
and requires more simplifying assumptions, solution concentrations are
less reliable. In addition, as with the gases and vapors, the toxicity
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data are from a wide variety of tests and measured responses that

are not equivalent. Finally, for most of the RACs, only one or two
chemicals have been tested. We cannot determine if the chemicals used
are representative of the entire RAC.

The most phytotoxic RACs deposited in soil are polycyclic aromatic
hydrocarbons (PAHs) (15}, arsenic {31}, cadmium (34}, nickel (33), and
lead (35). The high rank of RAC 15 is suspect because benzo(a)pyrene
and some other PAHs appear to act as plant hormones and can stimulate
growth at very low concentrations. Thus, while PAHs can modify plant
growth at concentrations as low as 0.5 ng/g soil, there is no evidence
that they reduce piant growth, even at relativity high experimental
concentrations {Edwards, 1983). Therefore, heavy metals appear to be
the most serious soil pollutants, and methods for predicting their
effects require attention.

4.2 WILDLIFE

Tables 4.2-1 and 4.2-2 present the lowest toxicity quotients for
terrestrial animals for the two technologies. The quotients are
calculated from the lowest Tethal concentration for any specfes and
from the lowest concentration producing any toxic effect (Table B-3)
divided by the highest annual average ground-level concentration in
air. Data from ail species were pooled because there were not enough
data on the nonmammalian taxa for separate treatment. Carcinogenesis
and other genotoxic effects were not included.

Lethality is considered because it is a consistent and freguently
determined response that has clear population impiications, but all
predicted concentrations are well below lethal levels. The Towest
toxic concentrations include a diversity of endpoints, mosit of which
cannot be readily related to effecis on wildlife populations but which
occur at concentrations that are as Tow as a ten-thousandth of lethal
concentrations. These responses range from increased airway resistance
in 1-h exposures of guinea pigs to impaired Tung and liver function
in human occupational exposures. The most toxic RACs by this sublethal
criterion are the conventional combustion products sulfur oxides
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Table 4.2-1. Toxicity guotients for terrestrial animals Tor the
Lurgi/Fischer-Tropsch process. Concentrations in air
(annual, median, ground-level) are divided by lethal
concentrations and the lowest toxic concentrations,?

Lowest lethal Lowest toxic
RAC Name concentration concentration
1 Carbon monoxide 5.03 £-10 1.08 E-05
7 Sulfur oxides 4,72 E-04 8.5 E~02
3 Nitrogen oxides 1.60 E-04 3.93 E-03
4 Acid gases 4,00 E-08 1.20 E-07
5 Alkaline gases 5.21 £-06 2.81 E-07
6 Hydrocarbon gases 1.06 E-07
7 Formaldehyde b b
8 Volatile organochlorines b b
8 Volatile carboxylic acids b b
10 Volatile 0 & S heterocyclics 2.62 E-11 2.62 E-11
11 Volatile Nheterocyclics b b
12 Benzene 6.21 E-08 6.21 £-08
13 Aliphatic/alicyclic hydrocarbons 5.80 E-08 3.81 E-06
14 Mono- or diaromatic hydrocarbons 3.53 E-06 6.70 E-05
15 Polycyclic aromatic hydrocarbons
16 Aliphatic amines b b
17 Aromatic amines b b
18 Alkaline N heterocyclics b b
19 Neutral N, 0, S heterocyclics
20 Carboxylic acids b b
21 Phenols
22 Aldehydes and ketones 5.06 E-05 1.78 E-03
23 Nonheterocyclic organosulfur 5.45 E-09 8.18 E-08
24 Alcohols 3.04 E-06 5.27 E-05
25 Nitroaromatics b b
26 Esters b b
27 Amides b b
28 Nitriles b b
29 Tars ' b b
30 Respirabie particles 6.28 E-02
31 Arsenic 3.06 E-05
32 Mercury 1.12 E-07
33 Nickel 4.42 £-09 4,42 £E-09
34 Cadmium 2.78 E-09 1.39 E-06
35 Lead 2.56 E-05

8pmbient air concentrations are presented in Table 2.3-1. Toxic
concentrations are presented in Appendix B.

bNo emissions.
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Table 4.2-2. Toxicity quotients for terrestrial animals for the
Koppers-Totzek /Fischer-Tropsch process. Concentrations in
air (annual, median, ground-level) are divided by lethal
concentrations and the lowest toxic concentrations.?

Lowest lethal Lowest toxic

RAC Name concentration concentration

T Carbon monoxide 2.43 E-D8 5.21 £-04
2 Sulfur oxides 3.82 E-04 6.87 E-02
3 Nitrogen oxides 2.57 E~-04 6.30 E-03
4 Acid gases 6.43 E-07 2,93 E-06
5 Alkaline gases 5.29 E-11 2.85 E-09
6 Hydrocarbon gases 1.35 E~07
7 Formaldehyde b b
8 Volatile organochlorines b b
9 Volatile carboxylic acids b b

10 Volatile O & S heterocyclics b b

11 Volatile Nheterocyclics b b

12 Benzene 3.01 E-10 3.01 E-10

13 Aliphatic/alicyclic hydrocarbons 7.12 £-08 4.68 E-06

14 Mono- or diaromatic hydrocarbons 4,35 E-06 8,25 E-05

15 Polycyclic aromatic hydrocarbons

16 Aliphatic amines b b

17 Aromatic amines b b

18 Alkaline N heterocyclics b b

19 Neutral N, 0, S heterocyclics b b

20 Carboxylic acids b b

21 Phenols b b

22 Aldehydes and ketones 5.48 E-05 1.93 E-03

23 HNonheterocyclic organosulfur 2.65 E-06 3.97 E-05

24 Alcohels 7.92 E-06 1.37 E-D4

25 Nitroaromatics b b

26 Esters b b

27 Amides b b

28 Nitriles b b

29 Tars b b

30 Respirable particles 2.76 E-01

31 Arsenic 6.08 E-06

32 Mercury 2.52 £-05

33 Nickel 7.92 E-0)9 7.92 E-05

34 Cadmium 1.14 E-08 5.68 E-Qb

35 Lead 3.66 E-06

AAmbient air concentrations are presented in Table 2.3-2. Toxic

concentrations are presented in Appendix B.

DNo emissions.
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(2) and respirable particulates (30). Although these concentrations
may constitute a locally significant increment to the background
concentration of these major pollutants, the significance of ambient
air pollution to wildlife is largely unknown. The assumption that
protection of human health will automatically protect wildlife is not

scientifically defensible.
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5. EVALUATION OF RISKS

5.1 EVALUATION OF RISKS TO FISH

Table 5.1-1 lists, for each technology, the RACs determined to be
potentially ecologically significant by one or more of the three methods
employed in this report. The significance criterion for the quotient
method is an acute-effects guotient greater than 0.01, i.e., the lowest
observed L050 or TLM96 less than a hundred times the estimated
environmental concentration. For anaiysis of extrapolation error,

RACs are considered to be significant if the risk that the environmental
concentration may exceed the PEGMATC of one or more of the reference
fish species is greater than 0.7. For ecosystem uncertainty analysis,
RACs are considered to be significant if the risk of a 25% reduction in
game fish biomass is greater than 0.1.

A total of nine RACs were determined to be significant for one or
more technologies. RAC 5 {ammonia) and RAC 34 (cadmium) were the only
RACs found to be significant for both technologies and all risk analysis
methods. RAC 4 {acid gases) was significant for both technologies
according to the guotient method and analysis of extrapolation error;
however, this RAC could not be addressed using ecosysiem uncertainty
analysis. In general, analysis of extrapolation error rated the
organic RACs substantially more hazardous, relative to the inorganic
RACs, than did the other two methods. The reasons for these differences
in sensitivity among methods are not clear at this time.

The exposure analyses, the significance criteria, and the methods
themselves are conservative; therefore, it would be premature to
conclude that adverse consequences would result from the contaminant
releases assessed in this report. These nine RACs should, however,
be used in future refinements of the risk analyses and in future
toxicological and ecological research. In addition to the RACs listed
in Table 5.1-1, there are three RACs for which nonzero exposures were
estimated but no applicable toxicity data were available: RACs 10
{volatile O & S heterocyclics), 19 (neutral N, G, and S heterocyclics,
and 24 (alcohols}.
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Table 5.1-1. RACs determined to pose potentially significant risks to fish
populaticns by one or more of three risk analysis methods: quotient

method {QM), analysis of extrapolation error (AEE), and ecosystem
uncertainty analysis (EUA)

Lurgi/Fischer-Tropsch process Koppers-Totzek/Fischer-Tropsch process
4 {acid gases} - QM, AEE 4 (acid gases) - (QM, AEE

5 {alkaline gases} - QM, AEE, EUA S (alkaline gases} - (QM, AEE, EUA

9 (volatile carboxylic acids} - AEE § (volatile carboxylic acids) - QM, AEE
20 (carpoxylic acids, excluding 34 (cadmium) ~ QM, AEE, EUA

volatiles) - AEE
31 (arsenic) - AEE
32 (mercury) - AEE, EUA
33 (nickel) - EUA
34 (cadmium) - QM, AEE, EUA
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There are two ways to compare the two technologies for ecological
risk. It was shown, using the toxic units approach (Sect. 3.2-3), that
the Lurgi/Fischer-Tropsch effluent has a somewhat greater potential
for acute toxicity to fish. A similar conclusion can be reached by
inspecting Table 5.1-1. The differences between the two processes
appear to be less important than their similarities. For both,
conventional pollutants, especially acid gases {(RAC 4) and ammonia
(RAC 5), appear to be substantially more hazardous than the complex
organic contaminants usually associated with synfuels.

5.2 EVALUATION OF RISKS OF ALGAL BLOOMS

Algal toxicity data were available for only ten RACs. Moreover,
because of the diversity of experimental designs and test endpoints
used in algal biocassays, it is not meaningful to rank the RACs using
the quotient method. Finally, as noted in Sect. 3.1, there is no clear
distinction between acute effects and chronic effects in algal
bioassays.

It does appear, however, that most of the guotienis that can be
calculated are ltower for algae than for fish; only RACs 33 and 34 would
be judged significant for any technology using the quotient method.

Ecosystem uncertainty analysis suggests greater risks of effects
on algae than does the quotient method. Risks of 10% or more of a
fourfold increase in algal biomass for one or more technologies were
estimated for six of the nine RACs examined: 5, 31, 32, 33, 34, and
35. The effects pathway postulated in ecosystem uncertainty analysis
is indirect rather than direct. Al1 of the RACs are toxic to algae,
The increases in algal biomass are caused by reductions in grazing
intensity related to the effects of contaminants on zooplankton and
fish.

5.3 EVALUATION OF RISKS TO VEGETATION AND WILDLIFE

The greatest threat to terrestrial biota from indirect coal
. 1iquefaction appears to be the gases SO2 (RAC 2 - sulfur oxides) and
NO, (RAC 3 - nitrogen oxides). The concentrations of 50, for both
technologies are near phytotoxic levels. Interactions between these
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gases and their combined effects with background ambient pollution
deserve additional attention. The effects of acute exposures from
"plume strikes" are also 1ikely to be important and deserve attention.
Air pollutants do not appear to be a threat to mammalian w11d11fe, but
the sensitivity of nonmammalian species is largely unknown,

Of the materials deposited on the soil, the trace elements arsenic,
cadmium, and nickel cause the greatest concern. However, they are
unlikely to be a problem except when deposited on soils having
preexisting high concentrations of trace elements and chemical
properties that favor the solution phase.

5.4 VALIDATION NEEDS

There are no uniquely correct methods of guantifying ecological
risks. There are several plausible ways to combine uncertainties
concerning differential sensitivities of fish taxa and acute~-chronic
relationships. Similarly, there are many aguatic ecosystem models, and
different models produce different estimates of uncertainty and risk.
Validation studies of the methods used in these risk analyses would
greatly increase the credibility of the results.

There are two ways in which these synfuels risk analyses can be
validated. A specific validation would involve building a synfuels
industry and monitoring the resulting environmental effects. A generic
validation would involve checking the assumptions and models used in
the risk analyses against the results of field and laboratory studies.
Given the current state of the synfuels industry, a generic validation
seems more practical.

Generic validation of the environmental risk analysis methods
wouid begin with an examination of the capability of existing published
evidence to support or refute the models or their component
assumptions. To a certain extent, this has been done by us as a part
of our methods development (e.g., Suter et al. 1983, Suter and Vaughan
1984}, and by others for generally used models such as the Gaussian
plume atmospheric dispersion model. However, there has been no
systematic consideration of such major assumptions as the validity of
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hydroponic phytotoxicity studies nor of the risk analysis methodology
as a whole. The results of validation studies would indicate not only
the level of confidence that can be placed in environmental risk
analyses, but also the research needed for further development and
validation of risk analysis methods.
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