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Abstract

This project is a collaborative effort between the Universty of Akron, lllinois Inditute of
Technology and two indudtries UOP and Energy Internationd. The tasks involve the development of
trangent two and three dimensona computer codes for durry bubble column reactors, optimization,
comparison to data, and measurement of input parameters, such as the viscodty and redtitution
coefficients.

To understand turbulence, measurements were done in the riser with 530 micron glass beads usng a PIV
technique. This report summarizes the measurements and smulations completed as described in detalls in
the attached paper, “ Computationd and Experimental Modeling of Three-Phase Surry-Bubble Column
Reactor.” The Particle Image Veocimetry method described € sewhere (Gidaspow and Huilin, 1996)
was used to measure the axial and tangential velocities of the particles. This method was modified with the
use of arotating colored transparent disk. The velocity distributions obtained with this method shows that
the didribution is close to Maxwd lian. From the velocity measurements the norma and the shear sStresses
were computed. Also with the use of the CCD camera a technique was developed to measure the solids
volume fraction. The granular temperature profile follows the solids volume fraction profile. As predicted



by theory, the granular temperature is highest a the center of the tube. The norma stress in the direction
of the flow is gpproximately 10 times larger than that in the tangential direction. The (vvg) is lower at the

center where the (vv§) is higher a that point. The Reynolds shear stress was small, producing a

restitution coefficient near unity. The norma Reynolds stressin the direction of flow is large due to the fact
that it is produced by the large gradient of velocity in the direction of flow compared to the smal gradient
intheq and r directions.

The kinetic theory gives vaues of viscodty that agree with our previous measurements (Gidaspow, Wu
and Mostofi, 1999). The vaues of viscosity obtained from pressure drop minus weight of bed
measurements agree at the center of the tube.
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The objective of this study is to understand turbulence in circulating fluidized beds (CFB). Tauji,
et d (1984) were the first to measure turbulent oscillations in gas-solid flow. Mudde, et a (1997)
measured the turbulent stresses in a gas-liquid bubble column using PIV similar to that used here. Pan, et
a (2000) used a hydrodynamic model to compute the Reynolds stresses for the data of Mudde, et a
(2000). In the two-fluid approach, the use of averaged equations requires closure modes. In order to
improve multiphase models, such as described in Gidaspow’s book (1994), a well-defined experiment is
essentiad. Recently 11T CFB was rebuilt in order to correct the non-symmetrical behavior caused by the
elbow type outlet. Figure 1 shows the schematic diagram of 11T CFB with a splash plate type outlet. The
bed materia was 530 micron glass beads with a density of 2.5 gr/cnt. The Particle Image Ve ocimetry
method described elsewhere (Gidaspow and Huilin, 1996) was used to measure the axid and tangentia
velocities of the particles. Figure 2 shows a typicd sreak line generated on the computer screen. This
method was modified with the use of a rotating colored transparent disk. The order of the colors on the
greak lines indicates the direction of the flow. Figure 3 shows the velocity digtributions obtained with this
method. As can be seen in this figure the didribution is close to Maxwelian. From the veocity
measurements the norma and the shear stresses were computed. Also with the use of the same CCD
camera a technique was developed to measure the solids volume fraction. Figure 4 shows a typical
picture used for this purpose. A probe was used in these experiments to obtain a radid profile of the
measured vaues. Figure 5 shows the schematic diagram of the setup.

Figures 6 and 7 show the solids axid and tangentid velocities profiles. The axid veocity profileis
approximately parabolic and symmetrical. The tangentid velocity was about 1/50 of the axia velocity,
indicating asmal rotationa behavior that decreased close to the wall. The solids volume fraction profile is
depicted in Figure 8. This figure shows that the riser is operating close to the core-annular regime. The
solids volume fraction profile for 75 microns FCC particles (Miller and Gidaspow, 1992) shows a higher
difference in the solids volume fraction between the core and annulus. The granular temperature profile is
shown in Figure 9. This profile follows the solids volume fraction profile. As predicted by theory, the
granular temperature is highest &t the center of the tube. Figures 10 and 11 show the particle Norma and
Reynolds stresses. The normd dress in the direction of the flow is gpproximately 10 times larger than that

in the tangential direction. The (vgvg) is lower at the center where the (v@v¢$) is higher a that point. The

Reynolds shear stress was smdl, producing a restitution coefficient near unity. The norma Reynolds stress
in the direction of flow is large due to the fact that it is produced by the large gradient of velocity in the
direction of flow compared to the smal gradient in the g and r directions.

The table summarizes the data and computation of viscosty usng two methods. The kinetic theory gives
vaues of viscogty that agree with our previous measurements (Gidaspow, Wu and Mostofi, 1999). The
vaues of viscodity obtained from pressure drop minus weight of bed measurements agree at the center of



the tube. Particle velocities and concentrations were dso measured as a function of time, as shown in
Figures 13 and 14. Their principa frequency is dmost one Hertz. See Fig 15 and 16. The variaion of
granular temperature with time is shown in Fig 17. The spectrum isin Fgl8.

Prdiminary computations, usng mode B in Gidaspow’s book (1994) show a core-annular
regime for the 530 microns glass beads with solids viscosity of 5.0° es as input. The computations are
amilar to those of Pan, et d usng a CFDLIB code. The particle velocities are roughly the same as the
experimental vaues The velocity variances aso follow the experimenta trends but (vgv¢) were much
higher.
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Solid Viscosity from Kinetic Theory:
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