

INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION

F O S S

Technical Progress Report for the Period October 1 to December 31, 1997

By K. C. Kwon

August 1998

Work Performed Under Contract no DE-FG21-94MC31206-12

For U.S. Department of Energy Federal EnergyTechnology Center Morgantown, West Virginia

By Tuskegee University Tuskegee, Alabama Investigation on Durability and Reactivity of Promising Metal Oxide Sorbents during Sulfidation and Regeneration

> Technical Progress Report for the Period October 1 to December 31, 1997

> > K. C. Kwon

August 1998

Work Performed Under Contract No.: DE-FG21-94MC31206

For U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880 Morgantown, West Virginia 26507-0880

> By Tuskegee University Tuskegee, Alabama 36088

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

	Page
DISCLAIMER	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
MILESTONES	1
SUMMARY	1
INTRODUCTION	1
EXPERIMENTAL SETUP/PROCEDURE	2
RESULTS AND DISCUSSION	3
CONCLUSION	9
PRESENTATION	9

LIST OF TABLES

Table		Page
1	Experimental conditions for the reaction of hydrogen sulfide with the TU-188 sorbent in the presence of moisture, nitrogen and hydrogen.	3
2	Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 0.12 s space time and 530°C.	4
3	Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 0.12 s space time and 530°C.	5
4	Weight loss of 0.1-g TU-188 sorbent in reaction with H_2S at 0.12 s space time and 530°C.	5
5	Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 0.12 s space time and 530°C.	6

LIST OF FIGURES

Figure		Page
1	A differential reactor assembly	2
2	Effects of hydrogen on equilibrium absorption of 2500-ppm H_2S into 0.1-g TU-188 sorbent with the 10-volume % moisture at 0.12 s space time and 530°C.	7
3	Weight loss of 0.1-g TU-188 sorbent in reduction reaction with hydrogen in the absence of H_2S at 0.12 s space time and 530°C.	7
4	Effects of hydrogen on transition of reaction control in the absorption of 2500-ppm H_2S into 0.1-g TU-188 sorbent with the 10-volume % moisture at 0.12 s space time and 530°C.	8
5	Effects of hydrogen on initial absorption of 2500-ppm H_2S into 0.1-g TU-188 sorbent with the 10-volume % moisture at 0.12 s space time and 530°C.	8

SCHEDULE AND MILESTONES

	FY 1994-1995							FY 1995-1996																
	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S
Procurements of Materials and Equipment																								
Fabrication of a Micro Batch Reactor																								
Development of Analytical Procedures for Concentrations of Sulfur compounds													•											
Development of Experimental Procedures for Sulfidation Reaction of Fresh Metal Oxide Sorbents													•											
Formulation of Durable Metal Oxide Sorbents with High-Sulfur Removal Capacity																								
Reaction Kinetics on Sulfidation of Metal Oxide Sorbents													_											
Reaction Kinetics on Regeneration of Sulfur- loaded Metal Oxide Sorbents																		-						
Development of an Intraparticle Diffusivity Model for Sulfidation of Metal Oxide Sorbents																•								
Delineation of Effects of Hydrogen Partial																			•					
Pressures and Moisture Amounts on Sulfidation of Metal Oxide Sorbents																								
Equilibrium Absorption of Hydrogen Sulfide into Metal Oxide Sorbents																								
Development of a Micro Differential Reactor																								

SUMMARY

The main objective of this research project during this quarter is to investigate effects of hydrogen on initial absorption as well as equilibrium absorption of 2500-ppm H_2S into 0.1-g TU-188 sorbent in the presence of 10 vol % moisture at the 0.12-s space time and 530°C.

INTRODUCTION

A differential micro reactor was fabricated with a titanium grade-2 tube. The volume of reactor is 1.64 cm^3 . The fresh formulated metal oxide sorbent TU-188 in the form of 1-mm cylindrical rod were crushed to obtain 100 - 200 mesh (74 –140 µm) particles. The crushed 100 - 200 mesh (74 –140 µm) particles were reacted with simulated coal gases containing hydrogen sulfide in the 1.64 cm³ titanium Grade-2 differential micro reactor for 30- 120000 seconds at 105 psia and 530°C. Absorption amounts of hydrogen sulfide into the sorbent were analyzed with an electronic balance. The space (residence) time of the reaction gas mixture in the reactor was 0.12 s (300 cc/min) under the reaction conditions.

Figure 1. A Differential Reactor Assembly

EXPERIMENTAL SETUP/PROCEDURE

A differential reactor assembly have four mass flow meters for gases, one differential reactor, one preheater, one high pressure liquid pump for water, one four-way switch valve, one muffle furnace, three filters for gases, four check valves, and one water collection bottle (see Figure 1). A differential reactor is fabricated with one 10-cm-long ¹/₄-inch titanium grade-2 tubing and two 1/4" external column end fittings. The preheater is made of 1/16" Hastelloy C tubing. The reactor was loaded with 0.1-g 74-140 μ m TU-188 sorbent particles. The reactor, loaded with the sorbent particles, was placed inside the muffle furnace to be heated at a desired temperature. Nitrogen was introduced into the sorbent-loaded reactor during preheating the reactor. When the temperature of the reactor was raised at the desired temperature, a reaction mixture was introduced into the reactor for desired reaction duration, by switching nitrogen with a simulated coal gas mixture.

RESULTS AND DISCUSSION

Research activities and efforts of this research project were concentrated on absorbing hydrogen sulfide into TU-188 sorbent at 105 psia and 530°C to understand effects of hydrogen on absorption of hydrogen sulfide into the sorbent, using the differential reactor.

Experiments on absorption of wet hydrogen sulfide into the sorbent were carried out for 5 - 120000 seconds at 530° C (see Table 1) to evaluate effects of hydrogen concentrations on dynamic absorption as well as equilibrium adsorption of hydrogen sulfide into the sorbent. A typical simulated coal gas mixture consists of 2500-ppm hydrogen sulfide, 10 vol % moisture, 10 - 40 vol % hydrogen, and nitrogen as remainder. The volumetric feed rate of the simulated coal gas mixture to the reactor is 300 cm³ /min at room temperature and 1 atm. The temperature of the reactor is controlled in the furnace oven at 530°C. The pressure of the reactor is maintained at 105 psia. All the absorption experiments were conducted, using the sorbent reduced in the absence of H₂S with hydrogen under the same experimental conditions as those of absorption experiments. Experimental data on absorption of H₂S into the TU-188 sorbent at various absorption durations were shown in Tables 2 - 5.

Table 1. Experimental conditions for the reaction of hydrogen sulfide with the TU-188
sorbent in the presence of moisture, nitrogen and hydrogen.

Reactor Volume, cm ³ : Temperature, °C:	1.6 530
Reaction Pressure, psia	105
Reaction Time, s:	5 -120000
Space Time under the absorption conditions, s:	0.12
Particle Size, µm	74 - 140
Amount of Sorbent, g	0.1
Gas Flow Rate, cc/min at room temperature	300
Hydrogen, vol %	10 - 40
Moisture, vol %:	10
Concentration of H_2S , ppm	2500
Nitrogen, vol %	50 - 80

Effects of Hydrogen

A series of experiments on equilibrium absorption of H_2S into the sorbent were carried out for 5 – 120000 seconds at 105 psia and 530°C to find effects of hydrogen concentrations on equilibrium absorption of H_2S into the sorbent in the presence of 10-vol % moisture and 2500-ppm H_2S . Absorption of H_2S appears to either decrease or increase with increased concentrations of H_2S for long absorption durations (see Figure 2). Absorption of H_2S into the sorbent in the presence of 30-vol % hydrogen increases with increased absorption duration for the 28-hr absorption duration. These observations suggest that equilibrium absorption of H_2S into the sorbent can not be reached for the 28-hr absorption duration. Absorption of H_2S into the sorbent in the presence of 10-vol % hydrogen decreases slightly with increased absorption duration for the 28-hr absorption duration. These observations may indicate that molecular hydrogen reduces the porous matrix of the metal oxide sorbent for the 28-hr absorption duration.

Run 24		Absorption Duration, s	Weight Gain, g
		0	0.0000
H ₂ S Concentration, ppmv:	2500	30	0.0010
H_2O Concentration, vol %:	10	61	0.0013
H_2 Concentration, vol %:	40	121	0.0015
N_2 Concentration, vol %:	49.75	242	0.0016
		481	0.0019
		967	0.0031
		1987	0.0039
		3787	0.0043
		5587	0.0043
		9187	0.0056
		12787	0.0061
		16387	0.0059
		19507	0.0063
		23107	0.0066
		30307	0.0070
		44707	0.0075
		73507	0.0071
		87907	0.0070
		102307	0.0069
		116707	0.0063

Table 2. Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 300 scc/min gas flow rate and 530°C.

Reduction Reaction with Hydrogen

A series of reduction experiments on weight loss of the sorbent were carried out in the presence of 10 vol % H₂, 10 vol % moisture, and 80 vol % N₂ for 30 - 24000 seconds at 105 psia and 530° C to understand reduction reaction of the sorbent with wet hydrogen. The weight of the sorbent decrease significantly in the absence of H₂S for the reduction duration of 8 min (see Figure 3 and Table 4).

Surface Reaction Control and Intraparticular Pore Diffusion Control

A series of experiments on absorption of H_2S into the sorbent were carried out for 30 - 15000 seconds at 105 psia and $530^{\circ}C$ to investigate reaction mechanisms on the gaseous H_2S -solid metal oxide heterogeneous reaction system. The weight gain of the sorbent increases drastically during the initial absorption stage, and then increases slowly with increased absorption duration (see Figure 5). The transitional reaction control from the surface reaction control to the intraparticular pore diffusion control appears to be pronounced with increased concentrations of hydrogen in the simulated wet coal gas mixtures.

Effects of Hydrogen on Surface Reaction

A series of experiments on absorption of H_2S into the sorbent were carried out for 6 – 140 seconds at 105 psia and 530°C to investigate effects of hydrogen on initial absorption of H_2S into the solid sorbent (see Figure 4). Initial surface reaction of wet H_2S with the solid sorbent increases with increased concentrations of hydrogen. These facts may indicate that hydrogen affects significantly the initial surface reaction at the outside surface of the solid metal oxide sorbent.

Run 25		Absorption Duration, s	Weight Gain, g
		0	0
H ₂ S Concentration, ppmv:	2500	30	0.00070
H ₂ O Concentration, vol %:	10	60	0.00070
H_2 Concentration, vol %:	10	121	0.00140
N_2 Concentration, vol %:	79.75	241	0.00169
		481	0.00249
		962	0.00217
		1863	0.00265
		3663	0.00420
		5463	0.00455
		9063	0.00545
		12663	0.00645
		16263	0.00665
		23463	0.00755
		37863	0.00765
		47163	0.00809
		68763	0.00789
		83163	0.00769
		99363	0.00754

Table 3. Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 300 scc/min gas flow rate and 530°C.

Table 4. Weight loss of 0.1-g TU-188 sorbent in reaction with hydrogen at 300 scc/min gas flow rate and 530°C.

Run 26		Reaction Duration, s	Weight %
	0	0	100
H ₂ S Concentration, ppmv: H ₂ O Concentration, vol %:	0	30	99.8
H_2O Concentration, vol %: H_2 Concentration, vol %:	10	60	<u>99</u> 99
N ₂ Concentration, vol %:	10 80	151	99 3
N ₂ Concentration, vor 70.	00	241	99.3
		482	99.3
		7682	99
		23882	99

Table 5. Weight gain of 0.1-g TU-188 sorbent in reaction with H ₂ S at 30	0 scc/min gas
flow rate and 530°C.	

Run 27		Absorption Duration, s	Weight Gain, g
		0	0
H ₂ S Concentration, ppmv:	2500	36	0.0002
H ₂ O Concentration, vol %:	10	76	0.0006
H ₂ Concentration, vol %:	10	136	0.0015
N ₂ Concentration, vol %:	79.75	256	0.0014
		376	0.0018
		616	0.0018
		1096	0.0022
		1997	0.0028
		3797	0.0043
		7637	0.0051
		11237	0.0059

Run 29		Absorption Duration, s	Weight Gain, g
		0	0
H ₂ S Concentration, ppmv:	2500	6	0
H ₂ O Concentration, vol %:	10	15	0.0002
H ₂ Concentration, vol %:	30	36	0.0004
N ₂ Concentration, vol %:	59.75	61	0.0014
		85	0.0014
		115	0.0013
		176	0.0018
		236	0.0019
		355	0.0029
		596	0.003
		1076	0.0035
		1856	0.0033
		3656	0.0041
		7256	0.0051
		10856	0.0056
		14456	0.0064
		18056	0.0072
		25256	0.0081
		32456	0.0085
		46856	0.009
		61256	0.0102
		75656	0.0106
		97436	0.0112

Figure 2. Effects of hydrogen on equilibrium absorption of 2500-ppm H_2S into 0.1-g TU-188 sorbent with the 10-volume % moisture at $530^{\circ}C$.

Figure 3. Weight loss of 0.1-g TU-188 sorbent in reduction reaction with hydrogen in the absence of H_2S at 300 scc/min gas flow rate and 530°C.

Reduction Duration, s

Figure 4. Effects of hydrogen on transition of reaction control in the absorption of 2500-ppm H₂S into 0.1-g TU-188 sorbent with the 10-volume % moisture at 530° C.

Figure 5. Effects of hydrogen on initial absorption of 2500-ppm H $_2$ S into 0.1-g TU-188 sorbent with the 10-volume % moisture at 530 °C.

CONCLUSIONS

The following conclusions were drawn based on the experimental data, generated from the differential reactor system, and their interpretations,

- Equilibrium absorption of H₂S into the sorbent can not be reached in the presence of 30vol % hydrogen for the 28-hr absorption duration. Equilibrium absorption of H₂S into the sorbent in the presence of 10-vol % hydrogen decreases slightly with increased absorption duration for the 28-hr absorption duration. These observations may indicate that molecular hydrogen reduces the porous matrix of the metal oxide sorbent for the 28-hr absorption duration.
- The weight of the sorbent decreases significantly in the reduction reaction of the sorbent in the absence of H_2S with hydrogen for the reduction duration of 8 min. This observation may suggest that hydrogen affects significantly initial surface reaction of the sorbent with H_2S .
- The transitional reaction control from the surface reaction control to the intraparticular pore diffusion control appears to be pronounced with increased concentrations of hydrogen in the simulated wet coal gas mixtures.
- Initial surface reaction of wet H₂S with the solid sorbent increases with increased concentrations of hydrogen. Hydrogen affects significantly the initial surface reaction of the solid metal oxide sorbent with wet hydrogen.

PRESENTATION

"Effects of moisture and hydrogen on removal kinetics of hot hydrogen sulfide with metal oxide sorbents", presented at the Tenth Symposium on Separation Science and Technology for Energy Applications, Park Vista Hotel & Convention Center, Gatlinburg, Tennessee, October 20-24, 1997.