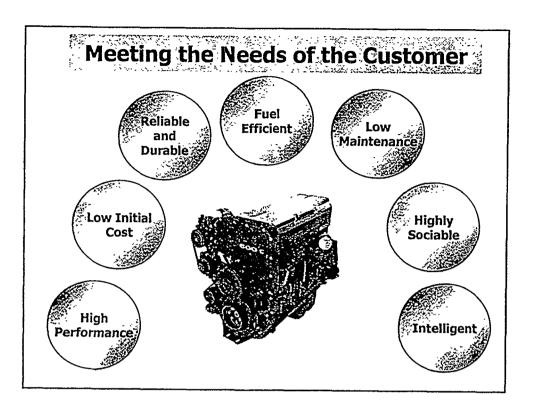
Catalyst Compatible" Diesel Engine Oils

DECSE Phase II

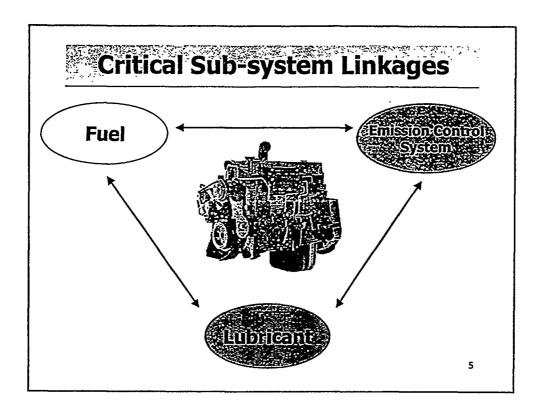
Shawn D. Whitacre

"Exploring Low Emission Diesel Engine Oils"
Scottsdale, AZ
Cummins Engine Company
January 31, 2000

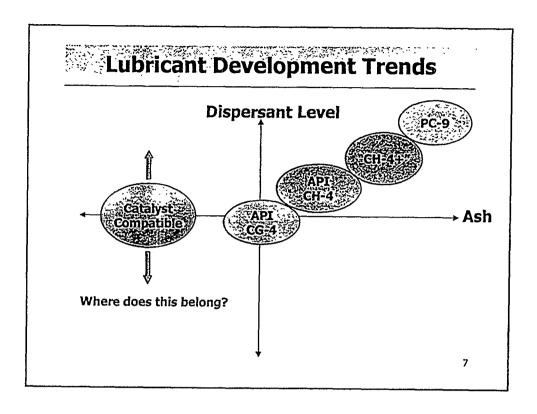


1

Outline


- Background
- Recent trends in engines and oils

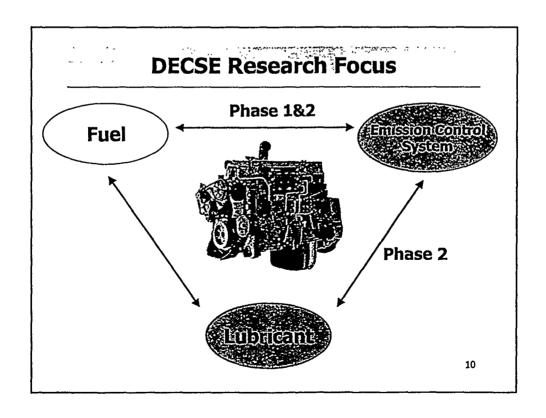
- DECSE program
- Technical hurdles


Background

- Final rule on Tier II
 - potential for diesel engine penetration
- EPA presently considering:
 - Future HD emissions standards for NOx, PM
 - Aftertreatment forcing
 - Diesel fuel sulfur reductions
 - Aftertreatment enabling

Trends Influencing Oil Formulation

- Demands for longer maintenance intervals
- Retarded injection timing
 - Need improved soot handling
- Exhaust Gas Recirculation (EGR)
 - Corrosion protection
 - Oxidation resistance at elevated temperatures
- Closed Crankcase Ventilation (CCV)
 - More oil in exhaust
 - Maintain turbocharger efficiency

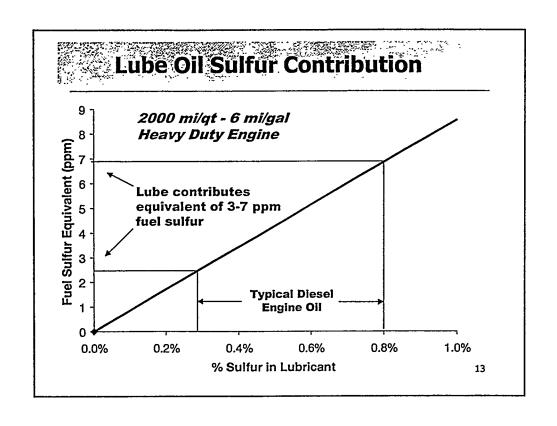


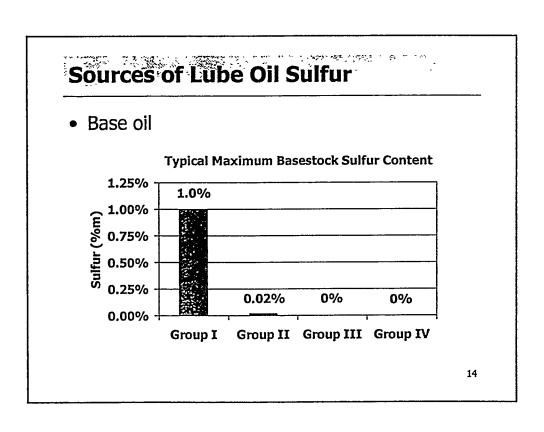
DECSE Program

- Diesel Emission Control Sulfur Effects
 - Phase 1 investigated **fuel sulfur** effects on:
 - NOx adsorber catalysts
 - Diesel oxidation catalysts
 - Lean NOx catalysts
 - PM filters/traps
 - Lubricant used in testing contained 0.35% S
 - Summary: http://www.ott.doe.gov/decse/
- > Phase 2 research to focus on lubricant effects

DECSE Phase 2 Research

- Government/industry participation:
 - DOE and National labs
 - EMA
 - API/NPRA
 - CMA
 - MECA
- Program initiation: January 2000
- Planned duration: 3 years


Study Questions


- What are the effects of lubricant properties and composition on engine-out/catalyst-in emissions?
- How do these effects influence the performance and durability of diesel engine emission control systems (ECS)?
- What is the impact of oil age?

11

What Is Known...

- Emission control systems vary in sulfur sensitivity, but in general "the lower, the better"
- Lubricant contributes small, but potentially significant level of sulfur
- Automotive three-way catalysts have known incompatibilities

Sources of Lube Oil Sulfur

- Sulfur containing additives
 - Anti-wear agents (ZDDP, others)
 - Detergents (sulfonates, phenates)
 - Corrosion inhibitors
 - Friction modifiers
 - Anti-oxidants

Sulfur Coupled Phenate

Sulfonate

15

Other Characteristics of Interest....

- Sulfated ash
 - May plug PM traps
- Zinc and phosphorous
 - Known incompatibility with automotive three-way catalyst
- Volatility/distillation characteristics
- Aromatic level and type
- Viscosity
- Nitrogen
- Olefins

Approach

- Task 1
 - Multi-cylinder engine tests to determine lubricant effects on engine-out emissions
 - Medium displacement engine equipped with EGR and CCV
- Task 2
 - Bench-scale analysis to determine if lube derived emissions impact performance of ECS
- Task 3
 - Confirm task 2 results on catalyst equipped engine
 - ECS durability

17


Desired Outcome

- To determine which (if any) lube derived emission components are detrimental to ECS performance/durability
- Guidelines for lubricant formulation:
 - Basestock
 - Additive
- Design guidelines:
 - Engine manufacturers

- ECS suppliers

Technical Hurdles

- Maintaining backward compatibility
 - Older engines still on the road
 - Implications of misapplication
- Conflicting demands
 - Compliance may necessitate EGR + aftertreatment which differ in appetite

19

Outlook....

- As we strive to produce high performance, low emissions products we must...
 - First establish an understanding of fundamentals
 - Be creative in development
 - Form partnerships in anticipation of challenges

