CO₂ SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS SHIFT REACTION WITH CONCOMITANT FOR THE RECOVERY OF CO₂

Quarterly Report for the Period January 2002- March 2002

Paul K. T. Liu Project Director

MEDIA AND PROCESS TECHNOLOGY, INC.

May 8, 2002

PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY Under Cooperative Agreement No. DE-FC26-00NT40922

Technical Summary

The reversibility study using TGA/MS has been completed. Our result shows that the hydrotalcite material we proposed exhibits a high degree of CO_2 reversibility. In addition, at higher temperatures (>200°C), insignificant adsorption of water was observed. Combining these results, we conclude that the hydrotalcite we choose is an ideal candidate material for high temperature gas separations requiring hydrothermal stability. We also have focused on the optimization of membrane synthesis. The gel formed after combining the reagents is an ideal precursor for deposition within the porous membrane based upon the Al/Mg ratio analysis and impurity leaching study. Finally, we experimentally verify the crystal growth temperature ranging from 100 to 150°C. The crystal growth is also highly dependent upon the time. Our study shows a general growth pattern from 0 to >4 hours. In the next quarter, we will utilize the information obtained here to initiate the optimization of membrane synthesis.

1. Reversibility of CO₂ Affinity vs. Temperature

Reversibility is an essential requirement for the proposed hydrotalcite as a candidate material for membranes. In this quarter, we have completed the reversibility studies based upon the adsorption/desorption behavior of hydrotalcite under isothermal conditions using thermal gravimetric analysis (TGA) in conjunction with mass spectrum (/MS). The experiments were carried out keeping the temperature constant in a humidified atmosphere of CO_2 (~3% H₂O) during the adsorption step, and under vacuum during the desorption step. The desorption step time was set as 1hour, while the adsorption step lasted for 3hour. For every temperature, 5 adsorption/desorption cycles were repeated. During the adsorption part of the cycle we monitor the weight change of the material, while during the desorption part of the cycle we monitor the weight change together with the composition of the gases evolved.

The results are summarized below:

	Total weight loss at desorption	Total weight gain at adsorption	Composition evolved determ	of gases nined by MS
	(wt %)	(wt %)	CO ₂ (wt %)	H ₂ O(wt %)
1 st Cycle	1.98	1.91	0.017	1.883
2 nd Cycle	1.88	1.83	0.015	1.865
3 rd Cycle	1.79	1.77	0.016	1.774
4 th Cycle	1.70	1.66	0.015	1.685
5 th Cycle	1.66	1.61	0.013	1.647

Table 1Cyclic CO2 Adsorption and Desorption using TG/MS at 150°C

Table 2	Cyclic CO ₂ Adsor	ption and Desorption	n using TG/MS at 200° C
	· -		0

	Total weight loss at desorption	Total weight gain at adsorption	Composition evolved determ	of gases nined by MS
	(wt %)	(wt %)	CO ₂ (wt %)	H ₂ O(wt %)
1 st Cycle	2.23	2.01	2.212	0.018
2 nd Cycle	1.99	1.93	1.975	0.015
3 rd Cycle	1.91	1.86	1.895	0.015

4 th Cycle	1.87	1.83	1.855	0.015
5 th Cycle	1.81	1.79	1.795	0.015

Table 3	Cyclic Adsorption and Desorption Study using TG/MS at 250° C	
I dole e	cyclic Hubbi pitoli unu Desorption Study using i Gills ut 200 °C	

	Total weight loss at desorption	Total weight gain at adsorption	Composition evolved determ	of gases nined by MS
	(wt %)	(wt %)	CO ₂ (wt %)	H ₂ O(wt %)
1 st Cycle	2.19	1.99	2.172	0.018
2 nd Cycle	1.93	1.91	1.915	0.015
3 rd Cycle	1.89	1.86	1.875	0.015
4 th Cycle	1.83	1.80	1.815	0.015
5 th Cycle	1.79	1.77	1.775	0.015

Table 4	Cyclic Adsorption	on and Desorption	Study using	TG/MS at 300°C

	Total weight loss at desorption	Total weight gain at adsorption	Composition evolved determ	of gases nined by MS
	(wt %)	(wt %)	CO ₂ (wt %)	H ₂ O(wt %)
1 st Cycle	1.52	1.47	1.516	0.004
2 nd Cycle	1.46	1.33	1.457	0.003
3 rd Cycle	1.26	1.17	1.256	0.004
4 th Cycle	1.13	1.08	1.126	0.004
5 th Cycle	1.05	0.86	1.047	0.003

Table 5	Cyclic Adsorption	and Desorption S	Study using TG/M	IS at 350° C
---------	-------------------	------------------	------------------	--------------

	Total weight loss at desorption	Total weight gain at adsorption	Composition evolved determ	of gases nined by MS
	(wt %)	(wt %)	CO ₂ (wt %)	H ₂ O(wt %)
1 st Cycle	1.51	1.46	1.506	0.004
2 nd Cycle	1.42	1.33	1.407	0.003
3 rd Cycle	1.23	1.17	1.226	0.004
4 th Cycle	1.10	1.08	1.106	0.004
5 th Cycle	1.06	0.86	1.057	0.003

The TGA results are consistent with the previously presented results for the thermal behavior of the hydrotalcite under inert atmosphere. At low temperatures (as indicated by the TGA/MS result at 150°C) most of the gases evolved consist of H₂O, and little amount of CO₂ is evolved. At higher temperatures most of the gases evolved consist of CO_2 and little amounts of water. Below 300 °C the total adsorption averages ~ 2.2%. Above 300 °C the adsorption decreases, which is consistent with the studies of the thermal evolution of the structure of hydrotalcite, which indicate that the structure of hydrotalcite partially collapses in this temperature range. In addition, at these higher temperatures there is a significant decline in the adsorbed amount as a function of the cycle number indicating the decrease in the degree of reversibly adsorbed CO₂ as the temperature increases. In summary the CO₂ affinity of hydrotalcite material has been proven reversible via pressure swing under an isothermal condition, which simulates the CO_2 transport through the hydrotalcite membrane. This high degree of reversibility fulfills the essential requirement for a hydrotalcite-based membrane. In addition, the extremely low affinity to H_2O at a higher temperature (i.e., >200°C) discourage the competition by water as in most oxides. This provides a fundamental basis fr the hydrothermal stability of the hydrotalcite.

2. Hydrotalcite Crystal Growth

During Year I of our feasibility study, we have proven the seeding and in-situ crystal growth is a viable hydrotalcite membrane synthesis technique. As part of our optimization study, we have concentrated on the verification of the crystal growth under the synthesis conditions selected by us in this quarter. This exercise provides the experimental evidence on the synthesis of the hydrotalcite membrane via crystal growth under the selected condition. The crystal growth conditions selected by us range from 100 to 150°C and 0 to >4 hours. Powder hydrotalcite products generated under this condition were rinsed thoroughly and then examined with XRD. The XRD results are available upon request. Key conclusions drawn from this study include:

- 1. It appears that hydrotalcite crystal forms immediately after combining the two reagents together (based upon HT054 initial).
- There is no obvious improvement in the crystal size via crystallization at a higher temperature (i.e., 140 vs 100°C) although most literatures support the effect of temperature.
- 3. As a general trend the crystal size increases along with the crystallization time at a given temperature, indicative of the crystal growth with time under the selected condition. However, some XRD peaks obtained do not follow this trend. It may be dependent upon the sampling position from the autoclave. More study will be conducted in the future.

In summary the hydrotalcite crystal grows at temperature of 100 to 150C. The crystal size is a function of the crystallization time. Once the membrane is seeded, we plan to utilize this experimental condition for the crystal growth within the porous membrane structure.

3. Hydrotalcite Precursor as Seed for Membrane Synthesis

Based upon the results from Sec. 2, it is believed that the gel immediately formed after combining the two reagents (i.e., AlNO₃ and MgNO₃). In addition this gel is most likely is the precursor of the hydrotalcite. This gel can be used as the seed for deposition within the membrane substrate for crystal growth. The hydrotalcite membrane thus formed would be in the designated area, e.g., within the porous thin film, instead of indiscriminately deposition above, below and within the thin film. To verify the gel formed is indeed the precursor of hydrotalcite, two experiments described below were conducted in this month:

• <u>Performing the analysis of Al/Mg ratio of the gel (as a precursor) and the supernatant solution.</u> If the Al/Mg ratios were in line with the resultant hydrotalcite crystals, this gel would be qualified as a precursor. The result is presented in Table 6. The ratio (3.63) is close to the ratio based upon

theoretical calculation (2.04). Thus, we conclude that he gel is most likely is the precursor for hydrotalcite.

• <u>To use this precursor as seed, it is highly desirable to eliminate extraneous</u> <u>precipitate along the crystal growth.</u> Here we conduct a leaching study using the impregnated membrane rinsed with distil water. The control is the membrane deposited with the solution without containing aluminum and maganisiu. Based upon the gas permeance presented in Tables 7&8, it is believed that most impurity can be rinsed away.

The above two experiments confirm the potential of using the gel initially formed as a precursor for hydrotalcite synthesis and more importantly the impurities formed during the synthesis can be rinsed away with distill water.

	Samples	Gel	Supernatant	Crystals	Solutions
Analysis		(HT-061)	(HT-061)	(HT-062)	(by calculation)
Concentrat	Mg(pp	513	233	75.8	NA
ion	m)				
determined	Al(ppm	157	31	33.0	NA
by ICP)				
Concentrat	Mg	21.1	9.58	3.12	NA
ion (mole)	Al	5.82	1.15	1.22	NA
Molar	Mg/	0.784	0.89	0.719	0.67
Ratio	(Mg+Al				
)				
	Mg/Al	3.63	8.3	2.56	2.04

Table 6Aluminum/Magnisium Ratios of Gel, Supernatant and Crystals.

HT-051: Sampl	es impregnated with the	he standard hydro	otalcite solution wi	thout Al and		
Mg c	components (i.e., NaOl	H and Na2CO3	solution). HT-05	51-10 for 10		
minute	e impregnation of the	e membrane, an	d HT-051-60 fo	r 60 minute		
impreg	impregnation					
Sample ID	Leaching Method	He permeance	N2 permeance	Selectivity		
	and Condition	(m3/m2/hr/bar)	(m3/m2/hr/bar)			
HT-051-10	After impregnation	0.031	0.0175	1.72		
	and drying					
HT-051-10	After rinse and soak	15	9	1.67		
	overnight					
HT-051-10	After tube side rinse	15.3	8.6	1.78		
	with pump					
HT-051-10	After boiling water	No effect	No effect	-		
HT-051-10	After acid leaching	111	62	1.79		
	(1% HNO3)					
HT-051-60	After impregnation	0.87	0.52	1.67		
	and drying					
HT-051-60	After rinse and soak	6.8	2.8	2.43		
	overnight					
HT-051-60	After tube side rinse	3.97	2.35	1.69		
	with pump					
HT-051-60	After boiling water	No effect	No effect	-		
HT-051-60	After acid leaching	108	63	1.71		
	(1% HNO3)					
Control	Without	~110	~60			
	impregnation					

Table 7Impurities Removal from Hydrotalcite Membranes (o.2 micron)Prepared via Crystallization

Table 8 Impurities Removal via Water Rinse

Sample 04012-1: Membrane impregnated with Na2CO3 then rinsed in distil water for 2	
hours and then dried at 115°C	
N ₂ Permeance (m3/m2/hr/bar)	He Permeance (m3/m2/hr/bar)
29.552	77.669
Sample 04012-2: Membrane impregnated with Na2CO3 then rinsed in distil water for 2	
hours and then dried at 115°C	
N ₂ Permeance (m3/m2/hr/bar)	He Permeance (m3/m2/hr/bar)
73.7	136.1