Appendix C
EIT Data Acquisition Code SLOWEIT.BAS

This Microsoft® QuickBasic™ program functions in a similar manner to
FASTEIT.BAS, but initializes the EIT system so that multiplexer commands are issued by the
data acquisition card instead of the internal counters. Memory is statically allocated by the code,
and voltages are stored in arrays after each projection set is collected, rather than being held in
buffers until all projection sets are complete.

? kkk

r*x*x Steve and Ann’s EIT code

P RER Revised 9/19/96 by dlg

fREx Revised 11/1/96 by kas to add symmetry checks
rREK Revised 6/97 by dlg to adapt to eight electrodes
£k xx Revised 7/97-8/97 by slc and dlg for speed

i Revised 11/97 by dlg to move statistics code to separate module
7 kkk

’ SDYNAMIC

DECLARE SUB exit.error (status AS INTEGER, message AS STRING)
DECLARE SUB cleanup (dummy)

DECLARE SUB eistats (elec%, proj%, slength%, carrsumé& (), quadsum&(), Vsum! (), resp$)
' Definition files for extended memory manager, error codes, counter/
timer subroutines and software tools; these files define several
constants used in subroutine calls, which are found in BOLDFACE

’ in the code

I

’

"$INCLUDE: ‘d:\toolkit\dtst_xmm.bi’
’$INCLUDE: ‘d:\toolkit\dtst err.bi’
$INCLUDE: ‘d:\toolkit\dtst_ctr.bi’
"$INCLUDE: ‘d:\toolkit\dtst_tls.bi’

'DECLARE SUB featur (iunit AS INTEGER, ihandle AS INTEGER) ’ diagnostic subroutine

'DECLARE SUB putboard (iunit AS INTEGER, ihandle AS INTEGER, idmal AS INTEGER, idmaZ2
AS INTEGER, intrpt AS INTEGER, adsetup AS INTEGER, dasetup AS INTEGER, itmout
AS INTEGER) ’*** replaced by direct call to dt.set.board

'DECLARE SUB getboard (iunit AS INTEGER, ihandle AS INTEGER) ’ diagnostic subroutine

DIM digitalio AS DIGITALIOSTRUCT
DIM sap AS SETACQPARAMSSTRUCT
DIM board AS BOARDSTRUCT

DEFINT I-N

DEFSNG A-H
DEFLNG 0O-2Z

146

’ Size of channel/gain table changed so that one pass through the
! table completely fills the buffer --- slc & dlg, 7/97

CONST blength% = 64 ’ this is the buffer length

DIM ibuff (blength% - 1) ' buffer array

DIM ichan(blength% - 1) ’ channel array for channel/gain table
DIM igain(blength% - 1) ’ gain array for channel/gain table

’ Number of electrodes can now be set at 8 or 16 —--- dlg, 5/27/97
CLS
PRINT
PRINT "This EIT program sets the individual electrodes as current, ground, or"
PRINT "measurement. The voltage output of the demodulators is recorded for"
PRINT "analysis. "
PRINT
DO

INPUT "Enter the number of electrodes (8 or 16): ", elec%

IF elec% <> 8 AND elec% <> 16 THEN

PRINT "Incorrect input."

END IF

LOOP UNTIL elec% = 8 OR elec% = 16

DIM carrsum& (1l TO (elec% - 1), 2 TO elec%, 1 TO elec%) ’ sums of carrier voltages
DIM quadsum& (1 TO (elec% - 1), 2 TO elec%, 1 TO elec%) ' sums of quadrature voltages
DIM Vsum! (1 TO 100, 1 TO elec%) * sums of off-centerline electrode voltages

! for 180-degree injection/ground cases

! indexed by projection and relative

! location

' Initialize system for data acquisition
’ DO...LOOP WHILE added to eliminate bug in output options -- dlg, 5/28/97

DO
INPUT "Input the number of projections to be taken (1 to 100): ", proj%
IF proj% < 1 THEN proj% = 1
IF proj% > 100 THEN proj% = 100
’ PGA202 amplifier gain is now adjustable before execution --- dlg, 8/2/96
! Default gain changed to 10 with addition of AC coupling filters; gain
! of 1 is now too low --- dlg, 8/97

INPUT "Do you wish to change the amplifier gain from the default (Y/N) (default N)?
", gainset$

IF gainset$ = "Y" OR gainset$ = "y" THEN

PRINT "Input the index for the amplifier gain:"

PRINT * N=20 Gain = 1
PRINT * 1 io"
PRINT " 2 io0"
PRINT " 3 1000"
INPUT "Recommended value is N = 1 (default). ", igainpwr

IF igainpwr < 0 OR igainpwr > 3 THEN igainpwr = 1
ELSE

igainpwr = 1
END IF

fxkxkkk*x Initialize summation and averaging arrays **x%xxk

147

TS T L L T T L

FOR icurrent = 1 TO elec% - 1 ’icurrent = index of current injection

electrode

FOR iground = icurrent + 1 TO elec% ’‘iground = index of current return electrode
FOR ivolt2 = 1 TO elec% rivolt2 = index of voltage meas. electrode
carrsumé& (icurrent, iground, iveolt2) = 0
quadsumé& (icurrent, iground, ivolt2) = 0

NEXT ivolt2
NEXT iground
NEXT icurrent

FOR 1 = 1 TO proj%
FOR ivolt2 = 1 TO elec$%
Vsum! (i, ivolt2) = 0!
NEXT ivolt2
NEXT i

"xx%%x%%%x Initialize and reset the DT283X board ****x**
‘*** Diagnostic calls to ‘exit.error’ added after each ’dt.’ call ---
fERxE dlg, 8/25/97

I

idrivername$ = "DT283X$0" + CHRS$ (0)
iunit = 0 'Board is unit O

SADD and VARSEG functions pass the address of their arguments;
retained from example on p. 24 of software toolkit user’s manual

istat = dt.initialize (SADD (idrivername$), VARSEG(idrivername$), ihandle)
IF istat <> 0 THEN CALL exit.error(istat, "dt.initialize")

istat = dt.ct3l.initialize(ihandle)

IF istat <> 0 THEN CALL exit.error(istat, “"dt.ct3l.initialize")

istat = dt.reset (iunit, ihandle)

IF istat <> 0 THEN CALL exit.error (istat, "dt.reset")

Get the board’s feature list
CALL featur(iunit, ihandle) ’*** diagnostic

Get/set the board parameters
CALL getboard(iunit, ihandle) ’*** diagnostic

board.dmachannell = 5 'DMA channel 1 selection

board.dmachannel2 = 6 'DMA channel 2 selection ‘*** removed for single
DMA

board.interruptlevel = 10 interrupt level

board.boardtimeout = 10 '10-second wait before timeout error returned

board.adsetupbits = 0 ra-to-d setup code

board.dasetupbits = NODACS ‘d-to-a setup code

istat = dt.set.board(iunit, ihandle, board)
IF istat <> 0 THEN CALL exit.error(istat, "dt.set.board")

CALL getboard(iunit, ihandle) ’*** diagnostic

'xx%kk*k** Set board acquisition parameters *¥**x*xx%

isection = ADSECTION
isize = blength$%

digitalio.command = SETXFER
digitalio.direction = DIOOUTPUT

fxkkkkx*x Create a buffer ****x*x%x%

r

’

‘dt.create.buffer’ moved out from electrode loop, since it must be
created before channel-gain list --- dlg, 8/25/97

148

1
I
7
14
1
’

~ ~ w0~

L R

R

’

7

istat dt .create.buffer (iunit, isection,
IF istat <> 0 THEN CALL exit.error (istat,

isize, ibuff(0), ibhandle)
"dt.create.buffer")

Create a channel/gain list (since the board can apply a different

gain to each D/A channel)

DT2839 channel gains: gain igain()
1 0
2 1
4 2
8 3
Board range is set at +/- 10V.
FOR jj = 0 TO 31
ichan(2 * jj) = 0: ichan(2 * jj + 1) =1
igain(2 * jj) = 0: igain(2 * j3 + 1) =0

NEXT 33

Subroutine ’dt.create.cgl’ expects ichan() and igain() arrays to be

passed by reference, not by value,

so last two arguments are the

first elements in each array, not the arrays themselves
Hardwired list size replaced by ’‘blength%’ to match buffer and

list sizes --- dlg, 8/27/97

istat dt.create.cgl (blength%, ichan(0),
IF istat <> 0 THEN CALL exit.error(istat,

igain(0))

"dt.create.cgl")

Clock rate must be reduced from 416 kHz to 320 kHz when channel gain > 1.
If value of arate is not a possible conversion rate, driver rounds up

to the next highest available rate.

IF igain(0) = 0 AND igain(l) = 0 THEN
arate = 400000

ELSE :
arate = 300000

END IF

Transfer mode changed from BDUAL (dual channel DMA) to BSINGLE (single
channel DMA) to speed things up --- slc and dlg, 7/97
Maximum possible trigger rate to scan channel-gain list (CGL) is

clockrate/ (CGL size + 2).

If sap.trigrate is set too high,

'dt.set.acq’ will round down to the highest possible rate ---

dlg, 8/22/97

sap.
sap.
sap.
sap.
sap.

section isection
transfertype = BSINGLE
clockrate arate
trigrate arate / 4
cutoff =

0

istat
PRINT

dt.set.acqg(iunit, ihandle,

"New clockrate ",

isection,
sap.clockrate ’*** diagnostic

sap)

PRINT "New trigger rate = "; sap.trigrate ’*** diagnostic

IF istat <> 0 THEN CALL exit.error(istat,

hhkkkk

"dt.set.acq")

Rules to set current injection and ground electrodes and voltage

amplifier:

There are (N-1)*N/2 possible projections, where N is the number of

149

electrodes. ‘“icurrent" is the injection electrode, and "iground"”
is the return electrode.

All linearly independent combinations of electrode pairs will be used.
When only eight electrodes are used, leads 9 through 16 must be
connected, with 1 through 8 isolated; this is needed for the
internal counters to operate in fast mode, so the same convention
was placed in this slow version of the code.

Arrangement of ports which communicate to the EIT electronics:

Port 0 Bit: 00 01 02 03 04 05 06 07
| electrode address |enable| latch address |

Port 1 Bit: 10 11 12 13 14 15 16 17
| electrode address |enable| PGA202 gain | not |
used |

To ready electrodes for current injection or voltage measurement,
the digital I/0 lines must be set as follows to commumicate with
the correct muxes:

Port 0: Bit 05 Bit 06 Bit 07
current injection or ground mux L L L

voltage measurement or reference mux H L L

To select an electrode, the following i/o lines must be set:

Bit 04
Port 0: Bit 00 Bit 01 Bit 02 Bit 03 (enable)
current injection A0 Al A2 A3 H
voltage reference (ground) A0 Al A2 A3 H
Bit 14
Port 1: Bit 10 Bit 11 Bit 12 Bit 13 (enable)
current return (ground) A0 Al A2 A3 H
voltage measurement A0 Al A2 A3 H

A0, Al, A2, A3 are set high or low according to the table below:

o]
w
»
N
e
[
g
o

Electrode

josfils il olie s fio sl a ot e vl « s B o el Y o v o
ot il oo s ot B e Y o Y o < <+ 4 o e e ol s
o o J e < < o B < o = S o i e S o
ool cpBis) B e = B o v S 8 v« o T i« A B e & S v < I

To set the PGA202 amplifier gain, the following digital i/o lines must
be set:
Port 0: Bit 05 Bit 06 Bit 07

L H L
Port 1: Bit 15 Bit 16
a0 Al

150

7

Port 0 values changed with the addition of fast selection counters
’ to the EIT hardware, 7/97.

14

’ A0 and Al are set high or low according to the table below:

14

! Value added to integer which
! Al A0 Gain selects voltage channels

’ L L 1 0

! L H 10 32

! H L 100 64

! H H 1000 96

7

I kkkk*k

! xkxkk%% Set amplifier gain **F***k**%

' This set of commands latches the gain on the PGA202 amplifier and
! instructs the system not to use the new internal electrode

! counters. The ’'64’ in .diovalue selects the gain mux.

digitalio.dioport = PORTO

digitalio.diovalue = 64

istat = dt.set.dio(iunit, ihandle, digitalio) ’sends word to di/o.

IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (PGA202 PORTO)")

gain% = 32 * igainpwr

digitalio.dioport = PORT1

digitalio.diovalue = gain$

istat = dt.set.dio(iunit, ihandle, digitalio) ‘sends word to di/o.

IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (PGA202 PORT1)")

' The following function, dt.ct3l.gate.delay, is used here to send
! a pulse from clock CLK1l. The pulse will force the address decoder to
’ enable the gain latches, which will then set the gain muxes.

istat = dt.ct3l.gate.delay(iunit, 0, 0, 1, 2)

IF istat <> 0 THEN CALL exit.error(istat, "dt.ct3l.gate.delay (PGA202)")

P khkkhkkhkhhkhkkhkhkhkhkhkkhkihk START OF DATA ACQUISITION LOQOP ***kkkkkkkhkhkhhkkikxkx
PRINT "Acquiring projections...": PRINT
' OPEN "d:\data\diagnose.dat" FOR OUTPUT AS #2 ‘*** diagnostic
FOR projloop% = 1 TO proij%
! Get clock time at start of projection routine
starttime! = TIMER
! ’icurrent’ is the array index for the injection electrode, while
‘icelec’ is the associated electrode number; in the case of eight
! electrodes, ‘icurrent’ ranges from 1 to 8, while ‘icelec’ runs

! from 9 to 16. See note under "Rules to set electrodes™ above.

FOR icurxent = 1 TO elec% ~ 1
icelec = 16 - elec% + icurrent

"iground’ and ‘igelec’ have the same relationship as ‘icurrent’
! and ’icelec’

FOR iground = icurrent + 1 TO elec%
igelec = 16 - elec% + iground

151

LIV, v EEESs—

In the statement (digitalio.diovalue=icelec-1+16+0), icelec is the
electrode that is the current injector; ‘-1’ sets the bit pattern
correctly, e.g., for current electrode 8, a 7 in binary needs to be
sent to the digitalio channels. The '+16’ sets bit 04 to high,
enabling the latches. ‘+0’ is a placeholder which represents
the selection of current muxes; see the later statements for
voltage muxes, where ‘+32’ appears.

Write address of injection electrode to port 0

digitalio.dioport = PORTO

digitalio.diovalue = icelec - 1 + 16 + 0

istat = dt.set.dio(iunit, ihandle, digitalio)

IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (current mux PORT 0)")

Write address of ground electrode to port 1

digitalio.dioport = PORTL

digitalio.diovalue = igelec - 1 + 16

istat = dt.set.dio(iunit, ihandle, digitalio)

IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (current mux PORT 1)")

istat = dt.ct3l.gate.delay(iunit, 0, 0, 1, 2)
IF istat <> 0 THEN CALL exit.error(istat, "dt.ct3l.gate.delay (current mux)")

The next command is used to set the reference voltage electrode,
ivoltl. The reference electrode is chosen to be the ground electrode.
’+32’ selects the voltage muxes.

ivoltl = igelec

digitalio.dioport = PORTO

digitalio.diovalue = ivoltl - 1 + 16 + 32

istat = dt.set.dio(iunit, ihandle, digitalio) ’sends word to di/o.

IF istat <> 0 THEN CALL exit.error (istat, "dt.set.dio (voltage mux (PORTO)}")

This loop is used to choose the electrode for voltage measurement,
ivelec. This electrode goes through all possible values. ’ivolt2’
and ‘ivelec’ have the same relationship as ‘icurrent’ and ’icelec’.

FOR ivolt2 = 1 TO elec%
ivelec = 16 - elec%$ + ivolt2

digitalio.dioport = PORT1
digitalio.diovalue = ivelec - 1 + 16

istat = dt.set.dio(iunit, ihandle, digitalio) ’sends word to di/o.
IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (voltage mux PORT1)")

istat = dt.ct3l.gate.delay(iunit, 0, 0, 1, 2)
IF istat <> 0 THEN CALL exit.erxror(istat, "dt.ct3l.gate.delay {(voltage mux)")

Now data must be read from the A/D channels. A/D Channel 0 is the
carrier signal, A/D channel 1 is the quadrature signal.

Reset buffer

istat = dt.reset.buffer(ibhandle)
IF istat <> 0 THEN CALL exit.error(istat, "dt.reset.buffer")

Take multiple measurements and average output values for in-phase
and quadrature signals. Acquire blength%/2 samples on each channel.

152

istat = dt.start.acqg(iunit, ihandle, isection)
IF istat <> 0 AND istat <> 1 THEN

CALL exit.error(istat, "dt.start.acq")

istat = dt.stop.acq(iunit, ihandle, isection)
END IF

'*%% Diagnostic check of buffer added --- dlg, 8/27/97
' recheck:

’

’

14

istat = dt.check.buffer(iunit, isection, ibhandle, ibufstat)
IF ibufstat <> 194 THEN PRINT "Buffer status = "; ibufstat
IF ibufstat = 194 THEN GOTO recheck

Check that buffer has been processed
Buffer reset commented out to ensure data survives until it is
read --- dlg, 8/27/97

istat = dt.wait.buffer(iunit, isection, ibhandle)
IF istat <> 0 THEN CALL exit.error(istat, "dt.wait.buffer")

istat = dt.reset.buffer (ibhandle)
PRINT "Handle of reset buffer = "; ibhandle
IF istat <> 0 THEN CALL exit.error(istat, "dt.reset.buffer")

Oversampled voltage measurements have been sent to the buffer, alternating
between carrier and quadrature values, blength%/2 of each; measurements
are now stripped from the buffer and placed in the ’‘carrsum&’ and
’quadsum&’ arrays

ocave& = 0: ogave& = 0

FOR ib = 1 TO blength% / 2
*** diagnostic prints added

PRINT #2, USING "& &"; HEX$ (ibuff(2 * ib - 2) + 2048); HEX$(ibuff(2 * ib

- 1) + 2048) " ***
PRINT "carrier value = "; ibuff(2 * ib - 2), ’/**x
PRINT "quadrature wvalue "; ibuff(2 * ib - 1) ‘***
ocave& = ocaveé& + ibuff (2 ib - 2)
ogave& = oqave& + ibuff (2 ib - 1)
NEXT ib

kg~

WRITE #2, projloop%, icurrent, iground, ivolt2, (ocave& / (blength% / 2)),

(oqave& / (blength% / 2))’***diagnostic
WRITE #2, icurrent, iground, ivoltl, ivolt2, icelec, igelec, ivelec,

(ocave& / (blength% / 2)), (ogave& / (blength% / 2))’***diagnostic
carrsumé (icurrent, iground, ivolt2) = ocave& + carrsumé (icurrent, iground,
ivolt2)

quadsumé (icurrent, iground, ivolt2) = ogave& + quadsumé& (icurrent, iground,

ivolt2)

Calcuate average voltages for each projection for each case where
the current injection and ground are 180 degrees opposed. There are
(elec%/2) cases per projection and the voltages are recorded and
averaged for each electrode.

IF iground = (icurrent + (elec% / 2)) THEN
k = ivolt2 - icurrent + 1
IF k < 1 THEN k = elec% + 1 - icurrent + ivolt2

Vsum! (projloop%, k) = Vsum! (projloop%, k) + SQR(CSNG(ocave& ~ 2 + ogave& *

2))

PRINT USING "ocave (##) = ###### ogave (##) = ######"; k; ocaves /
(blength% / 2); k; ogave& / (blength% / 2) ’***diagnostic

153

END IF

NEXT ivolt2

NEXT iground
NEXT icurrent
FOR k = 1 TO elec%

Vsum! (projloop%, k) = Vsum! (projloop%, k) / CSNG((elec%t / 2) * (blength% / 2))
NEXT k

Record time at which projection work ends

endtime = TIMER

PRINT USING " Projection ### of ### acquired in ##.## seconds"; projloop%; proj%;
endtime - starttime!
' proj% printout on previous line added by TJO 11/6/96
PRINT USING " Mean Cross Electric Voltage, injection at 1 = #####.## ",
Vsum! (projloop%, 1)
PRINT
NEXT projloop%
’ CLOSE #2 ’'*** diagnostic file

Set bit 04 to zero to disable muxes and shut off current injection at
’ electrodes --— dlg, 11/6/97

digitalio.dioport = PORTO

digitalio.diovalue = 0

istat = dt.set.dio(iunit, ihandle, digitalio)

IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (current mux PORT 0)")
digitalio.dioport = PORT1

digitalio.diovalue = 0

istat = dt.set.dio(iunit, ihandle, digitalio)

IF istat <> 0 THEN CALL exit.error(istat, "dt.set.dio (current mux PORT 1)")

istat = dt.ct3l.gate.delay(iunit, 0, 0, 1, 2)
IF istat <> 0 THEN CALL exit.error{istat, "dt.ct3l.gate.delay (current mux)")

Delete buffers and terminate communication with board

¢ tdt.delete.buffer’ and ‘dt.ct3l.terminate’ moved outside electrode
loop, into subroutine where they can be called under normal or
abnormal conditions (in ‘exit.error’) --- dlg, 9/11/97

CALL cleanup (dummy)

istat = dt.terminate (ihandle)
IF istat <> 0 THEN CALL exit.error(istat, "dt.terminate")

INPUT " Hit <return> to continue. ", resps
P kkkhkkkhkkhkkkhkkkhkhkkkkk END OF DATA ACQUISITION LOOP khkkhkkhkhkhkhkkkhkhkkhkkkkhhkkx
* Call subroutines to compute voltage statistics and output results
CALL eistats(elec%, proj%, (blength% / 2), carrsum&(), quadsum&(), Vsum! (), resp$)

’ DO...LOOP WHILE added to eliminate bug in output options -- dlg, 5/28/97

154

LOOP WHILE resp$ = "C" OR resp$ = "c"
PRINT : PRINT " Program stop.": PRINT

CLOSE
END

REM $STATIC
SUB cleanup (dummy)
SHARED iunit, isection, ibhandle, ihandle

istat = dt.delete.buffer(iunit, isection, ibhandle)

IF istat <> 0 THEN PRINT “"dt.delete.buffer, istat = ";

istat = dt.ct3l.terminate (ihandle)
IF istat <> 0 THEN PRINT "dt.ct3l.terminate, istat

END SUB

155

istat

istat

Danrs R P AT P T A" § T e i Aot o o Mk AF L AC M § RPN P . bt ot oy oo e S e P iy g 3 o

