2.1.5.2 Produkte der Gasphase-Hydrierung

Die Tabellen 2-10 und 2-11 enthalten Daten über Kraftstoffe, die in deutschen Hydrierwerken gewonnen wurden. Auch hier zeigt sich. daß für die Zusammensetzung des Produktes die Beschaffenheit des Rohstoffes von Wichtigkeit ist. Benzin aus Braunkohle enthält mehr Paraffine als solches aus Steinkohle, ebenso ist der bei 300 at erzeugte Dieselkraftstoff aus Braunkohle paraffinreicher und damit zündwilliger als jener aus Steinkohle. Höherer Druck bei der Herstellung wirkt sich günstig auf die Cetanzahl aus.

Tabelle 2-10: Benzin aus der Gasphase-Hydrierung deutscher Hydrierwerke 20)

Werk Einsatzprodukt		Leuna: Braunkohle, Braunkohlen- schwelteer	Scholven: Steinkohle	Gelsenberg: Steinkohle
Verfahrensdruck				
Flüssigphase	at	250	300	700
Gasphase	at	250	300	300
Benzin Dichte bei 15°C, Siedepunkt	g/cm ³	0,719	0,738	0,740
Anfang	°c	45	44	46
Ende	°c	139	156	151
Zusammensetzung				
Paraffine	ક	51,5	37,5	36,5
Olefine	욯	1,0	1,0	0,5
Naphthene	ક	38,0	53,0	54,0
Aromaten	ક	8,5	8,5	9,0
Motor-Oktanzahl ohne Bleitetraät		71	73	73

Dieselkraftstoff aus der Gasphase-Hydrierung deutscher Hydrierwerke; ${\rm WS}_{\circ}{\rm -Katalysator}$ Tabelle 2-11:

Verfahrensdruck		200-300 at	0 at	600 at	at
Einsatz		Braunkohle	Steinkohle	Braunkohle	Steinkohle
Dichte bei 20°C, g/cm ³	g/cm ³	0,827	0,876	0,802	0,829
Anilin-Punkt	ပ	09	42,5	72,8	65,4
Cetan-Zahl		ស	45	75	72
Siedepunkt Anfang	ပို	į.	198	193	196
	၁၀	304	305	271	290
Pourpoint	၁၀	-23	 	-50	-68
Viskosität	OE bei 38 ^O C	1,10	1,14	1,00	~
Heizwert	kcal/kg] 	‡ !	10 349	10 304
Wasserstoffgehalt (Gew.%	(Gew.%)	1	!	14,5	14,0

Tabelle 2-12 gibt einen Vergleich der Eigenschaften von Autobenzinen, die nach verschiedenen Verfahren der GasphaseHydrierung aus dem gleichen Steinkohlemittelöl erhalten wurden.
Die Bildung von Aromaten bei der Aromatisierung drückt sich in den Werten des spezifischen Gewichtes und der Oktanzahl deutlich aus.

Tabelle 2-12: Eigenschaften von Autobenzinen aus Steinkohlemittelöl 21)

	Benzir	nierung		Aromati- sierung
Katalysator	Vorhydr.WS ₂ ; Benzin.WS ₂	Vorhydr.WS ₂ ; Benzin.WS ₂ auf Bleicherde	Vorhydr. WS ₂ NiS auf Toñerde; Benzin.WS ₂ auf Bleicherde	Cr ₂ O ₃ -V ₂ O auf A-Koh- le
Dichte bei 150	0,735	0,745	0,770	0,830
Oktanzahl ROZ	i	75	78	95
MOZ	66,5	74	75	83

Tabelle 2-13 bringt eine Zusammenstellung der Qualität von Flugbenzinen vom Typ OZ 87 aus verschiedenen Hydrierwerken.

Tabelle 2-13: Flugbenzine vom Typ OZ 87 aus verschiedenen Hydrierwerken 22)

	Leuna	Schol- ven	Gelsen- berg	Pölitz
Spez.Gewicht bei 15 ⁰ C	0,719	0,738	0,740	0,730
ASTM-Siedekurve: Beginn OC bis 70 C % bis 100 C % bis 120 C % bis 150 C % Endpunkt OC/% Dampfdruck at	45 25 67 89 139/98 0,39	44 16 56 77 93 156/98	46 15 58 78 96 151/98 0,50	16 61 84 97 152/98
Zusammensetzung: Paraffine % Naphthene % Aromaten % Ungesättigte %	51,5 38 8,5	37,5 53 8,5	36,5 54 9 0,5	48,5 43 7,5
MOZ MOZ (O,12% TEL)	71 90	73 91	73 91	72 91

Tabelle 2-14 bringt Angaben über Flugbenzine aus Steinkohle-Mittelöl, die durch Benzinierung, Aromatisierung oder durch Kombination von Benzinierung und DHD-Verfahren sowie von Aromatisierung und DHD-Verfahren gewonnen wurden.

Tabelle 2-14: Vergleich von Flugbenzinen aus Steinkohle-Mittelöl 23)

Verfahrenstyp	Benzi- nierung			Benzinier. + DHD	Aromatis. + DHD
		300 at	700 ac		
Spez.Gewicht bei 15 ⁰ C	0,730	0,806	0,780	0,785	0.844
Aromaten + Olefine (Vol.%)	8	50	l 39	50	83
Gesamtbenzin MOZ 73 MOZ 91(0,12% TEL)	73 91	80 91	 79 91	84,5 94,5	92 100
Restbenzin MOZ (aromatenfrei)		65	 69 	75	72

Die Gase aus der Gasphasebehandlung enthielten mehr $\rm C_3-$ und $\rm C_4-$ Kohlenwasserstoffe und mehr i-Butan als die aus der Sumpfphase.

In Tabelle 2-15 werden Betriebsdaten für zwei repräsentative Hydrierwerke, dem Hydrierwerk Wesseling, Union Rheinische Braunkohlen-Kraftstoffe AG und dem Hydrierwerk Gelsenberg Benzin AG, mitgeteilt.

Betriebsdaten der Hydrierwerke Wesseling, Union Rheinische Braunkohlen-Kraftstoffe 24) und Gelsenberg Benzin AG 25) aus dem Jahre 1943 Tabelle 2-15:

	Wesseling	Gelsenberg
Anfahrtermin:	1941	1939
Kapazität:	260 000 jato	400 000 jato
Max. Produktion: (1943)	39 400 t Autobenzin 93 200 t Flugbenzin 72 800 t Dieselkraftstoff 21 100 t Treibgas 226 500 t Kraftstoffe	331 500 t Benzin (ohne Blei MOZ = 73) ca. 100 000 t Treibgas ca. 431 500 t Kraftstoffe
Rohstoffe:	78% Braunkohle 78% Braunkohle 67,8% C; 5,1% H; 25,3% O; 1,1% N; 0,75% S; 6,0% Asche; 7,5% Wasser und 22% Mittelöle	Ruhrkohle (83% C i.waf); 4-5% Asche; 8% Wasser
Wasserstoff- herstellung:	a) Aus Wassergas aus BK-Briketts b) Aus Wassergas aus Methan und nied- rigsiedenden Kohlenwasserstof- fen	a) Aus Wassergas (Koks) 100 000 Nm ³ /h b) Aus Schwachgas durch Linde-Zerle- gung c) Von Bunawerk Hüls 15 000 Nm ³ /h d) Aus Hydrierabgas 55 000 Nm ³ /h
	Konvertierung über FeCr-Oxid, CO ₂ -und CO-Wäsche, Verdichtung auf 325 at, Nachverdichtung auf 700 at	Wassergaskonvertierung mit FeCr-Oxid, CO2- und CO-Wäsche, Verdichtung auf 325 at, Nachverdichtung auf 700 at

_
15
2-1
je
Tabel
Ta
zung
Ţ
ortse
O

(Fortsetzung Tabelle 2-15)	elle 2-15)	
	Wesseling	Gelsenberg
Hydrierung: Sumpfphase		
- Einsatz	Brei aus 36% Reinkohle, 5% Roterz + 1,25% Schwefel als Katalysator, 1,4 t/m ³ /h	Brei aus 45% Kohle, 3% Katalysator (1,2% Ferrosulfat, 1,5% Bayer- masse, 0,3% Natriumsulfid), 0,9 t/m3/h eingesetzt
- Betriebs- daten	4 Kammern mit je 4 Reaktoren von zusammen 32 m³ Reaktionsraum/ Kammer, mittl. Reaktionsdruck 650 at, mittl. Wasserstoffdruck 475 at, mittl. Reaktionstemperatur 475°C	6 Kammern mit je 4 Reaktoren, 36 m ³ Gesamtreaktionsraum je Kammer, mittl. Reaktionsdruck 650 at, mittl. Wasserstoffdruck 560 at, Reaktionstemperatur 475-480°C
Wasserstoff- verbrauchProdukte	rd. 1 850 Nm ³ /t Mittelölneu- bildung (0,265 $t/m^3/h$) 40% Mittelöl, Kp < 348°C	rd. 1 900 Nm ³ /t Mittelölneu- bildung (0,225 t/m ³ /h) 10% Benzin (bis 155 ⁰ C) + 90% Mittel- 21 /hig 225 hzw 3400C): (0.253 t/m ³ /h)
	60% Rückstand, Kp > 340°C Mittelöl: 15,4% Phenole, Dichte/20°C 0,927 Zusammensetzung nach Entphenolierung: 62,5% Aromaten, 17,2% Olefine, 11,1% Paraffine, 9,2% Naphthene	Mittelöl (220-327°C): Phenole 12,9%, Dichte O,979, Anilinpunkt -31°C. Nach Entphenolierung: Dichte O,968, Anilinpunkt -29°C, Ungesättigte 13,0%
Gasphase - Vorhy- drierung	2 Einheiten mit je 1 Reaktor mit Kat. 5058 - 2 Reaktoren mit Kat. 7846 W und 1 Einheit mit 1 Reaktor mit Kat. 5058 + 1 Reaktor mit Kat. 7846 W; Reaktionsgesamt-volumen 64 m ³	4 Kammern mit je 3 Reaktoren von zu- sammen 24 m³ Reaktionsraum je Kammer, Katalysatoren für Reaktor 1 + 2 meist 5058,für Reaktor 3 meist 8376

	Gelsenberg	(1) 53	325 at, 390-440°C	ca. 900 Nm ³ /t Flugbenzin (für Vorhydrierung 600, für Benzinierung 300 Nm ³ /t Einsatz)	a) Vorhydrierung: Einsatz: ca. los Benzin (bis 155°C) + 90% Mittelöl (155-340°C), Dichte 0,940, Schwefel 0,35% Produkt: ca. 25-40% Benzin (bis 155°C), Dichte ca. 0,74 je nach Kataly- sator, Rest Mittelöl, Dichte ca. 0,81; Durchsatz 0,6-0,8 t/m³/h, b) Benzinierung: b) Benzinierung: ca. 65% Mittelöl aus Vor- hydrierung + 35% Rückführmittelöl (Siedeende 290°C), Dichte 0,855, Ani- linpunkt 47-50°C	
Tabelle 2-15)	Wesseling	1 Einheit mit 5 Reakvoren mit Kat. 6434; Rezktionsvolumen 40 m3	325 at, 410-425°C	Vorhydrierung 390 $\rm Nm^3/t$ Einsatz, Benzinierung 230 $\rm Nm^3/t$ Einsatz	Benzin (bis 180°C) Vornydrierung 0,28 t/m³/h Benzinierung 0,71 t/m³/h a) Vorhydrierung: Einsatz: Mittelöl aus Sumpfphase Einsatz: Mittelöl aus Sumpfphase produkt Benzin bis 180°C Aromaten \$ 0,03 - 180°C Aromaten \$ 15,0 8,4 Olefine \$ 29,4 30,4 Paraffine \$ 29,4 30,4 Paraffine \$ 53,6 60,5 b) Benzinierung: b) Benzinierung: Einsatz: ca. 56& Vorhydrierungs-mittelöl + 44% Rückführmittelöl	
(Fortsetzung Tal		- Benzinierung	- Druck, Temp.	- Wasserstoff- verbrauch	• Produkte	

(Fortsetzung Tabelle 2-15)

	Wesseling	Gelsenberg
	Produkt: Dichte 0,724	Produkt: ca. 60-65% Benzin (bis 155°C), Durchsatz 0,9-1,1 t/m ³ /h, Dichte 0,740,
	3 8 49,	Siedekurve
	Aromaten % 6,1 Olefine % 1,9	Beginn OC 46
	4 4 L	් අත අත .
		- 150°C % 9° Endpunkt °C/% 151/98
		Dampfdruck, at 0,50
		o de e
		Aromaten % 9
	•	MOZ 73
Nachverar- beitung:	DHD-Anlage geplant, Alkylierungs- anlage für hochoktanigen Kraft-	Keine DHD-Anlage, zeitweilige Aromati- sierung
	stoff erstellt, Jedoch noch keine Produktion	•
Wasserstoff-	2 400 Nm ³ /t Autobenzin	2 650 Nm ³ /t Autobenzin
Verbrauch tur Fertigprodukt:		

2.1.6 Wirtschaftlichkeit der Kohlehydrierung vor 1945

Die Kosten der Produkte ergeben sich aus den Kosten der für den Prozeß eingesetzten Roh- und Hilfsstoffe (Kohle bzw. Teer, Wasserstoff und Katalysator) und von den Betriebskosten, die weitgehend vom gewünschten Endprodukt abhingen, sowie der Amortisation der Anlagen und den Erlösen für Nebenprodukte. Einen wesentlichen Anteil, etwa 70% an den Einsatzkosten und etwa 50% an den Endkosten, hatte der Wasserstoff. Tabelle 2-16 enthält eine Zusammenstellung des Wasserstoffverbrauchs für die Herstellung verschiedener Endprodukte aus verschiedenen Einsatzprodukten.

Tabelle 2-16: Wasserstoffverbrauch für verschiedene Rohstoffe und Endprodukte 18)

Rohstoff	Endprodukt	H ₂₃ Verbrauch m³/t Endprodukt
Steinkohle (SK)	Autobenzin (OZ 70)	28800
Braunkohle (BK)	11	2 400
Kokereiteer	tt	2 1.00
SK-Urteer	11	1 300
BK-Schwelteer	п	850
Erdölrückstand	Ħ	900
Gasöl	lt .	500
Steinkohle	Heizöl u. Autobenzin	2 100
Braunkohle	Dieselöl	1 900
Erdölrückstand	II .	500
Braunkohlen- schwelteer	Dieselöl-Schmieröl- Paraffin (TTH)	550

Tabelle 2-17 gibt für die Produktion von 200 000 jato Autobenzin Rohstoff- und Wasserstoffverbrauch sowie das erforderliche Reaktionsvolumen, das sich in den Investitionskosten auswirkt, wieder.

wie Reaktionsvolumen für 200 000 jato Autobenzin

Tabelle 2-17: Rohstoff- und Wasserstoffverbrauch s (OZ 70) aus verschiedenen Rohstoffen	l Wasserstoff ærschiedenen	owie 26)	aktionsvoj	Lumen fur	Reaktionsvolumen fur 200 000 jaro Autobenka	Tomacon No.
	Verbrauch	Verbrauch an		Reaktio	Reaktionsvolumen	
	an Rohstoff t/t Benzin	Wasserstoff t/t Benzin Nm ³ /h	Sumpf- phase	Vorhy- drierung	Benzinie- rung	Gesamt
Robbenzin	1,01	0,002 500	! 1	10	1	10
Frd31-Mittel51	1,06	0,032 9 000	!	18	30	48
Kokerei-Mittelöl	1,07	0,097 27 000	1	45	32	77
Braunkohlenteer	1.20	0,081 23 000	42	45	30	117
prasirioketand (mit 118 H.)	1,26	0,073 20 500	20	18	31	66
Kokereiteer	1,28	0,176 50 000	68	34	32	134
Brannkohle (mitteldeutsch)	2,07	0,198 55 000	84	35	46	165
Steinkohle (Ruhr, 700 at)	1,63	0,236 66 000	105	34	25	164
Steinkohle (Ruhr, 300 at)	1,77	0,258 72.000	168	34	25	227

Die Herstellung der gleichen Menge Flugbenzin hätte ca. 20% mehr Wasserstoff und ein um etwa 20% größeres Reaktionsvolumen erfordert. Die Gewinnung von Autobenzin und Dieselöl allein hätten den Wasserstoffverbrauch um etwa 25% herabgesetzt. Außerdem hätte in diesem Falle eine Kombination von Sumpfphase-Hydrierung und Vorhydrierung den damaligen Anforderungen an die Qualität von Benzin und Dieselöl genügt.

Äußerst wichtig für die Wirtschaftlichkeit war die Bereitstellung von billigem Wasserstoff. Da bei der Kohlehydrierung kein besonders reiner Wasserstoff erforderlich war, konnte nach wirtschaftlichen Gesichtspunkten entschieden werden, ob reiner Wasserstoff oder billigere wasserstoffreiche Gase einzusetzen seien und in diesem Falle damit verbundene zusätzliche Kosten - für Kompression, höheren Arbeitsdruck und Auswaschen - in Kauf genommen werden sollten. Der durchschnittliche Preis des Wasserstoffs zur Kohlehydrierung lag bei 42-45 RM/1 000 Nm³.

Ein weiterer wichtiger Kostenfaktor waren die Anlagekosten. Abb. 2-9 gibt die Kosten für die Anlage eines Werkes zur Erzeugung von 200 000 jato Autobenzin, einmal nur mit Verwertung des Benzins, dann auch des entstandenen ${\rm C_3/C_4}$ -Anteils als Treibgas. Angegeben sind Gesamtzahlen einschließlich der Kosten für Energieerzeugung und -verteilung, Nebenanlagen und Kapitalbeschaffung. Ergänzend sei hinzugefügt, daß im Apparatebau der Preisindex, der die Anlagekosten derartiger Werke weitgehend bestimmt ist, von dem für 1938 mit 100 angesetzten Wert auf 250 im Jahre 1958 und 530 im Jahre 1970 gestiegen ist.

über die Herstellungskosten für Benzin liegen recht unterschiedliche Angaben vor, z.B. für Leuna 190 RM/t, für Gelsenberg dagegen 244 RM/t. Der niedrige Preis für Leuna ist durch die geringeren Amortisationskosten - die Anlagen waren z.T. bereits 1927 erstellt - bedingt.

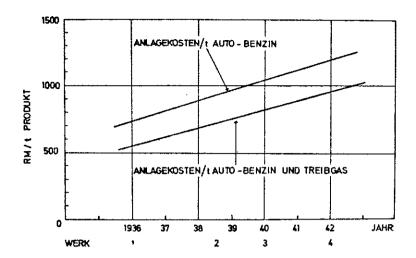


Abb. 2-9: Gesamtanlagekosten in den Baujahren 1936-1942, bezogen auf eine Anlage für 200 000 jato Autobenzin (OZ 70) aus Steinkohle 18)

Sehr wichtig bei der Beurteilung von Zahlenangaben der Literatur ist die Tatsache, daß manche Werke mit einem vom Staat garantierten Preis der Endprodukte von 240 RM/t Benzin, andere aber mit einer vom Staat garantierten Verzinsung des investierten Kapitals von 5% arbeiteten.

Tabelle 2-18 gibt am Beispiel zweier Werke eine Aufschlüsselung der Herstellungskosten des Benzins. Erwähnt sei, daß damals Erdölbenzin 0,06 RM/Liter kostete.

Tabelle 2-19 zeigt die technisch möglichen und wirtschaftlich vertretbaren Variationsmöglichkeiten der Produktverteilungen einer Anlage, geplant für 400 000 jato Autobenzin bzw. für 200 000 jato Autobenzin und 200 000 jato Heizöl nach dem Stand der 40er Jahre.

Herstellungskosten für Autobenzin (OZ 70) Tabelle 2-18:

Tabelle 2-19:

Möglichkeiten der Variation der Produktionskapazität einer Anlage für die Hydrierung
bituminöser Steinkohle mit der Art der Produkte 28)

	Kapazität in 1 000 jato							
Produkt	Planung	Alte	rnati 2	ven 3	Planung	Alte l	rnati 2	ven
Autobenzin	400		164	_	200	_	127	_
Flugbenzin	_	360		200	_	180	-	134
Dieselöl	_	-	252	186	-	-	78	54
Heizöl	_	-	-	-	200	200	200	200
Summe	400	360	416	386	400	380	405	388

Abb. 2-10 vermittelt einen zusammenfassenden Überblick in Form einer Energiebilanz. Um beispielsweise aus Steinkohle 1 kg Fertigprodukt, bestehend aus 0,8 kg Benzin + Dieselöl und 0,2 kg Flüssiggas herzustellen, waren insgesamt 3,6 kg Kohle nötig. Von dieser Menge wurden 1,25 kg zur Hydrierung, 1,36 kg zur Wasserstofferzeugung und 1 kg zur Energieerzeugung verbraucht.

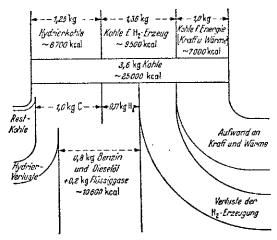


Abb. 2-10: Energiebilanz der Steinkohlehydrierung 29)