IMPACT OF ENGINE OIL CONSUMPTION ON DIESEL ENGINE EMISSIONS

USDOE/NREL WORKSHOP

Dr. Kent Froelund Diesel Engines Engine Research Department Southwest Research Institute

Outline

 Motivation - Impact of Oil Consumption on Emissions
Measurement Methods
Sensitivity to Engine Make, Engine Type, and to Operating Conditions
Sensitivity to Oil Properties
Real-Time Steady-State Measurements
Real-Time Transient Measurements

Motivation for R&D in Oil Impact on Emissions Customer Satisfaction Regulated Engine-Out Emissions Regulated Tailpipe-Out Emissions -Catalyst Deterioration Unregulated Emissions

Measurement Methods

Gravimetric (Direct)

Volumetric

Tracer

• SO₂

Tritium

Pyren

Oil Additives

This Presentation Will Focus on Results Obtained With SwRI's SO₂-Analyzer

and a second second

Experimental Setup: SO₂-Tracer Technique

Advantages SO₂-Tracer Technique

Real-Time Steady-State Engine OC
Real-Time Transient Engine OC
Component Break-Down OC:
Power-Cylinder
Valve
PCV-Valve
Turbocharger
Burned and Unburned Engine OC

Sensitivity to Operating Conditions

HD DI-MEDIUM MY 1994, ~7 I

Absolute Oil Consumption Not Appropriate for Comparison Between Operating Conditions

Sensitivity to Operating Conditions

Good Diesel Engine As of Today Less Than 0.10% Relative Oil Consumption Regardless of Operating Condition

Sensitivity to Operating Conditions

HD DI-MEDIUM MY 1993, ~7 I, I-6

Characteristic: Low Speed Problems

Sensitivity to Operating Conditions

HD DI-LARGE MY 1994, >10 I, I-6

Characteristic: Low Load Problems

1. 1. 1.

2.4555.8

4.

1.1

5.000

Sensitivity to Operating Conditions

Relative Oil Consumption Enables A Comparison Between Operating Conditions and Engines!

Summary of Findings

 Relative Oil Consumption is a Good Data Analyzing Tool for Comparing Engine Conditions and Engine Makes
Gasoline Engines With Less Than 0.2% Relative Oil Condition Is Considered Good (1998)
Diesel Engines With Less Than 0.1% Relative Oil Consumption is Considered Good (1998)

Summary of Findings (Cont'd)

Every Engine is Exhibiting its Own Oil Consumption Characteristics - It Leaves a "Fingerprint"

Viscosity

Decreasing Viscosity Increases Oil Consumption!

Ref.: Furuhama et al., Lub. Eng. 1977 Ref.: Froelund et al., SAE Paper 971699

Volatility

Increasing Volatility Increases Oil Consumption! Ref.: Hanada et al., Nissan Motors, JSAE Review 1990

Coupling Viscosity and Volatility

Evaporation Versus Base Oil Viscosity

Desirable Oil: Lowest Volatility at Any Given Viscosity! Ref.: Kiovsky et al., BP Oil Company, Lub. Eng. 1993

TOC Constant in TimeIOC Constant Among Cylinders

6000 rpm Under 100% Load (Rated Power)

TOC Constant in TimeIOC Constant Among Cylinders

4000 rpm Under 25% Load 1'st Run

TOC Fluctuates in TimeIOC Varies Among Cylinders

4000 rpm Under 25% Load 1'st Run

TOC Fluctuates in TimeIOC Varies Among Cylinders

and a constant of the second second