5. PREDICTION OF MASS TRANSFER COEFFICIENT IN BUBBLE
COLUMNS OPERATED AT HIGH PRESSURE BASED ON
ATMOSPHERIC PRESSURE DATA

The liquid volumetric mass transfer coefficient is considered an important design
parameter for bubble columns. Consequently, many authors have experimentally
determined the values of mass transfer coefficient and developed empirical equations for
their estimation (Akita and Yoshida, 1973; Hikita et al., 1981; Hammer et al., 1984;
Ozturk et al., 1987). However, these published empirical equations do not account for the
effect of pressure, in spite of the fact that the increase in gas hold up and decrease in
bubble size with increased pressure leads to a higher interfacial area and mass transfer
coefficient. Therefore, the mass transfer coefficient in a high-pressure bubble column will
be underestimated by the published empirical correlations. Thus, an accurate estimation
of the volumetric mass transfer coefficient for high pressure conditions requires
experiments at high pressure, which are more complicated than those at atmospheric
pressure.

Very few studies of the mass transfer coefficient at high pressure condition have been
reported in the literature. Letzel et al., (1999) measured the mass transfer coefficient in
bubble column reactors at elevated pressure by using the dynamic oxygen desorption
method. They found that the ratio of volumetric mass transfer coefficient to gas holdup

(kia /£, ) is constant and equal to approximately one half up to system pressure of 1.0

MPa. However when gas hold up is larger than 35%, the scatter in kia increases due to
the problems with the probe. Kojima et al., (1997) measured the volumetric mass transfer
coefficient in bubble columns under pressurized conditions with different liquid phases
and with different diameters of the single nozzle used as gas disperser. An empirical
correlation was obtained for volumetric mass transfer by considering the effect of
pressure and diameter of single nozzle with four empirical constants as fitted parameters,
in addition, gas hold up correlation is needed to calculate the mass transfer coefficient.
Dewes and Schumpe (1997) reported very strong effects of gas density on gas-liquid
mass transfer and the gas density effect increased with the gas velocity. The pressure
range in their study was similar to that used by Letzel (1999) and Kojima (1997).

The objective of this study is to develop a procedure for prediction of the volumetric
mass transfer coefficient at any pressure based on atmospheric pressure data.

5.1.  Procedure development

Wilkinson (1991) recommended accounting for the pressure effect by using the following
cquation:
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where subscript P means pressure conditions and a indicates atmospheric conditions. This
allow one to calculate kpa in pressurized bubble columns from atmospheric data for kia
and gas hold up, provided the gas hold up at elevated pressure is also known. However,
due to the complex hold up structure, M depends on physical properties and flow regime
(Deckwer et al.,1993). Therefore, the approach suggested by Wilkinson is of limited
applicability (Grund et al., 1992). To improve the procedure recommended by Wilkinson,
a correlation for M was developed by considering physical properties, column dimension
and operation conditions. The following approach was used :

a. Chose proper correlations for the quantities in equation (5.1).

At atmospheric conditions, Akita and Yoshida's correlation is chosen for kya calculation
since 1t has been proven to be applicable for scale up (Deckwer et al.,1993)
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To predict gas holdup the correlation of Luo et al.(1999) was used at both low pressure
and high pressure since it can cover a wide range of operating conditions and systems of
different physical properties,
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Substituting equations (5.2) for (kpa), to equation (5.1), and assuming (&g’ /g ). =1
to simplify the problem, one can obtains the [ollowing equation:
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where (&, ), can be evaluated from equation (5.3).

b. Develop a correlation for M
In equation (5.4) parameter M depends on physical properties and flow regime which is

associated with the operating conditions and column dimensions as mentioned above. To
account for these factors, a correlation was developed by Wu et al.(1999):

n=2.188x10° Re ™™ Fro1p (5.5)
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for prediction of the exponent n in the gas radial gas hold up profile which is usually
represented by

—on+2
Eg =&g(
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n indicates the steepness of hold up profile and reflect the intensity of liquid circulation.
It 1s depends on flow characteristics and nature of system used as well. n and M must be
somehow related. Then M= f (n) can be obtained by fitting part of the experimental data
reported in the literature using equation (5.1). We have obtained 155 sets of experimental
data available from the literature and chosen 65% of the points to obtain the M
dependence on n as follows:

M =03In(n)+0.044 (5.6)

Now one can predict the mass transfer coefficient based on gas hold up data only by
using equations (5.3)-(5.6). We have compared the model predictions with experimental
data at the range of pressure 0.1MPa -1.1MPa. Some of results are shown below.

5.2,  Comparison of model prediction and experimental data

At elevated pressure, experimental data has been reported by Letzel (1999) at 0.1MPa to
1.0 MPa system pressure with column diameter equal to 0.15 m using dynamic oxygen
desorption method. The comparison of model prediction and the reported experimental
data by Letzel (1999) at 0.2MPa system pressure is shown in Figure 1. From Figure 1 one
can see that the model predicts the experimental data well. The prediction by the
correlation of Akita (1973) under-estimates the experimental data even if using hold up
data at 0.2MPa. This correlation usually provides for a conservative estimate as reported
by Deckwer et al.(1993). For the pressure at 0.3, 0.4 MPa or higher, the comparison of
model prediction and experimental data is similar to what is discussed above and mass
transfer coefficient increases with increasing system pressure due to small bubble size
and an increase in the number of small bubbles which results in higher gas hold up. In
addition, parameter M in equation (5.1) was reported by Wilkinson(1992, 1994) to be
equal to 1-1.2. If M is set equal to 1.1, one can apply equation (5.2) and (5.3) in equation
(1), then the correlation of Akita returns the same formula except that the hold up needs
to be calculated by the correlation obtained at elevated pressure condition. From this
point of view, one can argue that the procedure suggested by Wilkinson does not predict
the experimental data well without considering the dependence of M on physical
properties and flow regime. When the dependence of M on physical properties and flow
regime, as suggested by Deckwer et al.(1993), is accounted for the prediction for kja is
good. In this study M was found to vary from 0.4 to 1.1 depending on system pressure
and superficial gas velocity.

The other sets of experimental data for volumetric mass transfer coefficient at high
pressure was obtained by Kojima (1997) using oxygen electrode (Oxi-96WTW) fo
measure dissolved oxygen. The column diameter used was small (0.045 m) and the



system pressure range employed was 0.1-1,1 MPa, The comparison of model prediction
and experimental data at 0.6 MPa is shown in Figure 5.2. From Figure 5.2, it is clear that
the model proposed in this work can predict experimental observation well. Again either
Akita's correlation or equation (1) with M=1.1 predicts a lower mass transfer coefficient
than experimental data.

The comparison of additional experimental data and model prediction is shown in Figure
5.3. From Figure 5.3, one can see that for most of the available experimental data the
error between predicted mass transfer coefficient by this work and experimental data
reported in the literature is less than 20% within the pressure range 0.1 to 1.1 MPa. There
is another set of experimental results reported by Dewes et al.(1997), The data was not

included in Figure 5.3 due to insufficient information on physical properties to be used in

the proposed model. However, Dewes et al.(1997) reported that &, a «c p2**™** and this is

comparable with this work regarding the dependence of mass transfer coefficient on gas
density.

5.3. SUMMARY

Based on the approach that mass transfer coefficient and gas hold up data obtained at
lower pressure and gas hold up obtained at high pressure conditions can be used to
predict the mass transfer coefficient at high pressure, we have chosen the widely accepted
mass transfer correlation and newly reported gas hold up correlation which covers wide
operating pressure conditions to form a new correlation for the prediction of mass
transfer coefficient at wide range of operating conditions. The correlation can be used to
predict the mass transfer coefficient up to 1.1 MPa system pressure with error within
20%.
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Figure 5.1 Comparison of model prediction and experimental data of Letzel (1999)
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5.4 NOMENCLATURE

a special interfacial area, m*/m’

D Column diameter, m

D:  Molecular diffusivity, m%/s

Eo Eotvos number, dimensionless

Fr.  Gas Froude number, dimensionless

g Acceleration due to gravity, m/s*

Ga Galico number, dimensionless

kia  Volumetric mass transfer coefficient, 1/s
Mo;  Liquid Morton number, dimensionless

n Parameter in Eq(5)
Reg  Reynolds number, dimensionless
S Schmidt number, dimensionless

Us,  Superficial gas velocity, m/s

Greek letters

£ Cross-sectional average gas hold up
I Liguid viscosity, Pa.s

P-  Gas density, kgfm"

p,  Liquid density, kg/m’

o Liquid surface tension, N/m

&
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