OAK RIDGE NATIONAL LABORATORY

OPERATED BY UNION CARBIDE CORPORATION

NUCLEAR DIVISION

POST OFFICE BOX X OAK RIDGE, TENNESSEE 37830

ORNL/MIT-250

DATE:

March 22, 1977

COPY NO.

SUBJECT:

Dispersion in a Three-Phase Fluidized Bed

Authors:

D.R. Christman, S.C. Loftus, and M.P. Rill

Consultants: J.M. Begovich and J.S. Watson

ABSTRACT

The effects of liquid and gas superficial velocity and solids loading on axial dispersion in a three-phase fluidized bed were investigated. Gas velocities of 1.4 to 9.3 cm/sec and liquid velocities of 4.4 to 13.2 cm/sec were employed with 2 and 3 kg of 0.46-cm-diam, 2.24 $\rm gm/cm^3$ glass beads. Dispersion coefficients were calculated by analysis of moments and a transfer function method. There was substantial disagreement between the two methods. Dispersion coefficients calculated by the analysis of moments were most dependent on the liquid velocity and ranged from negative values to 200 cm²/sec.

NOTICE

Notice

This report was prepared as account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Oak Ridge Station School of Chemical Engineering Practice Massachusetts Institute of Technology W.M. Ayers, Director

WASTER

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy \$4.00; Microfiche \$3.00

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration/United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contents

			Page
1.	Sumn	mary	4
2.	Intr	oduction	4
	2.1	Background	4
	2.2	Objectives and Method of Attack	5
	2.3	Theory	5
3.	Appa	ratus and Procedure	7
	3.1	Apparatus	7
	3.2	Procedure	7
4.	Resu	Ilts and Discussion	10
	4.1	Liquid Volume Fraction	10
	4.2	Dispersion Coefficients	15
5.	Conc	lusions	15
6.	Reco	mmendations	19
7.	Ackn	owledgments	19
8.	Appe	ndix	20
	8.1	Derivation of Transfer Function	20
	8.2	Calculation of Holdups	22
	8.3	Description of Computer Program	23
	8.4	Tabulation of Operating Conditions, Holdups and Dispersion Coefficients	36
	8.5	Error Analysis	42
	8.6	Nomenclature	43
	8.7	Literature References	45

SUMMARY

The effect of superficial gas and liquid velocities on solid, liquid, and gas volume fractions and the degree of axial mixing in a three-phase fluidized bed were investigated. Axial mixing was characterized with an axial dispersion coefficient. Air and water were introduced into a plexiglas column, 7.62-cm-ID and 152-cm high, to a bed of 0.46-cm-diam glass beads. Bed bead loadings of 2 and 3 kg, superficial air velocities varying from 1.4 to 9.3 cm/sec, and water velocities of 4.4, 6.5, 9.1, and 13.2 cm/sec were utilized in the investigation.

At constant gas superficial velocity, the liquid holdup increased and gas holdup remained approximately constant with increasing liquid velocity. At constant liquid superficial velocity, both the liquid and solids holdup decreased with increasing gas velocity.

Dispersion was measured by injecting a potassium chloride tracer at the base of the column and analyzing concentration response curves from conductivity probes installed at two positions along the column. Peclet numbers were calculated from these data by an analysis of moments and by a transfer function technique. Dispersion coefficients increased from negative values to 200 cm²/sec with increasing liquid and gas superficial velocity, but were too irregular to be correlated with the superficial velocities or the mass of beads in the bed. Dispersion coefficients calculated with the transfer function did not agree with those calculated by the moments method and were dependent on the magnitude and number of transform variables utilized in evaluating the function.

2. INTRODUCTION

2.1 Background

A three-phase fluidized bed consists of solid particles suspended by a cocurrent flow of gas and liquid. Fluidization occurs when the drag force exerted by the fluids on the particles equals or exceeds the buoyant weight of the solids. Three-phase fluidized beds are utilized in coal liquefaction processes and bioreactors.

Several MIT Practice School groups have studied various aspects of three-phase fluidized beds. Saad et al. $(\underline{14})$ derived plug flow, well-mixed, and dispersed flow models for determining the bed mass transfer coefficient and calculated mass transfer coefficients assuming the plug flow model. Burck et al. $(\underline{5})$ correlated solid holdup to minimum fluidization velocity and also calculated mass transfer coefficients by assuming a dispersion coefficient in a trial and error solution. Khosrowshahi et

 αl . (6) correlated the solid phase holdup with the Reynolds and Archimedes number and studied the hydrodynamic variables affecting minimum fluidization.

2.2 Objectives and Method of Attack

The objectives were to experimentally determine the dispersion coefficient for the column during three-phase operation as a function of liquid and gas flow rates and total mass of solids in the bed. The dispersion coefficients were calculated with two methods, the analysis of moments $(\underline{7})$ and a transfer function method by Ostergaard and Michelsen $(\underline{11})$. Data were obtained by injecting an electrolyte tracer at the bottom of the fluidized bed and measuring its concentration at two positions as it flowed up the column.

2.3 Theory

Plug flow dispersion models assume a fluid flow closely approximating plug flow but with some axial mixing caused by diffusion and velocity variations in the fluid. The combined effect of the two mixing activities is termed dispersion. Two techniques were employed to quantify the dispersion. The analysis of moments technique considers a portion of the fluidized bed located between two sets of tracer measuring probes. Since it is assumed that undisturbed flow occurs at the boundaries of the system, the system is termed an open vessel (7). For an open vessel, the variance of the tracer concentration versus time curve at the second measuring probe when a perfect tracer pulse is injected at the first probe position is related to the dispersion coefficient in the following manner:

$$\frac{L\sigma^2}{u} = 2(\frac{D}{uL}) + 8(\frac{D}{uL})^2 \tag{1}$$

where the mean residence time, \overline{t} (first moment), and variance, σ^2 (second moment), are given by

$$\overline{t} = \frac{\int_0^\infty t C(t) dt}{\int_0^\infty C(t) dt}$$
 (2)

$$\sigma^2 = \frac{\int_0^\infty (t - \bar{t})^2 C(t) dt}{\int_0^\infty C(t) dt}$$
(3)

Since it is impossible to inject a perfect pulse into a system, Aris $(\underline{1})$ corrected by Bischoff $(\underline{4})$ developed a relationship between the Peclet number and the difference between the tracer concentration history variance at the two measuring probes for an imperfect pulse injected upstream of the first measuring point. For this system, assuming no entrance or exit effects,

$$\Delta \sigma^2 = \frac{\sigma_2^2 - \sigma_1^2}{\sigma_2^2} = 2 \frac{D}{uL} \tag{4}$$

where:

$$\tau = \overline{t}_2 - \overline{t}_1$$

As the tracer passes the detector, the electrolyte concentration in the trailing end of the pulse approaches the detection apparatus sensitivity limit. Since the moments method integrates the tracer concentration history from zero to infinity, the uncertainty of the tracer concentration in the trailing end can introduce significant error into the calculation. This problem can be avoided if a decay function is included in the integration so that the trailing concentrations are forced to approach zero as the concentration detection limit is reached. Ostergaard and Michelsen have developed such a method for calculating the residence time and Peclet number (11). They introduce a transfer function defined as

$$F(s) = \frac{\int_{0}^{\infty} C_{z=1}(t)e^{-st}dt / \int_{0}^{\infty} C_{z=1}(t)dt}{\int_{0}^{\infty} C_{z=0}(t)e^{-st}dt / \int_{0}^{\infty} C_{z=0}(t)dt}$$
(6)

The mean residence time, τ ', and the Peclet number may be evaluated from:

$$[\ln \frac{1}{F(s)}]^{-1} = \tau' s [\ln \frac{1}{F(s)}]^{-2} - \frac{1}{N_{Pe}}$$
 (7)

by plotting $[\ln\frac{1}{F(s)}]^{-1}$ against $s[\ln\frac{1}{F(s)}]^{-2}$ for several values of s. The resulting line has a slope of τ' and intercept $-1/N_{pe}$. Details of the calculation are presented in Appendix 8.1

APPARATUS AND PROCEDURE

3.1 Apparatus

The three-phase fluidized bed consisted of a plexiglas column, 7.62-cm-ID and 152-cm high, loaded with glass beads fluidized with water and air (Fig. 1). The static bed was supported by the liquid and gas distributor, a plexiglas disc (Fig. 2). Air flowed through a gas rotameter through a surge tank and into the column through the liquid and gas distributor. The air and water flowed cocurrently upwards through the column. The water was recycled to the feed tank while the exit air was released to the atmosphere. Outlets to sixteen manometers were spaced 8-cm apart on the column.

Axial mixing was detected by injecting a tracer, potassium chloride, and measuring the conductivity between two electrodes. One pair of electrodes was located 7 cm above the tracer injection port and the second pair could be moved to any desired position in the bed. Potassium chloride was injected by using a process water line to carry the tracer into the column. A timer was used to activate a solenoid which opened the tracer injection port. Normal injection time was about 1/6 sec. During the course of the experimentation, the injection port was modified. A 1/8-in. tube placed into the injection port was drilled with six 1-mm holes to distribute the potassium chloride radially through the column. The two pairs of electrodes were connected to two conductivity meters which inputted a voltage to the chart recorder. The two readings were recorded simultaneously on the chart recorder.

3.2 Procedure

The column was loaded with a known weight of solid particles and then fluidized with air and water. Pressure was measured at each tap location along the column for each particle loading and gas and liquid flow rates once the fluidized bed height had stabilized. The temperature of the water, atmospheric pressure, and the pressure drop between the gas inlet

and the atmosphere were also recorded. The tracer was then injected and conductivity versus time plots were obtained for each run.

Glass beads, 0.46-cm-diam, with a density of 2.24 gm/cm³, were loaded into the bed at either 2 or 3 kg. Superficial gas velocities ranged from 1.4 to 9.3 cm/sec with four intermediate values. Superficial liquid velocities ranged from 4.4 to 13.2 cm/sec with two intermediate values. Operating conditions for each run are tabulated in Appendix 8.4.

After the concentration versus time curve at each electrode was obtained, time and conductivity values from the curves were punched onto paper tape with an Elographics Digitizer.

4. RESULTS AND DISCUSSION

4.1 Liquid Volume Fraction

The liquid volume fraction (holdup) in the column was studied as a function of liquid and gas velocity and the type of tracer injection system. These studies were executed with no solids or gas, with solids but no gas, and with both solids and gas. The results are shown respectively in Figs. 3 through 6. Although these data do scatter, it is apparent that the liquid holdups from the tube injection yielded the best agreement to those holdups which were calculated from the pressure drop across the expanded bed. Thus, it would be advisable to utilize the liquid injection system which employs the tubular distributor in further studies. However, the fact that this tube extends across the bed itself is of some concern. Further studies should be executed to determine the extent to which the tubular injector affects the hydrodynamics of the bed. The tubular injection system is thought to enhance the liquid holdup agreement within the fluidized bed because of the manner and position in which the tracer enters the column. Because it enters the column at equal intervals across the column diameter, and because it is propelled outward toward the walls, the tracer is radially distributed more quickly across the column as compared to the other methods of injection. An alternative solution would be to detach the bottom set of electrodes such that it could be elevated within the bed to allow the tracer more time to become radially distributed before reaching the first measuring point.

There is a slight increase in liquid holdup with liquid superficial velocity. Inspection of the solid and gas holdups (Appendix 8.4) indicates that the gas holdup is approximately constant and that the solids holdup decreases with increasing liquid velocity. Wen and Yu have shown that the drag force on fluidized particles decreases with increasing liquid holdup ($\underline{16}$). If it is assumed that this is also true for liquid-gas fluidization, the observed increase in the liquid holdup with superficial velocity would require that the interstitial velocity increase to keep the particles fluidized. Contrary to Ostergaard and Theisen's observation ($\underline{13}$), the solids

holdup did not increase with the introduction of gas into the bed. Thus, if a uniform distribution of solids is assumed, the distance between spheres increased with the gas and liquid superficial velocity.

4.2 Dispersion Coefficients

Dispersion coefficients, calculated by the method of moments, are presented in Figs. 7 and 8 for two and three kilogram loadings respectively. The tracer was injected by water from the tube for Fig. 7 data and from the wall port for the Fig. 8 data. An estimate of the uncertainty associated with the dispersion coefficients is presented in Appendix 8.5. In general, the dispersion increases with liquid superficial velocity at low gas velocities. The decrease in dispersion at high liquid velocities (e.g., U_L of 9.1 for U_G of 2.1, Fig. 7) is interesting since it might represent a transition in fluid flow through the bed. However, the data at this time are too inconsistent to substantiate such an interpretation. For example, with no particles in the bed and no gas flow rate, the dispersion coefficient drops from 45 to -12.4 between a liquid velocity of 4.4 and 6.5 cm/sec (Appendix 8.4, tube-liquid injection mode). However, the laminar to turbulent flow transition in this column would occur at 2.6 cm/sec if entrance effects are neglected (3).

Dispersion coefficients calculated with the transform method are presented along with those calculated by the moments method in Table 1. There is vast disagreement between dispersion coefficients calculated by the two methods. The source of disagreement between the two methods was not resolved. However, it was observed that the dispersion coefficient is strongly dependent on the "s" values utilized in evaluation of Eq. (6). All transform method dispersion coefficients in Table 1 were calculated with ten "s" values ranging from 0.01 to 5.12, each a factor of two greater than the previous value. Changing the "s" values for the same tracer concentration data alters the slope and intercept of the least squares line calculated to evaluate the residence time and Peclet number from Eq. (7).

CONCLUSIONS

- 1. Of the three tracer injection methods, liquid injection through the perforated tube provides holdup values closest to those calculated from the pressure drop across the bed.
- 2. For a constant gas superficial velocity, the liquid holdup increases and the gas holdup remains approximately constant with increasing liquid superficial velocity.

Table 1. Comparison of Dispersion Coefficient Calculation Methods $M_S \ = \ 2 \ kg$ $Tube-Liquid \ Injection$

Superficial U _L	Velocities	(cm/sec)	Dispersion Coet Moments Method	fficient (cm ² /sec) Transform Method
4.4		0	1.4	10.9
		2.1	9.1	114.6
		4.4	29.2	243.8
		9.3	34.2	156.3
6.5		0	-0.7	18.4
		2.1	51.2	86.9
		4.4	103. 0	247.9
		9.3	77.9	126.7
9.1		0	20.6	220.1
		2.1	37.6	46.4
		4.4	2497.1	-543.9
		9.3	117.0	184.0
13.2		0	48.9	509,604.1
		2.1	59.3	139.7
		4.4	157.6	561.9
		9.3	-45.8	-47.6

- 3. For a constant liquid superficial velocity, the liquid and solid holdups decrease with increasing gas superficial velocity.
- 4. Dispersion coefficients calculated by the method of moments are less erratic than those calculated by the transform method and increase with increasing liquid superficial velocity.
- 5. Dispersion coefficients calculated by the transform method depend on the choice of the Laplace transform variable.

6. RECOMMENDATIONS

- 1. Install a water regulator on the tracer injection line to provide a consistent injection pressure.
- 2. Install vertically adjustable electrodes at the bottom of the column.
- 3. Resolve the dependence of the transform method on the choice of the transform value by evaluating known distribution functions rather than experimental concentration data.

7. ACKNOWLEDGMENTS

We would like to thank J.S. Watson for his helpful suggestions, J.M. Begovich for his continuing guidance, and S.D. Clinton for his assistance with the computer. We are also grateful to the Metals and Ceramics Division for the use of their Digitizer.

8. APPENDIX

8.1 Derivation of Transfer Function (11)

The transfer function is derived from the mass balance for differential volume. Component i enters a differential volume by convection and diffusion and leaves by the same mechanisms. If a constant axial dispersion coefficient, D, and a constant absolute linear flow velocity, u, are assumed, the general mass balance is:

$$\frac{\partial C_{i}}{\partial t} = D \frac{\partial^{2} C_{i}}{\partial x^{2}} - u \frac{\partial C_{i}}{\partial x}$$
 (8)

Letting z = x/L where L is the distance between the measuring points or detection electrodes and rearranging gives

$$\frac{L}{u} \frac{\partial C_{\mathbf{i}}}{\partial t} - \frac{D}{uL} \frac{\partial^2 C_{\mathbf{i}}}{\partial z^2} + \frac{\partial C_{\mathbf{i}}}{\partial z} = 0$$
 (9)

Letting

$$\tau' = \frac{L}{u}$$
 and $N_{Pe} = \frac{uL}{D}$

then,

$$\tau' \frac{\partial C_{i}}{\partial t} - \frac{1}{N_{Pe}} \frac{\partial^{2} C_{i}}{\partial z^{2}} + \frac{\partial C_{i}}{\partial z} = 0$$
 (10)

Taking the Laplace transform of Eq. (10) with respect to the time variable, noting the initial condition that C = 0 at t = 0 yields

$$\tau' s \overline{C} - \frac{1}{N_{Pe}} \frac{d^2 \overline{C}}{dz^2} + \frac{d\overline{C}}{dz} = 0$$
 (11)

The solution to this second order differential equation is

$$\overline{C} = A \exp \left[\frac{N_{Pe} + \sqrt{N_{Pe}^2 + 4N_{Pe}\tau^*s}}{2} z \right] + Bexp \left[\frac{N_{Pe} - \sqrt{N_{Pe}^2 + 4N_{Pe}\tau^*s}}{2} z \right]$$
(12)

By inspection (assuming z and s positive) the exponent in the first term is always positive while that in the second is always negative. Therefore to satisfy the boundary condition that $c \to 0$ as $z \to \infty$, the constant A must be zero. Hence,

$$\overline{C} = B \exp \left[\frac{N_{Pe} - \sqrt{N_{Pe}^2 + 4N_{Pe}\tau's}}{2} z \right]$$
 (13)

The second boundary condition is much harder to formulate and is not clear. Therefore, to alleviate this problem, a ratio of \overline{C} at two different values of z is employed. Taking the ratio of \overline{C} at the second electrode (z = 1) to \overline{C} at the first electrode (z = 0) yields

$$F(s) = \frac{\overline{C}_{z=1}}{\overline{C}_{z=0}} = \exp\left[\frac{N_{Pe} - \sqrt{N_{Pe}^2 + 4N_{Pe}\tau's}}{2}\right]$$
(14)

Rearranging Eq. (14) gives

$$N_{Pe} - 2 \ln F(s) = (N_{Pe}^2 + 4 N_{Pe} \tau' s)^{1/2}$$
 (15)

Squaring both sides and dividing through by $N_{Pe}[\ln \frac{1}{F(s)}]^2$ gives

$$[\ln \frac{1}{F(s)}]^{-1} = \tau' s [\ln \frac{1}{F(s)}]^{-2} - \frac{1}{N_{pe}}$$
 (7)

The transfer function, F(s), can be evaluated from the definition of a Laplace transformation, i.e.,

$$\overline{C}_{i}(s) = \int_{0}^{\infty} C_{i}(t) e^{-st} dt$$
 (16)

Substitution of Eq. (16) into the definition of the transfer function in Eq. (14) yields

$$F(s) = \frac{\overline{C}_{z=1}}{\overline{C}_{z=0}} = \frac{\int_{0}^{\infty} C_{z=1}(t)e^{-st}dt}{\int_{0}^{\infty} C_{z=0}(t) e^{-st}dt}$$
(17)

Normalizing both the numerator and the denominator results in a form in which F(s) can be calculated from experimental data:

$$F(s) = \frac{\int_{0}^{\infty} C_{z=1}(t)e^{-st}dt / \int_{0}^{\infty} C_{z=1}(t)dt}{\int_{0}^{\infty} C_{z=0}(t)e^{-st}dt / \int_{0}^{\infty} C_{z=0}(t)dt}$$
(6)

From Eq. (7) it can be seen that plotting $[\ln \frac{1}{F(s)}]^{-1}$ vs $s[\ln \frac{1}{F(s)}]^{-2}$ for F(s) evaluated with several values of arbitrary s results in a straight line with slope τ' and intercept $-1/N_{pe}$.

The degree to which the points of the above plot adhere to a straight line is an indication of the degree to which the model describes the physical system.

8.2 Calculation of Holdups

Holdups are volume fractions and must sum to one:

$$\varepsilon_{G} + \varepsilon_{1} + \varepsilon_{S} = 1 \tag{18}$$

The difference in pressure between the top and bottom of the bed is

$$\Delta P = (\varepsilon_{G} \rho_{G} + \varepsilon_{L} \rho_{L} + \varepsilon_{S} \rho_{S}) gH$$
 (19)

The pressure drop through the bed was obtained with water manometer readings between the top and bottom of the bed:

$$\Delta P = \rho_L g(H + \Delta H) \tag{20}$$

where ΔH is the difference in manometer readings and H is the bed height. Combination of Eqs. (19) and (20) gives

$$\rho_{L}(H + \Delta H) = H(\epsilon_{G}\rho_{G} + \epsilon_{L}\rho_{L} + \epsilon_{S}\rho_{S})$$
 (21)

The solids holdup is the ratio of mass of solids actually present to the mass of solids necessary to occupy the entire volume of the bed.

$$\varepsilon_{S} = \frac{M_{S}}{AH\rho_{S}} \tag{22}$$

The liquid holdup is the ratio of the superficial to interstitial liquid velocities:

$$\varepsilon_{\underline{L}} = \frac{U_{\underline{L}}\tau}{L} \tag{23}$$

Holdups are calculated by the computer program both by combining Eqs. (18), (21), and (22) and Eqs. (18), (21), and (23).

8.3 Description of Computer Program

A computer program was prepared for the PDP-10 (TRACER-F4) and PDP-11 (TRACER-FTN) to calculate dispersion coefficients from conductivity data.

8.3.1 Input Parameters

A disc file contains a list of runs to be analyzed. A run number is read from the list and used to compose a data file name from which information pertinent to the run is read. The data contained in the composed file are listed in Table 2.

Table 2. Data File Entries

Run number

Liquid and gas rotameters used

Readings on rotameters

Liquid temperature

Fluidized bed height

Pressure drop through the column

Barometer reading

Difference in water manometer readings through the bed for each pair of conductivity curves

Conductivity data:

Number of points

Baseline (conductivity with no tracer)

Time at each point

Conductivity value at each point

Mass of solids

Particle size and density

8.3.2 Calculation of Flow Rates, Viscosities, and Densities

Rotameter scale readings are converted to volumetric flow rates according to the calibrations appropriate to the rotameters used. If a rotameter number is indicated for which there is no calibration, an error message is printed and execution proceeds to the next run. The message indicates the run number so that the error can be corrected for rerun.

Water viscosity and density and air viscosity are determined as functions of temperature by

$$\mu_{I} = 0.013508 - 0.00017445 T$$

(24)

$$\rho_1 = 1.00401 - 0.00028 T$$
 (25)

$$\mu_{G} = 0.0001718 + 0.000000475 T$$
 (26)

The pressure drop through the bed is calculated using manometer readings and is used to determine the pressure at the middle of the bed height for calculation of the gas density.

8.3.3 Statistical Evaluation for the Peclet Number

The method of least squares is used to determine the best straight line for evaluation of the transfer function from the plot of

$$[\ln \frac{1}{F(s)}]^{-1} = \tau' s [\ln \frac{1}{F(s)}]^{-2} - \frac{1}{N_{Pe}}$$
 (7)

for several values of s.

A 95% confidence interval about the y intercept, - $\frac{1}{N_{Pe}}$, is calculated by

$$\left[\frac{\frac{1}{n} \Sigma x^{2}}{\Sigma x^{2} - \frac{1}{n}(\Sigma x)^{2}}\right]^{1/2} \left[\frac{\Sigma (y - \hat{y})^{2}}{n - 2}\right]^{1/2} t$$
(27)

where \hat{y} is the y value predicted by the least squares line. For n data points there are n-2 degrees of freedom since the least square line fixes two points. For a two-sided 95% confidence interval with eight degrees of freedom (ten points), the value of t, from Student's distribution, is 2.306.

8.3.4 Program Flow Chart

The program flow chart is shown in Fig. 9.

8.3.5 Program Listing

```
C
       TRACER.FTN
C
             FLUIDIZED BED VERSION FOR TRACER EXPERIMENT
С
C
       CALCULATIONS OF THE VESSEL DISPERSION NUMBER, VDN(D/UL)
       AND THE LIQUID PHASE AXIAL DISPERSION COEFFICIENT (D)
C
C
       CALCULATIONS ARE MADE BOTH BY ANALYSIS OF MOMENTS AND
C
       BY A TRANSFER FUNCTION.
C
       REFERENCES: O.LEVENSPIEL, CHEMICAL REACTION ENGINEERING,
       SECOND ED., CHAPTER 9., K. OSTERGAARD AND M.L. MICHELSON,
С
C
       ON THE USE OF THE IMPERFECT TRACER PULSE METHOD FOR
       "DETERMINATION OF HOLD-UP AND AXIAL MIXING," THE CANADIAN
C
C
       JOURNAL OF CHEMICAL ENGINEERING, VOL 47, APRIL 1969.
       ALL UNITS ARE IN CGS SYSTEM.
C
   TABLE OF SYMBOLS (ALPHABETICAL)
C
C
   B1
             BASELINE ORDINATE OF FIRST PEAK
С
   R2
             BASELINE ORDINATE OF SECOND PEAK
С
   C
             AVERAGE CONCENTRATION READING FOR THE TIME INTERVAL
   CDELT
C
             CONCENTRATION TIMES TIME INTERVAL
С
   CHS
             CHART SPEED (IN/MIN)
            95% CONFIDENCE INTERVAL FOR Y INTERCEPT CONCENTRATION PLUS BASELINE (ABSOLUTE READING)
C
   CONINT
C
   CFB
             CONCENTRATION TIMES ARBITRARY S
C
   CS
C
   CSA
             CROSS SECTIONAL AREA OF COLUMN (SQ CM)
C
   C15
             CS FOR THE FIRST PEAK
C
   TI
             REAL LIQUID PHASE AXIAL DISPERSION COEFFICIENT (CM SQ/SEC)
             DIFFERENCE OF MANOMETER READINGS THROUGH BED (CM H20)
   DELH
C
   DELP
             PRESSURE DROP THROUGH BED (MM HG)
            PRESSURE DROP THROUGH ENTIRE COLUMN, READ FROM HG MANOMETER (MM HG) SIGSQ2 - SIGSQ1
   DELPHG
C
   DELSIG
            TIME INTERVAL
   DELTAT
C
             (MEAN RESIDENCE TIME)2 - (MEAN RESIDENCE TIME)1
   DELTBR
C
   DENOM
             DENOMINATOR FOR THE LEAST SQUARES SLOPE
             COLUMN DIAMETER (CM)
C
   DIA
С
   DIMSIG
             DIMENSIONLESS VARIANCE
C
   DP
             PARTICLE DIAMETER (CM)
   DETE
C
             TRANSFER FUNCTION DISPERSION COEFFICIENT
            GAS VOLUME FRACTION WITH RESPECT TO TOTAL VOLUME GAS VOLUME FRACTION - TRANSFER FUNCTION, TOTAL VOLUME
C
   EG
C
   EGPTF
            LIQUID VOLUME FRACTION WITH RESPECT TO TOTAL VOLUME LIQUID VOLUME FRACTION - TRANSFER FUNCTION, TOTAL VOLUME
   EL
   ELPTF
С
C
   E1G
             GAS VOLUME FRACTION NOT USING MEAN RESIDENCE TIME
            LIQUID VOLUME FRACTION NOT USING MEAN RESIDENCE TIME SOLIDS VOLUME FRACTION NOT USING MEAN RESIDENCE TIME
C
   E1L
C
   E1S
C
            TRANSFER FUNCTION F(S)
   GASPER GAS FLOW RATE (ROTAMETER SCALE READING)
```

```
BED HEIGHT (CM)
   Н
            DO LOOP COUNTER
            I READ GAS RATE - GAS ROTAMETER NUMBER
   IRDGRT
            I READ LIQUID RATE - LIQUID ROTAMETER NUMBER
   IRDLRT
            PEAK COUNTER (WORKING ON FIRST OR SECOND PEAK)
   TTT
            DISTANCE BETWEEN ELECTRODES (CM)
            CHARACTERS FOR NAMING OF DATA INPUT FILE
CHARACTERS OF INPUT FILE NUMBER
С
   L1
   L2
            TOTAL NUMBER OF CHARACTERS FOR DATA FILE NAME
С
            GAS VISCOSITY (POISE)
   MUG
C
C
   MUL
            LIQUID VISCOSITY (POISE)
            RESPONSE FOR DESIRE WHETHER TO CONTINUE
   NCONT
   NO1
            NUMBER OF POINTS IN FIRST FEAK
            NUMBER OF POINTS IN SECOND PEAK
C
   NO2
   NRUN
            RUN NUMBER
            NUMBER OF DIGITS IN NUMBER OF INPUT DATA FILE
C
   NH
            NUMERATOR FOR LEAST SQUARES SLOPE
C
   MUM
            ATMOSPHERIC PRESSURE AT THE TIME OF THE RUN (MM HG)
C
   PAIM
   PΕ
            PECLET NUMBER (VL*L/D)
\Gamma
   PEDP
            PECLET NUMBER BASED ON PARTICLE DIAMETER
            PECLET NUMBER FROM TRANSFER FUNCTION
C
   PEPTE
            TRANSFER FUNCTION PECLET NUMBER BASED ON PARTICLE DIAMETER
   PEPTED
            HIGH VALUE OF 95% CONFIDENCE INTERVAL
   PERTEN
            LOW VALUE OF 95% CONFIDENCE INTERVAL
   PEFTFL
С
   Ŕ
            CORRELATION COEFFICIENT (LEAST SQUARES FIT)
            GAS REYNOLDS NUMBER BASED ON FARTICLE DIAMETER
C
   REG
            GAS REYNOLDS NUMBER BASED ON PARTICLE DIAMETER (TRANSFER FUNCTION)
   REGPTF
С
            GAS REYNOLDS NUMBER USING SUPERFICIAL VELOCITY
   REGS
           LIQUID REYNOLDS NUMBER BASED ON FARTICLE DIAMETER LIQUID REYNOLDS NUMBER BASED ON PARTICLE DIAMETER (TRANSFER FUNCTION)
C
   REL
   RELPTF
            LIQUID REYNOLDS NUMBER USING SUPERFICIAL VELOCITY
   RELS
            GAS DENSITY (GM/CC)
С
   RHOG
            LIQUID DENSITY (GM/CC)
C
   RHOL
            SOLID DENSITY (GM/CC)
Γ.
   RHOS
            CORRELATION NUMBER IN LEAST SQUARES FIT (SQUARE OF R)
C
   RSQ
            ARBITRARY NUMBERS FOR TRANSFER FUNCTION
С
   S
            ACCUMULATOR FOR INTEGRATING LAPLACE TRANSFORM OF CONCENTRATION
   SCES#1
            STANDARD DEVIATION (ACTUAL AND PREDICTED VALUES ON
E
   SD
              TRANSFER FUNCTION PLOT
            SIGMA SQUARED, VARIANCE
   STOSO
   SIGSQ1
            VARIANCE OF FIRST PEAK
C
   SMASS
           SOLIDS LOADING (GRAMS)
            INTEGRAL OF CONCENTRATION
C
   SUMC
            SUM OF SQUARED DIFFERENCES FOR SD
   SUMDIF
                                          (FIRST MOMENT)
            INTEGRAL OF C*TIME
   SUMTO
            INTEGRAL OF C*TIME SQUARED (SECOND MOMENT)
   SUMTTO
            SUM OF X TO FIND XMEAN IN LEAST SQUARES FIT
   SUMX
            SUM OF X SQUARED TO FIND VARIANCE OF X
C
   SUMXX
            SUM OF X*Y FOR COVARIANCE
   SUMXY
            SUM OF Y TO FIND YMEAN
C
   SHMY
            SUM OF Y SQUARED TO FIND VARIANCE OF Y
С
   SUMYY
            ABSCISSA OF PEAK IN CHART SQUARES (10 SQUARES/IN)
   Т
```

```
SLOPE OF TRANSFER FUNCTION PLOT, MEAN RESIDENCE TIME
          TAU
                  MIDPOINT OF TIME INTERVAL
      С
          TAUG
                   MEAN RESIDENCE TIME, SECOND PEAK
      C
          TBAR
                   FIRST PEAK
          TBAR1
      C
                  LIQUID TEMPERATURE (DEG C)
          TEMP
                  AVERAGE TIME IN CHART SQUARES
      \Gamma
          TM
                  AVERAGE TIME IN SECONDS
      C
          TMEAN
      C
                  LIQUID FLOW RATE (ROTAMETER SCALE READING)
                  LIQUID PHASE AXIAL DISPERSION NUMBER
          VIN
      C
                  DISPERSION NUMBER FROM TRANSFER FUNCTION
      C
          VDNPTF
                   REAL GAS VELOCITY (CM/SEC)
      C
          VG
                   GAS INTERSTITIAL VELOCITY BASED ON TRANSFER FUNCTION CALCULATION (CM/SEC)
      C
          VGPTF
                   SUPERFICIAL GAS VELOCITY (CM/SEC)
          VGSUP
      C
                  SUPERFICIAL GAS FLOW RATE (CC/SEC)
      C
          VGSUPV
                   REAL LIQUID VELOCITY (CM/SEC)
      C
          UI
      С
          VLSUP
                   SUPERFICIAL LIQUID VELOCITY (CM/SEC)
                  SUPERFICIAL LIQUID FLOW RATE (CC/SEC)
LIQUID INTERSTITIAL VELOCITY BASED ON TRANSFER FUNCTION CALCULATION (CM/SEC)
      C
          VLSUPV
      C
          VLPTF
      C
          X
                   ABSCISSA OF TRANSFER FUNCTION POINTS
      C
                   ORDINATE OF TRANSFER FUNCTION POINTS
                   Y INTERCEPT OF TRANSFER FUNCTION PLOT
      C
          YINT
                  HIGH VALUE OF 95% CONFIDENCE INTERVAL
      C
          YINTH
      С
                   LOW VALUE OF 95% CONFIDENCE INTERVAL
          YINTL
      C
          YPRED
                   VALUE PREDICTED FOR Y BY LEAST SQUARES SLOPE AND INTERCEPT
0001
             DIMENSION T(75), CFB(75), S(10), CS(10), C1S(10), F(10),
                 X(10),Y(10),CDELT(75),TAVG(75)
0002
             LOGICAL*1 L1(8), L2(3), L3(6)
0003
             EQUIVALENCE (L2(1),L1(6))
0004
             REAL L, MUG, MUL, NUM
0005
             DATA DIA/7.62/,L3/'D','0',',','F','T','N'/,L1/'D',
                 'A','T','A',',','O','O','O',
                 5/0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28,2.56,5.12/
      C
0006
             CSA=DIA*DIA*.785398
0007
             M = 6
0008
             CALL ASSIGN (2,L3,M)
0009
             CALL FDBSET (2, 'OLD')
0010
             ITT=1
       10
      C
      C
         ASK FOR RUN NUMBER. USE THIS TO MAKE A DATAFILE NAME FROM
      C
         WHICH TO READ DATA.
0011
             READ (2,95,END=99) NU, L2
0012
             M=5+NU
             CALL ASSIGN(1,L1,M)
0013
0014
             CALL FDBSET(1,'OLD')
      C
         READ PARAMETER VALUES FOR RUN.
```

```
READ(1,30)NRUN,NO1,NO2,B1,B2,V,GASPER,DELPHG,PATM,CHS
0015
            READ (1,31) DP, RHOS, TEMP, L, H, BELH, SMASS
0016
            READ (1,32) IRDGRT, IRDLRT
0017
        FIND THE GAS FLOW RATE FOR THE ROTAMETER USED.
      C
            GO TO (11,12,11,11,11,13,11), IRDGRT
0018
            TYPE 14, IRDGRT
0019
            CALL CLOSE(1)
0020
            GO TO 99
0021
            VGSUPV = GASPER*0.53333*SQRT(749.8/(PATM+DELPHG))
0022
       12
            GO TO 16
0023
            VGSUPV = GASPER*8.5526*SQRT(749.8/(PATM+DELPHG))
0024
       13
            VGSUP = VGSUPV/CSA
0025
       16
        FIND THE LIQUID FLOW RATE FOR THE ROTAMETER USED.
      С
            GO TO (18,19,20,17,21,17), IRDLRT
0026
            TYPE 22, IRDLRT
0027
       17
0028
            CALL CLOSE(1)
            GO TO 99
0029
            VLSUPV = V*5.44
0030
       18
            GO TO 23
0031
            VLSUPV = V*0.383
       19
0032
            GO TO 23
0033
0034
       20
            VLSUPV = V*13.383
            GO TO 23
0035
            VLSUPV = V*2.79
0036
       21
            VLSUF = VLSUFV/CSA
0037
       23
      C
         CALCULATE VISCOSITIES AND DENSITIES.
      C
      C
            MUL = (1.3508 - 0.017445*TEMF)*0.01
0038
            MUG = (0.01718 + 0.0000475*TEMP)*0.01
0039
            RHOL = 1.00401 - 0.00028*TEMP
0040
             DELP = (DELH+H)*RHOL/1.356
0041
             RHOG = 0.000463 *(PATM+DELPHG-0.5*DELP)/(273.15+TEMP)
0042
         AVERAGE TIME.
      C
      C
             TMEAN=L/VLSUP
0043
             TM=TMEAN*CHS/6.0
0044
      С
         INITIALIZE TIMES AND CONCENTRATIONS.
      С
      C
0045
       25
            DO 40 I=1,75
             T(I)=0.0
0046
             CPB(I)=0.0
0047
       40
             IF(ITT.EQ.2)N01=N02
0048
             NO1=NO1+1
0050
```

```
READ TIMES AND CONCENTRATIONS.
       C
 0051
              READ (1,35)(T(I),CPB(I),I=2,NO1)
 0052
 0053
       \mathbb{C}
           INITIALIZE SUMS.
       C
 0054
              SUMC=0.0
 0055
              SUMTC=0.0
0056
              SUMTTC=0.0
0057
              SCES1T=0.0
0058
              SCES2T=0.0
0059
              SCES3T=0.0
0060
              SCES4T=0.0
              SCES5T=0.0
0061
0062
              SCES6T=0.0
              SCES7T=0.0
0063
0064
              SCESBT = 0.0
0065
             SCES9T = 0.0
             SCESOT = 0.0
0066
0067
             IF(ITT.EQ.2)B1=B2
0069
             DO 50 I = 2, NO1
DELTAT = T(I) - T(I-1)
0070
      C
          CONCENTRATION FOR A TIME INTERVAL IS THE AVERAGE OF THE VALUES
          AT EACH END OF THE TIME INTERVAL, MINUS THE BASELINE VALUE.
             CPB(I) = CPB(I) - B1
0071
0072
             C = (CPB(I)+CPB(I-1))/2.
0073
             TAVG(I) = (T(I)+T(I-1))*0.5
             CDELT(I) = C*DELTAT
0074
0075
             SUMC=SUMC+CDELT(I)
          FIRST MOMENT TO FIND THE MEAN RESIDENCE TIME
      C
0076
             SUMTC=SUMTC+CDELT(I)*TAVG(I)
      C
          LAPLACE TRANSFORM OF CONCENTRATION
0077
             SCES1T=SCES1T+CDELT(I)*EXP(-S(1)*TAVG(I))
             SCES2T=SCES2T+CDELT(I)*EXP(-S(2)*TAVG(I))
0078
             SCES3T=SCES3T+CDELT(I)*EXP(-S(3)*TAVG(I))
0079
             SCES4T=SCES4T+CDELT(I)*EXP(-S(4)*TAVG(I))
0080
             SCESST=SCESST+CDELT(I)*EXP(-S(5)*TAVG(I))
0081
0082
             SCES6T=SCES6T+CDELT(I)*EXP(-S(6)*TAVG(I))
             SCES7T=SCES7T+CDELT(I)*EXP(-S(7)*TAVG(I))
0083
0084
             SCES8T = SCES8T + CDELT(I)*EXP(-S(8)*TAVG(I))
             SCES9T = SCES9T + CDELT(I)*EXP(-S(9)*TAVG(I))
SCESOT = SCESOT + CDELT(I)*EXP(-S(10)*TAVG(I))
0085
0086
       50
             PRINT 98, SUMC, SUMTC, SCESIT, SCESOT
0087
0088
             TBAR = SUMTC/SUMC
```

```
SECOND MOMENT TO FIND VARIANCE
      C
            DO 52 I = 2, NO1
0089
            SUMTIC = SUMTIC + CDELT(I)*(TAVG(I)-TBAR)*(TAVG(I)-TBAR)
0090
            CONTINUE
0091
       52
            SIGSQ = SUMTTC/SUMC
0092
         NORMALIZE VALUES FOR LAPLACE TRANSFORM OF CONCENTRATION
      C
      C
0093
            CS(1)=SCES1T/SUMC
            CS(2) =SCES2T/SUMC
0094
            CS(3)=SCES3T/SUMC
0095
            CS(4)=SCES4T/SUMC
0096
            CS(5)=SCES5T/SUMC
0097
0098
            CS(6)=SCES6T/SUMC
             CS(7) = SCES7T/SUMC
0099
             CS(8) = SCES8T/SUMC
0100
            CS(9) = SCES9T/SUMC
0101
             CS(10) = SCESOT/SUMC
0102
             IF(ITT.EQ.2)GO TO 60
0103
             PRINT 98, TBAR, SIGSQ, SUMTTC, SUMC
0105
         STORE VALUES FOR FIRST FEAK AND GO BACK TO DO SECOND PEAK.
      C
      С
0106
             TBAR1=TBAR
             SIGSQ1=SIGSQ
0107
             DO 51 I=1,10
0108
0109
       51
             C1S(I)=CS(I)
0110
             ITT=2
             GO TO 25
0111
      С
         TAKING THE DIFFERENCE OF RESPONSES AT TWO MEASURING POINTS
      C
         ELIMINATES THE EFFECT OF AN IMPERFECT TRACER PULSE.
      С
      С
             DELSIG=SIGSQ-SIGSQ1
0112
       60
             DELTBR=TBAR-TBAR1
0113
             FRINT 98, DELTBR, DELSIG, SIGSQ, TBAR
0114
          98 FORMAT (4F12.5)
0115
             E1S = SMASS/H/CSA/RHOS
0116
             E1G = (DELH*RHOL/H - E1S*(RHOS-RHOL))/(RHOG - RHOL)
0117
             E1L = 1.0 - E1S - E1G
0118
             EL=DELTBR/TM
             EG = ((DELH+H)*RHOL/H - EL*(RHOL-RHOS) - RHOS)/(RHOG - RHOS)
0119
0120
             DIMSIG=DELSIG/(DELTBR*DELTBR)
0121
          DISPERSION NUMBER FROM THE SECOND MOMENT
       С
       C
             UDIN= DIMSIG/2.
0122
             PE=1.0/VDN
0123
             VL=VLSUP/EL
0124
             VG=VGSUP/EG
 0125
          REYNOLDS NUMBERS WITH WHICH TO CORRELATE ABOVE DISPERSION NUMBER
       C
```

```
C
0126
             REG=RHOG*DF*VG/MUG
0127
             REGS = RHOG*DF*VGSUP/MUG
             REL=RHOL*DP*VL/MUL
0128
0129
             RELS = RHOL*DP*VLSUP/MUL
0130
             PEDP=PE*DP/L
          LIQUID AXIAL DISPERSION COEFFICIENT
      С
0131
             D=VL*L*VDN
0132
             DO 61 I=1,10
          CALCULATE VALUES OF THE TRANSFER FUNCTION AND PLOT.
       C
0133
             F(I)=CS(I)/C1S(I)
0134
             Y(I)=-1.0/ALOG(F(I))
0135
        61
             X(I)=S(I)/(ALOG(F(I))*ALOG(F(I)))
       С
      C
          FIT A STRAIGHT LINE TO THE POINTS BY LEAST SQUARES.
      С
0136
             SUMX=0.0
0137
             SUMY=0.0
0138
             SUMXX=0.0
0139
             SUMXY=0.0
0140
             SUMYY=0.0
0141
             DO 62 I = 1, 10
0142
             SUMX=SUMX+X(I)
0143
             SUMY=SUMY+Y(I)
0144
             SUMXX=SUMXX+X(I)*X(I)
             SUMXY=SUMXY+X(I)*Y(I)
0145
0146
        62
             SUMYY=SUMYY+Y(I)*Y(I)
0147
             NUM=SUMXY-(SUMX*SUMY/10.0)
0148
             DENOM=SUMXX-(SUMX*SUMX/10.0)
      C
      C
          THE SLOPE IS THE MEAN RESIDENCE TIME.
      С
0149
             TAU=NUM/DENOM
0150
             YINT=(SUMY-TAU*SUMX)/10.0
      C
          FIND A 95% CONFIDENCE INTERVAL ABOUT THE Y INTERCEPT.
      С
0151
             SUMDIF = 0.
             DO 63 I = 1, 10
0152
0153
             YPRED = YINT + TAU * X(I)
             SUMDIF = SUMDIF + (YPRED-Y(I))*(YPRED-Y(I))
SD = SQRT(SUMDIF/8.)
0154
       63
0155
0156
             CONINT = SQRT(SUMXX/10.0/DENOM)*SD*2.306
0157
             YINTH = YINT - CONINT
YINTL = YINT + CONINT
0158
      С
         FIND THE CORRELATION NUMBER AND COEFFICIENT FOR THE LEAST SQUARES FIT.
      С
      C
```

```
RSQ=NUM*NUM/((SUMXX-(SUMX*SUMX)/10.)*(SUMYY-(SUMY*SUMY)/10.))
0159
0160
            R=SQRT(RSQ)
         FIND FLUID VELOCITIES AND HOLDUPS BASED ON THE MEAN RESIDENCE
         TIME DETERMINED BY THE TRANSFER FUNCTION.
      C
      C
             ELFTF=TAU/TM
0161
            EGPTF = ((DELH+H)*RHOL/H - ELPTF*(RHOL-RHOS) - RHOS)/(RHOG - RHOS)
0162
             VLPTF=VLSUP/ELPTF
0163
             VGPTF=VGSUP/EGPTF
0164
      C
         THE DISPERSION NUMBER IS THE NEGATIVE OF THE Y INTERCEPT.
      C
      C
             VDNPTF=-YINT
0165
      C
         PECLET AND REYNOLDS NUMBERS FOR THE TRANSFER FUNCTION
      C
      C
0166
             PEPTF=-1.0/YINT
      ¢
         TRANSLATE THE Y INTERCEPT INTERVAL TO A 95% CONFIDENCE INTERVAL
      C
          ABOUT THE PECLET NUMBER FOUND BY THE TRANSFER FUNCTION.
      С
0167
             FEFTFH = -1.0/YINTL
             PEPTFL = -1.0/YINTH
0168
             PEPTFD=PEPTF*DP/L
0169
             DPTF=VLPTF*L*VDNPTF
0170
             RELETE=RHOL*DP*VLPTF/MUL
0171
             REGPTF=RHOG*DP*VGPTF/MUG
0172
      C
          TYPE OUT THE RESULTS.
      C.
       C
             TYPE 70, NRUN, VGSUPV, VGSUP, REGS, VLSUPV, VLSUP, RELS, TMEAN, TM, E1G, E1L
0173
             TYPE 71, VG, VL, REG, REL, TBAR1, TBAR, DELTBR, EG, EL,
0174
                 VDN,PE,PEDF,D
             TYPE 72, VGPTF, VLPTF, REGPTF, RELPTF, TAU,
0175
                 EGPTF, ELPTF, VDNPTF, PEPTF, PEPTFH, PEPTFL, PEPTFD, DPTF
       С
0176
             TYPE 74, (S(I),C1S(I),CS(I),F(I),X(I),Y(I),I=1,10)
0177
             TYPE 75,R
0178
       С
       C
          CLOSE THE DATA FILE.
       C
             CALL CLOSE(1)
0179
             TYPE 65
0180
             GO TO 10
0181
             CALL CLOSE(2)
        99
0182
             STOP
0183
       C
          INFUT FORMAT STATEMENTS
       С
       C
             FORMAT(1X, 'RUN NUMBER?')
0184
        15
             FORMAT(13,2X,12,3X,12,3X,7F5.1)
0185
        30
             FORMAT(7F5.1)
0186
        31
             FORMAT (211)
FORMAT (2F5.1)
        32
0187
0188
        35
```

```
OUTPUT FORMAT STATEMENTS
0189
       65
             FORMAT (1X,/)
             FORMAT(28X, 'RUN NUMBER', 14//
0190
       70
                  12X, 'GAS FLOW RATE', 14X, F9, 4, 2X, 'CC/SEC'/
                  12X, 'SUPERFICIAL GAS VELOCITY', F12.4,' CM/SEC'/
                  12X, 'SUP. GAS REYNOLDS NO.', F15.4/
                  12X, 'LIQUID FLOW RATE', 11X, F9.4, 2X, 'CC/SEC'/
                  12X, 'SUPERFICIAL LIQUID VELOCITY', F9.4, ' CM/SEC'/
                  12X, 'SUP, LIQUID REYNOLDS NO.', F12.4/
                  12X, 'LIQUID SPACE TIME'
                  13X, '(NEGLECTING GAS PRESENCE)', F10.4, 2X, 'SEC'/
                  39X, F9.4, 2X, 'SQUARES'///
                  12X, 'HOLDUPS NOT USING MEAN RESIDENCE TIME'/
                  13X, 'GAS', F32.4/
                  13X, 'LIQUID', F29.4/)
0191
       71
             FORMAT(24X, 'BY ANALYSIS OF MOMENTS'//
                  12X, 'GAS VELOCITY', 15X, F9.4, 2X, 'CM/SEC'/
                  12X, 'LIQUID VELOCITY', 12X, F9, 4, 2X, 'CM/SEC'/
                  12X, GAS REYNOLDS NO. ', 11X, F9.4/
                  12X, 'LIQUID REYNOLDS NO.', 8X, F9.4/
                  12X,'T BAR IN',19X,F9.4,2X,'SQUARES'/
                  12X,'T BAR OUT',18X,F9.4,2X,'SQUARES'/
                  12X, 'MEAN LIQUID RESIDENCE TIME', F10.4,2X, 'SQUARES'/
                  12X, 'GAS HOLDUP', 17X, F9.4/
                  12X, 'LIQUID HOLDUP', 14X, F9.4/
                  12X, 'VESSEL DISPERSION NO.', F15.4/
                  12X, 'PECLET NO.', 17X, F9.4/
12X, 'PECLET NO. W.R.T. DP', 7X, F9.4/
                  12X, 'AXIAL DISP. COEFF.', 9X, F9.4///)
             FORMAT(18X, 'BY EVALUATION OF TRANSFER FUNCTION'//
0192
       72
                  12X, 'GAS VELOCITY', 15X, F9.4, 2X, 'CM/SEC'
                  12X, 'LIQUID VELOCITY', 12X, F9.4, 2X, 'CM/SEC'/
12X, 'GAS REYNOLDS NO.', 11X, F9.4/
                  12X, 'LIQUID REYNOLDS NO.', 8X, F9.4/
                  12X, 'MEAN LIQUID RESIDENCE TIME', F10.4, 2X, 'SQUARES'/
                  12X, 'GAS HOLDUP', 17X, F9.4/
                  12X, 'LIQUID HOLDUF', 14X, F9.4/
                  12X, 'VESSEL DISPERSION NO. ', F15.4/
                  12X, 'PECLET NO.', 17X, F9.4/
                  12X, '95% CONFIDENCE INTERVAL'/
                  15X, 'HIGH VALUE', F23.4/
                  15X,'LOW VALUE',F24.4/
                  12X, 'PECLET NO. W.R.T. DP',7X,F9.4/
                  12X, 'AXIAL DISP, COEFF, ', 9X, F9, 4, 2X, 'CM SQ/SEC')
0193
             FORMAT (//,6X,'S',9X,'C1(S)',7X,'C2(S)',8X,'F(S)',
       73
                  6X, 'ABSCISSA', 4X, 'ORDINATE'/)
             FORMAT (6E12.4)
0194
       74
0195
       75
             FORMAT(1X/12X, 'CORRELATION COEFFICIENT', 4X, F9.4///)
      С
0196
             FORMAT (' DID YOU REALLY USE ROTAMETER G', I1, '?',/)
0197
             FORMAT (' DID YOU REALLY USE ROTAMETER L', I1, '?',/)
       22
0198
       95
             FORMAT(Q,3A1)
0199
             FND
```

8.4 Tabulation of Operating Conditions, Holdups and Dispersion Coefficients

Dispersion Coefficient** D (cm²/sec)	28.6	65.7	577	36.3	15.3	96.4	-23.4	45.0	-12.4	69.1	57.1
Peclet No.											
* w	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 0.86	1.00	1.00
اٍ۔	1.00	1.00	1.00	1.00	1.00	1.08	1.00	1.00	1.00	1.00	1.00
59	0	0	0	0.06	0.10	0 -0.05	0.18	0.04	0.18	0.08	0.04
U _G (cm/sec)	0	0	0	0	0	0	0	0	0	0	0
U _L (cm/sec)	4.4	8.8	13.2	4.4	6.5	9.1	13.2	4.4	6.5	9.1	13.2
Injection Mode	gas			liquid				tube/liquid			
M S (kg)	0										

* For each U_L , the first row of holdups were calculated with the expanded bed height method and the second row with the tracer residence time method. $\varepsilon=\varepsilon_L^{-1}+\varepsilon_G$. ** Both Peclet number and dispersion coefficient were from the analysis of moments method, Pe = u_L^{-1} d/D.

Dispersion Coefficient D(cm ² /sec)		36.0	7 07	· · · · · ·	72.0	, 100	4.62		25.4		9.18		90.9		8.76		28.0		30.0		9/9		51.0		31.3		56.0		17.8		94.0
Peclet No.	-	1.60×10 ⁻¹	1-01,120	01710.3	1.70×10 ⁻¹	1-01:33 3	0.x0c.0	-	1.65×10 ⁻¹	-	6.39×10 ⁻¹	•	9.65×10 ⁻¹	_	6.58×10 ⁻¹	-	2.61x10 ⁻¹	-	2.49×10 ⁻¹	6	1.97×10 ⁻²	-	1.86×10		2.24×10 ⁻¹	c	9.85×10 ⁻²		4.76×10 ⁻¹	6	9.59×10 ⁻²
ω	0.44	0.44	0.53	0.40	0.53	0.74	19.0	0.42	0.48	0.42	0.41	0.42	0.45	0.44	0.43	0.44	0.41	0.46	0.43	0.48	0.40	0.48	0.31	0.47	0.46	0.49	0.53	0.52	0.47	0.53	0.48
<u>۔</u>	0.34	0.35	0.44	0.52	0.34	0.64	0.30	0.42	0.48	0.39	0.35	0.36	0.35	0.37	0.35	0.34	0.28	0.35	0.27	0.33	0.15	0.48	0.31	0.45	0.42	0.46	0.54	0.46	0.35	0.44	0.33
5	0.10	0.09	90.0	0.0	0.19	0.10	0.45	0	0	0.03	90.0	0.06	0.07	0.07	0.08	0.10	0.13	0.11	0.16	0.15	0.25	0	0	0.02	0.04	0.03	-0.01	90.0	0.12	0.09	0.15
U _G (cm/sec)	4.4	•	4.4	4.4		4.4		0		1.4		2.1		3.0		4.4		6.4		9.3		0		1.4		2.1		3.0		4.4	
UL (cm/sec)	4.4	Ļ	6.5	9.1		13.2		4.4													1	6.5									
Injection Mode	gas							liquid																							
M S Kg)	5																														

Dispersion Coefficient D(cm ² /sec)		010	717	שמנ	00	30,00	01xca.c		36.1	נטנ	171	7	0.0/	o c	7.32	C	847		1200	c c	0201		7./4	7	45.1	1 66	36.1	8 0 L	+6-	3 79×10 ⁴		1090
Peclet No.		2-5: 5: -	/./8×10	2-01.00	4.09X10	4-01.00	2.22x10	1	2.72×10		1.08×10	[-0.00	2.08×10	2	5.24×10 -	2	8.92×10 =	-2	1.86×10 ⁻	2	2.11×10 ⁻	1	2.90×10		6.34×10	1000	5.80X10	2-01-0	9.06×10	1 45~10-3	01401	1.26×10 ⁻²
ú	o	0.53	0.42		0.54	0.5/	0.03	0.58	0.52	0.59	0.49	0.59	0.48	0.61	0.52	0.59	0.45	0.62	0.49	0.67	0.28	0.69	0.58	0.70	0.51	۰.۲ <u>۰</u>	0.58	0.74	0.61	0.75	72.0	0.68
σ	1	0.42	0.18	0.41	0.39	0.57	0.03	0.56	0.43	0.53	0.32	0.53	0.28	0.52	0.34	0.49	0.18	0.48	0.19	0.67	0.28	0.67	0.44	0.65	0.22	0.64	0.33	0.64	0.35	0.62		0.39
<u>د</u> ن	5	0.11	0.24	0.14	0.15	0	0	0.02	0.0	90.0	0.17	90.0	0.20	0.09	0.18	0.10	0.27	0.14	0.30	0	0	0.02	0.14	0.05	0.29	0.07	0.25	0.10	0.26	0.13	14.0	0.24
U _G	(רווו/ אבר /	6.4	,	9.3		0		1.4		2.1		3.0		4.4		6.4		9.3		0		1.4		2.1		3.0		4.4		6.4	ć	۲. م
، لب	(CIII) SEC.)	6.5				9.1						,								13.2												
() () () () () () () () () ()	Injection Mode	liquid	-																			-										
_∞	(kg)	7																										٠				

Dispersion Coefficient D(cm ² /sec)		1.38		9.08		29.5		34.2		-0.737		51.2		103		77.9		20.6		37.6		2500		117		49.0		59.3		157	L	45.8
Peclet No.		3.41	-	5.86×10 ⁻	-	1.87×10 ⁻¹	_	1.56×10 ⁻¹		-8.83	c	9.43×10 ⁻²	c	4.91×10 ⁻²	C	9.02×10 ⁻²	r	4.21×10 ⁻¹	_	3.56×10 ⁻¹	c	1.89×10 ⁻²	-2	6.87×10 ⁻²		2.143x10 ⁻¹	_	2.72×10 ⁻¹		5.82×10 -	1-01	4.4/XIU
ω	0.42	0.43	0.43	0.43	0.44	0.45	0.48	0.20	0.48	0.46	0.49	0.56	0.53	09.0	0.55	0.55	0.57	0.48	0.59	0.49	09.0	0.42	0.62	0.64	0.42	0.58	0.70	0.58	0.73	0.74	0.75	79.0
3	0.42	0.43	0.36	0.38	0.34	0.37	0.33	0.38	0.48	0.46	0.46	0.62	0.44	0.59	0.41	0.42	0.57	0.48	0.53	0.31	0.51	0.09	0.48	0.52	0.42	0.58	0.65	0.38	0.63	0.66	0.59	0.30
S.	0	0	0.07	0.05	0.10	0.08	0.15	0.12	0	0	0.03	-0.06	0.09	•	•	0.13	0	0	90.0	0.18	0.09	0.33	0.14	0.12	0	0	0.05	0.20	0.10	0.08	33	0.32
U _G (cm/sec)	0	1	2.1		4.4		9.3		0		2.1	,	4.4		9.3		0		2.1		4.4	,	6.3 6.3	•	0		2.1		4.4	c	y.,	
UL (cm/sec)	4.4								6.5								9.1								13.2							
Injection Mode	tube/liquid																															
M S (kg)	5																															

Disperion Coefficient D (cm ² /sec)	•	4.40	-4.96	•	12.8	0.150)	-22.9	16.5) •	26.3		75.7	6.09	!	51.7		125	84.9		114	1	109	81.0		110
Peclet No.	,	1.30	-1.24	7	4.80×10	7 67	1	-3.92×10"	1-01-37 5	50000	3.10×10 ⁻¹	!	1.81×10 ⁻¹	6 11×10 ⁻¹		1.88×10 ⁻¹	7	1.01×10.1	9.22×10 ⁻²		1.12×10 ⁻¹	,	1.13×10	1,25×10 ⁻¹		1.22×10 ⁻¹
ω	0.41	0.40	0.42	0.43	0.43	0.44	0.45	0,40	0.48	0.4	0.44	0.50	0.39	0.49		0.46	0.51	0.44	0.52	0.58	0.48	0.58	0.50	0.57	09.0	0.51
ے ۔	0.38	0.35	0.39	0.34	0,33	0.36	0.34	0.23	0.35	0.33	0.36	0.45	0.25	0.41	0.00	0.33	0.39	0.23	0.0	0.55	0.33	0.52	0.34	0.50	0.51	0.31
್ಹ ಆ	0.03	0.05	0.06	0.09	0.10	0.08	0.13	0.17	0.13	0.0	0.08	0.05	0.17	0.08	77.0	0.15	0,12	0.21	0.14	0.03	0.15	90.0	0.16	0.07	00.0	0.20
Ug (cm/sec)	1.4		2.1	3.0		4.4	6.4		9.3	-	† -	2.1		3.0	~	.	6.4		9.3	1.4	•	2.1		3.0	4.4	r -
U _L (cm/sec)	4.4									u	_									0						
Injection Mode	liauid	; ; ;																								
M (kg)	· (*)	•	,																							

Dispersion Coefficient D (cm²/sec)		1110	C	-1.46×10°		63.9		32.6		247		167		100		271
Peclet No.	c	3.25×10 ⁻²	V	5.57×10 ⁻⁰	-	1.94×10 ⁻¹	-	4.69×10	c	5.35×10 ⁻⁶	c	8.67×10 ⁻²	-	1.64×10 ⁻¹	c	4.91×10 ⁻²
ω	0.59	0.44	0.55	0.37	0.65	0.57	99.0	0.55	0.59	0.55	0.69	0.59	0.69	0.59	0.70	0.64
۵	0.46	0.12	0.40	-0.01	0.62	0.44	0.60	0.35	0.49	0.41	0.58	0.37	0.57	0.33	0.55	0.41
9	0.13	0.32	0.15	0.38	0.03	0.13	90.0	0.20	0.10	0.14	0.11	0.22	0.12	0.26	0.15	0.23
U _G (cm/sec)	6.4		9.3		1.4		2.1		3.0		4.4		6.4		9.3	
UL (cm/sec)	9.1				11.7					٠						
Injection Mode	liquid															
M S (kg)	က															

- 15. Stegel, G.J., and Y.T. Shah, "Backmixing and Liquid Holdup in a Gas-Liquid Cocurrent Upflow Packed Column," <u>I&EC Proc. Des. Dev.</u>, $\underline{16}$, 37 (1977).
- 16. Wen, C.Y. and Y.H. Yu, "Mechanics of Fluidization," <u>Chem.</u> <u>Eng. Prog. Symposium Series</u>, 62, 100 (1966).

ORNL/MIT-250

INTERNAL DISTRIBUTION

- 1-2. J.M. Begovich
 - 3. S.D. Clinton
 - 4. H.D. Cochran
 - 5. C.W. Hancher
 - 6. J.R. Hightower
 - 7. J.M. Holmes
 - 8. Yvonne Lovely
 - 9. J.P. Nichols
- 10. G.D. Robbins
- 11-12. J.S. Watson
- 13. C.D. Scott
- 14-15. Central Research Library
 - 16. Document Reference Section
- 17-19. Laboratory Records
 - 20. Laboratory Records, ORNL R.C.
 - 21. ORNL Patent Office
- 22-36. MIT Practice School

EXTERNAL DISTRIBUTION

- 37. C.O. Reiser, Arizona State U., Tempe
- 38. J.E. Vivian, MIT, Cambridge, MA
- 39. Director, Research & Technical Support Div., ERDA, ORO
- 40-41. Technical Information Center