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COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY
BUBBLE COLUMN REACTORS

ABSTRACT

The objective of this study was to develop a predictive experimentally verified
computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three
dimensional transient computer code for the coupled Navier-Stokes equations for each
phase was developed and is appended in this report. The principal input into the model is
the viscosity of the particulate phase which was determined from a measurement of the
random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The
details are presented in the attached paper titled “CFD Simulation of Flow and
Turbulence in a Slurry Bubble Column”. This phase of the work is in press in a refereed
journal (AIChE Journal, 2002) and was presented at the Fourth International Conference
on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No.
909).

The computed time averaged particle velocities and concentrations agree with
Particle Image Velocimetry (PIV) measurements of velocities and concentrations,
obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble
column, operated in the bubbly-coalesced fluidization regime with continuos flow of
water. Both the experiment and the simulation show a down-flow of particles in the
center of the column and up-flow near the walls and nearly uniform particle
concentration.

Normal and shear Reynolds stresses were constructed from the computed
instantaneous particle velocities. The PIV measurement and the simulation produced
instantaneous particle velocities. The PIV measurement and the simulation produced
similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better
understand turbulence we studied fluidization in a liquid-solid bed. This work was also
presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper
No. 910).

To understand turbulence in risers, measurements were done in the IIT riser with
530 micron glass beads using a PIV technique. This report summarizes the measurements
and simulations completed so far. This work will continue under the sponsorship of the
National Science Foundation and Dow Corning Corporation. This phase of the work is
part of the DOE/Industry/University Multiphase Fluid Dynamics Research Consortium.

Optimization of the LaPorte pilot plant reactor was attempted by rearranging the
heat exchangers. The paper accepted for presentation at the Sixth World Congress of
Chemical Engineering, Melbourne, Australia, September 23-27, 2001 is a part of this
report.
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government.  Neither the United States Government nor any agency therefor, nor
any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights.  Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation or favoring by the
United States Government or any agency thereof.  The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.
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EXECUTIVE SUMMARY

OBJECTIVE

This project was a collaborative effort between two universities (The University
of Akron and Illinois Institute of Technology) and two industries (UOP and Energy
International). The overall objective of this research was to develop predictive
hydrodynamic models for gas-liquid-solid catalyst reactors using computational fluid
dynamics (CFD) techniques. The work plan involved a combination of computational,
experimental and theoretical studies with a feedback mechanism to correct model
deficiencies. The tasks involved: 1- Development of a CFD code for slurry bubble
column reactors. 2- Optimization. 3- Comparison to reactor data. 4- Development of a
three dimensional transient CFD code. 5- Measurement of particle turbulent properties. 6-
a) Measurement of thermal conductivity of particles in the IIT two story riser.  b)
Measurements of evaporation rates of liquid nitrogen in the IIT riser.

ACCOMPLISHMENTS

Our paper describing the basic approach using kinetic theory to predict the
turbulence of catalyst particles in a slurry bubble column reactor, has been published in a
refereed journal (Wu and Gidaspow, 2000). The computed slurry height, gas hold up and
rate of methanol production agreed with the Department of Energy La Porte pilot plant
reactor data.

A three dimensional transient computer code for the coupled Navier-Stokes
equations for each phase was developed and is appended in this report. The principal
input into the model is the viscosity of the particulate phase which was determined from a
measurement of the random kinetic energy of the 800 micron glass beads and a
Brookfield viscometer. The details are presented in the attached paper titled “CFD
Simulation of Flow and Turbulence in a Slurry Bubble Column”. This phase of the work
is in press in a refereed journal (AIChE Journal, 2002) and was presented at the Fourth
International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-
June 1, 2001 (Paper No. 909).

We have invented an alternate technique for computing turbulence in a slurry
bubble column. It involves direct numerical simulation of the equations of motion with
the measured particular viscosity as an input. We have computed the flow profiles,
particle concentration profiles and Reynolds stresses for an IIT slurry bubble column.
The computed time averaged particle velocities and concentrations agree with PIV
measurements of velocities and concentrations, obtained using a combination of gamma-
ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced
fluidization regime with continuos flow of water. Both the experiment and the simulation
show a down-flow of particles in the center of the column and up-flow near the walls and
nearly uniform particle concentration. The computations were done using our previous
two dimensional three phase code and a newly developed three dimensional version. This
work was reported in the Ph.D. thesis by Diana Matonis (IIT, 2000) and in a paper
submitted for publication and presentation in ICMF 2001.



2

Measurements of thermal conductivity of catalyst particles in the IIT riser were
completed. The details are presented in the attached manuscript titled “Measurement of
Thermal Conductivity of FCC Particles”. The IIT riser was redesigned to eliminate
asymmetries, similarly to the Sandia National Laboratory riser, sponsored by the
Multiphase Fluid Dynamics Research Consortium. Our CCD camera system was used to
measure Reynolds stresses and granular temperature for 450 µm glass beads. The
granular temperature when computed, following the gravity wave, shows a maximum in
the center, in agreement with conventional theory of granular flow.  Numerical
simulation of the riser is in progress.

In view of the complexity of the simulation a better understanding of the
processes using simplified analytical solutions is required. Such analytical solutions are
presented in the attached paper titled “Large Scale Oscillations or Gravity Waves in
Risers and Bubbling Beds”. This paper presents analytical solutions for bubbling
frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble
column reactors are not optimum. They involve upflow in the center and downflow at the
walls.

To obtain an optimum size for slurry bubble column reactors, we are following up
on the observation of George Cody of Exxon who reported a maximum granular
temperature (random particle kinetic energy) for a particle size of 90 microns. The
attached paper titled “Turbulence of Particles in a CFB and Slurry Bubble Columns
Using Kinetic Theory”, supports George Cody's observations.  However, our explanation
for the existence of the maximum in granular temperature differs from that proposed by
George Cody.  This work was preprinted in the Fluidization and Fluid-Particle Systems
Preprint Volume, AIChE, pp. 261-266. Further computer simulations and experiments
involving measurements of granular temperature are needed to obtain a sound theoretical
explanation for the possible existence of an optimum catalyst size.

In an attempt to optimize the system, flow patterns for the production of methanol
in slurry bubble columns were investigated by rearranging the location of the heat
exchangers in the La Porte pilot plant.
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CFD SIMULATION OF FLOW AND TURBULENCE
IN A SLURRY BUBBLE COLUMN

Diana Matonis, Dimitri Gidaspow and Mitra Bahary

Department of Chemical and Environmental Engineering
Illinois Institute of Technology, Chicago, IL 60616

ABSTRACT

The objective of this study was to develop a predictive experimentally verified
computational fluid dynamic ( CFD ) model for gas-liquid-solid flow. A three
dimensional transient computer code for the coupled Navier-Stokes equations for each
phase was developed. The principal input into the model is the viscosity of the particulate
phase, which was determined from a measurement of the random kinetic energy of the
800-micron glass beads and a Brookfield viscometer.
The computed time averaged particle velocities and concentrations agree with PIV
measurements of velocities and concentrations, obtained using a combination of gamma-
ray and X-ray densitometry, in a slurry bubble column, operated in the bubbly-coalesced
fluidization regime with continuous flow of water. Both the experiment and the
simulation show a down-flow of particles in the center of the column and up-flow near
the walls and nearly uniform particle concentration.
Normal and shear Reynolds stresses were constructed from the computed instantaneous
particle velocities. The PIV measurement and the simulation produced similar nearly flat
horizontal profiles of turbulent kinetic energy of particles.
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INTRODUCTION
Fluidized beds are widely used industrially because the particles can be introduced into
and out of the reactor as a fluid and because of good heat and mass transfer in the reactor.
For conversion of synthesis gas into methanol or hydrocarbon liquid fuels, a slurry
bubble column reactor has several advantages over a fixed bed reactor (Bechtel Group,
1990; Viking Systems International, 1994). Cooling surface requirement is less than in a
fixed bed reactor. Catalyst deactivation due to carbon formation can be handled by
catalyst withdrawal and removal, whereas replacement of fixed bed catalyst requires a
shutdown. In view of these advantages, slurry bubble column reactors have recently
(Parkinson, 1997;) become competitive with fixed bed reactors for converting synthesis
gas into liquid fuels. Fan (1989) has reviewed other applications of three-phase
fluidization.
Slurry reactor design is usually done (Bechtel Group, 1999; Viking Systems
International, 1994) using hold-up correlations. In the early nineties Tarmy and
Coulaloglu (1992) of EXXON showed that there were no three phase hydrodynamic
models in the literature and that there was a need for such models, as illustrated by the
development of a three phase hydrodynamic model at EXXON presented at 1996
Computational Fluid Dynamics in Reaction Engineering Conference (Heard et al., 1996).
Today, Computational Fluid Dynamics (CFD) has emerged as a new paradigm for
modeling multiphase flow and fluidization, as seen from recent conferences (NICHE,
2000; FLUIDIZATION IX, 1998; CFD in Reaction Engineering, 2000), the formation of
an industry-led, Department of Energy Multiphase Fluid Dynamics Research Consortium
(Thompson, 1999), which consists of 6 national laboratories, 6 universities and American
chemical companies, and papers published throughout the world.
The term CFD has come to denote minimal simulation using Navier-Stokes equations.

Three types of CFD models are being used in the literature to model gas-solid multiphase
flow and fluidization:
1.Viscosity Input Models, where the principal input is an empirical viscosity. Examples
are the papers of Anderson, Sundaresan and Jackson (1995) for bubbling beds, Tsuo and
Gidaspow (1990) and Benyahia, Arastoopour and Knowlton (1998) for risers.
2.Kinetic Theory Based Models, as described in Gidaspow (1994).
The most successful example of this model is the prediction of the core-annular regime
by Sinclair and Jackson (1989) for steady developed flow in a riser. Transient simulations
and comparisons to data were done by Samuelsberg and Hjertager (1996) and Mathiesen,
et al (2000) for multisize flow.
3.K-Epsilon Model., where the K corresponds to the granular temperature equation and
epsilon is a dissipation for which another conservation law is required. Its success has
been to model turbulence for steady single-phase flow. It appears as an option in most
commercial CFD codes. Kashiwa and VanderHeyden (1998) are extending this model to
multiphase flow as a part of the Multiphase Fluid Dynamics Consortium, where a
discussion has begun at the quarterly meetings concerning mechanisms of turbulence
production and dissipation.

In single-phase flow, the most fundamental approach to turbulence is DNS, Direct
Numerical Simulation of the Navier-Stokes equations. It was quite successful in
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predicting the logarithmic velocity profile for channel flow (Kim, el al 1985) and other
turbulence profiles, but with present computers and solution methods is restricted to
relatively low Reynolds numbers, about 10,000.The viscosity input model for multiphase
flow is a method similar to the DNS in single phase flow. With particular input
viscosities, a system of coupled Navier-Stokes equations is solved producing
instantaneous fluctuating velocities. Averaging of these velocities produces the normal
and the shear Reynolds stresses for the various phases. Such a computation was recently
done for a bubble column by Pan, Dudukovic and Chung (2000) using the Los Alamos
CFDLIB code. Their comparison to the Particle Image Velocity (PIV) data of Mudde, et
al (1997) was quite good.

This paper presents a similar computation for three phases. The computed time average
particle gas and solids hold-ups and the particle velocities generally agree with the
measurements in a slurry bubble column. The computed horizontal profile of particle
turbulent kinetic energy also agrees with the PIV measurements, similar to those of
Mudde, et al (1997).

Recently Pfleger, et al (1999) and Krishna, et al (1999) applied the commercial CFX code
to bubble columns using the k-epsilon model, while Grevskott, et al (1996) successfully
compared their computed steady state velocity profiles to their experiments. Li, et al
(1999) computed the bubble shape in the three-phase system by using an advection
equation for the bubble surface. Discrete particle methods have also been used for
simulating gas-solid systems (e.g. Xu and Yu, 1997; Kwaguchi, Tanaka and Tsuji, 1998)
but have not been applied to slurry bubble columns.

The experiments and the CFD computations presented in this paper are in the so-
called bubbly coalesced flow regime, also called the churn-turbulent regime. Such a flow
regime occurs in large diameter columns for reasonably large input gas velocities, say
0.02 m/s. Much below this velocity one would be in the dispersed bubble regime.

The large "bubbles" in the bubbly coalesced regime occur due to the intersection
of paths of the fine bubbles. In the slurry bubble column, unlike in the bubble column
without solids, these bubbles are not very distinct. They contain solids and almost
disappear at high liquid velocities. Therefore they are hard to characterize experimentally
and proved to be, so far, impossible to compute. The computations only show the ghosts
of the bubbles, e.g. high velocities in the region where a large bubble was expected.
Figure 6.3 in Gidaspow's book (1994) shows a picture of the most distinct bubbles that
could be obtained in the experimental set-up described here. These bubbles are for liquid
velocities about half of those analyzed in this paper.

In the CFD simulation separate momentum balances are solved for the continuous
flowing liquid phase and for the discrete solid and gas phases. The gas phase is treated as
a particulate phase, as is the standard practice in the CFD simulation of gas-liquid bubble
columns (e.g. Pan, et al 2000 ). Since the flow inside the column is not far from
homogeneous, one can add the three momentum equations and see that the total pressure
is the sum of the individual phase pressures and that the mixture viscosity is the sum of
the three phase viscosities. The viscosity of the bubble gas phase and its collisional
pressure are small.  The viscosity of the solid phase is large. Its measured value is used
here.
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PART I. EXPERIMENTAL BUBBLY COALESCED FLOW REGIME
A.  Experimental Setup.  The setup used in the bubbly coalesced regime for volume

fraction, velocity and viscosity measurement experiments consisted of four major parts:
fluidization equipment, densitometers assembly, a high resolution micro-imaging I
measuring system or a video-digital camera unit, and a Brookfield viscometer. A
schematic diagram of the fluidized bed and video-digital camera unit for velocity
measurements is shown in Figure 1. The schematic diagram for source-detector-recorder
assembly for X-ray and ã-ray densitometers for volume fraction measurements is shown
schematically in Figure 2.

B.  Fluidization Equipment. A rectangular bed was constructed from transparent
acrylic (Plexiglas) sheets to facilitate visual observation and video recording of the bed
operations such as gas bubbling and coalescence, and the mixing and segregation of
solids. The bed height was 213.36 cm and cross-section was 30.48 cm by 5.08 cm. A
centrifugal pump was connected to the bottom of the bed by a 1.0-inch (2.54 cm)
diameter stainless steel pipe. Gas injection nozzles from an air compressor were
connected to the sides of the bed. Liquid was stored in and recycled back to a fifty-five
gallon storage tank.

The liquid and gas distributors were located at the bottom of the bed. Two perforated
Plexiglas plates with 0.28 cm diameter holes distributed the liquid. They were placed at
35.6 cm and 50.8 cm above the bottom of the bed, with 0.25 cm size glass bead particles
filled inside. The gas distributor consisted of six staggered porous tubes of 15.24 cm
length and 0.28 cm diameter. The fine pores of porous tubes had mean diameter of 42ìm.
The porous tubes were placed at the bottom of the bed just below the top liquid
distributor plate.

C.  Densitometer Assembly. Two densitometers were used alternatively for
measuring the time-averaged volume fractions of three phases at a designated location by
means of the X-ray and ã-ray adsorption techniques. The assembly consisted of
radioactive sources as well as detecting and recording devices and a positioning table. A
schematic diagram of the source, detector and recording devices assembly is shown in
Figure 2.

(1)Radioactive Source. The source is a 200-mCi Cu-244 source having 17.8-year
half-life. It emitted X-rays with photon energy between 12 and 23 keV. The source was
contained in ceramic enamel, recessed into a stainless steel support with a tungsten alloy
packing, and sealed in welded Monel Capsule. The device had brazed Beryllium window.
For the ã-ray densitometer, a 20-mCi Cs-137 source having a single y-ray of 667 keV and
a half-life of 30 years was used. The source was sealed in a welded, stainless steel
capsule. The source holder was welded, filled with lead, and provided with a shutter to
turn off the source. This is the same unit used previously by Seo andGidaspow (1987).
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(2)Detecting and Recording Devices. The intensity of the X-ray beam was measured
by using a NaI crystal scintillation detector (Teledyne, ST-82-I/B). It consisted of a 2-mm
thick, 5.08 cm diameter tube with 0.13-mm thick Beryllium window. For ã-ray
densitometer, the intensity of the ã-ray beam was detected by another NaI crystal detector
(Teledyne, S-44-I/2). The dimensions of the crystal were as follows: 5.08 cm thick and
5.08 cm in diameter. The two detectors could be switched for use with different sources.
The photomultiplier of the detector was connected sequentially to a preamplifier, an
amplifier and a single-channel analyzer, a rate meter, and a 186 IBM compatible personal
computer. The rate meter has a selector and a 0-100-mV scale range.

(3)Positioning Table. Both the source holder and detector were affixed to either side
of the bed on a movable frame and could be moved anywhere up-or-down or to-and-fro
by means of an electric motor.

D.  Particle Image Velocity (PIV) System. The digital camera technique used to
measure particle velocities as shown on Figure 1 comprised of the following units:

1)  Image Recording and Displaying Devices. A high resolution color video camera
equipped with electronic shutter speed settings ranging from OFF to 1/10000 sec and
super fine pitch color monitor were used to record and display solid velocities.

2)  Data Recording Device. A 486 I 33 MHz IBM compatible personal computer
with a micro-imaging board inside and a micro-imaging software. Image-Pro Plus were
used to record and store raw solid velocities data at any given location inside the
fluidized bed.

E.  Brookfield Viscometer.  Brookfield digital viscometer (model LVDV-II+) with
spring a torque of 673.7 dyne-cm was used to measure the effective bed viscosities. This
viscometer can produce twenty different rotational speeds ranging from 0 to 100
revolutions per minute (rpm) at four different modes, namely, LV, RV, HA, and
HBDVII+.

Experimental Procedure and Interpretation.

A. Fluidization Experiments. The liquid from the storage tank was fed to the bed
from the bottom of the bed using the centrifugal pump. The gas was fed to the bed
through a compressor. Both gas and liquid from the top of the bed were directed through
three openings of 1.0-inch (2.54 cm) diameter back to the storage tank, where the gas was
separated from the liquid.

In order to achieve a uniform fluidization, the liquid distributor section was designed
in such a way that the pressure drop through the distributor section was 10 - 20 % of the
total bed pressure drop. The gas was distributed in the fluidized bed through the six
staggered porous tubes.

Air and water were used as the gas and liquid, respectively, in this experiment.
Ballotini (leaded glass beads) with an average diameter of 0.889 cm and a density of 2.94
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g/cm3 were used as the solids. The experimental operating conditions are shown in the
Table 1 (Bahary, 1994).

B. Volume Fractions Determination.  X-ray and ã-ray densitometers have been used
to measure porosities of fluidized beds (Miller and Gidaspow, 1992: Seo and Gidaspow,
1987; Gidaspow, et al, 1995) and solids concentrations in nonaqueous suspensions
(Jayaswal, et al, 1990). These techniques are based on the fact that the liquid, gas and
solid phases under consideration have different absorptivities for X-ray and ã-rays. The
same concept was adopted to measure concentration profiles inside our three phase
fluidization systems.  The particles used in this system contain lead, to aid in the
absorption of X-rays.

The intensity of the transmitted X-rays or ã-rays are described as a linear function of
the volume fractions of liquid, gas and the solid phases. The amount of radiation that is
absorbed by a material can be given by the Beer-Bougert-Lambert Law:

where I is the intensity of transmitted radiation, Io is the intensity of incident
radiation, ê is the attenuation coefficient, ñ is the density of material, and 1 is the path
length.

The logarithmic form of equation 1 for three-phase (gas-liquid-solid) fluidized beds
is

where
A lκ ρ=
and where I is the intensity readings of the x-ray or ã-ray densitometers; and åg, ål

and ås are the volume fractions of gas, liquid, and solid phases, respectively. The relation
for volume fractions is:

The coefficients in equations (2) were calculated using the least square error
technique from the calibration measurements of the intensity readings of X-ray and ã-ray
densitometers at known concentrations of gas, liquid and solids in three phase mixtures.
However, these coefficients were found to have values with 20% of error for X-ray and
2% of error for ã-ray.

C. Velocity Measurements.  In order to get a good visualization of microscopic
movement of particles, a fiber-optic light was reflected on the field of view in the front
and the back of the bed. The field of view in most experiments was a 2 cm x 2 cm area.
As the particles were fluidized inside the bed, the camera with a zoom lens 18-108 mm

oI=I exp (- )lκρ

ln g g l l s s
o

I
A A A

I
ε ε ε

 
= + + 
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and close up focus transferred its field of view to the monitor with streak lines. These
streak lines represented the space traveled by the particles in a given time interval
specified on the camera. The images were then captured and digitized by a micro-
imaging board and analyzed using Image-Pro Plus software. Radial and axial velocity
measurements were conducted at different locations inside the bed. The velocity vector
was calculated as,

cos

sin

x

y

L
v

t

L
v

t

α

α

∆=
∆
∆=
∆

where, ÄL is the distance traveled, á is the angle from horizontal, Ät is the inverse of
shutter speed, and vx and vy are the vertical and horizontal velocity components,
respectively.

D. Viscosity Measurements using Brookfield Viscometer. The viscometer was
placed at the top of the fluidized bed, and secured over the centerline of the bed. A
cylindrical spindle (#1 LV) of 0.9421 cm diameter, 7.493 cm effective length and overall
height of 11.50 cm was used. The cylindrical spindle was attached to the bottom of the
viscometer without the guard and was lowered inside the fluidized bed by an extension
wire until it was completely immersed in the mixture during measurements.

The measurements in this experiment were made under LV mode at different speeds
between of 2 and 20 rpm. At each rotational speed, between 10 and 30 readings were
taken. The calibration of the viscometer-spindle apparatus was done using a Newtonian
liquid, namely, water.

E. Granular Temperature Determination.  The granular temperature, which is 3/2
of the random particle kinetic energy, is obtained from the frequency distribution of the
instantaneous velocities measured with the PIV system.  Figure 4 shows typical
distributions.  The variances, ó2, give the granular temperature, è, as shown below

2 2 21
3 X y zθ σ σ σ = + + 

Since no distributions were measured into the depth of the bed, the z direction, and since
the variance in the direction of flow is the largest, in the calculation the assumption was
made that the z direction variance equals the x direction variance.  Hence

2 21
2

3 X yθ σ σ = + 

Experimental Results for Bubbly Coalesced Regime.

A.  Phase Hold-Up. From the calibration curves of the x-ray and gamma-ray
densitometers, the time average values of volume fraction for liquid, gas and solid phases
were calculated.  Tables 2 and 3 represent such a subset of the volume fraction of gas and

(6)

(7)

(8)
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solids at varying heights and two different horizontal positions.  The particle and gas
concentrations appear to be nearly constant throughout the region. A computer simulation
of this system, using the experimental superficial liquid velocity of 2cm/s and gas
velocity of 3.37cm/s, also shows uniformity in solids concentration distribution. Figure 3
compares the volume fractions obtained from the computer simulation with the
experimental results.  Computer simulations will be discussed in detail in the next
section.

B.  Instantaneous Velocity Distribution. The measured velocity data were analyzed
using frequency distribution plots. The frequency distribution plots for particles vertical
and horizontal velocities are shown in Figures 4(a) and 4(b) for three phase fluidized bed.

C. Granular Temperature. Figures 5 shows a graph of the granular temperature,
calculated using particle velocity measurements, as a function of horizontal distance
from centerline of the bed at two different heights. The granular temperature of the 800
micron beads is about 200(cm/s)2, except near the left wall, where there is a higher
velocity and more dilute flow due to the asymmetry in the system.  This compares to
about 1000 (cm/s)2 for 500 micron beads in air,  determined in the IIT CFB and about
10 (cm/s)2 for 500 micron beads in water measured at IIT.  Clearly a higher gas flow
increased the turbulence of the system.  For 45 micron methanol catalyst particles, Wu
and Gidaspow(2000) computed the granular temperature to be between 20 and 10 for
volume fractions corresponding to 0.1 nad 0.25, respectively.  These computations
approximately agree with the measurements of Mostofi (2000).  The lower value of the
granular temperature is due to the smaller particle size.

D. Fluid Bed Viscosity.  The viscosity of the glass beads in the mixture was
obtained in two ways:  1. from a direct measurement of the viscosity by a Brookfield
viscometer and 2.  from the measurement of the random particle velocity using the
equation

( )
( ) ( ) ( )

1 1
2

2 225 4 4
1 1 1

48 1 5 5
s s

s o s o s s s
o

d
e g e g d

e g

ρ πθ θµ ε ε ρ
π

   = + + + +   +    
Gidaspow and Huilin (1996) have shown that these two methods give the same value
of the viscosity for 75 micron FCC particles in a riser.  The same result holds here,
since the large viscosity of the 800 micron beads exceeds the viscosity of water and
air.  Figure 6 shows that the viscosities are the same within experimental error.

Part II.  SIMULATION
Hydrodynamic Model
A transient, isothermal, three-dimensional model for multiphase flow was developed.
The hydrodynamic model uses the principle of mass conservation and momentum
balance for each phase.  This approach is similar to that of Soo(1967) for multiphase flow
and of Jackson (1985) for fluidization.  The equations are similar to Bowen’s (1976)
balance laws for multi-component mixtures.  The principle difference is the appearance
of the volume fraction of phase “k” denoted by åk.  The fluid pressure, P, is in the liquid
(continuous) phase.
For gas-solid fluidized beds, Bouillard, et al. (1989) have shown that this set of equations
produces essentially the same numerical answers for fluidization as did the earlier

(10)
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conditionally stable model, which has the fluid pressure in both the gas and the solids
phases.  In this model (hydrodynamic model B), the drag and the stress relations were
altered to satisfy Archimedes’ buoyancy principle and Darcy’s Law, as illustrated by
Jayaswal (1991).  Note in Table 4, no volume fraction is put into the liquid gravity term,
while in the gas/solid momentum balance contains the buoyancy term.  This is a
generalization of model B for gas-solid systems as discussed by Gidaspow(1994) in
section 2.4.  This model is unconditionally well-posed, ie, the characteristics are real and
distinct for one-dimensional transient flow.  It does not require the presence of  solid’s
pressure for stability and well-posedness.
  The numerical method is an extension of Harlow and Amsden’s(1971) method, which
was subsequently used in the K-FIX program (Rivard and Torrey, 1977).  The present
program was developed from Jayaswal’s two-dimensional MICE program (1991); which
originated from the K-FIX program (Rivard and Torrey, 1977).  To obtain the numerical
solution, the non-uniform computational mesh is used in finite-differencing the equations
based on the ICE, implicit Eularian method (Rivard, 1977; Jayaswal, 1991) with
appropriate initial and boundary conditions.   Stewart and Wedroff (1984) have critically
reviewed the ICE algorithm and related staggered mesh conservative schemes.  The
scalar variables are located at the cell center and the vector variables at the cell
boundaries.  The momentum equation is solved using a staggered mesh, while the
continuity equation is solved using a donor cell method.
Table 4 shows the continuity and the separate phase momentum equations for three-
dimensional transient three-phase flow.  There are nine nonlinear-coupled partial
differential equations for nine dependent variables.  The variables to be computed are the
volume fractions, åphases-1, the liquid phase pressure P, and the phase horizontal, x-
direction, and vertical velocity, y-direction components, uphase and vphase.  The gradient of
pressure is in the fluid (continuous) phase only.  This leads to an unconditionally well-
posed problem, as discussed in detail by Gidaspow(1994) and Lyczkowski, et al. (1978).
A value of 10 poises times the particle concentration was used throughout the
simulations. This equation was obtained by fitting the experimental viscosity values at
given superficial liquid and gas velocities (Bahary, 1994).  Therefore, the viscous stress
terms for the phases are of the Newtonian form as follows

k

; 10( )k kk kk k

T
k k k

[ ] = 2 [ ] poisesS
   

1 1
 [ ] = [ v + ] - I( v )S

2 3

τ ε εµ µ
=

=

 ∇ ∇⋅∇  v
r r r

The solids’ pressure is calculated by the solids stress modulus using the following equations,
8.686 6.385( ) ; ( ) 10 k

k k k kP G G εε ε ε − +∇ = ∇ =

As a particle moves through a viscous liquid there exists a resistance of the liquid to the
motion of the particle, hence the interphase drag has to be defined.  One type is the packed-
pressure drop data expressed in the form of a correlation, such as the Ergun equation.
For åk�0.2

(11)

(12)
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For åk<0.2, the empirical correlation is based on Stoke’s drag coefficient Cd as follows
2.65
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where

      Arastoopour, Lin and Gidaspow (1980) observed that solid-solid momentum transfer
is necessary to correctly predict the segregation among particles of different sizes in a
pneumatic conveyor.  Particle-particle drag equations to describe such interactions have
been derived by several researchers: Soo (1967), Nakamura and Capes(1976) and
Syamlal (1985).  In the present work the drag coefficient is based on kinetic theory
(Syamlal, 1985) represented as
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The gas phase is treated as a particulate phase by specifying the injected air bubble
diameter, viscosity and density as visually seen in experiment. The simulation results are
time-average as follows

1( , , ) ( , , , )t to
tto

v x y z v x y z t d t+< > = ∫

(13a)

(13b)

(14)

(15)
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The other corresponding equations used to analyze the output from the simulation are
summarized in Table 5.  These equations are a result from time-averaging the equationsof
continuity and of motion (Bird et al., 1960). These terms are the components of the turbulent
momentum flux and are referred to as the Reynolds stresses.

Coordinate system and numerical considerations

The solution of the preceding conservation equations depends on the definition of
boundary conditions for adequate comparison to experiment.   The diameter of the leaded
glass beads was 0.889cm with a density of 2.49 g/cm3.  The viscosity was an input in all
simulations to match experimentally obtained viscosities as discussed previously.
Different inlet conditions and grid sizes were prescribed to test the sensitivity of the final
flow field solution and are summarized as cases in Table 6.  Figure 7illustrates the two-
dimensional computational domain for case FB2d3d in Table 6. The third dimension, to
represent the experimental 5.08 cm depth of the bed, is added with a grid size of 1.02 cm.
It will be shown that the two-dimensional simulation can properly represent the flow
hydrodynamics and be less computer time intensive.  The remainder of this section will
be to study the effects of varying grid size, injected air bubble diameter and void fraction
as represented in Table 4. The left side is taken to be the inlet from left wall to centerline
of the horizontal, 15 cm.
Three Dimensional Simulation:  Case FB2d3d in Table 6
Flow Field and Averaged Velocity Profiles

Figures 8a and 8b show the three-dimensional time-averaged, 16 to 42 seconds,
gas and solid volume fraction contour plots along with the time-averaged velocity vectors
at the x-y plane of 3 cm from the front wall.  Figure 8c shows the solid contour plot with
corresponding velocity vectors at a time of 39 seconds in the y-z plane of 17.5 cm from
the left wall.  The computed flow pattern correctly shows gas up flow in the center region
as visually confirmed in the experiment.  A video of the experiment and of the
simulations shows that the solid fluctuates upward and downward in the center region.
Time-averaged velocities show the solid moving downward in the center as illustrated in
Figure 8b. The phenomenon of downward flow of particles in the center is almost
identical to that observed experimentally in a two dimensional gas-solid fluidized bed at
low gas velocities, where the bubbles form between the center of the bed and the walls, as
shown in Fig 10.5 b in Gidaspow's ( 1994) book. His figure 10.5 a shows the
corresponding computations. His vorticity equation 10.46 explains the phenomenon
quantitatively.  Once bubbles form near the walls, producing upward motion of particles
in this region, conservation of mass of particles forces them to descend in the center.
Figure 9 reveals that the two-dimensional time-averaged vertical velocities overlap the
three-dimensional time-averaged velocity pattern and both agree well with experiment.
Figure 10 further illustrates that the solids vertical velocity does not change when going
into the bed.  Figure 11 further demonstrates the time-averaged water downward vertical
velocities in the center region.   This down flow in the center produces a rotation or
particle vorticity as seen in Figure 8a.  Due to the buoyancy air moves up only.
Reynolds Stresses
The stresses are calculated from the velocity vectors directly using equations presented in
Table 5.  The profiles of Figures 12 and 14 and all cases studied show that the Reynolds
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stress <u’u’> peaks in the center, whereas  <v’v’> peaks close to the walls in agreement
with Muddle, et al., (1997) and Pan, et al.,  (2000) for gas-liquid flow only.  The
explanation of the appearance and diagonal vortical movement by Muddle, et al., (1997)
causes drastic swings in the vertical velocity close to the wall, where the motion is
primarily upward.  In the center, the horizontal velocity attains its highest magnitude,
contributing the most to the horizontal stresses in the center, but the least by the wall.  At
the left wall, the vertical Reynolds stress is the highest, thus the granular temperature
exhibits this maximum at the wall as shown in Figure 13.  From experiment, Figure 5, the
same characteristic experimental maximum turbulence is observed closer to the left wall;
even at the lower inlet water and air superficial velocities.  Figure 14 shows the stresses
plotted into the depth at z-y plane of 12 cm from the left wall.  The horizontal stress
exhibits the characteristic maximum in the center region, but the vertical Reynolds stress
is much flatter.  This can be attributed to no vortex formation in the third direction.
Two-Dimensional Low Velocity Simulations
Flow Field and Averaged Velocity Profiles
Figure 15 represents the time-averaged, 15 to 44 seconds, solids contour plot and velocity
vectors for Case FB5.  Figure 16a illustrates the time-averaged solids’ contour plot and
velocity vectors for Case FB2.  The only difference between these two cases is the
injected air bubble diameter and grid size.  From Figures 18 through 20 it will be shown
that grid size did not affect the transient behavior of the bed.  Figure 15 and 16a show the
difference in the bed expansion is due to the increase in bubble diameter. Figures 16b-c
illustrate the instantaneous vortex movement from 14 seconds to 15 seconds for Case
FB2.
 Figure 17 shows the power spectrum of the vertical velocity for Case FB2 at 8cm from
left wall and at a bed height of 11 cm.  Muddle, et al., (1997) had found a similar low
frequency peak and no dominant frequency above 1 Hz and Bahary (1995) has measured
similar low frequencies.  The time-averaged vertical and horizontal velocities are
presented in Figure 18 and agree with the experimental averages, Figure 4, of 2.3 cm/s
for the vertical velocity and –4.32cm/s for the horizontal velocity at a Bed Height of 9 cm
and Horizontal Position of 7.5 cm from Left Wall.  Figures 18, 19, and 20 represent the
time-averaged velocities for the remaining cases with an injected air bubble diameter of
0.01cm.  The agreement of the time-averaged velocities of Figures 18, 19 and 20 is
expected, since the grid size is the only thing that varies between these cases. However, a
noticeable difference exists in these Figures and the two proceeding Figures, 21 and 22.
Figure 21 represents the time-averaged horizontal and vertical particle velocity profiles
for a uniform inlet with only an inlet bubble diameter increase.  These profiles are much
flatter due to the lack of vortical structure production. Figure 22 represents the larger
injected air bubble diameter and not symmetric inlet conditions (Case FB5). This velocity
plot is not flat; instead, there exists an increase in the velocity in the half of the bed where
more gas is injected.
Reynolds Stresses and Granular Temperature
Figures 23, 24 and 25 show how damping of the stresses occurs by an increase in grid
size.  From Figure 23 to 24, the y-directional grid cell is halved in size from 2.5/4.5 cm to
1 cm.  The shape of the curves remains the same, but the stresses are doubled.  The same
pattern can be seen when going from Figure 25 to 23, where the x-directional grid cell is
halved in length and the stresses are double in size.  Thus, the stresses appear to be
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linearly proportional to the grid size and is due to the small calculated stress values for
this three-phase system.  However, this grid size dependency is not seen with the granular
temperature.
The granular temperature is compared to experiment in Figure 26 and shows general
agreement.  The damping in the stresses can also be seen in the granular temperature as
the mean fluctuation of the velocity decreases so does the granular temperature.  Figure
27 represents the granular temperature of the larger inlet bubble diameter (Case FB4) and
as the time-averaged velocity profile was flattened, so is the granular temperature. The
test for developed flow, as in DNS for single-phase, was performed on the cases.  Figure
28 presents the test for developed flow of case FB3.  The following equations are used to
obtain the curves
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The two expressions are not equal because the u and v velocities, see Figure 19, are of the
same order of magnitude due to the vortex formation.  The stresses shown in Figure 28
are on the order of magnitude of the solid’s pressure, which is approximately equal to

2
s s s sP vε ρ=

This value is small as compared to the fluid pressure.

Discussion
Computations of the granular temperature and frequency allow us to speculate
concerning vortex size from dimensional analysis and approximate solutions of Navier-
Stokes equations for standing waves(Tolstoy,1973).  Characteristic length equals the
pseudosonic velocity divided by the major frequency; where the pseudosonic velocity
equals the square root of the granular temperature. The granular temperature ranges
between 50 and 100 from Figure 26 and major frequency is taken to be 0.3 Hz. Entering
these ranges into the equation gives us vortex sizes of  20 and 30 cm.  Hence, in our
system we expect to have one to two vortices and do not expect any vortices into the
depth.  Figure 8 shows that there is no vortex in the third dimension.  Figure 16 b-d better
illustrates the instantaneous single and double vortices generated by the code and also
visible seen in experiment.  This fluctuating particle vorticity and the flow of the liquid
cause the particle concentration to be uniform throughout the bed.  That is in contrast to
the case of no liquid flow, where there is a vertical density gradient (Wu and Gidaspow,
2000). Such a catalyst distribution is reasonable.  It is usually modeled using a
sedimentation model (Viking, 1993).  In production of gasoline in a FCC riser, there
exists a sharp radial catalyst gradient.  In view of this undesirable distribution of particles,
other designs such as the downer are being considered.  Hence, the discovery of a
uniform concentration described in this study is of some practical significance.   In the
future, this model will be explored further.  Further, its’ principle weakness is in the
uncertainty of the bubble size. Figure 15 and 16 show an order of magnitude difference in
bed expansion caused by the order of magnitude increase in bubble diameter.  Such an
effect is reasonable, since the bed expands a lot more for fine particles or fine bubbles.

(17)

(18)
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Conclusions
1. A transient, three-dimensional computer code for the solutions of the

coupled Navier-Stokes equations for gas-liquid-solid flow was developed.
The principal input is the particulate viscosity, which was measured with a
Brookfield viscometer and a PIV technique.

2. The computed time-averaged particle velocities and concentrations agree
with measurements done in the slurry bubble column with continuous flow
of liquid in the churn-turbulent regime.  The particle velocities were
measured using the PIV technique.  The concentrations were determined
using a combination of gamma-ray and x-ray densitometers.  Both the
experiment and the simulations show a downflow of particles in the center
of the column with upflow near the wall.  The situation is unlike the case of
no liquid recirculation (Wu and Gidaspow, 2000) where there exist large
inhomogeneities of particles in the bed.

3. Computed instantaneous particle velocities were used to construct normal
and shear Reynolds stresses, similar to the procedure in DNS for single-
phase flow.  The computed horizontal distributions of granular temperature,
the turbulent kinetic energy of particles, agreed with measurements done
using a PIV technique.
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Nomenclature
Abbreviation Term
CD drag coefficient
dk characteristic particulate phase diameter
E coefficient of restitution
G gravity
G solid compressive stress modulus
go radial distribution function at contact
P Continuous phase pressure
Pk Dispersed(particulate) phase pressure
Rek Reynolds number for phase k
T time
U horizontal velocity, x-direction
V vertical velocity, y-direction
W depth velocity, z-direction

Greek Letters
âkm interphase momentum transfer coefficient

between k and m
åk volume fraction of phase k
È granular temperature
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Ì viscosity
Ñ density
ôk stress

kφ solids’ volume fraction at maximum packing

Ø particle sphericity
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TABLE 1. Operating Conditions for Bubbly Coalesced Regime Experiments

Temperature (°C) 23.5
Particle Mean Diameter (cm) 0.8
Particle Density (g/cm3) 2.94
Initial Bed Height (cm) 22 /24
Minimum Fluidization Velocity (cm/s) 0.76

Table 2.  Measured Phase Hold-up in Bubble Coalesced Regime for Vgas=3.37cm/s at 11 cm
from the Left Wall.

Bed heights, cm 2.5 5 7.5 10 12.5 15 17.5
åsolid 0.25 0.18 0.15 0.16 0.2 0.25 0.2
åair 0.56 0.4 0.34 0.36 0.36 0.3 0.32

Table 3.  Measured Phase Hold-up in Bubble Coalesced Regime for Vgas=3.37cm/s at –2cm cm
from the Left Wall.

Bed heights, cm 2.5 5 7.5 10 12.5 15 17.5
åsolid 0.15 0.21 0.08 0.12 0.1 0.15 0.16
åair 0.5 0.43 0. 4 0.41 0.35 0.41 0.53
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Table 5.  Equations of the calculated stresses.

( ) ( ) ( ) ( )21' ' , , , , , , ( , , )
N t

v v v x y z t v x y z t v x y z < > = − < >∑ 

( ) { }{ }1' ' ' ' ( , , , ) ( , , ) ( , , , ) ( , , )N tu v v u u x y z t u x y z v x y z t v x y z< > = < >= − < > − < > ∑ 

( ) ( ) ( ) ( )21' ' , , , , , , ( , , )
N i

u u u x y z t u x y z t u x y z < > = − < >∑ 

( ) { }{ }1' ' ' ' ( , , , ) ( , , ) ( , , , ) ( , , )N tu w w u u x y z t u x y z w x y z t w x y z< > = < >= − < > − < > ∑  

( ) ( ) ( ) ( )21' ' , , , , , , ( , , )
N i

w w w x y z t w x y z t w x y z < > = − < >∑ 

( ) { }{ }1' ' ' ' ( , , ) ( , , ) ( , , ) ( , , )N tv w w v v x y z v x y z w x y z w x y z< > = < >= − < > − < > ∑  
with N(t) being the number of vectors in the time-average

Table 6.  Simulation Cases under Investigation

Case Äx, cm Äy, cm VLiquid
cm/s

VGas
cm/s

Dair ,
cm

åleft,wate

r

åleft,gas å,right,wat

er   =
åright,gas

FB2d3
d

15*2 18*5.825 8.074 6.078 0.1 0.6 0.4 0.5

FB1 32x1cm 2*2.25,
19*4.5

4.04 3.37 0.01 0.5 0.5 0.5

FB2 32x1 31x1,
2,3,4,10x5

4.04 3.37 0.01 0.5 0.5 0.5

FB3 14x2.5 2*2.25,
19*4.5

4.04 3.37 0.01 0.5 0.5 0.5

FB4 14*2.5 2*2.25,
19*4.5

4.04 3.37 0.1 0.5 0.5 0.5

FB5 15*2.03
2

18*5.623 4.04 3.37 0.1 0.6 0.4 0.5
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Figure 1.  Experimental Schematic Diagram for Three-Phase Fluidization
System.
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X-ray or γ -ray source NaI (Ti) Scintillation
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Amplifier

Single Channel
Analyzer
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Timer

ConverterRecorder

Figure 2.  Schematic Diagram for Source-Detector-Recorder Assembly for X-ray and γ -ray

Densitometers.
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Figure 6. Experimaental viscosities determined with a 
Brookfield Viscometer and from measurement of random 

particle oscillations using PIV.
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Figure 15.  Particle contour and velocity vector
plot for Case FB5.

16a

16b 16c 16d

Figure 16.  (a) Time-averaged and instantaneous time, (b) 14s (c) 15s (d) 25s (e) 28s volume fraction
contour and velocity vector plots for Case FB2 with the corresponding colormap bar for the volume
fractions values.

16e
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Figure 19.  Time-averaged vertical and horizontal particle velocities for Case
FB3 at a bed height of 9 cm.
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Measurement and Computation of Turbulence in Risers

Mehmet Tartan, Dimitri Gidaspow, Reza Mostofi, Yong Seop Shin

Department of Chemical and Environmental Engineering
Illinois Institute of Technology, Chicago, IL 60616

Fax: 312-567-8874, Email: gidaspow@iit.edu

The objective of this study is to understand turbulence in circulating fluidized
beds (CFB). Tsuji, et al (1984) were the first to measure turbulent oscillations in gas-solid
flow. Mudde, et al (1997) measured the turbulent stresses in a gas-liquid bubble column
using PIV similar to that used here. Pan, et al (2000) used a hydrodynamic model to
compute the Reynolds stresses for the data of Mudde, et al (2000). In the two-fluid
approach, the use of averaged equations requires closure models. In order to improve
multiphase models, such as described in Gidaspow’s book (1994), a well-defined
experiment is essential. Recently IIT CFB was rebuilt in order to correct the non-
symmetrical behavior caused by the elbow type outlet. Figure 1 shows the schematic
diagram of IIT CFB with a splash plate type outlet. The bed material was 530 micron
glass beads with a density of 2.5 gr/cm3. The Particle Image Velocimetry method
described elsewhere (Gidaspow and Huilin, 1996) was used to measure the axial and
tangential velocities of the particles. Figure 2 shows a typical streak line generated on the
computer screen. This method was modified with the use of a rotating colored transparent
disk. The order of the colors on the streak lines indicates the direction of the flow. Figure
3 shows the velocity distributions obtained with this method. As can be seen in this figure
the distribution is close to Maxwellian. From the velocity measurements the normal and
the shear stresses were computed. Also with the use of the same CCD camera a technique
was developed to measure the solids volume fraction. Figure 4 shows a typical picture
used for this purpose. A probe was used in these experiments to obtain a radial profile of
the measured values. Figure 5 shows the schematic diagram of the setup.

Figures 6 and 7 show the solids axial and tangential velocities profiles. The axial
velocity profile is approximately parabolic and symmetrical. The tangential velocity was
about 1/50 of the axial velocity, indicating a small rotational behavior that decreased
close to the wall. The solids volume fraction profile is depicted in Figure 8. This figure
shows that the riser is operating close to the core-annular regime. The solids volume
fraction profile for 75 microns FCC particles (Miller and Gidaspow, 1992) shows a
higher difference in the solids volume fraction between the core and annulus. The
granular temperature profile is shown in Figure 9. This profile follows the solids volume
fraction profile. As predicted by theory, the granular temperature is highest at the center
of the tube. Figures 10 and 11 show the particle Normal and Reynolds stresses. The
normal stress in the direction of the flow is approximately 10 times larger than that in the
tangential direction. The zzvv ′′  is lower at the center where the θθ vv ′′  is higher at that

point. The Reynolds shear stress was small, producing a restitution coefficient near unity.
The normal Reynolds stress in the direction of flow is large due to the fact that it is
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produced by the large gradient of velocity in the direction of flow compared to the small
gradient in the θ and r directions.
The table summarizes the data and computation of viscosity using two methods. The
kinetic theory gives values of viscosity that agree with our previous measurements
(Gidaspow, Wu and Mostofi, 1999). The values of viscosity obtained from pressure drop
minus weight of bed measurements agree at the center of the tube. Particle velocities and
concentrations were also measured as a function of time, as shown in Figures 13 and 14.
Their principal frequency is almost one Hertz. See Fig 15 and 16. The variation of
granular temperature with time is shown in Fig 17. The spectrum is in Fig18.

Preliminary computations, using model B in Gidaspow’s book (1994) show a
core-annular regime for the 530 microns glass beads with solids viscosity of 5.0×εs as
input. The computations are similar to those of Pan, et al using a CFDLIB code. The
particle velocities are roughly the same as the experimental values. The velocity
variances also follow the experimental trends but zzvv ′′  were much higher.
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Fig. 10 Normal and Shear Reynolds Stresses Fig. 11 Particle Phase Reynolds Stress

Fig. 12 Particle Phase Normal  Reynolds
Stresses
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Fig. 13 Time Series of Solid Axial Velocity at r=2.54 cm Fig. 14 Time Series of Solid Volume Fraction at r= 2.54cm
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Fig. 17 Time Variation of Granular Temperature
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ABSTRACT

Two mechanistic Computational Fluid Dynamics (CFD) models are being
developed for synthesis of methanol and hydrocarbon liquid fuels using Fischer-Tropsch
catalysts in slurry bubble column reactors.

The first model (Wu and Gidaspow, 2000) is based on the kinetic theory of
granular flow (Gidaspow, 1994) with a measured restitution coefficient in a slurry bubble
column. With a measured restitution coefficient in a slurry bubble column (Mostofi,
2001) the model has predicted Air Products/DOE Laporte reactor's slurry height, gas
hold-up and the rate of methanol production. The second hydrodynamic model we have
developed consists of two coupled Navier-Stokes equations for gas-liquid-solid flow with
a measured slurry viscosity as an input (Matonis, 2000). This model has predicted flow
patterns, normal and shear Reynolds stresses in agreement with measurements in a
laboratory slurry bubble column.

INTRODUCTION

Slurry bubble column reactors have recently become competitive with traditional
tubular fixed-bed reactors for converting syn-gas into liquid fuels due to several
advantages, including better temperature control and mass transfer, lower operating and
capital costs. The design of these reactors require, among others, precise knowledge of
the kinetics, hydrodynamics, and heat as well as mass transfer characteristics. To date,
there is no adequate mathematical model available which can predict the performance of
slurry bubble column reactors with reasonable accuracy.

HYDRODYNAMIC MODEL

A transient, isothermal, three-dimensional model for multiphase flow was
developed. The hydrodynamic model uses the principle of mass conservation and
momentum balance for each phase. See table 1. This approach is similar to that of Soo
(1967) for multiphase flow and of Jackson (1985) for fluidization. The equations are
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Reactors
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similar to Bowen’s (1976) balance laws for multi-component mixtures. The principle
difference is the appearance of the volume fraction of phase “k” denoted by åk.  The fluid
pressure, P, is in the liquid (continuous) phase.

For gas-solid fluidized beds, Bouillard, et al. (1989) have shown that this set of
equations produces essentially the same numerical answers for fluidization as did the
earlier conditionally stable model, which has the fluid pressure in both the gas and the
solids phases, and is referred to as model B (Gamwo et al., 1995).  In this model,.  In this
model (hydrodynamic model B), the drag and the stress relations were altered to satisfy
Archimedes’ buoyancy principle and Darcy’s Law, as illustrated by Jayaswal (1991).
Note in Table 1, no volume fraction is put into the liquid gravity term, while in the
gas/solid momentum balance contains the buoyancy term. This is a generalization of
model B for gas-solid systems as discussed by Gidaspow (1994) in section 2.4. For the
solid phase Pk, consists of the static normal stress and dynamic stress, called the solids
pressure, which arises due to the collision of the particles as explained by Gamwo et al.
(1999).

This model is unconditionally well-posed, ie, the characteristics are real and
distinct for one-dimensional transient flow.  It does not require the presence of solid’s
pressure for stability and well-posedness.

The numerical method is an extension of Harlow and Amsden’s (1971) method,
which was subsequently used in the K-FIX program (Rivard and Torrey, 1977). The
present program was developed from Jayaswal’s two-dimensional MICE program
(1991); which originated from the K-FIX program (Rivard and Torrey, 1977). To obtain
the numerical solution, the non-uniform computational mesh is used in finite-differencing
the equations based on the ICE, implicit Eularian method (Rivard,1977; Jayaswal,1991)
with appropriate initial and boundary conditions. Stewart and Wedroff (1984) have
critically reviewed the ICE algorithm and related staggered mesh conservative schemes.
The scalar variables are located at the cell center and the vector variables at the cell
boundaries. The momentum equation is solved using a staggered mesh, while the
continuity equation is solved using a donor cell method.

Table 1 shows the continuity and the separate phase momentum equations for
three-dimensional transient three-phase flow. There are nine nonlinear-coupled partial
differential equations for nine dependent variables. The variables to be computed are the
volume fractions, åphases-1, the liquid phase pressure P, and the phase horizontal, x-
direction, and vertical velocity, y-direction components, uphase and vphase. The gradient of
pressure is in the fluid (continuous) phase only.  This leads to an unconditionally well-
posed problem, as discussed in detail by Gidaspow (1994) and Lyczkowski, et al. (1978).
The details of this model can be found in Matonis (2000) and Matonis et al. (2001).

IIT SLURRY BUBBLE COLUMN

A rectangular bed was constructed from transparent acrylic (Plexiglas) sheets to
facilitate visual observation and video recording of the bed operations such as gas
bubbling and coalescence, and the mixing and segregation of solids. The bed height was
213.36 cm and cross-section was 30.48 cm by 5.08 cm. A centrifugal pump was
connected to the bottom of the bed by a 1.0-inch (2.54 cm) diameter stainless steel pipe.
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Gas injection nozzles from an air compressor were connected to the sides of the bed.
Liquid was stored in and recycled back to a fifty-five gallon storage tank.

The liquid and gas distributors were located at the bottom of the bed. Two
perforated Plexiglas plates with many 0.28 cm diameter holes distributed the liquid. They
were placed at 35.6 cm and 50.8 cm above the bottom of the bed, with 0.25 cm size glass
bead particles filled inside. The gas distributor consisted of six staggered porous tubes of
15.24 cm length and 0.28 cm diameter. The fine pores of porous tubes had mean diameter
of 42ìm. The porous tubes were placed at the bottom of the bed just below the top liquid
distributor plate. Air and water were used as the gas and liquid, respectively, in this
experiment. Ballotini (leaded glass beads) with an average diameter of 0.8 cm and a
density of 2.94 g/cm3 were used as the solids. Figure 1 shows a picture of the experiment
for Ug=3.36 cm/s and Ul=2.24 cm/s. Two distinct bubbles are seen in the middle of the
bed.

Figure 2 shows a comparison of two and three dimensional simulation to the
experiment. The peaks in velocities correspond to motion of the two bubbles shown in
Figure 1. The computed turbulent particle kinetic energy (3/2 granular temperature) is
shown in Figure 3. The turbulent kinetic energy is nearly constant due to the fact that the
particle concentration is nearly uniform in this system.

LaPORTE PILOT PLANT SIMULATION

Wu and Gidaspow (2000) developed a model for the production of methanol from
syn-gas in an Air/Products/DOE LaPorte slurry bubble column reactor. In their model the
viscosity was calculated from the solution of the granular temperature equation. Figure 4
shows the standard Air Products heat exchanger arrangements and two alternate
arrangements.

Figures 5 to 7 show the flow patterns and methanol distribution at an instant in the
reactors. Figure 8 shows the Methanol production for the three configurations. The model
shows an improvement over the present Air Products design.

These simulations illustrate the capability of the model to change the
hydrodynamics for an ultimate optimum design. For example in all these three
configurations the catalyst diameter was 45 microns. We believe based on measurements
of George Cody, formally of Exxon, there exist an optimum particle diameter for
maximum turbulence (granular temperature). The catalyst particle diameter can be easily
changed in this model to explore its effect on production.

CONCLUDING REMARKS

A multiphase CFD model was developed. 1- It predicted the experimentally
observed flow patterns in a churn turbulent regime. 2- It predicted the turbulent kinetic
energy of particles in agreement with measurements. 3- It did not predict the observed
bubbles due to coarse grid resolution.
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Figure 1- IIT Slurry Bubble Column with Liquid Recirculation
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Figure 4- Three Different Arrangements
of Heat Exchangers in the Slurry Bubble Column
reactor and the Initial Conditions

Configuration "A"                       Configuration "B"                               Configuration "C"

183 cm

244 cm
εg=0.05, Vg=4.8 cm/s
εl=0.95

εg=0.05, Vg=4.8 cm/s
εl=0.426, εs=0.524
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Figure 5- Methanol Mole Fraction in the Gas Phase (right) and Solids Volume
Fraction (left) at t=70 s after the start up for heat exchanger set up “A”
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Figure 6- Methanol Mole Fraction in the Gas Phase (right) and Solids Volume
Fraction (left) at t=70 s after the start up for heat exchanger set up “B”
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Figure 7- Methanol Mole Fraction in the Gas Phase (right) and Solids Volume
Fraction (left) at t=70 s after the start up for heat exchanger set up “C”
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Figure 8- Comparison of the Total Methanol Production for the
Three Heat Exchanger Configurations.
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Measurement of Thermal Conductivity of FCC Particles
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Introduction

Various models for heat transfer coefficients in CFB require the knowledge of
thermal conductivity of the fluid-particle suspension (Zabrodsky, 1966; Wu, et al, 1987&
1989; Wu and Gidaspow, 1999). The cluster penetration model (Glicksman, 1988; Basu
and Fraser, 1991) shows that the wall to bed heat transfer coefficient is proportional to
the square root of the cluster conductivity. The hydrodynamic model of Syamlal and
Gidaspow (1985) shows a similar strong dependence on the conductivity. Kuipers, et al
(1992) have confirmed and extended the computations.

A heat transfer module was inserted into the two-story CFB at IIT. From time
average radial temperature distributions at two axial positions, the thermal conductivity
of FCC particles was calculated using an energy balance for the mixture. This procedure
was very similar to the method of computation of FCC viscosity from measurement of
radial velocity profiles (Miller and Gidaspow, 1992). Similarly to the viscosity the
conductivity is a function of the volume fraction of FCC particles. At 5% particles the
kinematic viscosity is 0.15 cm2/s, while the thermal diffusivity is only 0.036 cm2 /s.
Hence the Prandtl number has a reasonable value of 4.2.

Experimental Equipment: Circulating fluidized bed

The circulating fluidized bed (CFB) test unit shown in Figure 1 was used. Air
enters the CFB through the bottom U section with FCC catalyst particles of a diameter of
75 µm, density of 1654 kg/m3 and specific heat of 2.6 KJ/Kg.K. The set-up is that used
by Miller and Gidaspow (1992). A section of the acrylic pipe was replaced with a heat
transfer module.

Heat Transfer Module

Two electrical heaters with wire coils, internal and compensator heater, were used
as the heat source, shown in Figure 2. The wire coils were arranged uniformly so that
heat was liberated quite uniformly along the height. The diameter of wire coil is 1.0 mm
and 0.4 mm for internal and compensator heater, respectively. The heating length of
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heater is 1.016 m. Both heaters are separated by a polyurethane foam strip. Fiberglass
was used to separate the wire coils from both the riser pipe and insulation. Inside of the
insulation between the two heaters, two thermocouples (type T) were installed in order to
control the energy added to the compensator. The signals of these thermocouples are fed
to temperature controllers (Ysi, Model 72) which maintain a temperature difference equal
to zero, avoiding heat loss. Power fed to the internal electrical heater was controlled by a
powerstat, which can be adjusted to the required voltage.

Measurement of particle temperature is difficult because it is not possible to
attach a thermocouple without impairing the mobility of the particles. Usually,
temperatures in fluidized beds are measured with thermocouples in direct or indirect
contact with particles. Protected thermocouples at low temperature conditions are not
only inaccurate, but also have a low response characteristic. Unshielded thermocouples
measure some mean temperature lying between the gas temperature and the particle
temperature.

Temperatures were measured by two unshielded copper-constant thermocouples
each separated 0.45 m. Moving the thermocouples back and forward along the radial
coordinate, a radial temperature profile can be determined. Transient temperature data
using these thermocouples were collected.  The mV signals from the thermocouples
passed through an amplifier and then to an analog-digital converter (11 channels) made
by Interactive Strutures Inc. The digital signals were stored by a computer.

Experiments were done under steady state conditions. Results of a calibration test
show that the steady state was reached 1.5-2.0 hours after switching on the heater. For a
steady state the two thermocouples across the insulation had to give equal temperature.

Extraction Probe

Flux profiles in the CFB were measured with the extraction probe shown in
Figure 3. The probe consisted of a brass tube that has an outside diameter of 0.635 cm
and a 0.4724 cm inside diameter. The tube is bent at a 90-degree angle to align its
opening parallel to the flowing gas-solids mixture. After extraction by the probe, the
gas/solids mixture is separated by a filter. The filter is equipped with a removable solids
collection chamber that is fabricated of clear PVC for visual observation. Air leaving the
filter flows through a fine secondary filter to protect the downstream rotameter and a
vacuum pump. The flow rate of air exiting the extraction probe was adjusted by a globe
valve that is located downstream of the rotameter.
At any particular position within the CFB, the time-averaged solid flux consisted of an
upward and downward component. The magnitude of the upward flux minus the
magnitude of the downward flux is equal to the net upward flux which should be equal to
external solids flux. The upward and downward fluxes are measured with the inlet of the
extraction probe pointing in the upstream and downstream directions, respectively.
Because the CFB operates in an oscillatory state, all flux measurements were time-
averaged over periods that ranged from 1,5 to 8 minutes. Flux components were
calculated by dividing the weight of solids collected in the filtration chamber by the area
of the tip of the probe and sample time.

Van Breugel et al. (1969) suggested in their study that the extraction probe should
be operated under isokinetic conditions, that means the velocity in the probe nozzle
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should be equal to that of the surrounding stream. However, the CFB operates with a
rapid fluctuating velocity, making it very difficult to operate the probe isokinetically.
Similar to Gajdos and Bierl (1978), we have found that the flux withdrawn by the
extraction probe does not vary significantly when the probe gas extraction velocity is
altered within the range of gas velocity anticipated at the local positions in the CFB. This
is probably due to the overwhelming size of the momentum of the solids compared to that
of the gas. The magnitude of both flux components at the riser wall with varying
extraction velocity in the range of 2.0-12.0 m/s is shown in Figure 4. This behavior shows
that the downward minus upward flux is approximately constant at the riser wall.
Downward flux at the center of the riser was negligible in comparison to the
corresponding upward flux for all measured conditions.

Near the riser wall it is necessary to measure both the downward and upward
fluxes to obtain the net flux. Flow-restrictive plugging, however, would sometimes occur
when the extracting velocity of the probe operated within the range of low gas velocity.
There is little difference in the magnitude of the upward and downward fluxes. Therefore,
in this investigation the net flux has been taken to be the difference between the two
components of the flux measured at the same extracting velocity. The error analysis
indicated that the main error for the thermal conductivity and heat transfer coefficient
was caused by the error of measuring the solid mass flux. To compensate for the
experimental error, the readings were averaged over two extracting velocities. Under
such conditions the error between net upward flux and the external flux was estimated to
be less than 18.2%.

Model

The steady state differential equation for equal solid and gas temperature can be
derived for the differential element shown in Figure 5. It is:
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The following equation for the mean thermal conductivity is obtained after integrating
Eq. (1):
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The temperature profiles and solid mass flux profiles are obtained by approximating the
data with a least-squares polynomial that visually best fits the profiles. The polynomial
ranged in order from 5th to 8th degree.

The mean overall heat transfer coefficient, h, was obtained by taking an overall
heat balance across the whole riser. If Q is the net heat flux, the heat transfer coefficient
can be estimated by:
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ThAQ ∆=
(4)
where A is the heat transfer surface based on the internal diameter of the riser, and ∆T is
the logarithmic temperature difference.

Experimental Data: Radial Temperature Profile

Typical local instantaneous temperatures are shown in Figure 6. In general,
variation of instantaneous temperature indicated the degree of mixing and exchange
between particles, particle and gas. It is seen that the degree of such mixing near the wall
is more intense than that in the core region. The flow characteristic is approaching plug
flow in the core region.

Radial temperature profiles experimentally obtained in present test are shown in
Figure 7. In general, the radial temperature gradient is near straight line in the core region
and very steep near the wall of the riser.

Solid Flux Profile

Solid flux profiles were obtained using the extraction probe. The profiles are
quasi-parabolic with an upward-moving mass flux at the center and downward flux at the
wall. In Figure 8, the radial mass flux is plotted at a constant superficial velocity. The
radial mass flux at the center of the riser increases with increasing feed flux. At the wall
the solids are flowing downward. The magnitude of the flux increases with increasing
values of the feed flux. The core is defined as the region in the center of the riser in which
the net solid mass flux is moving upward. It is seen that the radius of the core decreases
with increasing values of mass flux.

The influence of the superficial velocity on the radial flux profiles is shown in
Figure 9. The core radius increases with increasing superficial velocity. The solid mass
flux at the centerline decreased with increasing superficial velocity. The magnitude of the
solids mass flux at the wall flowing downward increases as the superficial velocity
decreases. The profiles of radial mass flux are near parabolic.

Thermal Conductivity

The plot of the effective thermal conductivity versus the superficial velocity is
presented in Figure 10. The effective thermal conductivity increases slightly with
increasing superficial velocity. The influence of the solid mass flux on the effective
thermal conductivity is presented in Figure 11. The value of the effective thermal
conductivity increases with increasing solid mass flux. This is due to the particle
concentration near the wall. It may be seen that the individual values of the thermal
conductivity evaluated from each radial temperature profile become independent of axial
position in this present system, when the axial distance is large. Therefore, it may be
reasonable to obtain the thermal conductivity from the temperature profiles under these
testing conditions.

The effective thermal conductivity versus cross sectional averaged solid volume
fraction is shown in Figure 12.  It is seen that the effective thermal conductivity increases
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with increasing solid volume fraction in the dilute region of the circulating fluidized beds.
The least squares fitted equation is:

( )[ ] 2101218.3669427.5 −ε−+=rK
(5)

Let us assume that

sogr KKK += ,

(6)
where Kgo is the gas thermal conductivity.

Figure 13 shows the variation of the effective particle thermal conductivity Ks

with the solid volume fraction. It is seen that the effective particle thermal conductivity
increases with increasing solid volume fraction. The expression obtained by least squares
fitting of data is:

( )[ ] 2101098.3661995.3 −ε−+=sK
(7)

Heat Transfer Coefficient

Figure 14 shows the variation of heat transfer coefficient with superficial velocity.
Within the range of superficial velocity tested, the data shows that the heat transfer
coefficient increases slightly with increasing superficial velocity. There is a very
substantial augmentation of the heat transfer coefficient with superficial velocity.
According to Grace (Grace, 1986), the independence of heat transfer of the superficial
velocity is due to the small contribution of the gas convective component to the heat
transfer coefficient. The variation of the gas convetive component due to a change in gas
velocity for a flow of gas alone is indeed small compared to the measured variations at
higher solid mass flux. Figure 15 shows the influence of solid mass flux on the heat
transfer coefficient. It is evident from this figure that heat transfer coefficient is a strong
function of the solid mass flux.

The plot of the heat transfer coefficient versus bulk density is shown in Figure 16.
It is seen that the heat transfer coefficient increases with increasing density in the dilute
region of the circulating fluidized bed. The least-squares correlation is as follows:

bh ρ+= 5038.1466.87
(8)
where ρb is bulk density of the riser.

Error Analysis

The expected error in the measured values of the effective thermal conductivity
can be expressed as follows:
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The accuracy of measured solid mass flux Ws is usually within ±18.2% using the
extraction probe. The accuracy of gas mass flux, Gg is estimated to be ± 4.5%, metered
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by rotameters. The temperature measurement using the copper-constant thermocouple is
within ±1.0%, while the accuracy of measuring r and Z are about ±1.33% and ± 0.2%,
respectively. The end effects cannot be predicated accurately. The measured value of the
thermal conductivity is then within ±19% . The main error is due to the measured solid
mass flux.

The expected error for heat transfer coefficient can be written as follows:

EffectsEnd
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R
r
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G
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Q
Q

h
h

g

g

s

s
h +∆+∆+∆+

∆
+

∆
+∆=∆=ε

2222222

(10)
The accuracy of measuring the input power is within ±3.5%. The measured value of the
heat transfer coefficient is then ±19.4%.

Nomenclature
A Heat transfer surface m2

Cp Particle specific heat J/Kg.K
Cg Gas specific heat J/Kg.K
H Heat transfer coefficient W/m2.K
Gg Gas mass flux Kg/m2.s
Kr Effective thermal conductivity W/m.K
Ks Effective particle thermal conductivity W/m.K
Kg Gas thermal conductivity W/m.K
Kg,o Gas microscopic thermal conductivity W/m.K
Ks,o Solid microscopic thermal conductivity W/m.K
P Pressure N/m2

Q Net heat flux W
R Radial coordinate ---
R Radius of riser m
T Gas/particle mixture temperature K
Tg Gas temperature K
Ts Particle temperature K
Tr=R Wall temperature K
Tr=0 Centerline temperature K
Ug Gas velocity m/s
Ws Solid mass flux Kg/m2.s
Z Axial coordinate ---

Greek letters:
ρg Gas density Kg/m3

ρs Solid density Kg/m3

ρb Bulk density Kg/m3

ε Porosity ---
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Abstract
An important characteristic of fluidized beds is that they never reach a steady

state. To explain the behavior, the classical wave theory is applied to fluidization by
replacing the acoustic sonic velocity with the square root of the derivative of the solids
pressure with respect to density. This pseudo-sonic velocity is obtained from
measurements of granular temperature and an equation of state for the cracking catalyst
that has been established in an earlier publication.

The wide range of granular temperature is explained in terms of a new analytical
solution of the problem. The wave theory gives a resonant frequency and shows the
possibility of the existence of standing waves which set up systems of steady vortices
sometimes computed in the complete numerical solution of the Navier-Stokes type
equations for fluidization.

A gamma ray densitometer was used to measure axial porosity oscillations in a
two story circulating fluidized bed for flow of 75 mµ  cracking catalyst particles. In the
upper portion of the riser, there was a distinct dominant frequency of less than 0.2 Hertz
which decreases with increasing porosity. In the lower portion of the tube the behavior
was more chaotic and the dominant frequency was less defined. It approached one Hertz
for porosity of 0.6.

To explain these data and the bubbling bed frequencies an analytical expression
for the dominant frequency of oscillations was developed starting with conservation of
mass and momentum. In agreement with riser measurement it decreases to zero, as the
solid volume fraction decreases. It agrees with the decrease of the bubbling bed
frequency with bed height. For incompressible flow, the large scale oscillation is simply
the classical gravity wave obtained from the transient Bernoulli equation.
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1. Introduction
The understanding and prediction of large scale oscillations of gas-solid flow,

sometimes referred to as hydrodynamic instability (Jackson, 1985), is of interest in
nature, such as in the explosive volcanic eruptions (Neri, et al 1998), industrially in coal
combustors and in fluidized catalytic cracking (FCC) reactors (Squires, et al., 1985) and
in the control of solid propellant rockets (Culik, 1994). Fluidized bed reactors are widely
used industrially due to their excellent heat and mass transfer characteristics, which are
caused by oscillations of particles. One can group these oscillations into large-scale
oscillations, which are of the order of equipment size, reactor height or diameter, and
small-scale oscillations that are of the order of particle size.

1a. Solids Viscosity and Kinetic Theory Models
Recent reviews (Gidaspow, 1994; Jackson, 1993; Sinclair, 1997; Kuipers, et al,

1998) show that two types of Navier-Stokes type models were developed to simulate
fluidized beds and compared with experiments. The model with solids viscosity as an
input was used by Tsuo and Gidaspow (1989), Benyahia, et al (1998) and by Sun and
Gidaspow (1999) to model riser (vertical pipe) flow. Bubbling flow was modeled
similarly by Lyckowski, et al (1993) and by Anderson, et al (1995). These models
compute the large-scale density oscillations which we refer to as gravity waves.
However, for riser flow they have not been compared to experimental density
fluctuations due to absence of such data. This paper presents such data.

The second Navier-Stokes type model is based on the granular theory of Savage
and co-workers (Lun, et al 1984; Savage 1988). It was applied to steady, developed riser
flow in a pioneering paper by Sinclair and Jackson (1989) using the Johnson and Jackson
(1987) boundary conditions. Developed flow requires the solids pressure to be constant.
For an ideal type equation of state for particles, verified experimentally by Gidaspow and
Huilin (1998) for FCC particles, this approximation states that the product of the granular
temperature (essentially, oscillating kinetic energy of particles) and the solids volume
fraction is a constant. But with a restitution coefficient of near unity and the Johnson and
Jackson (1987) boundary conditions the granular temperature equation shows that the
maximum in the granular temperature is at the center of the riser. In view of the
constancy of the granular pressure, the solids volume fraction is a minimum at the pipe
center. This leads to the observed core-annular flow for both riser flow and for the co-
current down flow. The viscosity input riser model also leads to the core-annular flow
regime. In this transient model the transfer of particles to the wall is due to the large-scale
oscillations. The accumulation of particles at the wall is due to the low gas velocity at the
wall which is insufficient to maintain the upward flow of particles.

It was only a decade ago that the oil industry using gamma ray techniques (Sun
and Koves, 1998) learned that their large diameter risers operate in the core-annular flow
regime: the core is very dilute. The core-annular structure leads to two main problems:
(1) insufficient gas-solids contact, and (2) back-mixing due to non-uniform radial
distributions (Jin, et al 1997). This unfavorable radial volume fraction distribution of
solids in the riser has led to consideration of new schemes of contacting for a refinery of
the 21st century.

The transient kinetic theory model (Gidaspow, 1994; Samuelsberg and Hjertager,
1996a & b) also requires some experimental input. For gas-solid flow the main input is
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the restitution coefficient which is a function of velocity at impact. At the present time
there is no way of accurately estimating the restitution coefficient. Hence the granular
temperature was experimentally measured for FCC particles using a CCD camera and the
equation of state for particles was constructed using the measured solids pressure and the
radial distribution functions of statistical mechanics (Gidaspow and Huilin, 1996 &
1998). The kinetic theory model clearly explains why fluidized beds are such good heat
transfer devices. Their thermal conductivity, k  can be expressed in terms of mean free
path, l , the average of fluctuating velocity, v  which is essentially the square root of the
granular temperature and the density and the specific heat of particles as follows.
                                                                pCvlk ρ=
where ρ =density and pC =heat capacity of particles.

The mean free path, l  is essentially the particle diameter divided by the solids volume
fraction. For dense systems it is of the order of particle diameter. For dilute conditions it
will approach the size of equipment. The granular temperature rises with the particle
concentration, reaches a maximum near about five percent solids and then decreases due
to a decrease in the mean free path. Cody's data (Buyevich and Cody, 1998) suggest that
the granular temperature have a maximum for a particle size of about 90 microns, close to
the size of FCC particles. Hence the thermal conductivity should have a maximum at this
particle size, as indeed it appears to have. We see that the kinetic theory model has the
potential to explain why fluidized beds are such good contacting devices.

1b. Sonic Velocity of Particles
The granular flow kinetic theory also helps to exp lain the mechanism of large-

scale wave propagation. From the work of Savage (1988) and others we know that
density waves move with the pseudo sonic velocity, the derivative of solids pressure with
respect to the density. Hence we present our data for sonic velocities for FCC particles.

The large-scale oscillation frequency is the sonic velocity divided by the
equipment size. Near five percent solids and less the collisional and the cohesive
contributions in the equation of state are negligible. Then the sonic velocity is simply the
square root of the granular temperature. For FCC particles it is of the order of one meter
per second versus about 300 m/s for gases. Hence for particles the oscillations associated
with the hydrodynamic instability are of the order of one Hertz for particles versus 300
for air for a one meter length.

1c. Resonant Vibrations
Resonant vibrations that are vibrations whose natural frequency equals the forced

frequency are known to set up large amplitudes of oscillations. The natural frequency can
be interpreted to be as the frequency obtained from the sonic velocity discussed above.
The forced frequency is the gravity wave obtained in this paper. It agrees with literature
bubbling bed data and with the riser data presented here.

The scale-up of the circulating fluidized bed reactor for making liquids from
synthesis gas, the Synthol reactor was delayed by two years due to vibrations caused by
the dense iron catalyst not encountered in the much smaller pilot plant (Matsen, 1997;
Shingles and Mc Donald, 1988). We may speculate that resonance was set up when the
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length was made larger, since the catalyst concentration was probably the same in the
pilot plant and in the commercial unit.

2. IIT Circulating Fluidized Bed
The experimental set-up is shown in Figure 1a. The riser is an acrylic tube of 0.07

m ID and a height of 6.58 m. Fluid cracking catalyst particles of a density of 1654 kg/m3

and an average diameter of 75 µm  were used. The CFB and the particles are identical to
those used by Miller and Gidaspow (1992). Charge is removed by a metallic wire along
the wall of the tube. Figure 1b shows a sketch of time average particle concentration and
flux profiles obtained by Miller and Gidaspow (1992). A video made previously by
Miller (1992) shows that in the dense regime of interest in this study the particles at the
wall undergo a vigorous up and down motion. It is basically this random particle motion
that we measured with our CCD camera and converted into granular temperature
(Gidaspow and Huilin, 1996). From it we had obtained a collisional viscosity that
matched Miller and Gidaspow's (1992) reported viscosity obtained from pressure drop-
radial particle velocity measurements.

Porosity measurements across the whole tube were made at a height of 1.83 m on
the first floor and the second floor at a height of 4.4 m with a gamma ray densitometer
with a collimation diameter of about one centimeter.

3. Gamma Ray Densitometer
A gamma ray densitometer has been successfully used to understand the

dynamics of bubbling fluidized beds for at least the last 34 years (Baumgarten et. al,
1960; Weimer et al., 1985; Ding et. al., 1990). It has surprisingly not been applied to
understand the dynamics of a CFB despite its potential use in industrial risers and high
pressure combustors. In  this study a gamma ray densitometer equipped with a
scintillation detector was used to measure porosity oscillations in the IIT CFB, shown in
Fig. 1a, at two locations. In the bubbling bed study of Tsinontides and Jackson (1993),
they used a radioactive beam of only a few millimeter diameter to have a good spatial
resolution. Such a small beam does not allow the transient determination of porosities.
The beam in this experiment was one centimeter.

The gamma ray densitometer was used to measure instantaneous averaged cross-
sectional porosities. The source is a 500 mCi-Cs-137 source having a single gamma ray
of 667 Kev and a half life of 30 years. The Cs-137 was sealed in a welded stainless steel
capsule. The source holder was welded, filled with lead, and provided with a shutter to
turn off the source. The detector is a NaI (Ti) crystal scintillation detector (Teledyne,
ISOTOPESS-44-I/2). It consisted of a 2 mm thick, 5.08 cm diameter tube with a 0.14 mm
thick Beryllium window. The transmitted radiation was converted to electrical pules by
photo-multiplier (Model 266, EG&G Ortec). The converted electrical signals were passed
through a series of data conditions including a preamplifier (Model 113, EG&G), an
amplifier and a double channel analyzer (model 778). The DCA has been used to remove
low energy level noises. A DCA produces an output logic pulse only if the peak
amplitude of this input signal falls within the energy window that is established with two
preset threshold levels. The output of DCA connects to a modular data acquisition and
control system (ISAAC 91-I) which was used as the interface between the densitometer
and personal computer. The output signal of DCA is sent into a counter device. The
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counter counts down from 65535 to zero and reinitializes automatically. The counting
number is sent to computer in binary form and managed by a PC computer. An IBM PC
with a 20 MB hard disk and a Math coprocessor has been used to store and analyze data.
The data analysis consisted of transient state porosity and steady state porosity
measurement. The power spectrum is calculated by using the fast Fourier transform
(FFT) method. The intensity of transmitted radiation follows Beer's law. The attenuation
coefficient for the particles was 0.02477 cm/g. A calibration curve was obtained by
measuring radiation counts for an empty tube and one filled with particles. At a porosity
of 0.4 the count was 22400 while for the empty tube it was 23800 per second.

4. Oscillations in the Dilute Regime
Figure 2 shows the experimental porosity oscillations in the upper portion of this

riser. As in the computation of the Pyropower system (Therdthianwong and Gidaspow,
1994), we see wild porosity oscillations depicted in Figure 2. Similar data were obtained
at other gas velocities and solid fluxes. Figure 3 shows the spectral representation of the
data in Figure 2. As in the simulation for the Pyropower type CFB (Gidaspow et al.,
1995) there are two distinct peaks with little noise. Figure 4 shows a summary of spectra
for other flow conditions. Figure 5 shows a plot of the dominant frequency as a function
of porosity. The frequency is well below one Hertz, typical of bubbling beds. It increases
linearly from 0.05 Hertz at a superficial gas velocity of 1.6 m/s and a flux of 27.8 kg/m2-
s to 0.128 at a velocity of 2.6 m/s. It also increases linearly with solid flux from 0.06
Hertz at a flux of 18.5 kg/m2-s at a velocity of 2.67 m/s to 0.2 Hertz at a flux of 34
kg/m2-s. Such low frequencies were also obtained for pressure oscillations and analyzed
by Bouillard and Miller (1994). The numerical simulation for the large scale unit
(Gidaspow et al., 1995) operating at an order of magnitude larger flux shows that linear
extrapolations of these data are not valid. The trend is in the right direction, however. The
frequency increases to one Hertz for the higher gas and solid flows.

5. Oscillations in the Dense Regime
Figure 6 shows typical density fluctuations in the lower portion of the IIT CFB,

1.83 m above the inlet. In agreement with computations for the Pyropower system
(Gidaspow et al., 1995) for an instant of time the average porosity in this region is near
0.8. The corresponding power spectrum depicted in Figure 7 shows a much more chaotic
behavior. Other data show more pronounced dominant peaks summarized in Figure 8.
The large scatter of the data is due to the absence of a distinct structure of flow in the
bottom section of the CFB.

6. Wave Propagation in Dense Flow
The theory of fluidization, as described by Gidaspow (1994), shows that the

mechanism of large scale oscillations is a coupled pressure and density non-linear wave
propagation phenomenon. The small scale turbulence is described by the granular
temperature, for which an additional conservation equation is written. For a very dense
bed, such as a bubbling bed, a simplified theory shows that the density and the flux obey
a simple wave equation with densities propagating at pseudo-sonic velocities of solids,
Cs. The kinetic theory of granular flow shows that Cs is the oscillating velocity of the
particles.
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For the dense riser flow of interest here, the more complete equations must be
considered. A Reynolds number criterion shows that it is sufficient to consider the
particle equations only. For pipe flow with small catalyst particles the slip between the
gas and the particles is small. Then the mixture equations show that the characteristic
group is a mixture Reynolds number (Gidaspow, 1994). A useful Reynolds number, Re is
one based on some average velocity, v and, say, the pipe diameter, D,

                                                           R
D v

e
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p g
=

+
ρ

µ µ
                                                        (1)

where µ p  is the particle viscosity which exceeds the fluid viscosity, µ g  by several orders
of magnitude. The mixture density, ρm is
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for ε s , the volume fraction of solids of much greater than 0.1 %. Thus for particle
concentration of much greater than 0.1 %, the Reynolds number criterion is
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It does not involve gas properties. Hence it is sufficient to consider the particle equations
only. The one dimensional particle mass and momentum balances are as follows:

Solid Mass Phase Balance:
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The theory of characteristics (Gidaspow, 1994) shows that the characteristic
directions are
                                                                     v Cs s±                                                           (8)
where the pseudo-sonic velocity (Savage, 1988) is

                                                             
2

1







∂ερ

∂
=

ss

s
s

p
C                                                    (9)

Ocone and Astarita (1994) obtained a similar expression of the pseudo-sonic velocity
assuming a reversible and pseudo-adiabatic process. Particle waves move with velocities
given by Eq. (8). The difficulty with this theory is that the particle sonic speed must be
known. In the next section we will show that it can be obtained from measurements of
granular temperature.

For more dilute flow, as in pneumatic transport, the more complete equations
must be considered. Gidaspow (1994) shows that the characteristic paths for density,
pressure, etc. wave propagation are:
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7. Particle Sonic Velocity
Particle sonic velocity can be estimated based on kinetic theory derived equation

of state and measurements of granular temperature in the CFB. Granular temperatures
were measured in the IIT CFB using a CCD camera (Gidaspow and Huilin, 1996). The
technique involves a measurement of particle velocity distribution, in principle similar to
that obtained much earlier by Carlos and Richardson (1968) using a photographic
method. A particle makes a streak on a computer screen for a millisecond or so. The
distances traveled divided by time give two velocity components. Many such
measurements give distribution curves of the axial and radial velocities. Table A listed
the experimental data in the dilute region. Since the radial velocities are small compared
with the axial velocities, isotropy is a reasonable assumption in the radial direction. Such
calculations and measurements give us the granular temperature depicted in Figure 9
(Gidaspow and Huilin, 1996).

The sonic velocity, Cs, as defined by Equation (9) is then obtained from the
derivative of the equation of state for the particles originally derived by Lun et al. (1984):
                                                   ( )[ ]0121 gep ssss +ε+θρε=                                       (11)
where we used Bagnold 's relation of g0  given by (Bagnold, 1954):
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Figure 10 shows the computed sonic velocities in our CFB. They are of the order of
magnitude estimated by Gidaspow (1994) from measurements of discharge of particles
from orifices. Figure 10 also shows the measured average particle velocities obtained
using our digital video camera.

8. Compressible Large Scale One Dimensional Oscillation
In this section we derive an equation for the observed large scale low frequency
oscillation in the vertical pipe. We begin with the momentum balance for the solids
Equation (7.2) in Gidaspow’s book. To obtain an analytical solution for the frequency, a
number of approximations are necessary. First, we neglect the velocity square terms. This
simplification will immediately lead to the neglect of Vs compared to Cs in the wave
propagation analysis. Next we neglect the small contribution, for one dimensional
analysis, of wall friction caused by solids viscosity. We further restrict the analysis to
flow of particles above minimum fluidization. This leads to the neglect of solids stress
caused by particle contact except those caused by collisions. With these simplifications
the solids momentum balance for phase s becomes as follows.
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                       Acceleration of        Solids         Buoyancy       Drag
                       Momentun               Pressure due
                      of Phase s                 to Collisions
Note that for a steady state with a negligible solids pressure, Equation (13) is the
conventional balance of buoyancy and drag. Here, however, we emphasize the time
variation. Hence we need the transient conservation of particles equation, which is as
follows in one dimension.
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A wave equation for the bulk density ssB ερ=ρ  or for the flux, sss vF ερ=  can be
obtained by following the procedure in chapter 7 in Gidaspow’s book. Differentiation of
Equation (14) with respect to time gives
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while differentiation of Equation (13) with respect to x for gs ρ>>ρ  gives
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Combination of Equations (15) and (16) produces the one-dimensional wave equation for
bulk density, where Cs was defined by Equation (9).
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                                  Wave Propagation=             Source              -              Drag
                             (Zero for Developed Flow)
Equation (17) shows that the density wave propagates with the pseudo-wave velocity Cs,
that gravity acts as a source for wave formation and that drag dampens the waves, when
the relative velocity is positive. Generalization of Equation (17) to two and three
dimensions shows that there will be additional source terms due to gradients of (vg-vs) in
the multiple dimensions. These terms may give additional peaks in the spectral analysis
of bulk density. For developed flow the axial variation of the relative velocity becomes
zero in Equation (17). Further, if we neglect the solids pressure effect, the sonic velocity,
Equation (17) simplifies to a diffusion equation
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The variation of bulk density with height, x is obtained from an additional momentum
balance. For developed one dimensional flow the pressure drop is balanced
approximately by the weight of the bed, expressed by
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The pressure drop itself is given by the Ergun equation which for small relative velocities
is as follows.
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We now relate the pressure drop to relative bed expansion using the method of
Thompson (1978) who obtained a formula for frequency similar to that derived
here. Thompson did not use conventional fluidization equations, but constructed a
flow model of his own. First we note that for an expanded bed, the conservation
of particles balance is as follows

                                                               xx soso ε=ε                                                      (21)
where ε so and xo are some initial bed volume fraction and height of bed filled with
particles. Using calculus, Equation (21) gives the differential expression as
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We now estimate the relative differential change of pressure using Equation (20), as the
volume fraction, ε s changes during the passage of a wave for a constant superficial
velocity Uo . By calculus only,
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Using the differential particle balance, Equation (22), the differential change of pressure
drop can then be expressed as follows
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The above expression allows an estimate of the density gradient to be made.
Differentiation of Eq. (19) and substitution into Eq. (18) gives
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Using Eq. (19) and (24), Eq. (25) becomes an ordinary differential equation
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d
                                        (27)

Equation (27) is the equation for the vibration of a spring of a unit mass with the brackets
representing a spring constant. Treating the bracket as a constant, the solution is
                                                  tBtAB ω+ω=ρ sincos                                                (28)
where



89

                                                  
( ) 2

1

2

1

23








ε

ε+εε






=ω

so

ss

ox
g

                                       (29)

The frequency of oscillations, f is

                                                                 
π

ω=
2

f                                                            (30)

We see that the basic frequency is that caused by gravity, ( ) 2
1

oxg  and that the frequency
becomes very small as the volume fraction of particles becomes small.
Verloop and Heertjes (1974) were the first to derive a frequency relation that has the
basic term ( ) 21

oxg  by treating a fluidized bed as a vibrating column. However their
relation does not have the correct compressibility term achieved by using some key steps
contained in Thompson’s (1978) analyses. In Equation (27) the “elasticity” per unit mass
is proportional to the volume fraction of solid. A denser bed has a greater elasticity.

9. Comparison of Dominant Frequency Formula to Experiments
Fig. 11 shows a comparison of the expanded bed dominant frequency, Equations

(29) and (30), to the experimental data. Very low frequencies predicted by Equation (29)
were also obtained by Sun and Gidaspow (1999) in the simulation of the PSRI riser in the
challenge problem presented at the Eighth International Fluidization Conference in
France.  Fig. 11 and Equation (29) also suggest that for very dilute systems the frequency
will vanish giving a steady state. This is the situation observed numerically. In such a
situation the frequency jumps to a value of the order of 100 Hertz  (Plasynski, et al ;
1993).
In Figure 11 the data obtained on the first floor is in the inlet section of the riser. There is
more than one peak, as suggested by Equation (17). Gradients of velocity produce
additional peaks in the bulk density. We have seen such a behavior earlier at IIT in
bubbling beds (Seo, 1985; Gidaspow; et al,1989; Gidaspow,1994 Fig. 10.5). We have
measured porosity with the gamma ray densitometer described here and pressure with a
transducer. Fig. 12 shows several peaks near the inlet of a two dimensional bed but only
one distinct peak in the region of bubble formation. Fig. 13 shows that the dominant peak
obtained from pressure measurements, pf , is the same as that due to the porosity

measurement, εf , expect in the entrance region, for h<12 cm. This follows from
Equation (19), which is valid in the developed region. This equation also shows that if the
density varies as the sine wave, then the pressure will be a cosine wave. Since

( ) 




 π+ω=ω

2
sincos tt , there is the observed displacement of the two waves. Note also

that the pressure waves (Gidaspow, 1994) move with the velocity ( ) 2
12

1

sg
s

g C εε⋅





ρ

ρ
,

where Cg is the sonic velocity of the gas when gss ερ>>ερ . At atmospheric pressure

this velocity is of the order of 10 m/sec, considerably higher than Cs . Since in the
developed region the dominant frequencies are the same for pressure and porosity, we
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can compare our experimental frequency equation to early bubbling bed data of Geldart
and Baeyens (1974) who obtained dominant pressure peaks for several bed diameters. A
comparison of the expanded bed equation to IIT and Geldart data is shown in Fig. 14.
There is excellent agreement between the simplified theory and the data.

10. Two Dimensional Oscillations: Gravity Waves
The classical analysis of gravity waves (Elmore and Heald, 1969) can be used to

understand two dimensional effects observed in fluidized beds. This analysis begins with
the transient Bernoulli’s equation made at the top of the bed. With a constant pressure
and negligible velocity head, this equation reduces itself to

                                              hat    x  constant  =+
∂
Φ∂=∆
t

xg                                      (31)

where Φ is the velocity potential used by Davidson (1961) in his classical bubble model.
Such a potential exists in the absence of voidage gradients, as shown in Gidaspow’s book
(1994). This is a severe restriction. Nevertheless, it yields some useful approximate
solutions. Thus for irrotational flow,

                                                                   02 =Φ∇                                                        (32)
and
                                                                    Φ−∇=v

r
                                                     (33)

Then in the direction of flow, x , Equations (31) and (33) give the balance

                                                          hx
tx

g =
∂

Φ∂=
∂
Φ∂

at                     2

2

                         (34)

At x=0, the velocity is zero.
The solution to Equation (32) is obtained by separation of variables
                                                         )()()( tTyYxX=Φ                                                  (35)
to be

                                                   ( ) 0tanh2

2

=+ TKhgK
dt

Td
                                          (36)

where K is the separation constant having units of reciprocal length.
Equation (36) shows that the angular frequency ω is

                                                        ( )2
1

tanh KhgK=ω                                                   (37)
Compare this to the compressible one dimensional case, Eq. (29).
The wave velocity, C is

                                                    
2
1

tanh 




=ω= Kh

K
g

K
C                                               (38)

For KhKhKh ≈<< tanh,1  and Equation (38) gives

                                                               ( )2
1

ghC =                                                          (39)
This is the speed acquired by a particle falling a distance 2/h  from rest.

The second limit for 
K

horKh
1

1 >>>>  gives 1tanh =Kh . Then
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where λ is the wavelength. When we take λ to be the bed diameter

                                                ( )2
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3989.0
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gD
Dg
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


π
=                                            (41)

versus the experimental slug velocity (Hovmand and Davidson, 1971)

                                                        ( )2

1
35.0 gDCslug = .

11 . Reduction to Wave Equation
Further analysis of fluidization oscillations following gravity wave theory is not

very useful due to the assumption of incompressibility of bulk density made in the
previous section. However, the one dimensional compressible analysis can be easily
extended to more than one dimension by again neglecting vs compared with Cs and
assuming developed flow. The generalization of Equation (17) with the approximation
made in the one dimensional analysis gives a wave equation with a source.
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              source
The solution to this equation is the approximate source solution given by Equation (28)
plus the solution to the wave equation with the source in the brackets set to zero. The
solution of the homogeneous wave equation ,when put into the canonical form, has the
form
                                         ( ) ( )tCxftCxf ss ++−=ρ 21shomogeneouB,                             (43)

which shows that the waves move with the pseudo-sonic velocity Cs in opposite
directions. This is the theory behind the empirical correlation

                                                           
emirical

ss
CFB L

vC
f

−
=                                                   (44)

shown in Figure 15. The pseudo-sonic velocity Cs was taken relative to the solids
velocity, as shown by the exact characteristics analysis.

The classical theory of wave propagation can be applied to this problem in the
direction perpendicular to flow. Equation (13) shows that at the walls, y=0 and y=L the
gradient of bulk density is zero. Then separation of variables of the homogeneous portion
of the wave equation is as follows. Let
                                                              ( ) ( )yYtTB =ρ                                                    (45)
The ordinary differential equations become as follows, where prime denotes the
derivative
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with the boundary conditions
                                                           ( ) ( ) 00 =′=′ LYY                                                    (47)
which give
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and the eigenvalues

                                                      ,...3,2,1, =π=
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n                                               (49)

Hence with the zero gradient boundary conditions the fundamental frequency is:

                                                                 
L

Csπ
=ω1                                                        (50)

or
                                                                CFBfπ=ω1                                                       (51)

Figure 15 gives a length empiricalLL π=  of about 6 meters which is the length of the CFB.
Note that the boundary conditions at the top and bottom of the bed cannot be given
exactly in terms of bulk density only. Hence the length in the direction of flow is not
precisely known for wave propagation. This analysis, however, greatly aids in
interpreting the numerical solution of the complete equations of motion.

12. Non Dissipating System at Resonant Frequency
A most important characteristic of fluidized bed is that they never reach a true

steady state. In dense beds this unsteadiness is visually observed as bubbles that form
near the bottom of the bed, rise and then erupt at the surface, just like boiling water in a
pot. In risers the unsteadiness is visually observed and computed (Tsuo and Gidapow,
1989; Sun and Gidaspow, 1999) as clusters of particles that form at the top, descend to
the bottom of the bed and are transported back up in the center of the pipe. If the intensity
of oscillations is not strong, as in dilute riser flow, or if the restitution coefficient is made
too small, the computer code gives a steady state which may or may not represent the
correct time averaged behavior. Hence an approximate analytical behavior needs to be
investigated. Classical wave theory aids in the understanding.

The Navier-Stokes equations for compressible fluids can be decomposed into a
wave equation for a potential with damping due to the fluid viscosity and into a stream
function equation (Tolstoy, 1973; Morse and Feshbach, 1953). For zero viscosity that is
for a high Reynolds number, the result is an undamped wave equation for a potential
which by substitution

                                                             ( ) tiezyx ω−Φ ,,
can be transformed into the classical Helmholtz equation for the eigenfunction nΦ

                                                           022 =Φ+Φ∇ nnn k                                               (52)

where                                                      snn Ck ω=                                                     (52a)

The corresponding equation for a unit source solution, the Green's function kG  is

                                                 ( )sourcesourcek rrkG
rr −πδ−=+∇ 422                                 (53)

A standard Green's function construction (Morse and Feshbach, 1953) gives



93

                                           ( ) ( ) ( )
∑

−

ΦΦπ=
∞

=1 22
4;

n sourcen

sourcenn
sourcek

kk

rr
rrG

rr
rr

                              (54)

In Equation (54) when
                                                              sourcen kk =                                                        (55)
we have a singularity. These are the infinities when a non dissipative vibrating system is
driven at one of its resonant frequencies. For fluidization, the porosity goes to infinity.

13. Resonant Height
The brief review of resonance for a non dissipative system shows that at

resonance we equate the frequency of the source to the natural frequency of the system,
as given by Equation (55). For the fluidized bed we equate the frequency given by
Equations (51) and (44) to the gravity wave frequency, Equation (29). For the
fundamental frequency, ω , with sC  expressed relative to the velocity of the solids, the
result is
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The resonant length, Lresonant , neglecting second order terms in volume fractions, gives
the simple result
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εε
π
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2
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                                            (57)

To make a quick estimate, it is best to express the pseudo-sonic velocity, Cs in
terms of the granular temperature, θ  using the ideal equation of state for particles
(Gidaspow and Huilin, 1998), θρε= sssP  which is valid near 5% solids or less.

                                                                      θ=2
sC                                                        (58)

Then the resonant length becomes

                                                        
sosdilute
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εε
θπ=

2

2
                                             (59)

For dense bubbling beds the collisional pressure θρε= osss gP 24  can be used where go is
the radial distribution function at contact. The result is

                                                         
so

o

dense

resonant g
g

L
ε

θπ
=

24
                                                (60)

For bubbling beds Cody's data (Cody and Buyevich, 1998) gives a granular temperature
of 10 (cm/s)2 . With go=5, Equation (60) shows that resonance occurs at  a length of 2 cm.
Resonance may be an alternative way to interpret bubble formation.
For the Synthol reactor discussed in the introduction, Equation (59) gives a length of
about 10 meters. Hence a smaller pilot plant had no violent vibrations, while the
commercial unit encountered resonance.
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14. An Analytical Solution For Granular Temperature
Values of granular temperature vary by at least four order of magnitude, from

about 1 (m/s)2 in a riser for FCC particles to less than 1 (cm/s)2 for 45 mµ catalyst in a
liquid-solid fluidized bed (Gidaspow and Huilin, 1998b). Cody and Goldfarb's (1998)
values of granular temperature in a bubbling bed at a ratio of fluid velocity to the velocity
of minimum fluidization of two are about 15 (cm/s)2 for a 50 mµ size particle, rise to 35
(cm/s)2 for about 90 mµ particle and then decrease to 5 (cm/s)2 for a 150 mµ size and then
finally increase with particle size. Such a behavior is known to exist for heat transfer
coefficients in bubbling beds and has never been explained successfully. Hence we only
present an analysis that explains the order of magnitude difference between various
measurements, since a full explanation in not yet available.

In developed flow in a riser with flow of elastic particles, the granular temperature
balance (Gidaspow, 1994) involves a balance between conduction and generation. In
cylindrical coordinates it is as follows for a constant conductivity, κ  and particle
viscosity, sµ .
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As a limit we had assumed that all dissipation occurs at the wall. We prescribe the wall
granular temperature at pipe surface; Rr =
                                                                    ( ) wR θ=θ                                                     (62)

The solids velocity, su can be approximated as the difference between the gas and the
terminal velocity leading to a lower shear rate for larger particles and a possible
explanation for the maximum in Cody and Goldfarb's data. However, here we assume
homogeneous flow, as is roughly correct for flow of FCC particles in the CFB.

We had estimated the FCC viscosity (Miller and Gidaspow, 1992) from the
mixture momentum balance,

                                                     g
dz
dP

dr

du
r

dr
d

r m
ms ρ−=





µ

                                     (63)

and the measurement of the solids radial velocity profile. For small slip the mixture
velocity mu  and the solids velocity su are nearly equal. Then Equation (63) can be used
to obtain the velocity gradient in Equation (61). Unfortunately the mixture density is a
function of the radius r . One can, however, divide the flow into two regions, the core
and the dense annulus. Neglecting the thin annulus downflow region, integration of
Equation (63) then gives the usual Poiseuille flow. Integration of Equation (61) then
gives a fourth-power dependence of granular temperature on radius, like the thermal
temperature rise in Poiseuille flow (Schlichting, 1960). In terms of the mean velocity u ,
the relation between the maximum granular temperature, maxθ  and u  then is the same as
the relation between the thermal temperature and the mean velocity.

                                                          2
max us

w 






κ
µ=θ−θ                                                (64)

Equation (64) shows that the granular temperature is of the order of the fluid velocity
squared. Figure 10 fully supports this analysis. Equation (64) shows the reasonable result
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that at low fluid velocities, the granular temperature will be correspondingly low. It
provides a first order estimate of the granular temperature and the pseudo-sonic velocity
needed in the present analysis.

15. Vortices Due to Standing Waves
Joshi and Sharma (1979) solved a stream function equation with vorticity for

bubble column and pointed out the possibility of multiple circulation cells. Wu and
Gidaspow (1999) solved the separate phase conservation of mass, momentum, species
and energy equations for a slurry bubble column reactor using granular flow kinetic
theory and observed multiple circulation cells in addition to the basic upflow in the center
and downflow at the walls. The understanding and modification of flow patterns by, for
example, proper placement of heat exchangers into the column is needed for an improved
reactor design. The origin of the multiple circulation cells may be in the vortices formed
by the stationary porosity waves.

The classical Rayleigh kundt's tube solutions, depicted in Fig. 16, can be applied
to fluidization by replacing the sonic velocity with pseudo-sonic velocity, sC . Tolstoy
(1973) shows how such solutions are obtained starting with the Navier-Stokes' equations.
The standing waves are the solutions that depend on the position only.
Outside the boundary layer, there exists a velocity in the x direction given by

                                                          x
C

V
V

s

o
x α= 2sin

8

3 2

                                                 (65)

where

                                                                   
sC

ω=α                                                          (66)

We see that the periodic solution (65) depends upon the value of the prescribed
frequency, which is the gravity wave frequency derived earlier; and on the pseudo-sonic
velocity, sC . Figure 17 gives a representation of the flow patterns for some typical values
for the riser and for a denser bed. The riser flow pattern is similar to that measured and
computed using the complete set of Navier-Stokes' equations with granular flow theory
(Neri and Gidaspow, 1999). Equation (66), however, permits a quick estimate of length
using the prescribed forced frequency, ω , and the pseudo-sonic velocity, sC . Such
patterns may also be achieved by vibrations, where ω  can be varied independently.

Nomenclature
e Restitution coefficient
f Frequency of oscillation

g Gravitational acceleration
go Radial distribution function
h Bed height
k Particles thermal conductivity
kn Wave number
r Radial coordinate
r
r

Space vector
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t Time
v Velocity

>< v Average fluctuating velocity of particles
x Direction of flow
y Perpendicular direction to flow
z Axial coordinate
C Wave velocity
Cs Pseudo-sonic velocity of particles
Cp Heat capacity of particles
D Pipe diameter
F Flux
Gk Greens' function
K Separation constant
L Bed diameter
P Pressure
R Pipe diameter
Re Reynolds number
Uo Inlet superficial gas velocity

Greek Letters
α Wave number
β Drag coefficient
δ Dirac delta function
ε Volume fraction
θ Granular temperature
κ Granular temperature conductivity
λ Wavelength
µ Viscosity
ρ Density
φ Sphericity
ω Angular frequency
Φ Velocity potential

Subscripts
g Gas
m Mixture
o Initial value
p Due to pressure
p Particle
s Solid
w Wall property
B Bulk
ε Due to porosity
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Table   A    Summary of Experimental Data
Ug
m/s

Ws
kg/m2s

εε s σz

cm/s
σr

cm/s
θθ
(m/s)2

Vp
m/s

Ps
Pa

Dominant
Frequency
(Hz)

2.67 34.1 0.113
6

247.3
5

20.36 2.067 2.31 430.07 0.1953

2.67 27.8 0.109
8

223.1
9

18.74 1.684 2.03 424.63 0.1269

2.67 18.3 0.070
9

225.0
4

14.28 1.824 1.68 174.94 0.0572

2.14 27.8 0.096
5

232.0
3

19.13 1.819 1.74 290.85 0.0976

2.14 21.3 0.057
2

218.3
2

14.05 1.602 1.69 154.25 0.0651

1.61 27.8 0.087
9

239.5
7

18.06 1.935 1.34 277.76 0.0879
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                   Fig. 1a  IIT Circulating Fluidized Bed With Particle
             Pressure Transducer, CCD Camera and Gamma Ray Densitometer
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Figure 11- A Comparison of Riser Dominant Frequency, f  to the
Analytical Solution
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Figure 14. A Comparison of Dominant Bubbling Bed
Frequency Data to the Analytical Solution
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Presented at the AIChE 1999 Annual Meeting, Dallas Texas, November 3, 1999

The objective of this research is to understand turbulence in circulating fluidized beds
(CFB) and bubble column reactors for the purpose of improving multiphase models, such
as described in Gidaspow's book, which can be used for reactor design. Recently
Buyevich and Cody (1998) found that the granular temperature of particles in bubbling
fluidized beds is a maximum at a diameter of about 90 microns and have given an
explanation for this observation. The heat transfer coefficient has a similar behaviour. To
find an optimum particle size and to confirm and extend Cody's observations, the
granular temperature was measured in the IIT CFB for 450 micron glass beads. The
granular temperature was measured in the two-story IIT CFB ( Gidaspow and Huilin,
1996) using the CCD camera method described earlier. Figures 1 and 2 show the typical
axial and tangential velocity distributions measured with the camera. The local volume
fraction was also measured with the camera using the method of Gidaspow and Huilin
(1998a) that was shown to give densities close to those determined with an X-ray
densitometer. From the standard deviations, such as those seen in Figures 1 and 2, the
granular temperature was obtained, assuming equality of tangential and radial standard
deviations. Figure 3 shows the granular temperature behavior for the 450 micron glass
beads. The shape of the curve is similar to that for 75 micron FCC particles (Gidaspow
and Huilin, 1996), but the granular temperature is one order of magnitude lower. This
surprising result can be explained on the basis of a balance of production of granular
temperature due to shear and dissipation due to inelasticity, which shows that (Gidaspow,
1994, Eq 10. 12)

Granular temperature =constant × (shear rate × particle diameter )2

The shear rate for 450 micron beads was measured to be 13 sec-1 at a volume fraction of
0.04 by means of a probe. This shear rate is only roughly one twentieth that of FCC
particles. This shear rate is much lower for 450 micron beads due to the higher slip.
Hence the shear rate decreased faster than the diameter increased, leading to the
surprisingly lower turbulence.

The velocity measurements also allowed us to compute the Reynolds stress from
the product of the deviations of the velocities in the two directions. Fig. 4 depicts the
results. Since the tangential velocity has a larger error than the velocity in the direction of
flow, there is more error in the Reynolds stress than in the granular temperature. The ratio
of the Reynolds stress to the granular temperature gives us an estimate of the restitution
coefficient. We need this value as an input into our kinetic theory based hydrodynamic
model. Most of the values are in the range of 0.99 to 0.999.
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Figure 5 shows the viscosity of the 450 micron beads. It was computed in two
ways: l. Using the kinetic theory formula, Eq. 5 in Gidaspow and Huilin(1996) with the
radial distribution function at contact given by the Bagnold formula, Eq 7. 2. From the
equation,
           Reynolds stress × particle density × solids volume fraction = viscosity × shear
gradient.
Similarly to the results reported at the 1998 Miami Beach annual AlChE meeting
(Gidaspow, et al 1998) the viscosity calculated from the Reynolds stress and from the
granular temperature agree with each other. As expected, the viscosity of the large beads
is higher than the FCC viscosity.  However, the viscosity of the 450 micron beads in air
in our CFB is an order of magnitude higher than the viscosity of the beads in water
reported in the Miami Beach PTF Proceedings (Gidaspow, et al 1998) due to the lower
granular temperature in water. See Fig. 6. Fig. 7 compares the velocity gradients in the
CFB in air and in water in the fluidized bed with a central jet. The higher granular
temperature and the viscosity in air cannot be explained based on the lower shear rate.
The difference must be due to the lower air viscosity compared with water. Particles
oscillate much faster in air than in water for the same shear rate.

These results are useful for understanding turbulence in slurry bubble column
reactors.  Fig. 8 shows a comparison of our computed granular temperature using the
model and code reported by Wu and Gidaspow (1999) to experimental data for 45 micron
Air Products methanol catalyst particles. We had used the restitution coefficient obtained
from our experiment in the simulation. Fig 9 shows the computed solids viscosity. It is
quite small due to the low granular temperature and the small catalyst size. In Fig. 8, it is
the flow of gases that produced the turbulence. The granular temperature of the catalyst
particles in water was almost an order of magnitude lower ( Gidaspow and Huilin,
1998b).
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Appendix

C-----------------------------------------------------------+
C            TRANSIENT TWO-DIMENSIONAL NON-ISOTHERMAL       |
C                   MULTIPHASE FLOW PROGRAM                 |
C WITH MODEL-A/-B & GRANULAR KINETIC THEORY (VARIABLE GRID) |
C                Version 3.2 (November '91)                 |
C                                                           |
C                        MODIFIED BY                        |
C           UMESH K. JAYASWAL & DRs. DIMITRI GIDASPOW, & GAMWO       |
C                                                           |
C            TRANSIENT THREE-DIMENSIONAL ISOTHERMAL         |
C               MULTIPHASE/MULTISIZE FLOW PROGRAM           |
C                   Version 1.2 (FEBRUARY '95)              |
C            With Kinetic Theory and  Corrections           |
C                   Version 2.0 (Nov. 1996)                 |
C                                                           |
C                        MODIFIED BY                        |
C                     DIANA T. MATONIS                      |
C                                                           |
C Corrections to INDX and Boundaries 11/25/96     DTM       |
C    ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO IL 60616     |
C                                                           |
C----------------------------------MAINPROGRAM----MICEFLOW--|
|
c
c modified the program for rectangular coordinates(8/12/2000)
c add program in iter subroutine for pressure(8/16/2000)
c remove add program in iter subroutine(10/24/2000)
c modified the program for index(10/24/2000)
c modified the output in subroutine outp,prog(11/11/2000)
c modified for gls phases output in subroutine outp,prog(04/07/2001)
c check and add for restart file(05/12/2001)
c remove movfil file(05/12/2001)

      PROGRAM MICEFLOW
      INCLUDE '3dim.com'
      CHARACTER*40 RESFIL
c      CHARACTER*40 MOVFIL
      CHARACTER*80 NAME
C
C   READ AND ECHO INPUT DATA

OPEN(5,FILE='glsf.d',status='old')
open(6,file='glsf.out',status='unknown')

      READ(5,'(A)')RESFIL
      OPEN(9,FILE=RESFIL,FORM='UNFORMATTED',STATUS='UNKNOWN')
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c      READ(5,'(A)')MOVFIL
c      OPEN(10,FILE=MOVFIL,STATUS='UNKNOWN')
      READ(5,'(A)')NAME
      WRITE(6,'(A)')' MULTIFLOW PROBLEM IDENTIFIER -  ',NAME
      READ(5,*)ITC,IB2,JB2,KB2,NSOLID
      WRITE(6,210)ITC,IB2,JB2,KB2
C
      NPHASE=NSOLID+1
      IB=IB2-2
      IB1=IB2-1
      JB=JB2-2
      JB1=JB2-1
      KB = KB2-2
      KB1 = KB2-1
      IB2JB2=IB2*JB2*KB2
      IB2JB1=IB2JB2-IB2
      IB1JB2=IB2JB2-1
C

open(21,file='time.out',status='unknown')
open(22,file='glsfp0.out',status='unknown')
open(23,file='glsfth0.out',status='unknown')
open(24,file='glsfv0.out',status='unknown')
open(25,file='gls fu0.out',status='unknown')
open(26,file='glsfw0.out',status='unknown')
open(27,file='glsfth1.out',status='unknown')
open(28,file='glsfv1.out',status='unknown')
open(29,file='glsfu1.out',status='unknown')
open(30,file='glsfw1.out',status='unknown')

      if(NSOLID.eq.2)then
open(31,file='glsfth2.out',status='unknown')
open(32,file='glsfv2.out',status='unknown')
open(33,file='glsfu2.out',status='unknown')
open(34,file='glsfw2.out',status='unknown')
endif

      READ(5,*)RST,(DR(I),I=1,IB2)
      WRITE(6,215)RST,(DR(I),I=1,IB2)
      READ(5,*)(DZ(J),J=1,JB2)
      WRITE(6,216)(DZ(J),J=1,JB2)
      READ(5,*)(DY(L),L=1,KB2)
      WRITE(6,217)(DY(L),L=1,KB2)
      READ(5,*)NCONT,MODAB,IPRES,INENT,IKINT,ICOH,ISWIT,IFLZB
      WRITE(6,320)NCONT,MODAB,IPRES,INENT,IKINT,ICOH,ISWIT
     1 ,IFLZB
      WRITE(6,250)NPHASE
      DO 6 K=0,NSOLID
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  READ(5,*)DK(K),RL(K),CL(K),PHI(K),CPHI(K),PVISC(K)
  WRITE(6,255)DK(K),RL(K),CL(K),PHI(K),CPHI(K),PVISC(K)

6     CONTINUE
      WRITE(6,220)

READ(5,*)NFL,NIN,NOUT,NOBS
      WRITE(6,230)NFL,NIN,NOUT,NOBS
C
      NCAL=NIN+NOUT+NFL
      NTOT=NCAL+NOBS
C
      WRITE(6,240)
      DO 5 N=1,NTOT

  READ(5,*)NSO(N),(IOB(M,N),M=1,6)
  WRITE(6,245)NSO(N),(IOB(M,N),M=1,6)

 5    CONTINUE
      WRITE(6,280)
      DO 10 N=1,NCAL

  READ(5,*)UIO(0,N),VIO(0,N),WIO(0,N),PIO(N),THIO(0,N),TEMIO(0,N)
  READ(5,*)(UIO(K,N),VIO(K,N),WIO(K,N),THIO(K,N),TEMIO(K,N),

     1            TSKIO(K,N), K = 1,NSOLID)
10    WRITE(6,285)N-1,UIO(0,N),VIO(0,N),WIO(0,N),PIO(N),THIO(0,N)
     1 ,TEMIO(0,N)
      WRITE(6,290)
      DO 15 N=1,NCAL
15    WRITE(6,295)(N-1,K,UIO(K,N),VIO(K,N),WIO(K,N),THIO(K,N)
     1 ,TEMIO(K,N),TSKIO(K,N),K=1,NSOLID)

      READ(5,*)ITD
      READ(5,*)TIME,TSTOP,DT,ITX
      READ(5,*)TPR,TDUMP
      WRITE(6,300)ITD,TIME,TSTOP,ITX,DT,TPR,TDUMP
      READ(5,*)ITXMX,(DTNXT(IX),IX=1,ITXMX)
      WRITE(6,305)ITXMX,(DTNXT(IX),IX=1,ITXMX)
      READ(5,*)GRAVX,GRAVY,GRAVZ
      WRITE(6,310)GRAVX,GRAVY,GRAVZ
      READ(5,*)CRES,RADP,EPSG,THMIN,RLIM
      WRITE(6,330)CRES,RADP,EPSG,THMIN,RLIM
C
C  READ RESTART FILE IF NECESSARY
      REWIND(9)
      IF(ITD.EQ.2)CALL TAPERD
C
C  INITIALIZE CELL FLAGS, CONSTANTS, AND DEPENDENT VARIABLES
      CALL FLIC
      CALL SETUP
C  MARCH IN TIME>>>>>
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      CALL PROG
      STOP
210   FORMAT(' 1. GEOMETRY'/'   A. COORDINATES (0- CARTESIAN,'
     1 ,' 1- CYLINDRICAL, 2- SPHERICAL)=',I2/'   B. MESH SIZE',
     1 '   R (or X)-DIR,    IB2=',I3,',  ','Z (or Y)-DIR, JB2='
     1 ,I3/,17X,' THETA(or Z)-DIR, KB2=',I3/'   C. CELL SIZES')
215   FORMAT(7X,'DISTANCE OF FIRST CELL FROM CENTER = ',F10.5,
     1 ' cm'/7X,'IN R (or X)-DIRECTION, DR (cm) ='/6(2X,F9.5))
216   FORMAT(7X,'IN Z (or Y)-DIRECTION, DZ (cm) ='/6(2X,F9.5))
217   FORMAT(7X,'IN THETA (or Z)-DIRECTOION, DY (cm) ='/6(2X,F9.5))
320   FORMAT(/' 2. MODELS: (=0- NO, >0- YES)'/10X,'# OF ',
     1 'CONTINUOUS PHASES (1- GAS/LIQUID, 2- GAS&LIQUID) = ',I2
     1 /10X,'MODEL (1- A, 2- B)= ',I2/10X,'INITIAL ',
     1 'PRESSURE PROFILE (0- FLUID WT., 1- BED WT.) = ',I2/10X
     1 ,'ENERGY EQUATIONS (1- INTERNAL ENERGY, 2- ENTHALPY)= '
     1 ,I2/10X,'KINETIC THEORY OF GRANULAR SOLIDS MODEL=',I2
     1 /10X,'COHESIVE FORCE MODEL=',I2/10X,'SWITCH CONTINUOUS'
     1 ,' & DISPERSED PHASES (0- NO, 1- YES) = ',I2,
     1 /10X,'FLUIDIZED BED (0- NO, 1- YES) = ',I2)
250   FORMAT(/' 3. DATA FOR ',I2,' PHASES :'/4X,'DIAMETER   ',
     1 ' DENSITY     HEAT     SPHERICITY   PACKING    ',
     1 'VISCOSITY'/26X,'CAPACITY',16X,'FRACTION  COEFFICIENT'/
     1 6X,'(cm)',5X,'(g/cm^3)  (erg/(g.K))',25X,'(g/(cm.s))')
255   FORMAT(2X,2(2X,G9.3),1X,G10.3,4X,F6.4,5X,G9.4,1X,G10.3)
220   FORMAT(/' 4. CELL FLAGS'/6X,'(1- FLUID, 2- FREE SLIP,',
     1 ' 3- NO SLIP, 4- OUTFLOW (dP|exit = 0)'/7X,'5-',
     1 ' INFLOW (FLOW & P), 6- INFLOW, 7- OUTFLOW (P|exit',
     1 ' = const)'/7X,'8- FLUID OUTFLOW (P|exit = const))'/)
C     1 '    A. BOUNDARIES'/7X,'BOTTOM=',I3,
C     1 '    LEFT=',I3,'   TOP=',I3,'  RIGHT=',I3)
230   FORMAT(4X,'A. NUMBERS OF:  FLUID BLOCKS =',I2,
     1 ',  INFLOW BLOCKS=',I2/20X,'OUTFLOW BLOCKS=',I2,
     1 ',  OBSTACLE BLOCKS=',I2)
240   FORMAT(7X,'FLAG',5X,'---------COORDINATES---------')
245   FORMAT(5X,I3,6(4X,I5))
280   FORMAT(/,'   B. INFLOW - OUTFLOW DATA  (FLUID)'/' BLOCK',
     1 '   UIO',8X,'VIO',8X,'WIO',8X,'PIO',7X,'THIO',7X,'TEMIO'
     1 /7X,'(cm/s)',5X,'(cm/s)     (cm/s)   (dynes/cm^2)',11X,
     1 '(Kelvin)')
285   FORMAT(1X,I2,1X,6(1PE11.3),2(1PE10.3))
290   FORMAT(/,'   C. INFLOW - OUTFLOW DATA  (SOLIDS)'/
     1 ' BLOCK/',3X,'UPIO',7X,'VPIO',7X,'WPIO',7X,'THPIO',5X,
     1 'TEMPIO',6X,'TSKIO'/' PHASE',3X,'(cm/s)',5X,'(cm/s)',5X,'(cm/s)'
     1 ,15X,'(Kelvin)',2X,'((cm/s)^2)')
295   FORMAT((1X,I2,'/',I1,1X,6(1X,1PE10.3)))
300   FORMAT(/,' 5. CONTROL'/ 3X,'A. DUMP AND RESTART:',
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     1 '   ITD=',I2,' (0- NO RESTART, 2- RESTART)'/'   B. ',
     1 'TIME (secs.):  TSTART=',1PE11.4,',  TSTOP=',1PE11.4,','/21X,
     1 'DT(',I2,')=',1PE11.4/'   C. PRINTING AND ',
     1 'PLOTTING (secs.):   TPR=',1PE11.4,',',/,
     1 39X,'TDUMP=',1PE11.4)
305   FORMAT(3X,'D. TIME INCREMENTS:   TOTAL=',I2,3X,
     1 'DELTA T (secs.) = ',1PE10.4)
310   FORMAT(/' 6. GRAVITY (cm/s^2)'/'   A. GRAVX ',
     1 '- R (or X) component =',1PE15.7/,
     1 6X,'GRAVY - Z (or Y) component =',1PE15.7/
     1 6X,'GRAVZ - THETA (or Z) component =',1PE15.7)
330   FORMAT(/' 7. OTHER:'/4X,'COEFFICIENT OF RESTITUITION'
     1 ,' = ',F8.5/4X,'PIPE RADIUS (cm) = ',F9.4/
     1 4X,'CONVERGENCE LIMIT = ',G10.4/
     1 4X,'MINIMUM FLUID VOLUME FRACTION = ',F9.4/
     1 4X,'FACTOR FOR MIN. SOLIDS VOL. FRACTION = ',G10.4/)
      END
C----------------------------------BDRY
       SUBROUTINE BDRY
       INCLUDE '3dim.com'
C
C  SET S BOUNDARY CONDITIONS - REFLECTS CELL CENTER QUANTITIES
C
      DO 200 L=2,KB1

  DO 200 J=2,JB1
      DO 200 I=2,IB1

  IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
C  SLP             IF NOT A FLUID CELL

  IF(IFL(IJ).EQ.1)THEN
C

      IPJ=INDC(IJ,1)
      IMJ=INDC(IJ,2)
      IJP=INDC(IJ,3)
      IJM=INDC(IJ,4)
      IPJP=INDC(IJ,5)
      IMJP=INDC(IJ,6)
      IPJM=INDC(IJ,7)
      IMJM=INDC(IJ,8)
      IPJKP=INDC(IJ,9)
      IPJKM=INDC(IJ,10)
      IMJKM=INDC(IJ,11)
      IJMKP=INDC(IJ,12)
      IJPKP=INDC(IJ,13)
      IJMKM=INDC(IJ,14)
      IJPKM=INDC(IJ,15)
      IMJPKP=INDC(IJ,16)
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      IMJPKM=INDC(IJ,17)
      IMJMKP=INDC(IJ,18)
      IMJMKM=INDC(IJ,19)
      IPJPKP=INDC(IJ,20)
      IPJPKM=INDC(IJ,21)
      IPJMKP=INDC(IJ,22)
      IPJMKM=INDC(IJ,23)
      IMJKP=INDC(IJ,24)

  IJKP=INDC(IJ,25)
      IJKM=INDC(IJ,26)

  IJR=INDS(IJ,1)
      IJL=INDS(IJ,2)
      IJT=INDS(IJ,3)
      IJB=INDS(IJ,4)
      IJKAA=INDS(IJ,17)
      IJKF=INDS(IJ,12)

C
      DO 10 K=NCONT+1,NSOLID

  IF(RLK(K,IJ).GT.0.0)THEN
      PLP(K)=DK(K)/TH(K,IJ)**(1./3.)
  ELSE
      PLP(K)=0.0
  ENDIF

10                    CONTINUE
C
C  CHE                 CKS OUTFLOW CELLS ON RIGHT AND TOP and back

      NFLX=IFL(IPJ)
      NFLXY=IFL(IPJP)
      NFLXZ=IFL(IPJKP)
      NFLY=IFL(IJP)
      NFLYX=IFL(IPJP)
      NFLYZ=IFL(IJPKP)
      NFLZ=IFL(IJKP)
      NFLZX=IFL(IPJKP)
      NFLZY=IFL(IJPKP)
      IJX=IJR
      IJBX=IPJ
      IJY=IJT
      IJBY=IJP
      IJZ=IJKAA
      IJBZ=IJKP
      RBPM=RB(I+1)

C
      CALL FACES

C  CHECKS OUTFLOW CELLS ON LEFT AND BOTTOM and front
      NFLX=IFL(IMJ)
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      NFLXY=IFL(IMJP)
      NFLXZ=IFL(IMJKP)
      NFLY=IFL(IJM)
      NFLYX=IFL(IPJM)
      NFLYZ=IFL(IJMKP)
      NFLZ=IFL(IJKM)
      NFLZX=IFL(IPJKM)
      NFLZY=IFL(IJPKM)
      IJX=IJL
      IJBX=IMJ
      IJY=IJB
      IJBY=IJM
      IJZ=IJKF
      IJBZ=IJKM
      RBPM=RB(I-1)

C
      CALL FACES
  ENDIF

200   CONTINUE
      RETURN
      END

C  ----------------------------------------BETAS
      SUBROUTINE BETAS
      INCLUDE '3dim.com'
C
C  CALCULATES RECIPROCAL DERIVATIVES OF D WRT P, ABETA(IJ),
C  FOR ITERATION
C
      DO 10 L = 2,KB1
      DO 10 J = 2,JB1

  DO 10 I = 2,IB1
      IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
      IF(IFL(IJ).NE.1)GOTO 10
      IPJ=INDC(IJ,1)
      IMJ=INDC(IJ,2)
      IJP=INDC(IJ,3)
      IJM=INDC(IJ,4)
      IJKP=INDC(IJ,25)

  IJKM=INDC(IJ,26)
  IJR=INDS(IJ,1)

      IJL=INDS(IJ,2)
      IJT=INDS(IJ,3)
      IJB=INDS(IJ,4)
      IJKAA=INDS(IJ,17)
      IJKF=INDS(IJ,11)
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      KV=NTHS(IJ)
C

      IF(IFL(IPJ).EQ.1.OR.IFL(IPJ).EQ.4.OR.IFL(IPJ).GE.7)THEN
RIG=RB(I)*(AR(I)*TH(KV,IJ)+BR(I)*TH(KV,IJR))*DTODRP(I)

      ELSE
RIG=0.

      ENDIF
      IF(IFL(IMJ).NE.2.AND.IFL(IMJ).NE.3.AND.IFL(IMJ).NE.5)

     1         THEN
  EFL=RB(I-1)*(BR(I-1)*TH(KV,IJ)+AR(I-1)*TH(KV,IJL))

     1             *DTODRP(I-1)
      ELSE

  EFL=0.
      ENDIF
      IF(IFL(IJP).EQ.1.OR.IFL(IJP).EQ.4.OR.IFL(IJP).GE.7)THEN

  TOP=(AZ(J)*TH(KV,IJ)+BZ(J)*TH(KV,IJT))*DTODZP(J)
      ELSE

  TOP=0.
      ENDIF
      IF(IFL(IJM).EQ.1.OR.IFL(IJM).EQ.4.OR.IFL(IJM).EQ.6)THEN

BOT=(BZ(J-1)*TH(KV,IJ)+AZ(J-1)*TH(KV,IJB))*DTODZP(J-1)
      ELSE

  BOT=0.
      ENDIF
      IF(IFL(IJKP).EQ.1.OR.IFL(IJKP).EQ.4.OR.IFL(IJKP).GE.6)THEN

  BACK=(AY(L)*TH(KV,IJ)+BY(L)*TH(KV,IJKAA))*DTODYP(L)*
     1                  RB(I)*RB(I)

      ELSE
  BACK=0.

      ENDIF
      IF(IFL(IJKM).EQ.1.OR.IFL(IJKM).EQ.4.OR.IFL(IJKM).GE.6)THEN

  FRONT=(BY(L-1)*TH(KV,IJ)+AY(L-1)*TH(KV,IJKF))*
     1                  DTODYP(L-1)*(RB(I-1)*RB(I-1))

      ELSE
  FRONT=0.

      ENDIF
C
      CONV(IJ)=EPSG*RLK(KV,IJ)
cdtm        CONV(IJ) = 0.00001

      RBETA=RLK(KV,IJ)/P(IJ)+DTODZ(J)*(TOP+BOT)
     1         +DTORDR(I)*(RIG+EFL)+DTODY(L)*(BACK+FRONT)

      ABETA(IJ)=1./RBETA
10    CONTINUE
      RETURN
      END
C  ----------------------------------------FACES
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      SUBROUTINE FACES
      INCLUDE '3dim.com'
C
C  CONTINUOUS OUTFLOW TO THE RIGHT/LEFT
      IF(NFLX.EQ.4.OR.NFLX.GE.7)THEN

  IF(IJX.EQ.IJL)THEN
      UKKG=-UK(0,IJ)
  ELSE
      UKKG=UK(0,IJ)
  ENDIF
  IF(UKKG.GT.0.)THEN
      TL(0,IJX)=TL(0,IJ)
      IF(NFLX.EQ.8)THEN

  TH(0,IJX)=1.0
  NTHS(IJX)=1
  VISCL(0,IJX)=PVISC(0)

      ELSE
  TH(0,IJX)=TH(0,IJ)
  NTHS(IJX)=NTHS(IJ)
  VISCL(0,IJX)=VISCL(0,IJ)

      ENDIF
      IF(NFLX.EQ.4)P(IJX)=P(IJ)
      ROG(IJX)=C9+C10*P(IJX)/(C12*TL(0,IJX)+C11*P(IJX))
      RLK(0,IJX)=ROG(IJX)*TH(0,IJX)
      UK(0,IJBX)=RB(I)*RLK(0,IJ)*UK(0,IJ)/(RBPM*RLK(0,IJX))
      IF(NFLXY.GE.4)VK(0,IJBX)=VK(0,IJ)
      IF(NFLXZ.GE.4)WK(0,IJBX)=WK(0,IJ)
  ENDIF
  IF(NFLX.NE.8)THEN
      DO 10 K=1,NSOLID

  IF(IJX.EQ.IJL)THEN
      UKKL=-UK(K,IJ)
  ELSE
      UKKL=UK(K,IJ)
  ENDIF
  IF(UKKL.GT.0.0)THEN
      TH(K,IJX)=TH(K,IJ)
      RLK(K,IJX)=RLK(K,IJ)
      TL(K,IJX)=TL(K,IJ)

cb                    IF(RLK(K,IJX).GT.0.0)THEN
      IF(RLK(K,IJX).NE.0.0)THEN

UK(K,IJBX)=RB(I)*RLK(K,IJ)*UK(K,IJ)/(RBPM*RLK(K,IJX))
      ELSE

  UK(K,IJBX)=0.0
      ENDIF
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      VISCL(K,IJX)=VISCL(K,IJ)
      VISBL(K,IJX)=VISBL(K,IJ)
      PS(K,IJX)=PS(K,IJ)
      GCON(K,IJX)=GCON(K,IJ)
      IF(NFLXY.GE.4)VK(K,IJBX)=VK(K,IJ)
      IF(NFLXZ.GE.4)WK(K,IJBX)=WK(K,IJ)
  ENDIF

10            CONTINUE
  ENDIF

      ENDIF
C
C  CONTINUOUS OUTFLOW ON THE TOP/BOTTOM
      IF(NFLY.EQ.4.OR.NFLY.GE.7)THEN

  IF(IJY.EQ.IJB)THEN
      VKKG=-VK(0,IJ)
  ELSE
      VKKG=VK(0,IJ)
  ENDIF
  IF(VKKG.GT.0.0)THEN
      TL(0,IJY)=TL(0,IJ)
      IF(NFLY.EQ.8)THEN

  TH(0,IJY)=1.0
  NTHS(IJY)=0.0
  VISCL(0,IJY)=PVISC(0)

      ELSE
  TH(0,IJY)=TH(0,IJ)
  NTHS(IJY)=NTHS(IJ)
  VISCL(0,IJY)=VISCL(0,IJ)

      ENDIF
      IF(NFLY.EQ.4)P(IJY)=P(IJ)
      ROG(IJY)=C9+C10*P(IJY)/(C12*TL(0,IJY)+C11*P(IJY))
      RLK(0,IJY)=ROG(IJY)*TH(0,IJY)
      VK(0,IJBY)=RLK(0,IJ)*VK(0,IJ)/RLK(0,IJY)
      IF(NFLYX.GE.4)UK(0,IJBY)=UK(0,IJ)
      IF(NFLYZ.GE.4)WK(0,IJBY)=WK(0,IJ)
  ENDIF
  IF(NFLY.NE.8)THEN
      DO 30 K=1,NSOLID

  IF(IJY.EQ.IJB)THEN
      VKKL=-VK(K,IJ)
  ELSE
      VKKL=VK(K,IJ)
  ENDIF
  IF(VKKL.GT.0.0)THEN
      TH(K,IJY)=TH(K,IJ)
      RLK(K,IJY)=RLK(K,IJ)



130

      TL(K,IJY)=TL(K,IJ)
      IF(RLK(K,IJY).NE.0.0)THEN

  VK(K,IJBY)=RLK(K,IJ)*VK(K,IJ)/RLK(K,IJY)
      ELSE

  VK(K,IJBY)=0.0
      ENDIF
      VISBL(K,IJY)=VISBL(K,IJ)
      VISCL(K,IJY)=VISCL(K,IJ)
      PS(K,IJY)=PS(K,IJ)
      GCON(K,IJY)=GCON(K,IJ)
      IF(NFLYX.GE.4)UK(K,IJBY)=UK(K,IJ)
      IF(NFLYZ.GE.4)WK(K,IJBY)=WK(K,IJ)
  ENDIF

30            CONTINUE
  ENDIF

      ENDIF
C
C     CONTINUOUS OUTFLOW TO THE BACK / FRONT
      IF(NFLZ.EQ.4.OR.NFLZ.GE.7)THEN

  IF(IJZ.EQ.IJKF)THEN
      WKKG=-WK(0,IJ)
  ELSE
      WKKG=WK(0,IJ)
  ENDIF
  IF(WKKG.GT.0.)THEN
      TL(0,IJZ)=TL(0,IJ)
      IF(NFLZ.EQ.8)THEN

  TH(0,IJZ)=1.0
  NTHS(IJZ)=1
  VISCL(0,IJZ)=PVISC(0)

      ELSE
  TH(0,IJZ)=TH(0,IJ)
  NTHS(IJZ)=NTHS(IJ)
  VISCL(0,IJZ)=VISCL(0,IJ)

      ENDIF
      IF(NFLZ.EQ.4)P(IJZ)=P(IJ)
      ROG(IJZ)=C9+C10*P(IJZ)/(C12*TL(0,IJZ)+C11*P(IJZ))
      RLK(0,IJZ)=ROG(IJZ)*TH(0,IJZ)
      WK(0,IJBZ)=RLK(0,IJ)*WK(0,IJ)/RLK(0,IJZ)
      IF(NFLZX.GE.4)UK(0,IJBZ)=UK(0,IJ)
      IF(NFLZY.GE.4)VK(0,IJBZ)=VK(0,IJ)
  ENDIF
  IF(NFLZ.NE.8)THEN
      DO 20 K=1,NSOLID

  IF(IJZ.EQ.IJKF)THEN
      WKKL=-WK(0,IJ)
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  ELSE
      WKKL=WK(0,IJ)
  ENDIF
  IF(WKKL.GT.0.)THEN
      TL(K,IJZ)=TL(K,IJ)
      TH(K,IJZ)=TH(K,IJ)
      RLK(K,IJZ)=RLK(K,IJ)
      IF(RLK(K,IJZ).NE.0.0)THEN

  WK(K,IJBZ)=RLK(K,IJ)*WK(K,IJ)/RLK(K,IJZ)
      ELSE

  WK(K,IJBZ)=0.0
      ENDIF
      VISCL(K,IJZ)=VISCL(K,IJ)
      VISBL(K,IJZ)=VISBL(K,IJ)
      PS(K,IJZ)=PS(K,IJ)
      GCON(K,IJZ)=GCON(K,IJ)
      IF(NFLZX.GE.4)UK(K,IJBZ)=UK(K,IJ)
      IF(NFLZY.GE.4)VK(K,IJBZ)=VK(K,IJ)
  ENDIF

20            CONTINUE
  ENDIF

      ENDIF
C
C
C  SET BOUNDARY CONDITIONS IN RIGID CELLS-
C   GAS & PARTICLE VELOCITIES; GRANULAR TEMPERATURES
C
C  FREE SLIP WALL ON THE RIGHT/LEFT
      IF(NFLX .EQ. 2)THEN

   IF(NFLXY.EQ.2.OR.NFLXY.EQ.3)THEN
       DO 54 K=0,NSOLID

54             VK(K,IJBX)=VK(K,IJ)
     ENDIF

         IF(NFLXZ.EQ.2.OR.NFLXZ.EQ.3)THEN
       DO 55 K=0,NSOLID

55             WK(K,IJBX)=WK(K,IJ)
     ENDIF

C  NO SLIP WALL ON THE RIGHT/LEFT
  ELSEIF(NFLX.EQ.3)THEN
   IF(NFLXZ.EQ.2.OR.NFLXZ.EQ.3)THEN
       DO 56 K=0,NCONT

56             WK(K,IJBX)=-WK(K,IJ)
       DO 57 K=NCONT+1,NSOLID

57             WK(K,IJBX)=WK(K,IJ)*(PLP(K)-DR(I))/(PLP(K)+DR(I))
     ENDIF

         IF(NFLXY.EQ.2.OR.NFLXY.EQ.3)THEN



132

       DO 60 K=0,NCONT
60             VK(K,IJBX)=-VK(K,IJ)

       DO 65 K=NCONT+1,NSOLID
65             VK(K,IJBX)=VK(K,IJ)*(PLP(K)-DR(I))/(PLP(K)+DR(I))

     ENDIF
      ENDIF
C
C
C  FREE SLIP WALL ON THE TOP/BOTTOM
      IF(NFLY.EQ.2)THEN

   IF(NFLYX.EQ.2.OR.NFLYX.EQ.3)THEN
       DO 74 K=0,NSOLID

74             UK(K,IJBY)=UK(K,IJ)
     ENDIF

         IF(NFLYZ.EQ.2.OR.NFLYZ.EQ.3)THEN
       DO 75 K=0,NSOLID

75             WK(K,IJBY)=WK(K,IJ)
     ENDIF

C  NO SLIP WALL ON THE TOP/BOTTOM
  ELSEIF(NFLY.EQ.3)THEN
   IF(NFLYZ.EQ.2.OR.NFLYZ.EQ.3)THEN
       DO 76 K=0,NCONT

76             WK(K,IJBY)=-WK(K,IJ)
       DO 77 K=NCONT+1,NSOLID

77             WK(K,IJBY)=WK(K,IJ)*(PLP(K)-DZ(J))/(PLP(K)+DZ(J))
     ENDIF

         IF(NFLYX.EQ.2.OR.NFLYX.EQ.3)THEN
       DO 80 K=0,NCONT

80             UK(K,IJBY)=-UK(K,IJ)
       DO 85 K=NCONT+1,NSOLID

85             UK(K,IJBY)=UK(K,IJ)*(PLP(K)-DZ(J))/(PLP(K)+DZ(J))
     ENDIF

      ENDIF
C
C
C  FREE SLIP WALL ON THE BACK / FRONT
      IF(NFLZ.EQ.2)THEN

   IF(NFLZX.EQ.2.OR.NFLZX.EQ.3)THEN
       DO 89 K=0,NSOLID

89             UK(K,IJBZ)=UK(K,IJ)
     ENDIF

         IF(NFLZY.EQ.2.OR.NFLZY.EQ.3)THEN
       DO 90 K=0,NSOLID

90             VK(K,IJBZ)=VK(K,IJ)
     ENDIF
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C  NO SLIP WALL ON THE BACK / FRONT
        ELSEIF(NFLZ.EQ.3)THEN

   IF(NFLZY.EQ.2.OR.NFLZY.EQ.3)THEN
       DO 91 K=0,NCONT

91             VK(K,IJBZ)=-VK(K,IJ)
       DO 92 K=NCONT+1,NSOLID

92             VK(K,IJBZ)=VK(K,IJ)*(PLP(K)-DY(L))/(PLP(K)+DY(L))
     ENDIF

    IF(NFLZX.EQ.2.OR.NFLZX.EQ.3)THEN
       DO 100 K=0,NCONT

100            UK(K,IJBZ)=-UK(K,IJ)
       DO 101 K=NCONT+1,NSOLID

101            UK(K,IJBZ)=UK(K,IJ)*(PLP(K)-DY(L))/(PLP(K)+DY(L))
     ENDIF

      ENDIF
      RETURN
      END

C  ----------------------------------------FEFLUX
      SUBROUTINE FEFLUX
      INCLUDE '3dim.com'
C
C  CALCULATE FLUCTUATING ENERGY FLUXES OF KINETIC THEORY
C
      TSKCBB = (TSKN(K,IJ)-TSKN(K,IJKF))
     1 *(BY(L-1)*GCON(K,IJ)+AY(L-1)*GCON(K,IJKF))*RDYP(L-1)
      TSKAB(K,I,J)=1.5*TSKAB(K,I,J)-TSKCBB
      ENTRY FEFLUXBB
      TSKCB(K)=(TSKN(K,IJ)-TSKN(K,IJB))
     1 *(BZ(J-1)*GCON(K,IJ)+AZ(J-1)*GCON(K,IJB))*RDZP(J-1)
      TSKFB(K,I)=1.5*TSKFB(K,I)-TSKCB(K)
C
      ENTRY FEFLUXA
      IF(IFL(IMJ).NE.1)THEN

  TSKCL(K)=(TSKN(K,IJ)-TSKN(K,IJL))*RB(I-1)
     1     *(BR(I-1)*GCON(K,IJ)+AR(I-1)*GCON(K,IJL))*RDRP(I-1)

  TSKFL(K)=1.5*TSKFL(K)-TSKCL(K)
      ENDIF
C
      ENTRY FEFLUXB
      TSKCR(K)=(TSKN(K,IJR)-TSKN(K,IJ))*RB(I)
     1 *(BR(I)*GCON(K,IJR)+AR(I)*GCON(K,IJ))*RDRP(I)
      TSKFR(K)=1.5*TSKFR(K)-TSKCR(K)
C
      TSKCT(K)=(TSKN(K,IJT)-TSKN(K,IJ))
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     1 *(BZ(J)*GCON(K,IJT)+AZ(J)*GCON(K,IJ))*RDZP(J)
      TSKFT(K)=1.5*TSKFT(K)-TSKCT(K)
      TSKCF=(TSKN(K,IJKA)-TSKN(K,IJ))
     1 *(BY(L)*GCON(K,IJKA)+AY(L)*GCON(K,IJ))*RDYP(L)
      TSKAF(K)=1.5*TSKAF(K)-TSKCF
      RETURN
      END
C  ----------------------------------------FLIC
      SUBROUTINE FLIC
      INCLUDE '3dim.com'
C
C  SETS CELL FLAG BASED UPON INPUT DATA
C
      DO 150 L = 1,KB2

  DO 150 J = 1,JB2
      DO 150 I = 1,IB2

  IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
C
C       SETS EACH CELL FLAG, IFL(IJ)=1, CELL FLAG WILL BE CHANGED
C       FOR OTHER TYPES

  IFL(IJ)=1
C
150   CONTINUE
C
C     SETS FLAGS FOR OBSTACLE CELLS AND OTHER FLUID CELLS
      DO 300 N = 1,NTOT

  DO 300 I = IOB(1,N),IOB(2,N)
      DO 300 J = IOB(3,N),IOB(4,N)

  DO 300 L = IOB(5,N),IOB(6,N)
      IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
      IFL(IJ)=NSO(N)

300   CONTINUE
      RETURN
      END
C  ----------------------------------------GRNVIS
      SUBROUTINE GRNVIS
      INCLUDE '3dim.com'
C
C  CALCULATE NEW GRANULAR TEMPERATURES AND SOLIDS PROPERTIES
C  USING KINETIC THEORY OF GRANULAR SOLIDS
C
      DO 10 L= 2,KB1
      DO 10 J= 2,JB1

  DO 10 I= 2,IB1
      IJ= I + (J-1)*IB2 + (L-1)*IB2*JB2
      IF(IFL(IJ).EQ.1)THEN
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  IMJ=INDC(IJ,2)
  IJM=INDC(IJ,4)
  IJKM = INDS(IJ,15)

C
  KV=NTHS(IJ)
  CALL KDRAGS(NCONT,NSOLID)

C
  DO 5 K=NCONT,NSOLID

C  GRANULAR KINETIC THEORY IS APPLIED
C  ONLY IF (Ef-Ef,min) > 1.e-10

      IF(RLK(K,IJ).GT.RLKMIN(K).AND.
     1                 (TH(0,IJ)-THMIN).GT.1.E-10)THEN
C

  TSKS=TSK(K,IJ)**0.5
C  CALCULATE RADIAL DISTRIBUTION FUNCTION & OTHER PARAMETERS

  G0=1.0/(1.0-(TH(K,IJ)/(1.0-THMIN))**(1./3.))
  CS1=(1.0+CRES)*TH(K,IJ)*G0
  CS2=3.0*(1.0-CRES)*RLK(K,IJ)*CS1
  CS3=RLK(K,IJ)/(RLK(K,IJ)+DMFP(K))
  CS4=2.*CS3*VISDIL(K)/((1.+CRES)*G0)
  GAMMA(K,IJ)=CS2*(4.0*RSQTP/DK(K)*TSKS-

     1                                     SILM(K,IJ))
  PS(K,IJ)=RLK(K,IJ)*(1.0+2.0*CS1)

C
  VISCD=CS4*(1.+.8*CS1)**2
  VISBL(K,IJ)=(4./3.)*RLK(K,IJ)*DK(K)*CS1*

     1                                  RSQTP*CS3
  VISCL(K,IJ)=VISCD+0.6*VISBL(K,IJ)

C
C  GRANULAR CONDUCTIVITY

  GCON(K,IJ)=3.75*CS4*(1.+1.2*CS1)**2*TSKS+
     1                               1.5*VISBL(K,IJ)

      ELSE
  GCON(K,IJ)=0.0

      ENDIF
5                 CONTINUE

      ENDIF
10    CONTINUE
C
C  FINAL SOLUTION OF GRANULAR TEMPERATURE
      DO 100 L=2,KB1
      DO 100 J=2,JB1

  DO 100 I=2,IB1
      IJ=I + (J-1)*IB2 + (L-1)*IB2*JB2
      IF(IFL(IJ).EQ.1)THEN

  IMJ=INDC(IJ,2)
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  IJM=INDC(IJ,4)
  IJR=INDS(IJ,1)
  IJL=INDS(IJ,2)
  IJT=INDS(IJ,3)
  IJB=INDS(IJ,4)
  IJKA=INDS(IJ,11)
  IJKF=INDS(IJ,12)
  IJKM=INDC(IJ,26)

C
  DO 20 K=NCONT,NSOLID
      CALL GRTEMF
      IF(RLK(K,IJ).GT.RLKMIN(K).AND.

     1                 (TH(0,IJ)-THMIN).GT.1.E-10)THEN
  AP0=-(1.5*RLK(K,IJ)*TSK(K,IJ)-DTODZ(J)*

     1                         (TSKFT(K)
     1                     -TSKFB(K,I))-DTORDR(I)*(TSKFR(K)-TSKFL(K))-
     1                      DTODY(L)*(TSKAF(K)-TSKAB(K,I,J)))

  AP1=-(VISCL(K,IJ)*VWLS(K,IJ)+(VISBL(K,IJ)
     1                     -(2./3.)*VISCL(K,IJ))*VWLM(K,IJ))

  AP2=(1.5*RLK(K,IJ)+DT*(3.0*RKPG(K,IJ)
     1                     +PS(K,IJ)*SILM(K,IJ)+GAMMA(K,IJ)))
C

  CALL QESOL(AP0,AP1,AP2,TSKS)
  IF(TSKS.LT.0.0)TSKS=0.0
  TSK(K,IJ)=TSKS*TSKS

C
C  SOLID PHASE BULK AND SHEAR VISCOSITIES

  VISBL(K,IJ)=VISBL(K,IJ)*TSKS
  VISCL(K,IJ)=VISCL(K,IJ)*TSKS

C
C  SOLIDS PHASE PRESSURE

  PS(K,IJ)=PS(K,IJ)*TSK(K,IJ)
      ELSE

  TSK(K,IJ)=0.0
  VISBL(K,IJ)=0.0
  VISCL(K,IJ)=0.0
  PS(K,IJ)=0.0

      ENDIF
      TSKFL(K)=TSKFR(K)
      TSKFB(K,I)=TSKFT(K)
      TSKAB(K,I,J) = TSKAF(K)

20                CONTINUE
C

      ENDIF
100   CONTINUE
      RETURN
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      END
C  ----------------------------------------GRPROP
      SUBROUTINE GRPROP
      INCLUDE '3dim.com'
C
C  INITIALIZE SOLIDS PROPERTIES USING GRANULAR KINETIC THEORY
C
      DO 10 K=NCONT,NSOLID
C  GRANULAR KINETIC THEORY IS APPLIED
C  ONLY IF (Ef-Ef,min) > 1.e-10

  IF(RLK(K,IJ).GT.RLKMIN(K).AND.
     1     (TH(0,IJ)-THMIN).GT.1.E-10)THEN

      TSKS=TSK(K,IJ)**0.5
      G0=1.0/(1.0-(TH(K,IJ)/(1.0-THMIN))**(1./3.))
      CS1=(1.0+CRES)*TH(K,IJ)*G0
      CS2=3.0*(1.0-CRES)*RLK(K,IJ)*CS1
      CS3=RLK(K,IJ)/(RLK(K,IJ)+DMFP(K))
      CS4=2.*CS3*VISDIL(K)/((1.+CRES)*G0)
      VISCD=CS4*(1.+.8*CS1)**2
      VISBL(K,IJ)=(4./3.)*RLK(K,IJ)*DK(K)*CS1*RSQTP*CS3*TSKS
      VISCL(K,IJ)=VISCD*TSKS+0.6*VISBL(K,IJ)
      PS(K,IJ)=RLK(K,IJ)*(1.0+2.0*CS1)*TSK(K,IJ)
      GCON(K,IJ)=3.75*CS4*(1.+1.2*CS1)**2*TSKS+1.5*VISBL(K,IJ)
  ELSE
      VISBL(K,IJ)=0.0
      VISCL(K,IJ)=0.0
      PS(K,IJ)=0.0
      GCON(K,IJ)=0.0
  ENDIF

10    CONTINUE
      RETURN
      END
C  ----------------------------------------GRTEMF
      SUBROUTINE GRTEMF
      INCLUDE '3dim.com'
C
C  CALCULATES GRANULAR TEMPERATURE FLUXES OF KINETIC THEORY
C
      IF(UK(K,IJ).GE.0.)THEN

  TSKFR(K)=RLFRK(K,IJ)*TSKN(K,IJ)
      ELSE

  TSKFR(K)=RLFRK(K,IJ)*TSKN(K,IJR)
      ENDIF
      IF(VK(K,IJ).GE.0.)THEN

  TSKFT(K)=RLFTK(K,IJ)*TSKN(K,IJ)
      ELSE
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  TSKFT(K)=RLFTK(K,IJ)*TSKN(K,IJT)
      ENDIF
      IF(WK(K,IJ).GE.0.)THEN

  TSKAF(K)=RLFAK(K,IJ)*TSKN(K,IJ)
      ELSE

  TSKAF(K)=RLFAK(K,IJ)*TSKN(K,IJKA)
      ENDIF

      IF(IFL(IMJ).NE.1)GOTO 1
      IF(IFL(IJM).NE.1)GOTO 2
      IF(IFL(IJKM).NE.1) GOTO 3
      CALL FEFLUXB
      RETURN
C
1     IF(UK(K,IMJ).GE.0.)THEN

  TSKFL(K)=RLFRK(K,IMJ)*TSKN(K,IJL)
      ELSE

  TSKFL(K)=RLFRK(K,IMJ)*TSKN(K,IJ)
      ENDIF
      IF(IFL(IJM).NE.1)GOTO 2
      CALL FEFLUXA
      RETURN
C
2     IF(VK(K,IJM).GE.0.)THEN

  TSKFB(K,I)=RLFTK(K,IJM)*TSKN(K,IJB)
      ELSE

  TSKFB(K,I)=RLFTK(K,IJM)*TSKN(K,IJ)
      ENDIF
      CALL FEFLUXBB
 3    IF(WK(K,IJKM).GE.0.)THEN

  TSKAB(K,I,J)=RLFAK(K,IJKM)*TSKN(K,IJKF)
      ELSE

  TSKAB(K,I,J)=RLFAK(K,IJKM)*TSKN(K,IJ)
      ENDIF
      CALL FEFLUX
      RETURN
      END
C  ----------------------------------------HEATCL
      SUBROUTINE HEATCL
      INCLUDE '3dim.com'
C
C  CALCULATE HEAT FLUX FOR PHASES FROM THE PHASES
CONDUCTIVITY
C
      HFLB(K,I)=(BZ(J-1)*AKL(K,IJ)+AZ(J-1)*AKL(K,IJB))
     1 *(TL(K,IJ)-TL(K,IJB))*RDZP(J-1)
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      ELFB(K,I)=ELFB(K,I)-HFLB(K,I)
C
      ENTRY HEATCLA
      IF(IFL(IMJ).NE.1)THEN

  HFLL(K)=RB(I-1)*(BR(I-1)*AKL(K,IJ)+AR(I-1)*AKL(K,IJL))
     1     *(TL(K,IJ)-TL(K,IJL))*RDRP(I-1)

  ELFL(K)=ELFL(K)-HFLL(K)
      ENDIF
C
      ENTRY HEATCLB
      HFLR(K)=RB(I)*(AR(I)*AKL(K,IJ)+BR(I)*AKL(K,IJR))
     1 *(TL(K,IJR)-TL(K,IJ))*RDRP(I)
      HFLT(K)=(AZ(J)*AKL(K,IJ)+BZ(J)*AKL(K,IJT))
     1 *(TL(K,IJT)-TL(K,IJ))*RDZP(J)
      ELFT(K)=ELFT(K)-HFLT(K)
      ELFR(K)=ELFR(K)-HFLR(K)
      RETURN
      END
C  ----------------------------------------ICONV
      SUBROUTINE ICONV
      INCLUDE '3dim.com'
      DIMENSION AI(NP,NP),BI(NP)
C
C  UPDATE THE SPECIFIC ENERGIES TO ACCOUNT FOR THE EFFECTS OF
C  CONVECTION, VISCOUS AND PRESSURE WORK, AND CONDUCTION
C  (SEE ALSO SUBROUTINE IGIL)
C
      DO 100 J=2,JB1

  DO 100 I=2,IB1
      IJ=I+(J-1)*IB2
      IF(IFL(IJ).EQ.1)THEN

  IMJ=INDC(IJ,2)
  IJM=INDC(IJ,4)
  IJR=INDS(IJ,1)
  IJL=INDS(IJ,2)
  IJT=INDS(IJ,3)
  IJB=INDS(IJ,4)
  KV=NTHS(IJ)

C
  IF(MODAB.EQ.1)THEN

C  MODEL-A
      THX=TH(KV,IJ)
  ELSE

C  MODEL-B
      THX=1.0
  ENDIF
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  DPZ=(AZ(J)-BZ(J-1))*P(IJ)+BZ(J)*P(IJT)-AZ(J-1)*P(IJB)
  DPR=RB(I)*(BR(I)*P(IJR)+AR(I)*P(IJ))

     1             -RB(I-1)*(BR(I-1)*P(IJ)+AR(I-1)*P(IJL))
C

  IF(INENT.EQ.1)THEN
C  INTERNAL ENERGY

      IF(MODAB.EQ.1)THEN
C  MODEL-A

  CALL THFS(0,0)
  BI(1)=-(DTODZ(J)*(OMTFT(0)-OMTFB(0,I))

     1                     +DTORDR(I)*(OMTFR(0)-OMTFL(0)))*P(IJ)
  OMTFB(0,I)=OMTFT(0)
  OMTFL(0)=OMTFR(0)

      ELSE
C  MODEL-B

  BI(KV+1)=-DT*P(IJ)*SILM(KV,IJ)
      ENDIF
  ELSE

C  ENTHALPY
      BI(KV+1)=THX*(P(IJ)-PN(IJ)+0.5*(DTODZ(J)*DPZ

     1                 *(VK(KV,IJ)+VK(KV,IJM))+DTORDR(I)*DPR
     1                 *(RB(I)*UK(KV,IJ)+RB(I-1)*UK(KV,IMJ))/R(I)))

  ENDIF
  K=0
  CALL SIELF
  AI(1,1)=RLK(0,IJ)
  BI(1)=BI(1)+RLK(0,IJ)*SIEL(0,IJ)-SIELN(0,IJ)

     1             *(RLK(0,IJ)-RLKN(0,IJ))-DTODZ(J)*(ELFT(0)-ELFB(0,I))
     1             -DTORDR(I)*(ELFR(0)-ELFL(0))
     1             +VISCL(0,IJ)*(VWLS(0,IJ)-2./3.*VWLM(0,IJ))
C

  DO 10 K=1,NSOLID
      CALL SIELF
      KP=K+1
      RHT=-0.5*DT*RHEAT(K,IJ)
      AI(1,KP)=RHT/CL(K)
      AI(KP,1)=RHT/CL(0)
      AI(1,1)=AI(1,1)-AI(KP,1)
      AI(KP,KP)=RLK(K,IJ)-AI(1,KP)
      RIT=(SIEL(0,IJ)/CL(0)-SIEL(K,IJ)/CL(K)

     1                 +TL(K,IJ)-TL(0,IJ))*RHT
      BI(1)=BI(1)-RIT
      BI(KP)=BI(KP)+RLK(K,IJ)*SIEL(K,IJ)-SIELN(K,IJ)

     1                 *(RLK(K,IJ)-RLKN(K,IJ))+RIT-DTODZ(J)*(ELFT(K)-
     2                   ELFB(K,I))-DTORDR(I)*
     3                   (ELFR(K)-ELFL(K))+VISCL(K,IJ)*VWLS(K,IJ)
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     1                 +(VISBL(K,IJ)-(2./3.)*VISCL(K,IJ))*VWLM(K,IJ)
C  MODEL-A

      IF(MODAB.EQ.1)THEN
  IF(INENT.EQ.1)THEN
      BI(KP)=BI(KP)-(DTODZ(J)*(RLFTK(K,IJ)-

     1                        RLFTK(K,IJM))+DTORDR(I)*(RLFRK(K,IJ)-
     2                        RLFRK(K,IMJ)))*P(IJ)/RL(K)

  ELSE
      BI(KP)=BI(KP)+TH(K,IJ)*(P(IJ)-PN(IJ)+

     1                         0.5*DTODZ(J)*DPZ
     1                        *(VK(K,IJ)+VK(K,IJM))+0.5*DTORDR(I)*DPR
     1                      *(RB(I)*UK(K,IJ)+RB(I-1)*UK(K,IMJ))/R(I))

  ENDIF
      ENDIF

10                CONTINUE
C

  CALL IGINV(NPHASE,AI,BI)
  DO 20 K=0,NSOLID
      SIEL(K,IJ)=BI(K+1)
      TL(K,IJ)=C5+SIEL(K,IJ)/CL(K)
      ELFL(K)=ELFR(K)
      ELFB(K,I)=ELFT(K)

20                CONTINUE
      ENDIF

100   CONTINUE
      RETURN
      END
C  ----------------------------------------IGIL
      SUBROUTINE IGIL
      INCLUDE '3dim.com'
C
C  UPDATE THE SPECIFIC ENERGIES TO ACCOUNT FOR THE EFFECTS OF
C  MASS, MOMENTUM & ENERGY EXCHANGE(SEE ALSO SUBROUTINE
ICONV)
C
      DIMENSION AI(NP,NP),BI(NP)
      CALL VRELS
      AI(1,1)=RLK(0,IJ)
      BI(1)=RLK(0,IJ)*SIELN(0,IJ)
      DO 10 K=1,NSOLID

  KP=K+1
  RHT=-0.5*DT*RHEAT(K,IJ)
  AI(1,KP)=RHT/CL(K)
  AI(KP,1)=RHT/CL(0)
  AI(1,1)=AI(1,1)-AI(KP,1)
  AI(KP,KP)=RLK(K,IJ)-AI(1,KP)



142

  RIT=(SIELN(0,IJ)/CL(0)-SIELN(K,IJ)/CL(K)
     1     +TL(K,IJ)-TL(0,IJ))*RHT

  BI(1)=BI(1)-RIT
  BI(KV+1)=BI(KV+1)-DT*RKPG(K,IJ)*SVREL(K)

10    BI(KP)=BI(KP)+RLK(K,IJ)*SIELN(K,IJ)+RIT
C
      CALL IGINV(NPHASE,AI,BI)
      DO 100 K=0,NSOLID

  SIEL(K,IJ)=BI(K+1)
100   TL(K,IJ)=C5+SIEL(K,IJ)/CL(K)
      RETURN
      END
C  ----------------------------------------IGINV
      SUBROUTINE IGINV(NP,A,B)
      DIMENSION A(NP,NP),B(NP)
C
C  INVERSE OF MATRIX WITH NON-ZERO FIRST COLUMN,
C  FIRST ROW & DIAGONAL COLUMN
C
      DO 10 K=NP,2,-1

  IF(ABS(A(K,K)).LE.1.E-6)THEN
      A(1,K)=0.0
      A(K,1)=0.0
      B(K)=0.0
  ELSE
      DIV=1./A(K,K)
      A(K,1)=A(K,1)*DIV
      B(K)=B(K)*DIV
      B(1)=B(1)-A(1,K)*B(K)
      A(1,1)=A(1,1)-A(1,K)*A(K,1)
  ENDIF

10    CONTINUE
C
      B(1)=B(1)/A(1,1)
      DO 20 K=2,NP
20    B(K)=B(K)-A(K,1)*B(1)
      RETURN
      END

C  -----------------------------------------INDX
      SUBROUTINE INDX
      INCLUDE '3dim.com'
      DO 30 L=1,KB2

  DO 30 J=1,JB2
      DO 30 I=1,IB2

  IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
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C
C  CALCULATE INDICES FOR ARRAY QUANTITIES
C

  IPJ=IJ+1
  IF(I.EQ.IB2)IPJ=IJ
  IJP=IJ+IB2
  IF(J.EQ.JB2)IJP=IJ
  IJKP=IJ+IB2*JB2
  IF(L.EQ.KB2)IJKP=IJ
  IMJ=IJ-1
  IF(I.EQ.1)IMJ=IJ
  IJM=IJ-IB2
  IF(J.EQ.1)IJM=IJ
  IJKM=IJ-IB2*JB2
  IF(L.EQ.1)IJKM=IJ
  IPJP=IPJ+IB2
  IF(J.EQ.JB2)IPJP=IPJ
  IPJKP=IPJ+IB2*JB2
  IF(L.EQ.KB2)IPJKP=IPJ
  IMJP=IMJ+IB2
  IF(J.EQ.JB2)IMJP=IMJ
  IMJKP=IMJ+IB2*JB2
  IF(L.EQ.KB2)IMJKP=IMJ
  IPJM=IPJ-IB2
  IF(J.EQ.1)IPJM=IPJ
  IPJKM=IPJ-IB2*JB2
  IF(L.EQ.1)IPJKM=IPJ
  IMJM=IMJ-IB2
  IF(J.EQ.1)IMJM=IMJ
  IMJKM=IMJ-IB2*JB2
  IF(L.EQ.1)IMJKM=IMJ
  IJMKP=IJM+IB2*JB2
  IF(L.EQ.KB2)IJMKP=IJM
  IJMKM=IJM-IB2*JB2
  IF(L.EQ.1)IJMKM=IJM
  IJPKP=IJP+IB2*JB2
  IF(L.EQ.KB2)IJPKP=IJP
  IJPKM=IJP-IB2*JB2
  IF(L.EQ.1)IJPKM=IJP
  IMJPKP=IMJP+IB2*JB2
  IF(L.EQ.KB2)IMJPKP=IMJP
  IMJPKM=IMJP-IB2*JB2
  IF(L.EQ.1)IMJPKM=IMJP
  IMJMKP=IMJM+IB2*JB2
  IF(L.EQ.KB2)IMJMKP=IMJM
  IMJMKM=IMJM-IB2*JB2



144

  IF(L.EQ.1)IMJMKM=IMJM
  IPJPKP=IPJP+IB2*JB2
  IF(L.EQ.KB2)IPJPKP=IPJP
  IPJPKM=IPJP-IB2*JB2
  IF(L.EQ.1)IPJPKM=IPJP
  IPJMKP=IPJM+IB2*JB2
  IF(L.EQ.KB2)IPJMKP=IPJM
  IPJMKM=IPJM-IB2*JB2
  IF(L.EQ.1)IPJMKM=IPJM

C
  INDC(IJ,1)=IPJ
  INDC(IJ,2)=IMJ
  INDC(IJ,3)=IJP
  INDC(IJ,4)=IJM
  INDC(IJ,5)=IPJP
  INDC(IJ,6)=IMJP
  INDC(IJ,7)=IPJM
  INDC(IJ,8)=IMJM
  INDC(IJ,9)=IPJKP
  INDC(IJ,10)=IPJKM
  INDC(IJ,11)=IMJKM
  INDC(IJ,12)=IJMKP
  INDC(IJ,13)=IJPKP
  INDC(IJ,14)=IJMKM
  INDC(IJ,15)=IJPKM
  INDC(IJ,16)=IMJPKP
  INDC(IJ,17)=IMJPKM
  INDC(IJ,18)=IMJMKP
  INDC(IJ,19)=IMJMKM
  INDC(IJ,20)=IPJPKP
  INDC(IJ,21)=IPJPKM
  INDC(IJ,22)=IPJMKP
  INDC(IJ,23)=IPJMKM
  INDC(IJ,24)=IMJKP
  INDC(IJ,25)=IJKP
  INDC(IJ,26)=IJKM

C
C  INITIALIZE 'INDC'

  IJR=IPJ
  IF(IFL(IPJ).EQ.2.OR.IFL(IPJ).EQ.3)IJR=IJ
  IJL=IMJ
  IF(IFL(IMJ).EQ.2.OR.IFL(IMJ).EQ.3)IJL=IJ
  IJT=IJP
  IF(IFL(IJP).EQ.2.OR.IFL(IJP).EQ.3)IJT=IJ
  IJB=IJM
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  IF(IFL(IJM).EQ.2.OR.IFL(IJM).EQ.3)IJB=IJ
  IJKAA=IJKP
  IF(IFL(IJKP).EQ.2.OR.IFL(IJKP).EQ.3)IJKAA=IJ
  IJKF=IJKM
  IF(IFL(IJKM).EQ.2.OR.IFL(IJKM).EQ.3)IJKF=IJ

            IJKAL=IMJKP
c           IF(IFL(IMJKP).EQ.2.OR.IFL(IMJKP).EQ.3)IJKAL=IJ

  IF(IFL(IMJKP).EQ.2.OR.IFL(IMJKP).EQ.3)THEN
      IJKAL=IJL

                IF(IJ.EQ.IJL)THEN
  IJKAL=IJKAA

c       ELSE
c   IF(IJ.NE.IJR)IJTR=IJ

      ENDIF
  ENDIF
  IJKAB=IJMKP

c           IF(IFL(IJMKP).EQ.2.OR.IFL(IJMKP).EQ.3)IJKAB=IJ
            IF(IFL(IJMKP).EQ.2.OR.IFL(IJMKP).EQ.3)THEN

      IJKAB=IJB
                IF(IJ.EQ.IJB)THEN

  IJKAB=IJKAA
c       ELSE
c   IF(IJ.NE.IJR)IJTR=IJ

      ENDIF
  ENDIF
  IJTR=IPJP
  IF(IFL(IPJP).EQ.2.OR.IFL(IPJP).EQ.3)THEN
      IJTR=IJT
      IF(IJ.EQ.IJT)THEN

  IJTR=IJR
c       ELSE
c   IF(IJ.NE.IJR)IJTR=IJ

      ENDIF
  ENDIF
  IJTL=IMJP
  IF(IFL(IMJP).EQ.2.OR.IFL(IMJP).EQ.3)THEN
      IJTL=IJT
      IF(IJ.EQ.IJT)THEN

  IJTL=IJL
c       ELSE
c   IF(IJ.NE.IJL)IJTL=IJ

      ENDIF
  ENDIF
  IJKAT=IJPKP
  IF(IFL(IJPKP).EQ.2.OR.IFL(IJPKP).EQ.3)THEN
      IJKAT=IJT



146

      IF(IJ.EQ.IJT)THEN
  IJKAT=IJKAA

c       ELSE
c   IF(IJ.NE.IJKAA)IJKAT=IJ

      ENDIF
  ENDIF
  IJKFT=IJPKM
  IF(IFL(IJPKM).EQ.2.OR.IFL(IJPKM).EQ.3)THEN
      IJKFT=IJT
      IF(IJ.EQ.IJT)THEN

  IJKFT=IJKF
c       ELSE
c   IF(IJ.NE.IJKF)IJKFT=IJ

      ENDIF
  ENDIF
  IJBR=IPJM
  IF(IFL(IPJM).EQ.2.OR.IFL(IPJM).EQ.3)THEN
      IJBR=IJB
      IF(IJ.EQ.IJB)THEN

  IJBR=IJR
c       ELSE
c   IF(IJ.NE.IJR)IJBR=IJ

      ENDIF
  ENDIF
  IJKAR=IPJKP
  IF(IFL(IPJKP).EQ.2.OR.IFL(IPJKP).EQ.3)THEN

c           IJKAR=IJKAA
c       IF(IJ.EQ.IJKAA)THEN
c   IJKAR=IJR

      IJKAR=IJR
      IF(IJ.EQ.IJR)THEN

  IJKAR=IJKAA
c       ELSE
c   IF(IJ.NE.IJR)IJKAR=IJ

      ENDIF
  ENDIF

C   IJPKP = IJP + IB2*JB2
C   IJKAZ=IJPKP
C   IF(IFL(IJPKP).EQ.2.OR.IFL(IJPKP).EQ.3)THEN
C       IJKAR=IJT
C       IF(IJ.EQ.IJT)THEN
C   IJKAR=IJKP
C       ELSE
C   IF(IJ.NE.IJKP)IJKAZ=IJ
C       ENDIF
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C   ENDIF

  IJKFR=IPJKM
  IF(IFL(IPJKM).EQ.2.OR.IFL(IPJKM).EQ.3)THEN

c       IJKFR=IJKF
c       IF(IJ.EQ.IJKF)THEN
c   IJKFR=IJR

      IJKFR=IJR
      IF(IJ.EQ.IJR)THEN

  IJKFR=IJKF
c       ELSE
c   IF(IJ.NE.IJR)IJKFR=IJ

      ENDIF
  ENDIF
  IJRRK=IJR+1
  IF(I.GE.IB1)IJRRK=IJR
  IF(IFL(IJRRK).EQ.2.OR.IFL(IJRRK).EQ.3)IJRRK=IJR
  IJTTK=IJT+IB2
  IF(J.GE.JB1)IJTTK=IJT
  IF(IFL(IJTTK).EQ.2.OR.IFL(IJTTK).EQ.3)IJTTK=IJT
  IJKA=IJKP+IB2*JB2
  IF(L.GE.KB1)IJKA=IJKAA
  IF(IFL(IJKA).EQ.2.OR.IFL(IJKA).EQ.3)IJKA=IJKAA

  INDS(IJ,1)=IJR
  INDS(IJ,2)=IJL
  INDS(IJ,3)=IJT
  INDS(IJ,4)=IJB
  INDS(IJ,5)=IJTR
  INDS(IJ,6)=IJTL
  INDS(IJ,7)=IJBR
  INDS(IJ,8)=IJRRK
  INDS(IJ,9)=IJTTK

C   INDS(IJ,10)=IJKP
  INDS(IJ,11)=IJKA
  INDS(IJ,12)=IJKF
  INDS(IJ,13)=IJKAT
  INDS(IJ,14)=IJKAR

C   INDS(IJ,15)=IJKM
  INDS(IJ,16)=IJKFT
  INDS(IJ,17)=IJKAA
  INDS(IJ,18)=IJKAL
  INDS(IJ,19)=IJKAB

C   INDS(IJ,20)=IMJKP
C   INDS(IJ,21)=IJKAZ
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            INDS(IJ,22)=IJKFR

30    CONTINUE
      RETURN
      END
C  ----------------------------------------ITER
      SUBROUTINE ITER
      INCLUDE '3dim.com'
C
C  PERFORM THE ITERATIVE SOLUTION OF DIFFERENCE EQUATIONS OF
C  MASS, MOMENTUM AND ENERGY EQUATIONS
C
      LOGICAL MUSTIT
      PARAMETER (NTMAX=400,LMAX=5,OMEGA=1.0)
      MUSTIT=.FALSE.
      DO 200 NIT=1,NTMAX

  NITER(ITX)=NITER(ITX)+1
  DO 100 L=2,KB1
      DO 100 J=2,JB1

  DO 100 I=2,IB1
      IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
      IF(IFL(IJ).NE.1)GOTO 100
      LOOP=0
      KROS=-1
      KV=NTHS(IJ)
      IPJ=INDC(IJ,1)
      IMJ=INDC(IJ,2)
      IJP=INDC(IJ,3)
      IJM=INDC(IJ,4)
      IJKP=INDC(IJ,25)

  IJKM=INDC(IJ,26)
  IJR=INDS(IJ,1)

      IJL=INDS(IJ,2)
      IJT=INDS(IJ,3)
      IJB=INDS(IJ,4)
      IJKAA=INDS(IJ,17)
      IJKF=INDS(IJ,12)

   
      DG=RLK(KV,IJ)-RLKN(KV,IJ)+DTORDR(I)*(RLFRK(KV,IJ)

     1                 -RLFRK(KV,IMJ))+DTODZ(J)*(RLFTK(KV,IJ)-
     1                  RLFTK(KV,IJM))
     1                +(RLFAK(KV,IJ)-RLFAK(KV,IJKM))*DTODY(L)/R(I)

      TARGET=(1.0-OMEGA)*DG
      ADG=ABS(DG)
      ADGTAR=ABS(DG-TARGET)
      DGORIG=ADG
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      IF(ADG.LE.CONV(IJ))GOTO 78
      MUSTIT=.FALSE.
      D3=DG
      P3=P(IJ)
      IF(NIT.EQ.1)GOTO 55

10                    IF(D3.GT.TARGET)GOTO 11
      D2=D3
      P2=P3
      IF(KROS.EQ.-1)KROS=1
      IF(KROS.EQ.0)KROS=2
      GOTO 12

11                    D1=D3
      P1=P3
      IF(KROS.EQ.-1)KROS=0
      IF(KROS.EQ.1)KROS=2

12                    IF(KROS.EQ.3)GOTO 54
      IF(KROS.EQ.2)GOTO 13
      D3TAR=D3-TARGET
      DP=-D3TAR*ABETA(IJ)
      DSN=SIGN(1.,D3TAR)
      IF(-DP*DSN.GT.0.25*P3)DP=-0.5*DSN*P3
      P(IJ)=P(IJ)+DP
      GOTO 54

13                    P(IJ)=(D1*P2-D2*P1+TARGET*(P1-P2))/(D1-D2)
      ABETA(IJ)=(P1-P2)/(D1-D2)
      KROS=3

54                    P3=P(IJ)
55                    CONTINUE

      IF(INENT.NE.0)CALL IGIL
      ROG(IJ)=C9+C10*P(IJ)/(C12*TL(0,IJ)+C11*P(IJ))
      RLK(0,IJ)=TH(0,IJ)*ROG(IJ)
      CALL MATS
      CALL VELSK
      CALL MASFK(0,KV-1)
      CALL MASFK(KV+1,NSOLID)

78                    THX=0.0
      DO 79 K=0,NSOLID

  IF(K.NE.KV)THEN
    RLK(K,IJ)=RLKN(K,IJ)-DTORDR(I)*(RLFRK(K,IJ)

     1                      -RLFRK(K,IMJ))-DTODZ(J)*(RLFTK(K,IJ)-
     1                       RLFTK(K,IJM))
     1                     -(RLFAK(K,IJ)-RLFAK(K,IJKM))*DTODY(L)/R(I)

   IF(RLK(K,IJ).LT.1.E-6*RLKMIN(K))RLK(K,IJ)=0.0
      IF(K.EQ.0)THEN
       IF(RLK(0,IJ).GT.ROG(IJ))RLK(0,IJ)=ROG(IJ)

  TH(0,IJ)=RLK(0,IJ)/ROG(IJ)
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      ELSE
  IF(RLK(K,IJ).GT.RL(K))RLK(K,IJ)=RL(K)
  TH(K,IJ)=RLK(K,IJ)/RL(K)

      ENDIF
      THX=THX+TH(K,IJ)
  ENDIF

79                    CONTINUE
c                IF(THX.GT.0.8)THEN
c                   DIV=0.8/THX
c                   THX=0.8
c                   DO 81 K=1,NSOLID
c                   RLK(K,IJ)=RLK(K,IJ)*DIV
c81                 CONTINUE
c                ENDIF

      TH(KV,IJ)=1.-THX
      IF(KV.EQ.0)THEN

  RLK(0,IJ)=TH(0,IJ)*ROG(IJ)
      ELSE

  RLK(KV,IJ)=TH(KV,IJ)*RL(KV)
      ENDIF
      IF(ADGTAR.LE.CONV(IJ))GOTO 100
      CALL MASFK(KV,KV)
      DG=RLK(KV,IJ)-RLKN(KV,IJ)+DTORDR(I)*(RLFRK(KV,IJ)

     1                 -RLFRK(KV,IMJ))+DTODZ(J)*(RLFTK(KV,IJ)-
     2                  RLFTK(KV,IJM))
     3                +(RLFAK(KV,IJ)-RLFAK(KV,IJKM))*DTODY(L)/R(I)

      ADG=ABS(DG)
      ADGTAR=ABS(DG-TARGET)
      IF(ADGTAR.LE.CONV(IJ).AND.ADG.LT.DGORIG)GOTO 100
      IF(NIT.EQ.1.AND.LOOP.EQ.0)THEN

  TARGET=(1.-OMEGA)*DG
  DGORIG=ADG

      ENDIF
      D3=DG
      LOOP=LOOP+1
      IF(LOOP.EQ.LMAX)THEN

  IF(KROS.LT.2)ABETA(IJ)=.5*LMAX*ABETA(IJ)
  GOTO 100

      ENDIF
      IF(KROS.EQ.3)CALL NEWP
      GOTO 10

100       CONTINUE
  IF(MUSTIT)RETURN
  MUSTIT=.TRUE.
  IF(NIT.EQ.NTMAX)THEN
      WRITE(21,*)'MAX ITERATION AT TIME = ',TIME,NIT
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      MAXIT=.TRUE.
      NITER(ITX)=9999
      CALL OUTP

      WRITE(21,*)'MAX ITERATION AT TIME = ',TIME,NIT
      STOP
  ENDIF

200   CONTINUE
      RETURN
      END
C  ----------------------------------------KDRAGS
      SUBROUTINE KDRAGS(NPH1,NPH2)
      INCLUDE '3dim.com'
C
C  FLUID-PARTICLE FRICTION COEFFICIENT
C
      IF(TH(KV,IJ).LT.1.E-3)THEN

  DO 5 K=NPH1,NPH2
5         RKPG(K,IJ)=1.0E30
      ELSE

  DO 10 K=NPH1,NPH2
      IF(TH(K,IJ).GT.0.0)THEN

  IF(J.EQ.1) THEN
     DV=VK(KV,IJ)-VK(K,IJ)
  ELSE
    DV=0.5*(VK(KV,IJ)-VK(K,IJ)+VK(KV,IJM)-VK(K,IJM))
  ENDIF
  IF(L.EQ.1)THEN
      DW=WK(KV,IJ)-WK(K,IJ)
  ELSE
    DW=0.5*(WK(KV,IJ)-WK(K,IJ)+WK(KV,IJKM)-WK(K,IJKM))
  ENDIF
  IF(I.EQ.1)THEN
      DU=UK(KV,IJ)-UK(K,IJ)
  ELSE
      DU=0.5*(RB(I)*(UK(KV,IJ)-UK(K,IJ))

     1                 +RB(I-1)*(UK(KV,IMJ)-UK(K,IMJ)))/R(I)
  ENDIF
  VREL(K)=(DU*DU+DV*DV+DW*DW)**0.5
  DENOM=DK(K)*PHI(K)*TH(KV,IJ)
  IF(TH(KV,IJ).GE.0.8)THEN

C  CALCULATE DRAG USING EMPIRICAL CORRELATION (EPfluid >= 0.8)
      REYN=RLK(KV,IJ)*VREL(K)*DENOM/VISCL(KV,IJ)
      IF(REYN.LT.1000.)THEN

  DRCOT=1.+.15*REYN**.687
  RKPG(K,IJ)=18.*DRCOT*TH(K,IJ)*VISCL(KV,IJ)

     1                     /(TH(KV,IJ)**1.65*DENOM*DENOM)
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      ELSE
  RKPG(K,IJ)=.75*DRCOE*TH(K,IJ)*VREL(K)*

     1                    RLK(KV,IJ)/(DENOM*TH(KV,IJ)**1.65)
      ENDIF
      IF(RKPG(K,IJ).GT.1.0E30)RKPG(K,IJ)=1.0E30
  ELSE

C  CALCULATE DRAG USING ERGUN EQUATION (EPfluid < 0.8)
      RKPG(K,IJ)=(150.0*(1.0-TH(KV,IJ))*VISCL(KV,IJ)/

     1                DENOM+1.75*RLK(KV,IJ)*VREL(K))*TH(K,IJ)/DENOM
  ENDIF
  IF(MODAB.NE.1)RKPG(K,IJ)=RKPG(K,IJ)/TH(KV,IJ)

C
      ELSE

  RKPG(K,IJ)=0.0
      ENDIF

10        CONTINUE
      ENDIF
      RETURN
      END
C  ----------------------------------------MASFK
      SUBROUTINE MASFK(NPH1,NPH2)
      INCLUDE '3dim.com'
C
C  CALCULATES MASS FLUXES FOR THE PHASES
C
      DO 10 K=NPH1,NPH2

  IF(UK(K,IMJ).GE.0.)THEN
      RLFRK(K,IMJ)=UK(K,IMJ)*RLK(K,IJL)*RB(I-1)
  ELSE
      RLFRK(K,IMJ)=UK(K,IMJ)*RLK(K,IJ)*RB(I-1)
  ENDIF
  IF(VK(K,IJM).GE.0.)THEN
      RLFTK(K,IJM)=VK(K,IJM)*RLK(K,IJB)
  ELSE
      RLFTK(K,IJM)=VK(K,IJM)*RLK(K,IJ)
  ENDIF
  IF(WK(K,IJKM).GE.0.)THEN
      RLFAK(K,IJKM)=WK(K,IJKM)*RLK(K,IJKF)
  ELSE
      RLFAK(K,IJKM)=WK(K,IJKM)*RLK(K,IJ)
  ENDIF

10    CONTINUE
C
      ENTRY MASFKA(NPH1,NPH2)
      DO 20 K=NPH1,NPH2

  IF(UK(K,IJ).GE.0.)THEN
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      RLFRK(K,IJ)=UK(K,IJ)*RLK(K,IJ)*RB(I)
  ELSE
      RLFRK(K,IJ)=UK(K,IJ)*RLK(K,IJR)*RB(I)
  ENDIF
  IF(VK(K,IJ).GE.0.)THEN
      RLFTK(K,IJ)=VK(K,IJ)*RLK(K,IJ)
  ELSE
      RLFTK(K,IJ)=VK(K,IJ)*RLK(K,IJT)
  ENDIF
  IF(WK(K,IJ).GE.0.)THEN
      RLFAK(K,IJ)=WK(K,IJ)*RLK(K,IJ)
  ELSE
      RLFAK(K,IJ)=WK(K,IJ)*RLK(K,IJKAA)
  ENDIF

20    CONTINUE
      RETURN
      END
C  ----------------------------------------MATS
      SUBROUTINE MATS
      INCLUDE '3dim.com'
      DIMENSION THKDPR(0:NS),THKDPZ(0:NS),THKDPY(0:NS)
C
C  CALCULATES THE MATRIX COMPONENTS FOR VELOCITY COMPONENTS
C
      DPR=DTODRP(I-1)*(P(IJ)-P(IJL))
      DPZ=DTODZP(J-1)*(P(IJ)-P(IJB))
      DPY=DTODYP(L-1)*(P(IJ)-P(IJKF))
      IF(MODAB.EQ.1)THEN
C  MODEL-A

  DO 1 K=0,NSOLID
    THKDPR(K)=(AR(I-1)*TH(K,IJL)+BR(I-1)*TH(K,IJ))*DPR
    THKDPZ(K)=(AZ(J-1)*TH(K,IJB)+BZ(J-1)*TH(K,IJ))*DPZ

1           THKDPY(K)=(AY(L-1)*TH(K,IJKF)+BY(L-1)*TH(K,IJ))*DPY
      ELSE
C  MODEL-B

  DO 2 K=0,NSOLID
      THKDPR(K)=0.0
      THKDPZ(K)=0.0

2         THKDPY(K)=0.0
  THKDPR(KV)=DPR
  THKDPZ(KV)=DPZ
  THKDPY(KV)=DPY

      ENDIF
C
      DO 130 K=0,NSOLID

  KP=K+1
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  BU1(KP)=RUK(K,IMJ)-THKDPR(K)
  BV1(KP)=RVK(K,IJM)-THKDPZ(K)
  BW1(KP)=RWK(K,IJKM)-THKDPY(K)
  DO 110 KK=1,K
      KS=K*KP/2+KK
      AU1(KP,KK)=AR(I-1)*APP(KS,IJL)+BR(I-1)*APP(KS,IJ)
      AU1(KK,KP)=AU1(KP,KK)
      AV1(KP,KK)=AZ(J-1)*APP(KS,IJB)+BZ(J-1)*APP(KS,IJ)
      AV1(KK,KP)=AV1(KP,KK)
      AW1(KP,KK)=AY(L-1)*APP(KS,IJKF)+BY(L-1)*APP(KS,IJ)
      AW1(KK,KP)=AW1(KP,KK)

110       CONTINUE
  KS=KP*(KP+1)/2
  AU1(KP,KP)=AR(I-1)*(APP(KS,IJL)+RLK(K,IJL))

     1     +BR(I-1)*(APP(KS,IJ)+RLK(K,IJ))
  AV1(KP,KP)=AZ(J-1)*(APP(KS,IJB)+RLK(K,IJB))

     1     +BZ(J-1)*(APP(KS,IJ)+RLK(K,IJ))
  AW1(KP,KP)=AY(L-1)*(APP(KS,IJKF)+RLK(K,IJKF))

     1     +BY(L-1)*(APP(KS,IJ)+RLK(K,IJ))
130   CONTINUE
C
C           WRITE(6,*) 'IJK',I,J,L,'IJ,IJKM,IJL,IJB',IJ,IJKM,IJL,IJB
C           DO 9001 K = 0, NSOLID
C             KP = K + 1
C             WRITE(6,*) '  BW1,           AW1,                RLK '
C             WRITE(6,9500) BW1(KP),AW1(KP,KP),RLK(K,IJKM),RLK(K,IJ)
C 9001      CONTINUE
      ENTRY MATSA
      DPR=DTODRP(I)*(P(IJR)-P(IJ))
      DPZ=DTODZP(J)*(P(IJT)-P(IJ))
      DPY=DTODYP(L)*(P(IJKAA)-P(IJ))
      IF(MODAB.EQ.1)THEN
C  MODEL-A

  DO 3 K=0,NSOLID
      THKDPR(K)=(AR(I)*TH(K,IJ)+BR(I)*TH(K,IJR))*DPR
      THKDPZ(K)=(AZ(J)*TH(K,IJ)+BZ(J)*TH(K,IJT))*DPZ

3             THKDPY(K)=(AY(L)*TH(K,IJ)+BY(L)*TH(K,IJKAA))*DPY
      ELSE
C  MODEL-B

  DO 4 K=0,NSOLID
      THKDPR(K)=0.0
      THKDPZ(K)=0.0

4         THKDPY(K)=0.0
  THKDPR(KV)=DPR
  THKDPZ(KV)=DPZ
  THKDPY(KV)=DPY
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      ENDIF
C
      DO 230 K=0,NSOLID

  KP=K+1
  BU(KP)=RUK(K,IJ)-THKDPR(K)
  BV(KP)=RVK(K,IJ)-THKDPZ(K)
  BW(KP)=RWK(K,IJ)-THKDPY(K)
  DO 210 KK=1,K
      KS=K*KP/2+KK
      AU(KP,KK)=AR(I)*APP(KS,IJ)+BR(I)*APP(KS,IJR)
      AU(KK,KP)=AU(KP,KK)
      AV(KP,KK)=AZ(J)*APP(KS,IJ)+BZ(J)*APP(KS,IJT)
      AV(KK,KP)=AV(KP,KK)
      AW(KP,KK)=AY(L)*APP(KS,IJ)+BY(L)*APP(KS,IJKAA)
      AW(KK,KP)=AW(KP,KK)

210       CONTINUE
  KS=KP*(KP+1)/2
  AU(KP,KP)=AR(I)*(APP(KS,IJ)+RLK(K,IJ))

     1     +BR(I)*(APP(KS,IJR)+RLK(K,IJR))
  AV(KP,KP)=AZ(J)*(APP(KS,IJ)+RLK(K,IJ))

     1     +BZ(J)*(APP(KS,IJT)+RLK(K,IJT))
  AW(KP,KP)=AY(L)*(APP(KS,IJ)+RLK(K,IJ))

     1     +BY(L)*(APP(KS,IJKAA)+RLK(K,IJKAA))
230   CONTINUE
C
c           WRITE(6,*) 'IJK',I,J,L,'IJ,IJKA,IJR,IJT',IJ,IJKA,IJR,IJT
c           DO 9000 K = 0, NSOLID
c             KP = K + 1
c              KS=KP*(KP+1)/2
c             WRITE(6,*) '  BW,           RWK'
c             WRITE(6,9500) BW(KP),RWK(K,IJ)
c 9500        FORMAT(1X,4(1X,G11.4))
c 9000      CONTINUE
      RETURN
      END
C  ----------------------------------------MULTI
      SUBROUTINE MULTI
      INCLUDE '3dim.com'
C
C  CALCULATE INTERPHASE MOMENTUM EXCHANGE COEFFICIENT
C
      DO 100 K=1,NSOLID

  DO 90 KK=0,K-1
      KS=K*(K+1)/2+KK+1
      IF(K.EQ.KV)THEN

  APP(KS,IJ)=-RKPG(KK,IJ)*DT
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      ELSEIF(KK.EQ.KV)THEN
  APP(KS,IJ)=-RKPG(K,IJ)*DT

      ELSE
C  CALCULATE PARTICLE TO PARTICLE INTERACTION

  EPSUM=TH(K,IJ)+TH(KK,IJ)
  IF(EPSUM.NE.0.0)THEN
      IF(DK(K).GT.DK(KK))THEN

  K1=K
  K2=KK

      ELSE
  K1=KK
  K2=K

      ENDIF
      XBAR=TH(K1,IJ)/EPSUM
      IF(XBAR.LE.PHILIM(K,KK))THEN

  EPKL=EPSL(K,KK)*XBAR+CPHI(K2)
      ELSE

  EPKL=EPSU(K,KK)*(1.0-XBAR)+CPHI(K1)
      ENDIF
      CEPR=(EPSUM/EPKL)**(1./3.)
      IF(CEPR.GE.1.0)THEN

  CON=4.E10*RLK(K,IJ)*RLK(KK,IJ)*DT*DKF(K,KK)
      ELSE

  CON=DT*RLK(K,IJ)*RLK(KK,IJ)*DKF(K,KK)
     1                     *(CEPR+3.)/(1.-CEPR)

      ENDIF
      IF(MODAB.NE.0)CON=CON/TH(KV,IJ)
      IF(J.EQ.1) THEN

 DV=VK(KK,IJ)-VK(K,IJ)
      ELSE

 DV=0.5*(VK(KK,IJ)-VK(K,IJ)+VK(KK,IJM)-
     1                      VK(K,IJM))

      ENDIF
      IF(L.EQ.1)THEN

 DW=WK(KK,IJ)-WK(K,IJ)
      ELSE

 DW=0.5*(WK(KK,IJ)-WK(K,IJ)+WK(KK,IJKM)-
     1                      WK(K,IJKM))

      ENDIF
      IF(I.EQ.1)THEN

  DU=UK(KK,IJ)-UK(K,IJ)
      ELSE

  DU=0.5*(RB(I)*(UK(KK,IJ)-UK(K,IJ))
     1                     +RB(I-1)*(UK(KK,IMJ)-UK(K,IMJ)))/R(I)

      ENDIF
      VRELP=(DU*DU+DV*DV+DW*DW)**0.5
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      APP(KS,IJ)=-CON*VRELP
  ELSE
      APP(KS,IJ)=0.0
  ENDIF

      ENDIF
90        CONTINUE
100   CONTINUE
C
      DO 200 K=0,NSOLID

  SUM=0.0
  DO 110 KK=0,K-1
      KS=K*(K+1)/2+KK+1

110       SUM=SUM+APP(KS,IJ)
  DO 120 KK=K+1,NSOLID
      KS=KK*(KK+1)/2+K+1

120       SUM=SUM+APP(KS,IJ)
  KS=(K+1)*(K+2)/2

200   APP(KS,IJ)=-SUM
      RETURN
      END
C  ----------------------------------------NEWP
      SUBROUTINE NEWP
      INCLUDE '3dim.com'
C
C  CALCULATE NEW ESTIMATES OF ADVANCED TIME PRESSURE
C  FROM THREE (P, D) POINTS
C
      IF(D1.NE.D3)THEN

  PA=(D1*P3-D3*P1+TARGET*(P1-P3))/(D1-D3)
      ELSE

  PA=0.5*(P2+P3)
      ENDIF
      IF(D2.NE.D3)THEN

  PB=(D2*P3-D3*P2+TARGET*(P2-P3))/(D2-D3)
      ELSE

  PB=0.5*(P1+P3)
      ENDIF
      IF((D1-TARGET)*(D3-TARGET).GT.0.)THEN

  IF(PA.LT.P2.OR.PA.GT.P3)PA=0.5*(P2+P3)
      ELSE

  IF(PB.LT.P3.OR.PB.GT.P1)PB=0.5*(P1+P3)
      ENDIF
      P(IJ)=0.5*(PA+PB)
      RETURN
      END
C  ----------------------------------------OUTP
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      SUBROUTINE OUTP
      INCLUDE '3dim.com'
CDTM
CDTM  OUTPUT RESULTS TO DISK FOR FURTHER ANALYSIS
C
      DO 900 L = 2,KB1

WRITE(22,*) ' @@@K = ',L
WRITE(23,*) ' @@@K = ',L
WRITE(24,*) ' @@@K = ',L
WRITE(25,*) ' @@@K = ',L
WRITE(26,*) ' @@@K = ',L
WRITE(27,*) ' @@@K = ',L
WRITE(28,*) ' @@@K = ',L
WRITE(29,*) ' @@@K = ',L
WRITE(30,*) ' @@@K = ',L

      if(NSOLID.eq.2)then
WRITE(31,*) ' @@@K = ',L

      WRITE(32,*) ' @@@K = ',L
WRITE(33,*) ' @@@K = ',L
WRITE(34,*) ' @@@K = ',L
endif

I1 = (L)*IB2*JB2+1
WRITE(22,548)
DO 325 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

325       WRITE(22,550) (P(IL), IL = I1,IJ2)
c DO 342 K = 0,NSOLID

k=0
  WRITE(23,549) K,K
I1 = (L)*IB2*JB2+1
  DO 228 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

228       WRITE(23,550) (TH(K,IL), IL = I1,IJ2)
  WRITE(24,556) K,K
I1 = (L)*IB2*JB2+1
  DO 236 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

236       WRITE(24,550) (VK(K,IL), IL = I1,IJ2)
  WRITE(25,557) K,K
I1 = (L)*IB2*JB2+1
  DO 237 J = 1,JB2
  I1 = I1-IB2
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  IJ2 = IB2- 1 + I1
237       WRITE(25,550) (UK(K,IL), IL = I1,IJ2)

  WRITE(26,560) K,K
I1 = (L)*IB2*JB2+1
  DO 238 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

238       WRITE(26,550) (WK(K,IL), IL = I1,IJ2)

k=1
  WRITE(27,549) K,K

I1 = (L)*IB2*JB2+1
  DO 328 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

328       WRITE(27,550) (TH(K,IL), IL = I1,IJ2)
  WRITE(28,556) K,K
I1 = (L)*IB2*JB2+1
  DO 336 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

336       WRITE(28,550) (VK(K,IL), IL = I1,IJ2)
  WRITE(29,557) K,K
I1 = (L)*IB2*JB2+1
  DO 337 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

337       WRITE(29,550) (UK(K,IL), IL = I1,IJ2)
  WRITE(30,560) K,K
I1 = (L)*IB2*JB2+1
  DO 338 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

338       WRITE(30,550) (WK(K,IL), IL = I1,IJ2)

      if(NSOLID.eq.2)then
      k=2

  WRITE(31,549) K,K
I1 = (L)*IB2*JB2+1
  DO 428 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

428       WRITE(31,550) (TH(K,IL), IL = I1,IJ2)
  WRITE(32,556) K,K
I1 = (L)*IB2*JB2+1
  DO 436 J = 1,JB2
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  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

436       WRITE(32,550) (VK(K,IL), IL = I1,IJ2)
  WRITE(33,557) K,K
I1 = (L)*IB2*JB2+1
  DO 437 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

437       WRITE(33,550) (UK(K,IL), IL = I1,IJ2)
  WRITE(34,560) K,K
I1 = (L)*IB2*JB2+1
  DO 438 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

438       WRITE(34,550) (WK(K,IL), IL = I1,IJ2)
endif

c342       CONTINUE
  IF(INENT.NE.0) THEN
     WRITE(6,555) K,K
I1 = (L)*IB2*JB2+1
     DO 339 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

339          WRITE(6,550) (TL(K,IL), IL = I1,IJ2)
  ENDIF
  IF(IKINT.EQ.1) THEN
     WRITE(6,558) K,K
I1 = (L)*IB2*JB2+1
     DO 340 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

340          WRITE(6,550) (TSK(K,IL), IL = I1,IJ2)
     WRITE(6,559) K,K
I1 = (L)*IB2*JB2+1
     DO 341 J = 1,JB2
  I1 = I1-IB2
  IJ2 = IB2- 1 + I1

341          WRITE(6,550) (VISCL(K,IL), IL = I1,IJ2)
  ENDIF

c m=m+1
 900  CONTINUE
      RETURN
547   FORMAT(1X,//,1X,'@ TIME = ',1PE12.5,' secs')
548   FORMAT(1X,/,1X,'FLUID PRESSURE, P (dynes/cm^2)'/)
549   FORMAT(1X,/,1X,'VOLUME FRACTION (PHASE- ',I1
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     1 ,'), TH',I1/)
550   FORMAT(1X,56(1X,G10.4))
555   FORMAT(1X,/,1X,'TEMPERATURE (PHASE-'
     1 ,I1,'), TL',I1,' (Kelvin)'/)
556   FORMAT(1X,/,1X,'VELOCITY - Z (or Y) component,',
     1 ' (PHASE-',I1,'), VK',I1,' (cm/s)'/)
557   FORMAT(1X,/,1X,'VELOCITY - R (or X) component,',
     1 ' (PHASE-',I1,'), UK',I1,' (cm/s)'/)
558   FORMAT(1X,/,1X,'GRANULAR TEMPERATURE (PHASE-'
     1 ,I1,'), TSK',I1,' ((cm/s)^2)'/)
559   FORMAT(1X,/,1X,'GRANULAR SHEAR VISCOSITY (PHASE-'
     1 ,I1,'), VISCL',I1,' (dynes/cm.s)'/)
560   FORMAT(1X,/,1X,'VELOCITY - THETA (or Z) component,',
     1 ' (PHASE-',I1,'), WK',I1,' (cm/s)'/)
      END
C  ----------------------------------------PROG
      SUBROUTINE PROG
      INCLUDE '3dim.com'
C
C  CONTROL THE PROGRAM FLOW AND OUTPUT
C
      TDUMP1=TIME
      TPRI=TIME
1     CONTINUE
      TPDT=TIME+0.1*DT
      IF(MAXIT)CALL VARDT
C
C  SET BOUNDARY AND OBSTACLE CELLS
      CALL BDRY
C
C  SAVE VALUES AT PREVIOUS TIME STEP
      DO 10 L = 2,KB2

  DO 10 J = 2,JB2
      DO 10 I = 2,IB2

  IJ=I+(J-1)*IB2 + (L-1)*IB2*JB2
  IF(IFL(IJ).NE.2.OR.IFL(IJ).EQ.3)THEN
      IF(I.NE.IB2.OR.J.NE.JB2.OR.L.NE.KB2) THEN
      IMJ=INDC(IJ,2)
      IJM=INDC(IJ,4)
      IJKM=INDC(IJ,26)
  ELSE
      IMJ = IJ - 1
      IJM = IJ - IB2
      IJKM = IJ - IB2*JB2
   ENDIF
      RLX(IJ)=RLK(0,IJ)
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      PN(IJ)=P(IJ)
      VISFN(IJ)=VISCL(0,IJ)
      DO 5 K =1,NSOLID

  RLX(IJ)=RLX(IJ)+RLK(K,IJ)
5                     TSKN(K,IJ)=TSK(K,IJ)

      DO 6 K=0,NSOLID
  RLKN(K,IJ)=RLK(K,IJ)

      IF(RL(K).LE.0.0) WRITE(6,*) ' PROG IJ RL(K) K',IJ,RL(K),K
6                     SIELN(K,IJ)=SIEL(K,IJ)

      IF(IFL(IJ).EQ.4.OR.IFL(IJ).GT.7)THEN
  KV=NTHS(IJ)
  CALL KDRAGS(0,NSOLID)
  CALL MULTI

      ENDIF
  ENDIF

10    CONTINUE
C
      IF(TPDT.GE.TPRI)THEN
c   WRITE(6,547)TIME

write(21,547)TIME
write(22,547)TIME
write(23,547)TIME

      write(24,547)TIME
write(25,547)TIME
write(26,547)TIME
write(27,547)TIME

      write(28,547)TIME
write(29,547)TIME
write(30,547)TIME

      if(NSOLID.eq.2)then
write(31,547)TIME

      write(32,547)TIME
write(33,547)TIME
write(34,547)TIME
endif

  TPRI=TPRI+TPR
  CALL OUTP

      ENDIF
C
C  WRITE DATA ON DISK FOR RESTART
      IF(TPDT.GT.TSTOP.OR.TPDT.GT.TDUMP1)THEN

  ITINT=ITINT+1
  CALL TAPEWR

C          WRITE(10,547)TIME
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C          DO 437 K=0,NSOLID
C              DO 428 IJ=IB2JB2,IB2,-IB2
C 428           WRITE(10,550)(TH(K,IL),IL=IJ-IB1,IJ)
C      DO 436 IJ=IB2JB2,IB2,-IB2
C436   WRITE(10,550)(VK(K,IL),IL=IJ-IB1,IJ)
C      DO 437 IJ=IB2JB2,IB2,-IB2
C     WRITE(10,550)(UK(K,IL),IL=IJ-IB1,IJ)
C 437       CONTINUE

  IF(ITX.NE.1)THEN
      ITXN=ITX-1
      IF(ITINT.GE.IMX(ITX).OR.NITER(ITXN).LT.

     1         (NITER(ITX)-4))THEN
  WRITE(6,*) ' INTO VARDTI first'
  CALL VARDTI
  GOTO 100

      ENDIF
  ENDIF
  IF(ITX.NE.ITXMX)THEN
      ITXN=ITX+1
      WRITE(6,*) ' ITXN ', ITXN, 'ITX', ITX
      IF(NITER(ITXN).LT.(NITER(ITX)-2)) THEN

WRITE(6,*) ' INTO VARDTI'
CALL VARDTI
WRITE(6,*) ' OUT of VARDTI'

      ENDIF
  ENDIF

100       NITER(ITX)=0
  REWIND(9)
  TDUMP1=TDUMP1+TDUMP

      ENDIF
C
      IF(TPDT.LT.TSTOP)THEN

  CALL TILDE
  CALL BETAS
  CALL ITER
  IF(.NOT.(MAXIT).OR.ITXMX.EQ.1)THEN
      IF(INENT.NE.0)CALL VWORKL(0,NSOLID)
      IF(IKINT.EQ.1)THEN

  IF(INENT.EQ.0)CALL VWORKL(NCONT,NSOLID)
  CALL GRNVIS

      ENDIF
C  CALCULATE NEW PHYSICAL PROPERTIES IN FLUID CELLS

      DO 20 L = 2,KB1
  DO 20 J = 2,JB1
      DO 20 I = 2,IB1

  IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
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  IF(IFL(IJ).EQ.1)THEN
      IF(INENT.NE.0)CALL THRCON
  ROG(IJ)=C9+C10*P(IJ)/(C12*TL(0,IJ)+C11*P(IJ))
      RLK(0,IJ)=TH(0,IJ)*ROG(IJ)
      DO 15 K=0,NCONT-1

15                            VISCL(K,IJ)=PVISC(K)*TH(K,IJ)
      IF(IKINT.NE.1)THEN

  DO 16 K=NCONT,NSOLID
16                                VISCL(K,IJ)=PVISC(K)*TH(K,IJ)

      ENDIF
  ENDIF

20            CONTINUE
      IF(INENT.NE.0)CALL ICONV
  ENDIF
  TIME=TIME+DT
  GOTO 1

      ENDIF
      RETURN
C
547   FORMAT(1X,//,1X,'@ TIME = ',1PE12.5,' secs')
548   FORMAT(1X,/,1X,'FLUID PRESSURE, P (dynes/cm^2)'/)
549   FORMAT(1X,/,1X,'VOLUME FRACTION (PHASE- ',I1
     1 ,'), TH',I1/)
550   FORMAT(1X,6(1X,G11.4))
555   FORMAT(1X,/,1X,'TEMPERATURE (PHASE-'
     1 ,I1,'), TL',I1,' (Kelvin)'/)
556   FORMAT(1X,/,1X,'VELOCITY - Z (or Y) component,',
     1 ' (PHASE-',I1,'), VK',I1,' (cm/s)'/)
557   FORMAT(1X,/,1X,'VELOCITY - R (or X) component,',
     1 ' (PHASE-',I1,'), UK',I1,' (cm/s)'/)
558   FORMAT(1X,/,1X,'GRANULAR TEMPERATURE (PHASE-'
     1 ,I1,'), TSK',I1,' ((cm/s)^2)'/)
559   FORMAT(1X,/,1X,'GRANULAR SHEAR VISCOSITY (PHASE-'
     1 ,I1,'), VISCL',I1,' (dynes/cm.s)'/)
      END
C  ----------------------------------------QESOL
      SUBROUTINE QESOL(AP0,AP1,AP2,XSOL)
C
C  SOLVE QUADRATIC EQUATION
C
C  SCALING OF COEFFICIENTS
      AAP0=ABS(AP0)
      AAP1=ABS(AP1)
      AAP2=ABS(AP2)
      APMAX=AAP2
      IF(APMAX.LT.AAP1)APMAX=AAP1
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      IF(APMAX.LT.AAP0)APMAX=AAP0
      AP0=AP0/APMAX
      AP1=AP1/APMAX
      AP2=AP2/APMAX
C
      ENTRY QESOL1(AP0,AP1,AP2,XSOL)
      IF(AP0.EQ.0.0)THEN

  IF(AP2.EQ.0.0)THEN
      XSOL=0.0
  ELSE
      XSOL=-AP1/AP2
      IF(XSOL.LT.0.0)XSOL=0.0
  ENDIF

      ELSE
  IF(AP1.EQ.0.0)THEN
      IF(AP2.EQ.0.0)THEN

  XSOL=0.0
      ELSE

  DISC=-AP0/AP2
  IF(DISC.LE.0.0)THEN
      XSOL=0.0
  ELSE
      XSOL=DISC**0.5
  ENDIF

      ENDIF
  ELSE
      IF(AP2.EQ.0.0)THEN

  XSOL=-AP0/AP1
  IF(XSOL.LT.0.0)XSOL=0.0

      ELSE
  GOTO 10

      ENDIF
  ENDIF

      ENDIF
      RETURN
C
      ENTRY QESOL2(AP0,AP1,AP2,XSOL)
10    CONTINUE
      SAP1=AP1*AP1
      DISC=SAP1-4.0*AP0*AP2
      IF(DISC.LT.-1.E-4*SAP1)THEN

  XSOL=0.0
      ELSE

  IF(DISC.LT.0.0)DISC=0.0
  IF(AP1.LT.0.0)THEN
      XSOL=(-AP1+DISC**0.5)/(2.0*AP2)



166

  ELSE
      XSOL=1/(-2.0*AP0/(AP1+DISC**0.5))
  ENDIF

      ENDIF
      RETURN
      END
C  ----------------------------------------RHEATS
      SUBROUTINE RHEATS
      INCLUDE '3dim.com'
C
C  INTERPASE HEAT TRANSFER COEFFICIENT
C  RHEAT MUST BE GREATER THAN ZERO IF VOL. FRAC. = 0 OR 1
C
      IF(KV.EQ.0)THEN

  AKGO=8.67E5*(TL(0,IJ)/1400.0)**1.786
      ELSE

  AKGO=1.0
      ENDIF
      PR=CL(KV)*VISCL(KV,IJ)/(AKGO*TH(KV,IJ))
      CRPR=PR**(1./3.)
      DO 10 K=1,NSOLID

  IF(RLK(K,IJ).GT.1.E-3*RLKMIN(K))THEN
      SP=6.*TH(K,IJ)/DK(K)
      REYN=TH(KV,IJ)*RLK(KV,IJ)*VREL(K)*DK(K)*PHI(K)

     1         /VISCL(KV,IJ)
C  GUNN'S MODEL 2/21/89

      PTH=TH(K,IJ)*TH(K,IJ)
      PNU=((2.+5.*PTH)*(1.+.7*REYN**.2*CRPR)

     1         +(2./15.+1.2*PTH)*REYN**.7*CRPR)*SP
      RHEAT(K,IJ)=PNU*AKGO/DK(K)
  ELSE
      RHEAT(K,IJ)=0.0
  ENDIF

10    CONTINUE
      RETURN
      END
C  ----------------------------------------SETC
      SUBROUTINE SETC
      INCLUDE '3dim.com'
C
C  INITIALIZES CONSTANTS AND FUNCTIONS
C
      SQTPI=PI**0.5
      RSQTP=1./SQTPI
C  INITIALIZE STATIC SOLIDS PRESSURE AND COHESIVE FORCE
      DO 15 I=0,1000
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  THX=I/1000.
  IF(ICOH.EQ.0)THEN
      COHF(I)=0.0
  ELSE
      COHF(I)=10.**(-C13*THX+C14)
  ENDIF
  IF(IKINT.EQ.1.AND.(THX-THMIN).GT.1.E-10)THEN

C  KINETIC THEORY OF GRANULAR SOLIDS REGIME
      GTH(I)=0.0
  ELSE

C  SOLIDS STRESS (ELASTIC MODULUS G) REGIME
      GTH(I)=10.**(-C15*THX+C16)
  ENDIF

15    CONTINUE
C
C  CALCULATE VOLUME FRACTION FOR (RLIM particles/cm^3)
      DO 20 K=0,NSOLID

  VOLP=PI*DK(K)*DK(K)*DK(K)/6.0
  RLKMIN(K)=RLIM*RL(K)*VOLP

20    CONTINUE
C
      DO 21 K=NCONT,NSOLID
21    DMFP(K)=RL(K)*DK(K)/((2.**0.5)*6.0*RADP)
C
      DO 50 K=NCONT,NSOLID

  VISDIL(K)=5.0*SQTPI*RL(K)*DK(K)/96.0
C     GCDIL(K)=(15.0/4.0)*VISDIL(K)
50    CONTINUE
C
      MAXIT=.FALSE.
      ITINT=0
      DO 30 IX=1,ITXMX

  IMX(IX)=105-5*IX
  NITER(IX)=0

30    CONTINUE
C
      DRCOE=(24./1000.)*(1.+.15*1000.**.687)
      DO 55 K=1,NSOLID

  DO 55 KK=0,K-1
      IF(DK(K).GT.DK(KK))THEN

  K1=K
  K2=KK

      ELSE
  K1=KK
  K2=K

      ENDIF
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      DRATX=(DK(K2)/DK(K1))**0.5
      PHILIM(K,KK)=CPHI(K1)/(CPHI(K1)+(1.0-CPHI(K1))*CPHI(K2))
      EPSL(K,KK)=(CPHI(K1)-CPHI(K2)+(1.0-DRATX)*(1.0-CPHI(K1))

     1         *CPHI(K2))*(CPHI(K1)+(1.0-CPHI(K2))*CPHI(K1))/CPHI(K1)
      EPSU(K,KK)=(1.0-DRATX)*(CPHI(K1)

     1         +(1.0-CPHI(K1))*CPHI(K2))
      DKF(K,KK)=0.5*ALFA*(1.0+CRES)*(DK(K)+DK(KK))**2

     1         /(RL(K)*DK(K)**3+RL(KK)*DK(KK)**3)
55    CONTINUE
      RETURN
      END
C  ----------------------------------------SETPRE
      SUBROUTINE SETPRE
      INCLUDE '3dim.com'
      DIMENSION RLSUM(NO)
C
C  SET INITIAL PRESSURE PROFILE
C
      DO 10 N=1,NFL

  RLSUM(N)=0.0
  IF(IPRES.EQ.1)THEN
      DO 5 K=1,NSOLID

5             RLSUM(N)=RLSUM(N)+THIO(K,N)*RL(K)
  ENDIF

10    CONTINUE
CDTM  Each z-directional plane is calculated independently of the previous
CDTM  one.  This assumes an even distribution of weight in the third
CDTM  direction initially,ie. plane 1 pressure =weight distribution equals
CDTM  plane 2 pressure= weight distribution...
      DO 100 L = 2,KB1
      POM=PIO(1)
      RGSUM=(C9+C10*PIO(1)/(C12*TEMIO(0,1)
     1 +C11*PIO(1)))*THIO(0,1)
      RLSUMO=RLSUM(1)
C
      DO 30 N=1,NFL

  I1 = IOB(1,N)
  I2 = IOB(2,N)
  I3 = IOB(3,N)
  I4 = IOB(4,N)
  I5 = IOB(5,N)
  I6 = IOB(6,N)
  RLSUMN=RLSUM(N)
  CS1=0.5*THIO(0,N)*(-GRAVY)
  DO 20 J = I4,I3,-1
      CS2=POM+0.5*(DZ(J)*(RGSUM+RLSUMO)+DZ(J+1)
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     1         *(C9*THIO(0,N)+RLSUMN))*(-GRAVY)
      AP0=-CS2*C12*TEMIO(0,N)
      AP1=C12*TEMIO(0,N)-CS2*C11-CS1*DZ(J+1)*C10
      AP2=C11
      IF(C10.EQ.0.0)THEN

  POM=CS2
      ELSEIF(C11.EQ.0.0)THEN

  POM=-AP0/AP1
      ELSE

  CALL QESOL2(AP0,AP1,AP2,POM)
      ENDIF
      ROGT=(C9+C10*POM/(C12*TEMIO(0,N)+C11*POM))
      RGSUM=ROGT*THIO(0,N)
      RLSUMO=RLSUMN
      DO 20 I=1,IB2

  IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
  IF(IFL(IJ).EQ.1.OR.IFL(IJ).EQ.6)THEN
      P(IJ)=POM
      ROG(IJ)=ROGT
      RLK(0,IJ)=RGSUM
  ENDIF

20        CONTINUE
30    CONTINUE
100   CONTINUE
      RETURN
      END
C  ----------------------------------------SETRZ
      SUBROUTINE SETRZ
      INCLUDE '3dim.com'
C
C  INITIALIZE THE RADII AND ALL THE FIELD VARIABLES;
C  DEFINE THE VARIABLE COMPUTING MESH R, Z, DR AND DZ.
C
      IF(ITD.NE.1)THEN

  DO 1 I=1,IB1
      DRP(I)=0.5*(DR(I)+DR(I+1))
      RDR(I)=1.0/DR(I)
      RDRP(I)=1.0/DRP(I)
      AR(I)=0.5*DR(I+1)*RDRP(I)
      BR(I)=1.0-AR(I)

 1        CONTINUE
  DRP(IB2)=DR(IB2)
  RDR(IB2)=1.0/DR(IB2)
  RDRP(IB2)=RDR(IB2)
  AR(IB2)=0.5
  BR(IB2)=0.5
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  DO 2 J=1,JB1
      DZP(J)=0.5*(DZ(J)+DZ(J+1))
      RDZ(J)=1.0/DZ(J)
      RDZP(J)=1.0/DZP(J)
      AZ(J)=0.5*DZ(J+1)*RDZP(J)
      BZ(J)=1.0-AZ(J)

 2        CONTINUE
  DZP(JB2)=DZ(JB2)
  RDZ(JB2)=1.0/DZ(JB2)
  RDZP(JB2)=RDZ(JB2)
  AZ(JB2)=0.5
  BZ(JB2)=0.5

CDTM    **NEW 3D PART**
  DO 3 L = 1,KB1
      DYP(L) = 0.5*(DY(L)+DY(L+1))
      RDY(L)=1.0/DY(L)
      RDYP(L) = 1.0/DYP(L)
      AY(L)=0.5*DY(L+1)*RDYP(L)
      BY(L)=1-AY(L)

 3        CONTINUE
  DYP(KB2) = DY(KB2)
  RDY(KB2)=1.0/DY(KB2)
  RDYP(KB2) = RDY(KB2)
  AY(KB2) = 0.5
  BY(KB2) = 0.5
  IF(ITC.EQ.1)THEN
      RTC=RST-0.5*DR(1)
      RTB=RST
      R(1)=RTC**ITC
      RB(1)=RTB**ITC
      IF(RB(1).LT.1.E-8)THEN

  RRB(1)=0.0
      ELSE

  RRB(1)=1.0/RB(1)
      ENDIF
      DO 4 I=2,IB2

  RTC=RTB+0.5*DR(I)
  RTB=RTB+DR(I)
  R(I)=RTC**ITC
  RB(I)=RTB**ITC
  RRB(I)=1./RB(I)

 4            CONTINUE
C

  ELSE
      DO 8 I=1,IB2

  R(I)=1.
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  RB(I)=1.
  RRB(I)=1.

8             CONTINUE
  ENDIF
  DO 11 I=1,IB2
      RRIDR(I)=RDR(I)/R(I)
      RRIDRP(I)=RRB(I)*RDRP(I)

11        CONTINUE
      ENDIF
      DO 15 I=1,IB2

  DTODR(I)=DT*RDR(I)
  DTODRP(I)=DT*RDRP(I)
  DTORDR(I)=DT*RRIDR(I)
  DTOBDR(I)=DT*RRIDRP(I)

15    CONTINUE
      DO 16 J=1,JB2

  DTODZ(J)=DT*RDZ(J)
16    DTODZP(J)=DT*RDZP(J)
      DO 17 L=1,KB2

  DTODY(L)=DT*RDY(L)
17         DTODYP(L)=DT*RDYP(L)

  RETURN
  END

C  ----------------------------------------SETUP
  SUBROUTINE SETUP
  INCLUDE '3dim.com'

C
C  DEFINES THE COMPUTING MESH FLUID VARIABLE
C  INITIAL CONDITIONS FROM INPUT DATA
C

  CALL SETC
  CALL SETRZ
  IF(ITD.NE.1)THEN
      WRITE(6,660)
      DO 10 L = 1,KB2

C   WRITE(6,*) '***K3D = ',L, ' ***'
      WRITE(6,670) L

  I1 = 1 + L*IB2*JB2
  DO 11 J=1,JB2
      I1 = I1-IB2
      I2 = I1+IB2-1

C
      WRITE(6,650) (IFL(IKPR),IKPR=I1,I2)

 11               CONTINUE
          WRITE(6,660)
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10            CONTINUE
      WRITE(6,660)

C
C  CALCULATE INDICES

      CALL INDX
C

      IF(ITD.NE.2)THEN
  DO 60 N=1,NCAL
      I1 = IOB(1,N)
      I2 = IOB(2,N)
      I3 = IOB(3,N)
      I4 = IOB(4,N)
      I5 = IOB(5,N)
      I6 = IOB(6,N)

c       UGY=UIO(0,N)/THIO(0,N)
      DO 60 L = I5, I6

  DO 60 J = I3,I4
      DO 60 I = I1,I2

  IJ=I+(J-1)*IB2 + (L-1)*IB2*JB2
  IF(IFL(IJ).NE.2.AND.IFL(IJ).NE.3)THEN

c       IPJ=INDC(IJ,1)
      P(IJ)=PIO(N)
      TL(0,IJ)=TEMIO(0,N)
      TH(0,IJ)=THIO(0,N)
      ROG(IJ) = RL(0)
      RLK(0,IJ) = ROG(IJ)*TH(0,IJ)

  IF(IFL(IJ).EQ.4.OR.IFL(IJ).EQ.5.OR.IFL(IJ).GE.7)THEN
    ROG(IJ)=C9+C10*P(IJ)/(C12*TL(0,IJ)+C11*P(IJ))
    RLK(0,IJ)=ROG(IJ)*TH(0,IJ)

CDTM
  ENDIF

      UK(0,IJ)=UIO(0,N)
c     IF(IFLZB.EQ.1.AND.IFL(IJ).NE.5.AND.
c     1                     IFL(IPJ).NE.2.AND.IFL(IPJ).NE.3)UK(0,IJ)=UGY

       VK(0,IJ)=VIO(0,N)
       WK(0,IJ)=WIO(0,N)
       DO 56 K=1,NSOLID

 TL(K,IJ)=TEMIO(K,N)
 UK(K,IJ)=UIO(K,N)
 VK(K,IJ)=VIO(K,N)
 WK(K,IJ)=WIO(K,N)
 TSK(K,IJ)=TSKIO(K,N)
 TH(K,IJ)=THIO(K,N)
 RLK(K,IJ)=RL(K)*THIO(K,N)

56                     CONTINUE
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 ENDIF
60            CONTINUE
C

  CALL SETPRE
      ENDIF
  ENDIF

C
C  INITIALIZE PHYSICAL PROPERTIES FLUID, INFLOW
C  AND OUTFLOW CELLS

  DO 70 L = 2,KB1
      DO 70 J = 2,JB1

  DO 70 I = 2,IB1
      IJ=I+(J-1)*IB2 + (L-1)*IB2*JB2
      IF(IFL(IJ).NE.2.AND.IFL(IJ).NE.3)THEN

  IMJ=INDC(IJ,2)
  IJP=INDC(IJ,3)
  IJM=INDC(IJ,4)

                IJKP=INDC(IJ,25)
  IJKM=INDC(IJ,26)
  IJR=INDS(IJ,1)
  IJT=INDS(IJ,3)
  IJKAA=INDS(IJ,17)
  IJKF=INDS(IJ,12)

C
 IF(ITD.NE.0)THEN

c  IF(ITD.EQ.0)THEN
c      IF(IFLZB.EQ.1.AND.IFL(IJ).NE.5.AND.IFL(IJP).NE.2
c     1                  .AND.IFL(IJP).NE.3)VK(0,IJ)=ROG(IJ)*VK(0,IJ)
c     1                         /(AZ(J)*RLK(0,IJ)+BZ(J)*RLK(0,IJT))
c   ELSE

ROG(IJ)=C9+C10*P(IJ)/(C12*TL(0,IJ)+C11*P(IJ))
      RLK(0,IJ)=TH(0,IJ)*ROG(IJ)
      DO 65 K=1,NSOLID

65                            RLK(K,IJ)=TH(K,IJ)*RL(K)
  ENDIF
  CALL MASFKA(0,NSOLID)

C
CDTM   GRPROP HAAS NOT BEEN CONVERTED TO 3-D
CDTM

  IF(IKINT.EQ.1)THEN
      VISCL(1,IJ)=PVISC(1)*TH(1,IJ)
      VISBL(1,IJ)=0.0
      CALL GRPROP
  ELSE
      DO 66 K=1,NSOLID

  VISCL(K,IJ)=PVISC(K)*TH(K,IJ)
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66                            VISBL(K,IJ)=0.0
  ENDIF

C
  VISCL(0,IJ)=PVISC(0)*TH(0,IJ)
  VISBL(0,IJ)=0.0

      ENDIF
C
C  FIND CONTINUOUS PHASE

      KV=0
      IF(NCONT.EQ.2)THEN

  CALL KDRAGS(1,1)
  IF(ISWIT.EQ.1)THEN
      KV=1
      CALL KDRAGS(0,0)
      IF(RKPG(0,IJ).GT.RKPG(1,IJ))KV=0
      RKPG(KV,IJ)=0.0
  ENDIF

      ENDIF
      NTHS(IJ)=KV
      CALL KDRAGS(NCONT,NSOLID)
      CALL MULTI

C
      IF(INENT.NE.0)THEN

  DO 67 K=0,NSOLID
67                        SIEL(K,IJ)=(TL(K,IJ)-C5)*CL(K)

  CALL THRCON
  CALL RHEATS

      ENDIF
C
70        CONTINUE
650       FORMAT(1X,2000I1)
660       FORMAT(//)
670       FORMAT(1X,'###  3 DIM : CONSTANT K =',I2,2X,'###'/)

  RETURN
  END

C  ----------------------------------------SIELF
  SUBROUTINE SIELF
  INCLUDE '3dim.com'

C
C  CALCULATES FLUXES OF SPECIFIC ENERGY DENSITY OF THE PHASES
C

  IF(UK(K,IJ).GE.0.)THEN
      ELFR(K)=RLFRK(K,IJ)*SIELN(K,IJ)
  ELSE
      ELFR(K)=RLFRK(K,IJ)*SIELN(K,IJR)
  ENDIF
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  IF(VK(K,IJ).GE.0.)THEN
      ELFT(K)=RLFTK(K,IJ)*SIELN(K,IJ)
  ELSE
      ELFT(K)=RLFTK(K,IJT)*SIELN(K,IJT)
  ENDIF
  IF(IFL(IMJ).NE.1)GOTO 1
  IF(IFL(IJM).NE.1)GOTO 2
  CALL HEATCLB
  RETURN

C
1         IF(UK(K,IMJ).GE.0.)THEN

      ELFL(K)=RLFRK(K,IMJ)*SIELN(K,IJL)
  ELSE
      ELFL(K)=RLFRK(K,IMJ)*SIELN(K,IJ)
  ENDIF
  IF(IFL(IJM).NE.1)GOTO 2
  CALL HEATCLA
  RETURN

C
2         IF(VK(K,IJM).GE.0.)THEN

      ELFB(K,I)=RLFTK(K,IJM)*SIELN(K,IJB)
  ELSE
      ELFB(K,I)=RLFTK(K,IJM)*SIELN(K,IJ)
  ENDIF
  CALL HEATCL
  RETURN
  END

C  ----------------------------------------TAPERD
  SUBROUTINE TAPERD
  INCLUDE '3dim.com'

C
C  READ INPUT DATA FROM TAPE
C

  READ(9)TIME
  IF(ITD.EQ.2)THEN
      READ(9)DT,ITX,TDUMP1,TPRI,TPDT,(NITER(IX),IX=1,ITXMX)
  ELSE
      READ(9)
  ENDIF
  READ(9)(P(IJ),IJ=1,IB2JB2)
  READ(9)((TH(K,IJ),UK(K,IJ),VK(K,IJ),WK(K,IJ),TL(K,IJ),

     1     K=0,NSOLID),IJ=1,IB2JB2)
        READ(9)((TSK(K,IJ),K=NCONT,NSOLID),IJ=1,IB2JB2)

  RETURN
  END

C  ----------------------------------------TAPEWR
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  SUBROUTINE TAPEWR
  INCLUDE '3dim.com'

C
C  WRITE INPUT DATA TO TAPE
C

  WRITE(9)TIME,IB2,JB2,KB2,NSOLID
  WRITE(9)DT,ITX,TDUMP1,TPRI,TPDT,(NITER(IX),IX=1,ITXMX)
  WRITE(9)(P(IJ),IJ=1,IB2JB2)
  WRITE(9)((TH(K,IJ),UK(K,IJ),VK(K,IJ),WK(K,IJ),TL(K,IJ),

     1     K=0,NSOLID),IJ=1,IB2JB2)
  WRITE(9)((TSK(K,IJ),K=NCONT,NSOLID),IJ=1,IB2JB2)
  RETURN
  END

C  ----------------------------------------THRCON
  SUBROUTINE THRCON
  INCLUDE '3dim.com'
  PARAMETER (PIC=7.26E-3,RKP=0.3289,APIC=1.-PIC)

C
C  DAMKOHLER's EQUIVALENT THERMAL CONDUCTIVITY
C

  AKGO=8.67E5*(TL(0,IJ)/1400.0)**1.786
  AKL(0,IJ)=(1.-(1.-TH(0,IJ))**0.5)*AKGO
  DO 100 K=1,NSOLID
      IF(TH(K,IJ).GT.0.0)THEN

  RF=RKP/AKGO
  SRLK=0.0
  SNUM=0.0
  SDEN=0.0
  DO 10 KI=1,NSOLID
      SRLK=SRLK+RLK(KI,IJ)
      STEM=RLK(KI,IJ)/DK(KI)
      SNUM=SNUM+STEM/DK(KI)
      SDEN=SDEN+STEM

10                CONTINUE
  XI2=SRLK*SNUM/(SDEN*SDEN)-1.0
  IF(XI2.LE.0.0)THEN
      XIR=0.0
  ELSE
      XIR=XI2**0.5
  ENDIF

C
  BB=1.25*(TH(K,IJ)/TH(0,IJ))**(10./9.)*(1.+3.*XIR)
  CC=1.0-BB/RF
  RKO=(2./CC)*(BB*(RF-1.)/(CC*CC*RF)*ALOG(RF/BB)

     1             -(BB-1.)/CC-0.5*(BB+1.))
  AKL(K,IJ)=(PIC*RF+APIC*RKO)*AKGO*TH(K,IJ)**0.5
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     1             /(1.-TH(0,IJ))
      ELSE

  AKL(K,IJ)=0.0
      ENDIF

100       CONTINUE
  RETURN
  END

C  ----------------------------------------THFS
      SUBROUTINE THFS(NPH1,NPH2)
      INCLUDE '3dim.com'
C
C  COMPUTES THE FLUXES OF VOID FRACTION FOR PHASES
C
      IIJJ=I*J
      DO 10 K=NPH1,NPH2

  IF(UK(K,IJ).GE.0.)THEN
      OMTFR(K)=TH(K,IJ)*UK(K,IJ)*RB(I)
  ELSE
      OMTFR(K)=TH(K,IJR)*UK(K,IJ)*RB(I)
  ENDIF
  IF(VK(K,IJ).GE.0.)THEN
      OMTFT(K)=TH(K,IJ)*VK(K,IJ)
  ELSE
      OMTFT(K)=TH(K,IJT)*VK(K,IJ)
  ENDIF
  IF(WK(K,IJ).GE.0.0)THEN
      OMTFZB(K)=TH(K,IJ)*WK(K,IJ)
  ELSE
      OMTFZB(K)=TH(K,IJKAA)*WK(K,IJ)
  ENDIF

10    CONTINUE
      IF(IFL(IMJ).NE.1)GOTO 1
      IF(IFL(IJM).NE.1)GOTO 2
      IF(IFL(IJKM).NE.1)GOTO 3
      RETURN
1     CONTINUE
      DO 20 K=NPH1,NPH2

  IF(UK(K,IMJ).GE.0.0)THEN
      OMTFL(K)=TH(K,IJL)*UK(K,IMJ)*RB(I-1)
  ELSE
      OMTFL(K)=TH(K,IJ)*UK(K,IMJ)*RB(I-1)
  ENDIF

20    CONTINUE
      IF(IFL(IJM).EQ.1)RETURN
2     CONTINUE
      DO 30 K=NPH1,NPH2
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  IF(VK(K,IJM).GE.0.0)THEN
      OMTFB(K,I)=TH(K,IJB)*VK(K,IJM)
  ELSE
      OMTFB(K,I)=TH(K,IJ)*VK(K,IJM)
  ENDIF

30    CONTINUE
      IF(IFL(IJKM).EQ.1)RETURN
3     CONTINUE
      DO 40 K=NPH1,NPH2

  IF(WK(K,IJKM).GE.0.0)THEN
      OMTFZF(K,IIJJ)=TH(K,IJKF)*WK(K,IJKM)
  ELSE
      OMTFZF(K,IIJJ)=TH(K,IJ)*WK(K,IJKM)
  ENDIF

40    CONTINUE
      RETURN
      END

C  ----------------------------------------TILDE
  SUBROUTINE TILDE
  INCLUDE '3dim.com'
  DIMENSION RKR(0:NS),RKZ(0:NS),RKRAB(0:NS),RKZAB(0:NS)
  DIMENSION RLGR(0:NS),RLGZ(0:NS)
  DIMENSION RKY(0:NS),RKYAB(0:NS),RLGY(0:NS)

C
C  CALCULATE MOMENTA DUE TO CONVECTION, GRAVITY,
C  VISCOUS STRESS, SOLIDS PRESSURE AND COHESIVE STRESS
C

  DO 100 L = 2,KB1
      DO 100 J = 2,JB1

  DO 100 I = 2,IB1
      IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
      IF(IFL(IJ).NE.1)GOTO 100
      IPJ=INDC(IJ,1)
      IMJ=INDC(IJ,2)
      IJP=INDC(IJ,3)
      IJM=INDC(IJ,4)
      IMJP=INDC(IJ,6)
      IPJM=INDC(IJ,7)
      IMJM= INDC(IJ,8)
      IPJKP=INDC(IJ,9)
      IPJKM=INDC(IJ,10)
      IMJKM=INDC(IJ,11)
      IJMKP=INDC(IJ,12)
      IJPKP=INDC(IJ,13)
      IJMKM=INDC(IJ,14)
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      IJPKM=INDC(IJ,15)
      IMJPKP=INDC(IJ,16)
      IMJPKM=INDC(IJ,17)
      IMJMKP=INDC(IJ,18)
      IMJMKM=INDC(IJ,19)
      IPJPKP=INDC(IJ,20)
      IPJPKM=INDC(IJ,21)
      IPJMKP=INDC(IJ,22)
      IPJMKM=INDC(IJ,23)
      IMJKP=INDC(IJ,24)
      IJKP=INDC(IJ,25)
      IJKM=INDC(IJ,26)

  IJR=INDS(IJ,1)
      IJL=INDS(IJ,2)
      IJT=INDS(IJ,3)
      IJB=INDS(IJ,4)
      IJTR=INDS(IJ,5)
      IJTL=INDS(IJ,6)
      IJBR=INDS(IJ,7)
      IJRRK=INDS(IJ,8)
      IJTTK=INDS(IJ,9)

C       IJKP=INDS(IJ,10)
      IJKA=INDS(IJ,11)
      IJKF=INDS(IJ,12)
      IJKAT=INDS(IJ,13)
      IJKAR=INDS(IJ,14)

C       IJKM=INDS(IJ,15)
      IJKFT=INDS(IJ,16)
      IJKAA=INDS(IJ,17)
      IJKAL=INDS(IJ,18)
      IJKAB=INDS(IJ,19)

C       IMJKP=INDS(IJ,20)
C       IJKAZ=INDS(IJ,21)

      IJKFR=INDS(IJ,22)
C  FIND CONTINUOUS PHASE

      KV=0
      KVN=1
      IF(NCONT.EQ.2)THEN

  CALL KDRAGS(1,1)
  IF(ISWIT.EQ.1)THEN
      KV=1
      CALL KDRAGS(0,0)
      IF(RKPG(0,IJ).GT.RKPG(1,IJ))KV=0
      RKPG(KV,IJ)=0.0
  ENDIF
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  KVN=1-KV
  THAVRN=AR(I)*TH(KVN,IJ)+BR(I)*TH(KVN,IJR)
  THAVZN=AZ(J)*TH(KVN,IJ)+BZ(J)*TH(KVN,IJT)
  THAVYN=AY(L)*TH(KVN,IJ)+BY(L)*TH(KVN,IJKAA)

      ELSE
  THAVRN=0.0
  THAVZN=0.0
  THAVYN=0.0

      ENDIF
      NTHS(IJ)=KV

C
      RLGR(0)=AR(I)*ROG(IJ)+BR(I)*ROG(IJR)
      RLGZ(0)=AZ(J)*ROG(IJ)+BZ(J)*ROG(IJT)
      RLGY(0)=AY(L)*ROG(IJ)+BY(L)*ROG(IJKAA)
      DO 5 K=1,NSOLID

  RLGR(K)=RL(K)
  RLGZ(K)=RL(K)
  RLGY(K)=RL(K)

5                     CONTINUE
C

      THAVR=AR(I)*TH(KV,IJ)+BR(I)*TH(KV,IJR)
      THAVZ=AZ(J)*TH(KV,IJ)+BZ(J)*TH(KV,IJT)
      THAVY=AY(L)*TH(KV,IJ)+BY(L)*TH(KV,IJKAA)
      IGKU=1000*(THAVR+THAVRN)
      IGKV=1000*(THAVZ+THAVZN)
      IGKW=1000*(THAVY+THAVYN)
      IGK=TH(0,IJ)*1000
      IGKR=TH(0,IJR)*1000
      IGKT=TH(0,IJT)*1000
      IGKL=TH(0,IJKAA)*1000

C
      DO 10 K=0,NSOLID

  RKR(K)=AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR)
  RKZ(K)=AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT)
  RKY(K)=AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA)

10                    CONTINUE
C

      IF(MODAB.EQ.2)THEN
C  MODEL-B (MODIFIED)

  RKRAB(KV)=RLGR(KV)
  RKZAB(KV)=RLGZ(KV)
  RKYAB(KV)=RLGY(KV)
  IF(NSOLID.EQ.1)THEN
  RKRAB(KVN)=(1.0-RLGR(KV)/RLGR(KVN))*RKR(KVN)
  RKZAB(KVN)=(1.0-RLGZ(KV)/RLGZ(KVN))*RKZ(KVN)
  RKYAB(KVN)=(1.0-RLGY(KV)/RLGY(KVN))*RKY(KVN)
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      ELSE
      DO 20 K=0,NSOLID

  IF(K.NE.KV)THEN
      RKRAB(K)=RKR(K)*(1.0-(AR(I)*

     1                                RLX(IJ)+BR(I)*RLX(IJR))
     1                                 /RLGR(K))/THAVR

      RKZAB(K)=RKZ(K)*(1.0-(AZ(J)*
     1                                RLX(IJ)+BZ(J)*RLX(IJT))
     1                                 /RLGZ(K))/THAVZ

      RKYAB(K)=RKY(K)*(1.0-(AY(L)*
     1                                RLX(IJ)+BY(L)*RLX(IJKAA))
     1                                 /RLGY(K))/THAVY

  ENDIF
20                            CONTINUE

  ENDIF
      ELSE

C  MODEL-A
  DO 30 K=0,NSOLID
      RKRAB(K)=RKR(K)
      RKZAB(K)=RKZ(K)
      RKYAB(K)=RKY(K)

30                        CONTINUE
      ENDIF

C
      DO 40 K=0,NSOLID

  CALL ULMOMF
  RUK(K,IJ)=RKR(K)*UK(K,IJ)+RKRAB(K)*GRAVX*DT

     1                     -DTOBDR(I)*(ULFR(K)-ULFL(K))
     1                     -DTODZ(J)*(ULFT(K)-ULFB(K,I))-DT*SULC(K)
     1                     -1/R(I)*DTODY(L)*(ULFA(K)-ULFF(K,I,J))

  ULFL(K)=ULFR(K)
  ULFB(K,I)=ULFT(K)
  ULFF(K,I,J)=ULFA(K)
  CALL VLMOMF
  RVK(K,IJ)=RKZ(K)*VK(K,IJ)+RKZAB(K)*GRAVY*DT

     1                     -DTORDR(I)*(VLFR(K)-VLFL(K))
     1                     -DTODZP(J)*(VLFT(K)-VLFB(K,I))
     1                     -1/R(I)*DTODY(L)*(VLFA(K)-VLFF(K,I,J))

  VLFL(K)=VLFR(K)
  VLFB(K,I)=VLFT(K)
  VLFF(K,I,J)=VLFA(K)
  CALL WLMOMF
  RWK(K,IJ)=RKY(K)*WK(K,IJ)+RKYAB(K)*GRAVZ*DT

     1                     -DTORDR(I)*(WLFR(K)-WLFL(K))
     1                     -DTODZ(J)*(WLFT(K)-WLFB(K,I))
     1                     -1/R(I)*DTODYP(L)*(WLFA(K)-WLFF(K,I,J))
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  WLFL(K)=WLFR(K)
  WLFB(K,I)=WLFT(K)
  WLFF(K,I,J)=WLFA(K)

40                    CONTINUE
C

   DO 50 K=NCONT,NSOLID
     RUK(K,IJ)=RUK(K,IJ)-DTODRP(I)*(GTH(IGKU)*(TH(K,IJR)

     1              -TH(K,IJ))+PS(K,IJR)-PS(K,IJ)-COHF(IGKR)+COHF(IGK))
    RVK(K,IJ)=RVK(K,IJ)-DTODZP(J)*(GTH(IGKV)*(TH(K,IJT)

     1               -TH(K,IJ))+PS(K,IJT)-PS(K,IJ)-COHF(IGKT)+COHF(IGK))
    RWK(K,IJ)=RWK(K,IJ)-DTODYP(L)*(GTH(IGKV)*(TH(K,IJKA)

     1              -TH(K,IJ))+PS(K,IJKA)-PS(K,IJ)-COHF(IGKL)+COHF(IGK))
50                    CONTINUE

      CALL KDRAGS(NCONT,NSOLID)
      CALL MULTI
      IF(INENT.NE.0)CALL RHEATS

100       CONTINUE
C
C  CALCULATE VELOCITY ESTIMATES

  DO 200 L = 2,KB1
      DO 200 J = 2,JB1

  DO 200 I = 2,IB1
      IJ=I+(J-1)*IB2+(L-1)*IB2*JB2
      IF(IFL(IJ).NE.1)GOTO 200
      IPJ=INDC(IJ,1)
      IJM=INDC(IJ,4)
      IJP=INDC(IJ,3)
      IJR=INDS(IJ,1)
      IJT=INDS(IJ,3)
      IJKP=INDC(IJ,25)
      IJKAA=INDS(IJ,17)
      IJKM=INDC(IJ,26)
      KV=NTHS(IJ)
      CALL MATSA
      CALL VELSK2
      CALL MASFKA(KV,KV)

200       CONTINUE
  RETURN
  END

C  ----------------------------------------ULMOMF
  SUBROUTINE ULMOMF
  INCLUDE '3dim.com'

C
C  CALCULATE FLUXES FOR RADIAL MOMENTUM FOR THE PHASES
C

  CS=0.5*(RB(I)*UK(K,IJ)+RB(I+1)*UK(K,IPJ))
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  IF(CS.GE.0.)THEN
      ULFR(K)=(AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR))*UK(K,IJ)*CS
  ELSE
      ULFR(K)=(AR(I+1)*RLK(K,IJR)+BR(I+1)*RLK(K,IJRRK))

     1         *UK(K,IPJ)*CS
  ENDIF
  CS=AR(I)*VK(K,IJ)+BR(I)*VK(K,IPJ)
  IF(CS.GE.0.)THEN
      ULFT(K)=(AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR))*UK(K,IJ)*CS
  ELSE
      ULFT(K)=(AR(I)*RLK(K,IJT)+BR(I)*RLK(K,IJTR))

     1         *UK(K,IJP)*CS
  ENDIF
  CS=AR(I)*WK(K,IJ)+BR(I)*WK(K,IPJ)
  IF(CS.GE.0.)THEN
      ULFA(K)=(AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR))*UK(K,IJ)*CS
  ELSE
      ULFA(K)=(AR(I)*RLK(K,IJKAA)+BR(I)*RLK(K,IJKAR))

     1         *UK(K,IJKP)*CS
  ENDIF
  IF(IFL(IMJ).NE.1)GOTO 1
  IF(IFL(IJM).NE.1)GOTO 2
  IF(IFL(IJKM).NE.1)GOTO 3
  CALL ULVSB
  RETURN

C
1         CS=0.5*(RB(I)*UK(K,IJ)+RB(I-1)*UK(K,IMJ))

  IF(CS.GE.0.)THEN
      ULFL(K)=(BR(I-1)*RLK(K,IJ)+AR(I-1)*RLK(K,IJL))

     1         *UK(K,IMJ)*CS
  ELSE
      ULFL(K)=(AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR))*UK(K,IJ)*CS
  ENDIF
  IF(IFL(IJM).NE.1)GOTO 2
  IF(IJKM.NE.1) CALL ULVS
  CALL ULVSA
  RETURN

C
 2         CS=AR(I)*VK(K,IJM)+BR(I)*VK(K,IPJM)

  IF(CS.GE.0.)THEN
      ULFB(K,I)=(AR(I)*RLK(K,IJB)+BR(I)*RLK(K,IJBR))

     1         *UK(K,IJM)*CS
  ELSE
      ULFB(K,I)=(AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR))*UK(K,IJ)*CS
  ENDIF
  IF(IFL(IJKM).NE.1) GOTO 3
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  CALL ULVSBB
C
 3        CS=AR(I)*WK(K,IJKM)+BR(I)*WK(K,IPJKM)

  IF(CS.GE.0.)THEN
      ULFF(K,I,J)=(AR(I)*RLK(K,IJKF)+BR(I)*RLK(K,IJKFR))

     1         *UK(K,IJKM)*CS
  ELSE
      ULFF(K,I,J)=(AR(I)*RLK(K,IJ)+BR(I)*RLK(K,IJR))*UK(K,IJ)*CS
  ENDIF
  CALL ULVS
  RETURN
  END

C  ----------------------------------------ULVS
  SUBROUTINE ULVS
  INCLUDE '3dim.com'

C
C     CALCULATE TH*SIGMA(R,Y) AT I+1/2, K-1/2

  SULFF(K)=((WK(K,IPJKM)/R(I+1)-WK(K,IJKM)/R(I))*
1     RDRP(I)*R(I)+(UK(K,IJ)-UK(K,IJKM))*RDYP(L-1)/R(I))*

     1     (AY(L-1)*(AR(I)*VISCL(K,IJKF)+BR(I)*VISCL(K,IJKFR))+
     1     BY(L-1)*(AR(I)*VISCL(K,IJ)+BR(I)*VISCL(K,IJR)))

  ULFF(K,I,J)=ULFF(K,I,J)-SULFF(K)
  ENTRY ULVSBB

C
C     CALCULATE TH*SIGMA(R,Z) AT I+1/2, J-1/2

 IF(IFL(IJM).NE.1)THEN
  SULB(K)=((VK(K,IPJM)-VK(K,IJM))*RDRP(I)

     1     +(UK(K,IJ)-UK(K,IJM))*RDZP(J-1))*(AZ(J-1)
     1     *(AR(I)*VISCL(K,IJB)+BR(I)*VISCL(K,IJBR))
     1     +BZ(J-1)*(AR(I)*VISCL(K,IJ)+BR(I)*VISCL(K,IJR)))

  ULFB(K,I)=ULFB(K,I)-SULB(K)
 ENDIF

C
C     CALCULATE R*TH*SIGMA(R,R) AT I, J, K

  ENTRY ULVSA
  IF(IFL(IMJ).NE.1)THEN
      SULL(K)=2.*R(I)*VISCL(K,IJ)*(UK(K,IJ)-UK(K,IMJ))*RDR(I)

     1         +(VISBL(K,IJ)-(2./3.)*VISCL(K,IJ))
     1         *(RRIDR(I)*(RB(I)*UK(K,IJ)-RB(I-1)*UK(K,IMJ))
     1         +(VK(K,IJ)-VK(K,IJM))*RDZ(J)+RDY(L)/R(I)*
     1         (WK(K,IJ)-WK(K,IJKM)))*R(I)

      ULFL(K)=ULFL(K)-SULL(K)
  ENDIF

C
C     CALCULATE TH*SIGMA(R,Z) AT I+1/2, J+1/2

  ENTRY ULVSB
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  SULT(K)=((VK(K,IPJ)-VK(K,IJ))*RDRP(I)
     1     +(UK(K,IJP)-UK(K,IJ))*RDZP(J))*(AZ(J)
     1     *(AR(I)*VISCL(K,IJ)+BR(I)*VISCL(K,IJR))
     1     +BZ(J)*(AR(I)*VISCL(K,IJT)+BR(I)*VISCL(K,IJTR)))
        ULFT(K)=ULFT(K)-SULT(K)
C
C     CALCULATE R*TH*SIGMA(R,R) AT I+1, J, K

  SULR(K)=2.*R(I+1)*VISCL(K,IJR)*(UK(K,IPJ)-UK(K,IJ))*RDR(I+1)
     1     +(VISBL(K,IJR)-(2./3.)*VISCL(K,IJR))
     1     *(RRIDR(I+1)*(RB(I+1)*UK(K,IPJ)-RB(I)*UK(K,IJ))
     1     +(VK(K,IPJ)-VK(K,IPJM))*RDZ(J)+RDY(L)/R(I+1)*
     1     (WK(K,IPJ)-WK(K,IPJKM)))*R(I+1)

  ULFR(K)=ULFR(K)-SULR(K)
C
C     CALCULATE TH*SIGMA(R,Y) AT I+1/2,K+1/2

  SULA=((WK(K,IPJ)/R(I+1)-WK(K,IJ)/R(I))*RDRP(I)*R(I)+
1     (UK(K,IJKP)-UK(K,IJ))*RDYP(L)/R(I))*(AY(L)*

     1     (AR(I)*VISCL(K,IJ)+BR(I)*VISCL(K,IJR))+
     1      BY(L)*(AR(I)*VISCL(K,IJKAA)+BR(I)*VISCL(K,IJKAR)))

  ULFA(K) = ULFA(K) - SULA
C
C     CALCULATE (TH/R)*SIGMA(PHI,PHI) AT I+1/2, J

  IF(ITC.NE.0)THEN
      SULC(K)=2.*(AR(I)*VISCL(K,IJ)+BR(I)*VISCL(K,IJR))

     1         *RRB(I)*UK(K,IJ)+((AR(I)*VISBL(K,IJ)
     1         +BR(I)*VISBL(K,IJR))-(2./3.)*(AR(I)*VISCL(K,IJ)
     1         +BR(I)*VISCL(K,IJR))) *(0.5*RRIDRP(I)*(RB(I+1)*UK(K,IPJ)
     1         -RB(I-1)*UK(K,IMJ))+(AR(I)*(VK(K,IJ)-VK(K,IJM))
     1         +BR(I)*(VK(K,IPJ)-VK(K,IPJM)))*RDZ(J)+RDY(L)/RB(I)*(
     1       AR(I)*(WK(K,IJ)-WK(K,IJKM))+BR(I)*(WK(K,IPJ)-WK(K,IPJKM))))

  ELSE
      SULC(K)=0.0
  ENDIF
  RETURN
  END

C  ----------------------------------------VARDT
  SUBROUTINE VARDT
  INCLUDE '3dim.com'

C
C  ADJUSTS TIME INCREMENT (DT) DURING EXECUTION OF THE PROGRAM
C
C  IF MAX. ITERATION OCCURS, REDUCE DT

  ITD=1
  ITX=ITX+1
  NITER(ITX)=0
  MAXIT=.FALSE.
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  IF(ITX.LE.ITXMX)THEN
      DT=DTNXT(ITX)

C  READ RESTART FILE TO START AGAIN WITH LOWER DT
      REWIND(9)
      CALL TAPERD
      TDUMP1=TDUMP1-TDUMP
      CALL SETUP
  ELSE
      ITX=ITXMX
  ENDIF
  GOTO 100

C
  ENTRY VARDTI

C  IF CONVERGENCE IS ACHIEVED FOR MORE THAN IMX TIMES
C  FOR A DT, INCREASE DT

  ITX=ITXN
  DT=DTNXT(ITX)
  ITD=1
  CALL SETRZ

100       CONTINUE
  ITINT=0
  RETURN
  END

C  ----------------------------------------VELINV
  SUBROUTINE VELINV(NS,NP,A,B)
  DIMENSION A(NP,NP),B(NP)

C
C     USE GAUSS-DOLITTLE METHOD FOR SYMMETRIC MATRIX INVERSION

  DO 136 K=2,NP
      IF(ABS(A(K,K)).GE.1.E-6)GOTO 136
      DO 135 KK=1,NP

  A(K,KK)=0.0
135           A(KK,K)=0.0

      B(K)=0.0
136       CONTINUE
C

  DO 160 K=1,NP
      IF(A(K,K).EQ.0.0)GOTO 160
      KP1=K+1
      DIV=1./A(K,K)
      DO 140 KJ=KP1,NP

140           A(K,KJ)=A(K,KJ)*DIV
      B(K)=B(K)*DIV
      DO 150 KI=KP1,NP

  AMUL=A(KI,K)
  DO 145 KJ=KP1,NP



187

145               A(KI,KJ)=A(KI,KJ)-AMUL*A(K,KJ)
150           B(KI)=B(KI)-AMUL*B(K)
160       CONTINUE

  DO 170 K=NS,1,-1
      KP1=K+1
      DO 170 KI=KP1,NP

170       B(K)=B(K)-B(KI)*A(K,KI)
  RETURN
  END

C  ----------------------------------------VELSK
  SUBROUTINE VELSK
  INCLUDE '3dim.com'

C
C  CALCULATE (8) VELOCITIES ON THE FOUR BOUNDARIES OF THE CELL
C

  IFLL=IFL(IMJ)
  IF(IFLL.EQ.2.OR.IFLL.EQ.3.OR.IFLL.EQ.5)GOTO 200
  CALL VELINV(NSOLID,NPHASE,AU1,BU1)
  DO 165 K=0,NSOLID

165       UK(K,IMJ)=BU1(K+1)
200       CONTINUE

  IFLB=IFL(IJM)
  IF(IFLB.EQ.2.OR.IFLB.EQ.3.OR.IFLB.EQ.5)GOTO 600
  CALL VELINV(NSOLID,NPHASE,AV1,BV1)
  DO 265 K=0,NSOLID

265       VK(K,IJM)=BV1(K+1)
 600      CONTINUE

  IFLA=IFL(IJKM)
  IF(IFLA.EQ.2.OR.IFLA.EQ.3.OR.IFLA.EQ.5)GOTO 300
  CALL VELINV(NSOLID,NPHASE,AW1,BW1)
  DO 665 K=0,NSOLID

665       WK(K,IJKM)=BW1(K+1)
C

  ENTRY VELSK2
300       CONTINUE

  IFLR=IFL(IPJ)
  IF(IFLR.EQ.2.OR.IFLR.EQ.3.OR.IFLR.EQ.5)GOTO 400
  CALL VELINV(NSOLID,NPHASE,AU,BU)
  DO 365 K=0,NSOLID

365       UK(K,IJ)=BU(K+1)
400       CONTINUE

  IFLT=IFL(IJP)
  IF(IFLT.EQ.2.OR.IFLT.EQ.3.OR.IFLT.EQ.5)GOTO 500
  CALL VELINV(NSOLID,NPHASE,AV,BV)
  DO 465 K=0,NSOLID

465       VK(K,IJ)=BV(K+1)
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500       CONTINUE
  IFLFF=IFL(IJKP)
  IF(IFLFF.EQ.2.OR.IFLFF.EQ.3.OR.IFLFF.EQ.5)RETURN
  CALL VELINV(NSOLID,NPHASE,AW,BW)
  DO 565 K=0,NSOLID

565       WK(K,IJ)=BW(K+1)
  RETURN
  END

C  ----------------------------------------VLMOMF
  SUBROUTINE VLMOMF
  INCLUDE '3dim.com'

C
C  CALCULATES FLUXES OF AXIAL MOMENTUM FOR THE PHASES
C

  CS=0.5*(VK(K,IJ)+VK(K,IJP))
  IF(CS.GE.0.)THEN
      VLFT(K)=(AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT))*VK(K,IJ)*CS
  ELSE
      VLFT(K)=(AZ(J+1)*RLK(K,IJT)+BZ(J+1)*RLK(K,IJTTK))

     1         *VK(K,IJP)*CS
  ENDIF
  CS=(AZ(J)*UK(K,IJ)+BZ(J)*UK(K,IJP))*RB(I)
  IF(CS.GE.0.)THEN
      VLFR(K)=(AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT))*VK(K,IJ)*CS
  ELSE
      VLFR(K)=(AZ(J)*RLK(K,IJR)+BZ(J)*RLK(K,IJTR))

     1         *VK(K,IPJ)*CS
  ENDIF
  CS=(AZ(J)*WK(K,IJ)+BZ(J)*WK(K,IJP))
  IF(CS.GE.0.)THEN
      VLFA(K)=(AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT))*VK(K,IJ)*CS
  ELSE
      VLFA(K)=(AZ(J)*RLK(K,IJKAA)+BZ(J)*RLK(K,IJKAT))

     1         *VK(K,IJKP)*CS
  ENDIF
  IF(IFL(IMJ).NE.1)GOTO 1
  IF(IFL(IJM).NE.1)GOTO 2
  IF(IFL(IJKM).NE.1) GOTO 3
  CALL VLVSB
  RETURN

C
1         CS=(AZ(J)*UK(K,IMJ)+BZ(J)*UK(K,IMJP))*RB(I-1)

  IF(CS.GE.0.)THEN
      VLFL(K)=(AZ(J)*RLK(K,IJL)+BZ(J)*RLK(K,IJTL))

     1         *VK(K,IMJ)*CS
  ELSE
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      VLFL(K)=(AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT))*VK(K,IJ)*CS
  ENDIF
  IF(IFL(IJM).NE.1)GOTO 2
  IF(IFL(IJKM).NE.1)CALL VLVS
  CALL VLVSA
  RETURN

C
2         CS=0.5*(VK(K,IJM)+VK(K,IJ))

  IF(CS.GE.0.)THEN
      VLFB(K,I)=(BZ(J-1)*RLK(K,IJ)+AZ(J-1)*RLK(K,IJB))

     1         *VK(K,IJM)*CS
  ELSE
      VLFB(K,I)=(AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT))*VK(K,IJ)*CS
  ENDIF
  IF(IFL(IJKM).NE.1) GOTO 3
  CALL VLVSBB
  RETURN

 3        CS=(AZ(J)*WK(K,IJKM)+BZ(J)*WK(K,IJPKM))
  IF(CS.GE.0.)THEN
      VLFF(K,I,J)=(AZ(J)*RLK(K,IJKF)+BZ(J)*RLK(K,IJKFT))

     1         *VK(K,IJKM)*CS
  ELSE
      VLFF(K,I,J)=(AZ(J)*RLK(K,IJ)+BZ(J)*RLK(K,IJT))*VK(K,IJ)*CS
  ENDIF
  CALL VLVS
  RETURN
  END

C  ----------------------------------------VLVS
  SUBROUTINE VLVS
  INCLUDE '3dim.com'

C
C     CALCULATE TH*SIGMA(Z,Y) AT J+1/2, K-1/2

  SVLFF(K)=((WK(K,IJPKM)-WK(K,IJKM))*RDZP(J)
     1     +(VK(K,IJ)-VK(K,IJKM))*RDYP(L-1)/R(I))
     1     *(AY(L-1)*(BZ(J)*VISCL(K,IJKFT)+AZ(J)*VISCL(K,IJKF))
     1     +BY(L-1)*(BZ(J)*VISCL(K,IJT)+AZ(J)*VISCL(K,IJ)))
C     1     *(AZ(J)*(BY(L-1)*VISCL(K,IJ)+AY(L-1)*VISCL(K,IJKF))
C     1     +BZ(J)*(BY(L-1)*VISCL(K,IJT)+AY(L-1)*VISCL(K,IJKFT)))

  VLFF(K,I,J)=VLFF(K,I,J)-SVLFF(K)
  ENTRY VLVSBB

C
C  CALCULATE TH*SIGMA(Z,Z) AT I, J, K

 IF(IFL(IJM).NE.1)THEN
  CS=(VK(K,IJ)-VK(K,IJM))*RDZ(J)
  SVLB(K)=2.*VISCL(K,IJ)*CS+(VISBL(K,IJ)

     1     -(2./3.)*VISCL(K,IJ))*(CS+RRIDR(I)*(RB(I)
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     1     *UK(K,IJ)-RB(I-1)*UK(K,IMJ))+RDY(L)/R(I)*(WK(K,IJ)-
     1      WK(K,IJKM)))

  VLFB(K,I)=VLFB(K,I)-SVLB(K)
 ENDIF

C
C  CALCULATE R*TH*SIGMA(Z,R) AT J+1/2, I-1/2

  ENTRY VLVSA
  IF(IFL(IMJ).EQ.1)THEN
      SVLL(K)=((VK(K,IJ)-VK(K,IMJ))*RDRP(I-1)

     1         +(UK(K,IMJP)-UK(K,IMJ))*RDZP(J))*RB(I-1)
     1         *(AR(I-1)*(BZ(J)*VISCL(K,IJTL)+AZ(J)*VISCL(K,IJL))
     1         +BR(I-1)*(BZ(J)*VISCL(K,IJT)+AZ(J)*VISCL(K,IJ)))
C     1         *(AZ(J)*(BR(I-1)*VISCL(K,IJ)+AR(I-1)*VISCL(K,IJL))
C     1         +BZ(J)*(BR(I-1)*VISCL(K,IJT)+AR(I-1)*VISCL(K,IJTL)))

      VLFL(K)=VLFL(K)-SVLL(K)
  ENDIF

C
C     CALCULATE TH*SIGMA(Z,Z) AT I, J+1, K

  ENTRY VLVSB
  CS=(VK(K,IJP)-VK(K,IJ))*RDZ(J+1)
  SVLT(K)=2.*VISCL(K,IJT)*CS+(VISBL(K,IJT)

     1     -(2./3.)*VISCL(K,IJT))*(CS+RRIDR(I)
     1     *(RB(I)*UK(K,IJP)-RB(I-1)*UK(K,IMJP))+RDY(L)/R(I)*(WK(K,IJP)-
     1     WK(K,IJPKM)))

  VLFT(K)=VLFT(K)-SVLT(K)
C
C     CALCULATE R*TH*SIGMA(Z,R) AT J+1/2, I+1/2

  SVLR(K)=((VK(K,IPJ)-VK(K,IJ))*RDRP(I)
     1     +(UK(K,IJP)-UK(K,IJ))*RDZP(J))*RB(I)
     1     *(AR(I)*(BZ(J)*VISCL(K,IJT)+AZ(J)*VISCL(K,IJ))
     1     +BR(I)*(BZ(J)*VISCL(K,IJTR)+AZ(J)*VISCL(K,IJR)))
C     1     *(AZ(J)*(AR(I)*VISCL(K,IJ)+BR(I)*VISCL(K,IJR))
C     1     +BZ(J)*(AR(I)*VISCL(K,IJT)+BR(I)*VISCL(K,IJTR)))

  VLFR(K)=VLFR(K)-SVLR(K)
C
C     CALCULATE TH*SIGMA(Z,Y) AT J+1/2, K+1/2

  SVLA(K)= ((WK(K,IJP)-WK(K,IJ))*RDZP(J)+(VK(K,IJKP)-VK(K,IJ))*
     1     RDYP(L)/R(I))*(AY(L)*(AZ(J)*VISCL(K,IJ)+
     1     BZ(J)*VISCL(K,IJT))+BY(L)*(AZ(J)*VISCL(K,IJKAA)+
     1     BZ(J)*VISCL(K,IJKAT)))

  VLFA(K)=VLFA(K)-SVLA(K)

  RETURN
  END

C  ----------------------------------------VRELS
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  SUBROUTINE VRELS
  INCLUDE '3dim.com'

C
C  CALCULATE SQUARE OF RELATIVE VELOCITY BETWEEN FIELDS

  DO 10 K=0,NSOLID
      IF(K.NE.KV)THEN

  DV=0.5*(VK(KV,IJ)-VK(K,IJ)+VK(KV,IJM)-VK(K,IJM))
  DW=0.5*(WK(KV,IJ)-WK(K,IJ)+WK(KV,IJKM)-WK(K,IJKM))
  DU=0.5*(RB(I)*(UK(KV,IJ)-UK(K,IJ))

     1             +RB(I-1)*(UK(KV,IMJ)-UK(K,IMJ)))/R(I)
  SVREL(K)=DU*DU+DV*DV+DW*DW

      ENDIF
10        CONTINUE

  RETURN
  END

C  ----------------------------------------VWORKL
  SUBROUTINE VWORKL(NPH1,NPH2)
  INCLUDE '3dim.com'

C
C  CALCULATE VISCOUS STRESSES FOR THE WORK TERM IN THE PHASES
C  ENERGY EQUATION (NOTE: VISCOSITY IS MULTIPLIED LATER)
C

 DO 100 L = 2,KB1
  DO 100 J = 2,JB1
      DO 100 I = 2,IB1

  IJ=I+(J-1)*IB2 + (L-1)*IB2*JB2
  IF(IFL(IJ).EQ.1)THEN
      IPJ=INDC(IJ,1)
      IMJ=INDC(IJ,2)
      IJP=INDC(IJ,3)
      IJM=INDC(IJ,4)
      IMJP=INDC(IJ,6)
      IPJM=INDC(IJ,7)
      IMJM=INDC(IJ,8)
      IJKM=INDC(IJ,26)
      DO 10 K=NPH1,NPH2

  CS1=0.5*((VK(K,IPJ)+VK(K,IPJM)-VK(K,IMJ)-
     1                     VK(K,IMJM))/(DRP(I)+DRP(I-1))+
     2                      (RB(I)*(UK(K,IJP)-UK(K,IJM))
     3                     +RB(I-1)*(UK(K,IMJP)-UK(K,IMJM)))
     4                     /(R(I)*(DZP(J)+DZP(J-1))))

  CS2=RDZ(J)*(VK(K,IJ)-VK(K,IJM))
  CS3=RDR(I)*(UK(K,IJ)-UK(K,IMJ))
  CS4=0.5*(RB(I)*UK(K,IJ)+RB(I-1)*UK(K,IMJ))/

     1                            (R(I)*R(I))
  CS5= RDY(L)*(WK(K,IJ)-WK(K,IJKM))
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C
  SILM(K,IJ)=RRIDR(I)*(RB(I)*UK(K,IJ)

     1                     -RB(I-1)*UK(K,IMJ))+CS2 + CS5
  SILRZ=CS1
  SILZZ=2.0*CS2
  SILRR=2.0*CS3
  SILPP=2.0*CS4
  SILPY=2*CS5

C
C  CALCULATE VISCOUS WORK FOR THE PHASES

  VWLS(K,IJ)=DT*(SILRZ*CS1+SILZZ*CS2+SILRR*CS3
     1                     +SILPY*CS5+SILPP*CS4*ITC)

  VWLM(K,IJ)=DT*SILM(K,IJ)*SILM(K,IJ)
10                    CONTINUE

  ENDIF
100       CONTINUE

  RETURN
  END

C  ----------------------------------------WLMOMF
  SUBROUTINE WLMOMF
  INCLUDE '3dim.com'

C
C  CALCULATES FLUXES OF THE 3rd DIR. MOMENTUM FOR THE PHASES
C

  CS=AY(L)*VK(K,IJ)+BY(L)*VK(K,IJKP)
  IF(CS.GE.0.)THEN
      WLFT(K)=(AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA))*WK(K,IJ)*CS
  ELSE
      WLFT(K)=(AY(L)*RLK(K,IJT)+BY(L)*RLK(K,IJKAT))

     1         *WK(K,IJP)*CS
  ENDIF
  CS=(AY(L)*UK(K,IJ)+BY(L)*UK(K,IJKP))*RB(I)
  IF(CS.GE.0.)THEN
      WLFR(K)=(AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA))*WK(K,IJ)*CS
  ELSE
      WLFR(K)=(AY(L)*RLK(K,IJR)+BY(L)*RLK(K,IJKAR))

     1         *WK(K,IPJ)*CS
  ENDIF
  CS=0.5*(WK(K,IJ)+WK(K,IJKP))
  IF(CS.GE.0.)THEN
      WLFA(K)=(AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA))*WK(K,IJ)*CS
  ELSE
      WLFA(K)=(AY(L+1)*RLK(K,IJKAA)+BY(L+1)*RLK(K,IJKA))

     1         *WK(K,IJKP)*CS
  ENDIF
  IF(IFL(IMJ).NE.1)GOTO 1
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  IF(IFL(IJM).NE.1)GOTO 2
  IF(IFL(IJKM).NE.1) GOTO 3
  CALL WLVSB
  RETURN

C
1         CS=(AY(L)*UK(K,IMJ)+BY(L)*UK(K,IMJKP))*RB(I-1)

  IF(CS.GE.0.)THEN
      WLFL(K)=(AY(L)*RLK(K,IJL)+BY(L)*RLK(K,IJKAL))

     1         *WK(K,IMJ)*CS
  ELSE
      WLFL(K)=(AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA))*WK(K,IJ)*CS
  ENDIF
  IF(IFL(IJM).NE.1)GOTO 2
  IF(IFL(IJKM).NE.1)CALL WLVS
  CALL WLVSA
  RETURN

C
2         CS=AY(L)*VK(K,IJM)+BY(L)*VK(K,IJMKP)

  IF(CS.GE.0.)THEN
      WLFB(K,I)=(AY(L)*RLK(K,IJB)+BY(L)*RLK(K,IJKAB))

     1         *WK(K,IJM)*CS
  ELSE
      WLFB(K,I)=(AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA))*WK(K,IJ)*CS
  ENDIF
  IF(IFL(IJKM).NE.1) GOTO 3
  CALL WLVSBB
  RETURN

 3        CS=0.5*(WK(K,IJKM)+WK(K,IJ))
  IF(CS.GE.0.)THEN
      WLFF(K,I,J)=(BY(L-1)*RLK(K,IJ)+AY(L-1)*RLK(K,IJKF))

     1         *WK(K,IJKM)*CS
  ELSE
    WLFF(K,I,J)=(AY(L)*RLK(K,IJ)+BY(L)*RLK(K,IJKAA))*WK(K,IJ)*CS
  ENDIF
  CALL WLVS
  RETURN
  END

C  ----------------------------------------WLVS
  SUBROUTINE WLVS
  INCLUDE '3dim.com'

C
C     CALCULATE TH*SIGMA(Y,Y) AT I, J, K

  SWLFF(K)=2.*VISCL(K,IJ)*(WK(K,IJ)-WK(K,IJKM))*RDY(L)/R(I)
     1     +(VISBL(K,IJ)-(2./3.)*VISCL(K,IJ))*((WK(K,IJ)-
     1     WK(K,IJKM))*RDY(L)/R(I)+(VK(K,IJ)-VK(K,IJM))*RDZ(J)+
     1     RRIDR(I)*(RB(I)*UK(K,IJ)-RB(I-1)*UK(K,IMJ)))
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  WLFF(K,I,J)=WLFF(K,I,J)-SWLFF(K)
  ENTRY WLVSBB

C
C     CALCULATE TH*SIGMA(Y,Z) AT K+1/2, J-1/2

 IF(IFL(IJM).NE.1)THEN
  CS=(VK(K,IJMKP)-VK(K,IJM))*RDYP(L)/R(I)
  SWLB(K)=(CS+(WK(K,IJ)-WK(K,IJM))*RDZP(J-1))*(BZ(J-1)*

     1     (AY(L)*VISCL(K,IJ)+BY(L)*VISCL(K,IJKAA))+AZ(J-1)*
     1     (AY(L)*VISCL(K,IJB)+BY(L)*VISCL(K,IJKAB)))

  WLFB(K,I)=WLFB(K,I)-SWLB(K)
 ENDIF

C
C     CALCULATE R*TH*SIGMA(Y,R) AT K+1/2, I-1/2

  ENTRY WLVSA
  IF(IFL(IMJ).EQ.1)THEN
      SWLL(K)=RB(I-1)*((WK(K,IJ)/R(I)-WK(K,IMJ)/R(I-1))*
1      RDRP(I-1)*R(I-1)+(UK(K,IMJKP)-UK(K,IMJ))*
1      RDYP(L)/RB(I-1))*(AR(I-1)*(AY(L)*VISCL(K,IJL)+

     1         BY(L)*VISCL(K,IJKAL))+BR(I-1)*(AY(L)*VISCL(K,IJ)+
     1         BY(L)*VISCL(K,IJKAA)))

      WLFL(K)=WLFL(K)-SWLL(K)
  ENDIF

C
C     CALCULATE TH*SIGMA(Y,Y) AT I, J, K+1

  ENTRY WLVSB
  CS=(WK(K,IJKP)-WK(K,IJ))*RDY(L+1)/R(I)
  SWLA(K)=2.*VISCL(K,IJKAA)*CS+(VISBL(K,IJKAA)

     1     -(2./3.)*VISCL(K,IJKAA))*(CS+RRIDR(I)
     1     *(RB(I)*UK(K,IJKP)-RB(I-1)*UK(K,IMJKP))+RDZ(J)*(VK(K,IJKP)-
     1     VK(K,IJMKP)))

  WLFA(K)=WLFA(K)-SWLA(K)
C
C     CALCULATE R*TH*SIGMA(Y,R) AT K+1/2, I+1/2 

  SWLR(K)=((WK(K,IPJ)/R(I+1)-WK(K,IJ)/R(I))*RDRP(I)*R(I)
     1     +(UK(K,IJKP)-UK(K,IJ))*RDYP(L)/RB(I))*RB(I)
     1     *(AR(I)*(AY(L)*VISCL(K,IJ)+BY(L)*VISCL(K,IJKAA))
     1     +BR(I)*(AY(L)*VISCL(K,IJR)+BY(L)*VISCL(K,IJKAR)))
        WLFR(K)=WLFR(K)-SWLR(K)
C
C     CALCULATE TH*SIGMA(Y,Z) AT K+1/2, J+1/2

  SWLT(K)=((WK(K,IJP)-WK(K,IJ))*RDZP(J)+(VK(K,IJKP)-VK(K,IJ))*
     1     RDYP(L)/R(I))*(BZ(J)*(AY(L)*VISCL(K,IJT)+
     1     BY(L)*VISCL(K,IJKAT))+AZ(J)*(AY(L)*VISCL(K,IJ)+
     1     BY(L)*VISCL(K,IJKAA)))

  WLFT(K)=WLFT(K)-SWLT(K)
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  RETURN
  END

Sample Input Data

glsf.r3
g-l-s 3d fluidization under DE-FG-98FT40117
0  30  34  7  2
0.0
30*1.09
34*2.8125
7*1.02
1  2   1  0  0  0  0  1

0.4    1.0    0.0  1.0  1.0      0.01
0.0124 2.7E-3 0.0  1.0  1.0      0.0001813
0.08   2.94   0.0  1.0  0.6413  10.0
2  2  3  8
1    2  29   10  33    2    6
1    2  29    2   9    2    6
5    2  15    1   1    2    6
5   16  29    1   1    2    6
7    5   7   34  34    2    6
7   15  17   34  34    2    6
7   25  27   34  34    2    6
3    1   4   34  34    2    6
3    8  14   34  34    2    6
3   18  24   34  34    2    6
3   28  30   34  34    2    6
3    1  30    1  34    1    1
3    1  30    1  34    7    7
3    1   1    1  34    1    7
3   30  30    1  34    2    6
0.0  0.0    0.0  1.01625D6    1.0  300.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.5    0.0  1.08625D6    0.42 300.0
0.0  0.0    0.0               0.0  300.0     0.0
0.0  0.0    0.0               0.58 300.0     0.0
0.0  2.02   0.0  1.180D6      0.5  300.0
0.0  3.37   0.0               0.5  300.0     0.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  2.02   0.0  1.180D6      0.5  300.0
0.0  3.37   0.0               0.5  300.0     0.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.0    0.0  1.01625D6    1.0  300.0
0.0  0.0    0.0               0.0    0.0     0.0
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0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.0    0.0  1.01625D6    1.0  300.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.0    0.0  1.01625D6    1.0  300.0
0.0  0.0    0.0               0.0    0.0     0.0
0.0  0.0    0.0               0.0    0.0     0.0
0
0.0   100      0.000005    1
0.1    0.1
1      0.000005
0.0      -980.621    0.0
0.999      30.48     1.E-5    0.1    1.E-5


