103 ORNL /TM-9120

APPENDIX D
Species-Specific Results of the Analysis of Extrapolation Error
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Table D-2. Probabilities of chronic toxic effects on fish populations
due to RAC 4 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 1.0017 0.5003 Class
Bigmouth buffalo 1.0017 0.5003 Class
Smallmouth buffalo 1.0017 0.5003 Class
Channel catfish 0.7580 (0.4529 Class
White bass 2.6564 0.6942 a
Green sunfish 1.3084 0.5578 Genus
Bluegill sunfish 2.8465 0.7244 Species
Largemouth bass 3.4440 0.7399 Family

Black crappie 5.6337 0.7859 - Family

3Bluegill ~ Perciformes
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Table D-3. Probabilities of chronic toxic effects on fish populations
due to RAC 5 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 2.7565 0.6832 Class
Bigmouth buffalo 2.7565 0.6832 Class
Smallmouth buffalo 2.7565 0.6832 Class
Channel catfish 3.6404 0.7149 Class
White bass 6.6493 0.8330 Class
Green sunfish 6.6493 0.8330 Class
Bluegill sunfish 6.6493 0.8330 Class
Largemouth bass 6.6493 0.8330 Class

Black crappie 6.6493 0.8330 Class
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Tabie D-4. Probabilities of chronic toxic effects on fish populations
due to RAC 9 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapalation
Carp 0.0756 0.0950 Family
Bigmouth buffalo 0.0763 0.0943 a
Smallmouth buffalo 0.0763 0.0943 a
Channel catfish 0.1372 0.1730 Class
White bass 0.3336 0.3098 Class
Green sunfish 0.3336 0.3098 Class
Bluegill sunfish 0.3336 0.3098 Class
Largemouth bass 0.3336 0.3098 Class
Black crappie 0.3336 0.30938 Class

dFathead minnow - Cypriniformes
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Table D-5. Probabilities of chronic toxic effects on fish populations
due to RAC 31 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of

Species to PGMATC PGMATC extrapolation
Carp 0.0326 0.0369 Family
Bigmouth buffalo 0.0162 0.0282 Class
Smalimouth buffalo 0.0162 0.0282 Class
Channel catfish 0.0315 0.0662 Class
White bass 0.0340 0.0441 Class
Green sunfish 0.0190 (0.0181 Genus
Bluegill sunfish 0.0184 0.0123 Species
Largemouth bass 0.0203 0.0227 Family

Black crappie 0.1161 . 0.1721 Family
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Table D-6. Probabilities of chronic toxic effects on fish populations
due to RAC 32A at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.0072 0.0101 Class
Bigmouth buffaloe 0.0072 0.01¢1 Class
Smalimouth buffalo 0.0072 £.0101 Class
Channel catfish 0.0077 0.0162 Class
White bass 0.0187 0.0216 Class
Green sunfish 0.0187 0.0216 Class
Biuegill sunfish 0.0187 0.0216 Class
Largemouth bass 0.0187 0.0216 Class

Black crappie 0.0187 0.0216 Class
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Table D-7. Probabilities of chronic toxic effects on fish populations
due to RAC 33 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapoiation
Carp 0.009% 0.0073 Family
Bigmouth buffalo 0.0011 0.0008 Class
Smallmouth buffalo 0.0011 0.0008 Class
Channel catfish 0.0023 0.0042 Class
White bass 0.0022 0.0010 Class
Green sunfish 0.0063 0.0033 Genus
Bluegill sunfish 0.0075 0.0027 Species
Largemouth bass 0.0085 0.0066 Family

Black crappie 0.0355 0.0670 Family
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Table D-8. Probabilities of chronic toxic effects on fish populations
due to RAC 34 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.0G76 0.0026 Species
Bigmouth buffalo 0.0551 0.0884 Class
Smatimouth buffale 0.0551 0.0884 Class
Channel catfish 0.0427 0.0845 Class
White bass 0.1617 0.1816 Class
Green sunfish 0.0011 0.0001 Genus
Bluegill sunfish 0.0015 0.0001 Species
Largemouth bass 0.00%7 0.0004 : Family

Black crappie 0.0057 0.0097 Family
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Table D-9. Probabilities of chronic toxic effects on fish populations
due to RAC 35 at annual median ambient concentrations for
the Lurgi/Fischer-Tropsch process

Ratioc of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.0183 0.0168 Family
Bigmouth buffaio 0.0057 0.0080 Class
Smallmouth buffalo 0.0057 0.0080 Class
Channel catfish 0.0094 0.0207 Ciass
White bass 0.0123 0.0134 Class
Green sunfish 0.0025 0.0008 Genus
Bluegill sunfish ¢.0024 0.0004 Species
Largemouth bass 0.0027 0.0012 Family

Black crappie 0.0152 0.0329 Family
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Table D-10. Probabilities of chronic toxic effects on fish populations
due to RAC 4 at annual median ambient concentrations for
the Koppers-Totzek/Fischer-Tropsch process

Ratio of ambient Probability of

concentration io exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.8924 0.4796 Class
Bigmouth buffalo 0.8924 0.4796 Class
Smallmouth buffalo 0.8924 0.4796 Class
Channel catfish 0.6753 0.4334 . Class
White bass 2.3665 0.6728 a
Green sunfish 1.1657 0.5330 Genus
Bluegill sunfish 2.5357 0.7020 Species
Largemouth bass 3.0682 0.7201 Family

Black crappie 5.0189 0.7701 Family

8Bluegill-Perciformes
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Table D-11. Probabilities of chronic toxic effects on fish populations
due to RAC 5 at annual median ambient concentrations for
the Koppers-Totzek/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PEMATC extrapolation
Carp 0.8527 0.4701% Class
Bigmouth buffaio 0.8527 0.4701 Class
Smallmouth buffalo G.8527 0.4701 Class
Channel catfish 1.1262 0.5208 Class
White bass 2.056% 0.56435 Class
Green sunfish 2.0569 0.6435 Class
Bluegill suafish 2.0569 0.6435 Class
Largemouth bass 2.0569 0.6435 Class

Black crappie 2.0569 0.6435 Class
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Table D-12. Probabilities of chronic toxic effects on fish populations
due to RAC 9 at annual median ambient concentrations for
the Koppers-Totzek/Fischer-Tropsch process

Ratic of ambient Probability of

caoncentration to exceeding the Levei of
Species to PGMATC PGMATC extrapolation
Carp 0.6911 0.4256 Family
Bigmouth buffalo 0.6972 0.4269 a
Smallmouth buffalo 0.6972 0.4269 a
Channel catfish 1.2547 0.5429 Class
White bass 3.0498 0.6930 Class
Green sunfish 3.0498 0.6930 Class
Bluegiil sunfish 3.0498 0.6930 Class
Largemouth bass 3.0498 0.6930 Class
Black crappie 3.0498 0.6930 Class

dFathead minnow - Cypriniformes
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Table D-13. Probabilities of chronic toxic effects on fish populations
due to RAC 31 at annual median ambient concentrations for
the Koppers-Totzek/Fischer-Tropsch process

Ratio of ambient Probability of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.0113 0.0096 Family
Bigmouth buffalo 0.0056 0.0082 Class
Smallmouth buffalo 0.0056 (.0082 Class
Channel catfish 0.0109 G.0247 Class
White bass 0.0118 0.0126 Class
Green sunfish 0.0066 0.0040 Genus
Bluegill sunfish 0.0064 0.0022 Species
Largemouth bass 0.0071 0.0055 Family

Black crappie 0.0403 0.0792 Family
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Table D-14. Probabilities of chronic toxic effects on fish populations
due to RAC 33 at annual median ambient concentrations for
the Koppers-Totzek/Fischer-Tropsch process

Ratio of ambient © Probability of

' concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.0048 0.0024 Family
Bigmouth buffalo 0.0005 0.0003 Class
Smalimouth buffalo 0.0005 0.0003 Class
Channel catfish 0.0011 0.0016 Class
White bass 0.0010 (0.0003 Class
Green sunfish 0.0031 0.0010 Genus
Bluegill sunfish 0.0036 . 0.0007 Species
Largemouth bass 0.0041 0.0022 Family

Black crappie 0.0173 0.0343 Famity
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Table D-15. Probabilities of chronic toxic effects on fish populations
due to RAC 34 at annual median ambient concentrations for
the Koppers-Totzek/Fischer-Tropsch process

Ratio of ambient Probabiiity of

concentration to exceeding the Level of
Species to PGMATC PGMATC extrapolation
Carp 0.0047 0.0017 . Species
Bigmouth buffalo 0.0339 0.0573 Class
Smallmouth buffalo 0.0339 0.0573 Class
Channel catfish 0.0262 0.0562 Class
White bass 0.0993 0.1246 Class
Green sunfish 0.0007 0.0000 Genus
Bluegill sunfish 0.0009 0.0000 Species
Largemouth bass 0.0010 0.0002 Family

Black crappie 0.0035 0.0052 Family
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APPENDIX E

Detailed Methods and Assumptions for
Ecosystem Uncertainty Analysis
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APPENDIX E

DETAILED METHODS AND ASSUMPTIONS FOR
ECOSYSTEM UNCERTAINTY ANALYSIS

E.1 ORGANIZING TOXICITY DATA _

The first step in Ecosystem Uncertainty Analysis (EUA) is selection
of appropriate toxicity data and association of the data with components
of SWACOM.

Toxicity data on phytoplanktion are sparse. It is possible to find
values for green algae, such as Selenasirum cgﬁricornutum, and these
data are used for all 10 algal populations if no other information is

available. If data are available on diatoms and blue-greens, then a
further division is possible based on physiological parameters in the
model and past experience with SWACOM. Like diatoms, species 1-3 appear
early in the spring and are associated with low temperatures and high
nutrient concentrations. Species 4 to 7 dominate the spring bloom and
are associated with intermediate temperatures and light., Species 8 to
10 appear in the summer and are tolerant of high temperatures and low
nutrient concentrations.

The identification of the zooplankton is more tenuous. Based on
model behavior and physiological parameters, species 12 and 13 are
identified with Cladocerans. The ubiquitous data for Daphnia magna are

used for species 12. When data are avaiiable for Daphnia pulex, they
are used for species 13. The remaining zooplankters (species 11, 14
and 15, and species 13 when no data was available for D. pulex) are
simply identified as crustaceans. O0Of the available data, the smallest
concentration is assigned to 15 and the largest to 11. Species 14 (and
13 when necessary) is assigned an intermediate value between these
extremes. Assuming species 15 to be the most sensitive is conservative.
Since blue-green algae increase is one of our endpoints, we assign the

greatest sensitivity to the consumer (i.e., 15) which is most abundant
during the summer of the simulated year.

Preceding page blank
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L850 data for fathead minnow (Pimephales sp.)}, bluegill {Lepomis
macrochirus), and guppy (Poecilia reticulata) are assigned to forage
fish (species 16, 17 and 18). When data on these species are not
available, others are substituted, such as goldfish or mosquitofish.
The game fish (species 19) was identified as rainbow trout.

E.2 TRANSFORMING TOXICITY DATA

A critical step in applying EUA invalves changing parameter values
in SWACOM. This requires three important assumptions which are
outlined below.

E.2.1 The General Stress Syndrome {GSS)

Toxicity tesis provide information on mortality (or similar
endpoint) but provide 1ittle insight on the mode of action of the
chemicals. Thus, some assumption must be made about how the toxicant
affects physiological processes in SWACOM. 1In an application that
focuses on a single chemical it may be possible to obtain detaitled
information on modes of action. However, the present effort must cover
a number of Risk Assessment Units, and it was necessary to make a

single overall assumption.

We assumed that organisms respond to all toxicants according to a
General Stress Syndrome (GSS). For phytoplankton, this invoived
decreased maximum photosynthetic rate, increased Michaelis-Menten
constant, increased susceptibility to grazing, decreased light
saturation, and decreased nutrient assimilation. For zooplankton and
fish, the syndrome involves increased respiration, decreased grazing
rates, increased susceptibility to predation, and decreased nutrient
assimilation. For all organisms, the optimum temperature was assumed
to be unchanged. The GSS represents how organisms respond to most
toxicants. Where observations were recorded for the chemicals used in
this assessment, the researchers noted hyperactivity, increased
operculation and other symptoms consistent with the assumption of the
GSS. However, some organics might have a “"narcotic” effect which would
be opposite to the reaction assumed here.
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The General Stress Syndrome defines the direction of change of
each parameter in SWACOM. It is also necessary to make an assumpiion
about the relative change in each parameter. We have assumed that all
parameters of SWACOM change by the same percentage. This assumption
can be removed only 1f considerable information is available on modes
of action of each chemical.

E.2.?7 The MICROCOSM Simulations
The key to arriving at new parameters is simulation of the
experiments which generated the toxicity data. This involves simulating

each species in isolation with light, temperature, food supply, and
nutrients set at constant levels that would maintain the population
jndefinitely. Then the parameters are altered together in the direction
indicated by the 655 until we duplicate the originai experiment. Thus,
for an LCg, (96 hours), we find the percentage change which halves
the population in 4 d.

At the conclusion of the MICROCOSM simulations, we have the
percentage change in the parameters which matches the experiment.
Wwe must now make an additional assumption to arrive at the expected
response for concentrations below the LC50 or ECSO' We assume a
linear dose response. Thus, an environmental concentration 1/5 of the
LC50 would cause a 10% reduction in the population. The MICROCOSM
simulations are then repeated with this new endpoint to arrive at a new
percentage change in the parameters. Since most response curves are
concave, our assumption should be conservative.

E.2.3 Choosing Uncertainties

To implement the analysis, it is necessary to associate
uncertainties with the parameter changes. We assume that all parameter
changes have an associated uncertainty of plus or minus 100%. This
assumption seems sufficiently conservative. One might wish to adopt a
more complex strategy which would combine information on modes of
action with a Delphi survey of experienced researchers to arrive at
more specific estimates of uncertainty.
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