24.3. EIT Reconstruction Algorithm: Theory

For a two-dimensional system (i.e. with infinitesimal strip electrodes), the field equation and
boundary condition for the voltage field V& )(x) are as follows:

V- [6VV®] = §(x)8(y) in the domain, _ (25)

n-oVv® = (s — s(k)) on the boundary, (26)

where s is the arc length along the boundary, s® is the location of electrode % , O is the Dirac delta
function, and the reference point is placed at the origin without loss of generality. The delta-function
terms in the field equation and the boundary condition represent current flow out of the domain at the
reference point and into the domain from electrode %, respectively. For a three-dimensional system
(i.e. with infinitesimal point electrodes), the single delta function in the boundary condition is
replaced by the product of two delta functions in the coordinates needed to define the two-dimensional
boundary surface, and the product of two delta functions in the field equation is replaced by a product
of three delta functions in all three coordinates.

A Galerkin finite-element method (FEM) is used to discretize the voltage field:

N
V@ = ¥ o;xVP, @7)
j=0

where Vﬁk) is the voltage at node i and ¢,;(x) is the (global) basis function for node i. The standard
FEM procedure is applied to generate equations for the nodal values of voltage: multiply the above
equation by ¢;(x), integrate over the entire domain, apply integration by parts, and insert the
boundary condition to specify the flux on the boundary. As indicated above, one voltage must be
specified to generate a unique solution. The voltage at the reference point, denoted node 0, is set equal
to zero. The voltage equation results from this approach, where M;; is the global stiffness matrix and
8,; is the Kronecker delta:

z MVP =8, M;= J-ovq;,. -Vo,dxdy ,fori=1,..,N,. (28)

Note that the voltage equation is not applied at the reference node i = 0.
The conductivity field in the voltage field above is represented as a function of position:

o =o(x{C,}),withoa = 1,..., N, (29)

where the C_ are N, independent adjustable parameters. This representation can be fairly arbitrary
so long as 0 <o <o Although the conductivity functions subsequently used are global and typically
smooth, these restrictions are not required in this development. The voltages V @) depend on the
conductivi parameters C, in a complex way. This dependence can be simplified con31derably if the
voltages V are Imeanzed about the particular values {C,} . This necessitates computation of the
Jacobians aV Yy 9C, . The Jacobian equations are calculated directly from the voltage equation using
the chain rule Where the M ;. are the derivatives of the global stiffness matrix:

oij
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Nn
- _ (&) o =1,..,N
2 MZJ( aC ) - Jg] M(XZJVJ > Malj - J(ac )V¢l V¢dedy for { — 1 N’; .- (30)

Note that the global stiffness matrix appears on the left-hand sides of the voltage equation and all of
the Jacobian equations (i.e. for all values of o). This affords considerable numerical economy since
only one LU (lower triangular, upper triangular) decomposition of the stiffness matrix has to be
performed to solve both the voltage equation and the Jacobian equation.

The reconstructed. conductivity field is characterized by C, values minimizing the rms difference
between the computational and experimental EIT voltages excluding voltages from current-carrying
electrodes. This necessitates adjusting the C, to minimize the quantity

3

k=1(

N =

2 .
Y w Ve + Vet — ™1, with VY = Vi -V, (31)
mn)

where the v(m") are the expenmental EIT electrode voltages at electrode & for source electrode m
and sink electrode n . The weights wk ™ are chosen to exclude current-carrying electrodes:

w;ﬁmn)___{Oifk:mork:n . 32
1 otherwise

Note that arbitrary voltage offsets V(m") have been mcluded in this relation. It might be argued that
there should be only N, arbitrary voltage offsets V0 appearing as the combination [Vo - V0 ]in
the above equation rather than the N, (N,-1)/2 voltage offsets Vo""') that have been used. Under
ideal circumstances, this would be correct. However, electronic and experimental complexities suggest
that the larger number of voltage offsets is more appropriate.

Minimization of I' is achieved by solving the following system for the C,, and the V§™™:
ar o r
EW_O foro=1,. Nc,m-o,forall(mn). (33)

0

This minimization results in the following system of nonlinear equations for the C,:

N° NU aV(mn)
= Z Z Z wimn)w;mn)[(vimn) _ V;mn)) _ (vimn) (mn))]( aC J (34)
k=1p=1(mn)

where the V" and the V"™ are functions of the C,,.

Since these equations in this system are nonhnear a Newton-Raphson (NR) technique is used to solve
them iteratively. The voltages V™ and V ™ (but not their derivatives with respect to the C,) are
linearized about a particular set of values for the C,, where the departures ¢, from these values are
small. The departures c,, are found to satisfy the following system of equations:

Ng

2 Aopcp = By, (35)
B=1

where the matrix A, and the vector B, are given by the relations
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The ¢, values obtained in this manner are used to update the conductivity parameters according to
C.,— C, +c, . Since linearized voltages were used to determine these values, the resulting C_ values
will not minimize I exactly. However, repetitions of this Newton-Raphson process ultimately
converge to the C, values that minimize I'.

The resulting algorithm starts from an initial guess for the C, and proceeds as follows:

1. Compute the M;; and M ;; matrices:

oij

M;; = JGVq)i.Vq)jdxdy, wij = J‘( )Vq)l V¢ dxdy . (38)

2. Perform the LU decomposition of M;;.
3. Solve for the voltages ng) and the Jacobians (8V§k)/ aC,):

Ny (%) N,
*) oV *)
ZMUVJ =8, ZMU BC —2 MV (39)
j=1
4. Compute the matrix A,g and the vector B :
s Vo V(mn) (mn) (mn)
hon 3 5 a2 T v
o H
b= lp 100w » aC, acﬁ BCB
Nc c : aV(mn)
Ba = z wzmn)w;mn){_a_é__}{[vimn) U(mn):| [V(m.n) V(mn)]} ) (40)
k=1p=1(@mn) o
5. Solve for the ¢, :
NO‘
2 AchB = B,. (41)
B=1

6. Update C,— C, +c, and test for convergence.
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One special choice of the functional dependence of ¢ on the C,, is of particular importance because it
reduces by one the number of Jacobian matrices that must be computed:

_ oi(=:{Ca})

,withoa = 2, ..., N, (42)
C,

where 0< C, <. From the voltage equation, it is clear that all voltages are proportional to C, :

v = vy, (43)

where the voltages V", are computed for C; = 1 and are functions of the C, for a = 2,..., Nj.
Minimization results in the following system of (slightly less) nonlinear equations for the C, :

N, Ng V("m) for o =1
k=1p=1(mn) BC fora=2,...,N,
o

Linearization of the voltages about particular values of the C, for a = 2, ..., N, yields the following
linear system for the small departures c :

N
ZAaB{ C, forB=1 }= B, (45)
B=1 Cch forB=2, ""NO'

where the matrix Aaﬁ and the vector B, are given by the relations

Vs for o= 1 Vi -veP forB=1

N, Ny
Aaﬁ = Z Z Z (mn) ;mn) aV(mn) aV(mn) aV(mn) , (46)
k=1p=1(mn) 3¢ fora=2,...,N4 8CB BCB forB=2,...,N,
22

Vi foroa=1

N N
B 2 Z Z w(mn) ;mn) aV(mn) {[U(mn) (mn)]}. (47)
k=1p=1(mn) Wfora 2,...,Nq
o

When this particular approach is used, the quantities C, and C,c, for o = 2,..., N, are the
unknowns when solving the linear system. From these quantities, it is straightforward to determine
the ¢, for oo = 2,..., N,. The ¢, values obtained in this manner are used to update the conductivity
parameters according to C,— C,+c, for a = 2,...,,N,. Of course, the updated value of C, is
determined directly. As previously indicated, since linearized voltages were used to determine these
values, the resulting C, values will not minimize I" exactly. However, repetitions of this Newton-
Raphson process ultimately converge to the C, values that minimize T".
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2.4.4. EIT Reconstruction Algorithm: FEMEIT Implementation

A computer code called FEMEIT has been written to implement the approach discussed in the
previous section. Although intended for two-dimensional problems, FEMEIT was written so that
development of a three-dimensional version would be straightforward. Although to date it has been
applied only to circular domains, FEMEIT can handle general two-dimensional domains, including
multiply connected domains and domains with internal electrodes, so long as electrode widths are
small compared to inter-electrode distances. Since electrodes are represented as mathematiecal points,
a node must be placed at each electrode. Currently FEMEIT uses 3-node linear triangle elements to
assemble the M;; and M, matrices (a three-dimensional extension would probably use 4-node
tetrahedrons). These elements, although of low order, were chosen for several reasons. The quantities
V¢, - Vo, are constant within an element, which is both straightforward to implement and allows this
quantity to be brought out from inside the integrals. Thus, the integration can focus on integrating
the conductivity function over the elements, independent of the values of V¢, -V¢;. Also, circular
domains are easily filled using triangles. The conductivity function is chosen to be a global function
and is currently selected from a library of choices in a subroutine. At present, Cartesian polynomials,
radial polynomials, products of radial polynomials and sines and cosines, and a 5-parameter quadrant
interpolation function are available. Incorporation of additional functional forms into this subroutine
is straightforward. The integration of the conductivity function is performed using a 4-point
quadrature over each triangular element. FEMEIT uses SLATEC subroutines for the solution of the
linear systems and has been compiled on both Sun and IBM machines. A 15-parameter reconstruction
of 16-electrode data using a mesh with 441 nodes requires somewhat under 2 minutes on the IBM.

FEMEIT requires four input data files. Examples of each are shown in Appendix A.
1. nodelm.dat This file contains the mesh information.
(a) The first line has the number of nodes.

(b) Subsequent lines have node number, node x, node ¥ (1 node per line).
Important: the last node must be an internal non-electrode node and will have zero voltage.

(¢) The first line after the nodes has the number of elements.

(d) Subsequent lines have element number and node numbers (1 element per line).
2. exinfo.dat This file contains the electrode nodal locations.

(a) The first line has the number of electrodes N, .

(b) Subsequent lines have the electrode number and the node number (1 electrode per line).

3. exdata.dat This file contains the experimental data. If there are N, electrodes, then
results for N,(IV,-1)/2 experiments are expected.

(a) The first line for each experiment has the current-injecting electrode number, the current-
withdrawing electrode number, and the current per unit length (in A/m).

(b) Subsequent lines for each experiment have the electrode voltages (in V) given in order from
electrode 1 to electrode N, .

4. conpar.dat This file contains conductivity function and parameter information and
convergence requirements.

(a) The first line has the following six variables:
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The maximum relative change in nodal conductivity per iteration.

Damping factor lower and upper bounds between 0 and 1. The relative change in the
conductivity parameters is bounded by these parameters.

A tolerance on the relative change in the conductivity parameters. Iterations continue until
the relative change falls below this value.

A tolerance on the relative degree to which the equations are satisfied. Iterations continue
until the equations are satisfied to better than this value.

A geometric length scale used to normalize all coordinates, including those used within the
selected model for .

(b) The second line has the following variables:

The maximum number of iterations.

An integer denoting the model for spatial variation of o.

The number of conductivity (fitting) parameters used with this model.

The number of internal (nonvarying) parameters used with this model.
(c) The following lines contain:

Starting guesses for all the conductivity parameters.

Values for all the internal parameters.

FEMEIT performs some error checking to make sure that the correct number of parameters have
been entered for the model selected. Five models have been implemented:

m n
1. Sums of polynomialsin x and y: 6 = Zgx ﬁy BCB with conductivity parameters {Cy} and
internal parameters {mg} and {ng} (integers). There are exactly twice as many internal
parameters as conductivity parameters.

m
2. Sums of products of powers of r with functions of 8: ¢ = Zgr Btrig(|nB|G)CB with
conductivity parameters {Cy} and internal parameters {mz} and {ng} (integers), where
trig = cos if ng<0, trig = sin if ng>0, and trig = 1 if ngy = 0. There are exactly twice as
many internal as conductivity parameters.

3. An axisymmetric piecewise linear interpolation in radius with ¢ = Cy at r = Rg. There are
equal numbers of conductivity and internal parameters. The radii By are supplied in
ascending order. The last one must be the radius of the outer circle. The first one cannot be
0. The conductivity is constant at C;, within the first radius.

4. A “bubble” centered at the origin with conductivity parameters C,,C, and internal
parameters P, P, such that C,>0, C;>0,0<P;<1,and P,>0:

c = Cl{l +%[tanh(r;P—zcz)— tanh ;202)]} (48)
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5.

A “pbubble” centered at (C; C,): as above but having r = ,/(x-C;)" +(y-C,)” with
conductivity parameters C,, C,, C;,C, and internal parameters P,, P, such that C,>0,
C,>0,0<P;<1,and P,>0:

FEMEIT produces three output data files. Examples of each are shown in Appendix A.

1.

3.

parcon.dat This file contains the values of the conductivity parameters at the end of the
last iteration. Its format is essentially identical to conpar .dat, and it can be copied directly
to conpar.dat if a restart is desired. It also shows the change in each parameter during the
last iteration.

nodcon.dat This file contains the conductivity values at each node. Each line contains the
node number, the conductivity at that node and the change in the conductivity at that node
during the last iteration.

iter.log This file contains the iteration history (also written to the screen).

Several other smaller codes have been written to assist in validating and using FEMEIT.

L

postfd This code takes the FEMEIT output files and creates a FIDAP neutral file
postfd. fdneut, which can be processed with £iconv and fipost.

msheit This code generates triangular element meshes for circles. It creates files
nemesh.dat and prinfo.dat, to be copied to nodelm.dat and exinfo.dat. The origin is
always the last node.

ansoln This code uses the analytical solution for the voltage field observed with a constant
conductivity in a circular domain with a source at (x,, y,) and a sink at (x,, —y,) to generate
“numerical experimental data” in the file andata.dat, to be copied to exdata.dat.

(49)

2 2
V) = (5 )m[(y"”) +(x°“x)}.

TR/ | (99 5)" + (2~ %)°
fuldat This code takes adjacent-electrode results from FIDAP simulations and uses

linearity to-create a full data set for all pairwise electrode combinations, which is contained
in fuldat.dat, to be copied to exdata.dat.

FEMEIT is capable of reconstructing a conductivity field accurately so long as two things are true.
First, the conductivity field must be capable of being represented by the conductivity function used by
FEMEIT to describe it. Second, the FEM mesh used by FEMEIT must be adequate to represent both
the solution and the conductivity function. Not only must there be sufficient nodes and elements, but
also the elements in the vicinity of electrodes must have aspect ratios close to unity. The latter
requirement arises from the singular behavior of the voltage near mathematical point electrodes, as
discussed earlier. Failing this, excessive resolution may be needed near electrodes. Also, FEMEIT will
not be able to return a conductivity field if it is allowed to use more parameters to represent the
conductivity field than it has pieces of information (not data).
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2.4.5. EIT Reconstruction Algorithm: FEMEIT Validation

Three approaches have been used to validate FEMEIT. The first involved comparison with the
analytical solution for the voltage fields produced by infinitesimal strip electrodes in a circular
domain when the conductivity is constant. The second involved a systematic mesh-refinement study
of the reconstruction of a nontrivial conductivity field from voltages calculated by FIDAP using this
conductivity field. The third involved comparison with a BEM code called 2DynaEIT developed by
Dynaflow, Inc. (Duraiswami et al., 1995; O’'Hern et al., 19952a) to determine the size and location of an
insulating cylindrical inclusion (ICI) placed within a circular domain.

The first type of validation exercise involved using the analytical result for the voltage distribution
with a constant conductivity 6, in a circular domain in which a current I/R per unit length is
injected at the point (x,, y,) and withdrawn at the point (x,, —y,) :

(50}

+ )+ (xg - x)°
Vix) = (Zné R)l [(yo y)2 o x)z} :
0 (¥Yo-¥) +(xp~x)

As in O’Hern et al. (1995), a 16-electrode EIT apparatus was considered. The codes ansoln and
fuldat were used to generate the boundary voltages for all possible electrode pairs from the
analytical solution. These boundary voltages, along with mesh information and specification of the
conductivity function type, were the inputs to the FEMEIT code. For this study, the conductivity is
taken to be an unknown constant (i.e. there was exactly one unknown parameter in the minimization
of the rms voltage difference). In all cases examined, the conductivity value was correctly determined
by FEMEIT when a moderate nodal density was employed (a few hundred nodes and elements).

The second type of validation exercise involved using the finite-element code FIDAP (Fluid Dynamics
International, 1995) to compute the boundary voltages for a 16-electrode apparatus in the presence of
a complicated electrical conductivity sgati_al distribution. The prescribed conductivity field is specified
to be a linear combination of {1, x, y, x", xy, ¥, %0, x v, xyz, A ¥, xzyz, xy3, y4} that goes to unity
on the perimeter of the circular domain and dips to slightly below 0.4 in the upper right quadrant, as
shown in the bottom right of Figure 24. This pattern was chosen to represent what might be observed
if an excess of gas volume fraction were present in the upper right quadrant. FIDAP was used to solve
the 16 adjacent-electrode conduction problems on the highly refined mesh of 9-node isoparametric
quadrilaterals, shown in the bottom left of Figure 24, and fuldat was used to create a full EIT data
set containing the results of all 120 distinct pairwise experiments. FEMEIT was used to analyze this
numerically created data set. The conductivity field was represented by the function

6=C+Cux+Cyy+ Cux"+ Csxy + Cﬁy2
+ C7ac3 + Csxzy + ngy2 + Cloy3 + C”:c4 + Clzx3y + Cl3x2y2 + C'mxy3 + Clsy4 , (63 8]

and 5 different meshes were examined, all of which are shown in Figure 24. Although mesh A, the
most coarse mesh, did little more than indicate the rough amount of spatial variation in the
conductivity field, mesh B, the next most coarse mesh, yielded a reasonable result. The most highly
refined mesh employed here, mesh E, did an excellent job in reproducing the conductivity field. If the
conductivity function ¢ = C, were used instead of the above conductivity function, FEMEIT with the
most refined mesh yields a (uniform) conductivity of 0.603, which is a reasonable estimate of the
average conductivity of the complicated conductivity field, 2/3. Note that for this example, FIDAP
has been used to generate a data set and to postprocess FEMEIT results but not to solve the FEM
problems during the EIT reconstruction.
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Figure 24. EIT mesh refinement studies. Good convergence is observed.
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The third type of validation exercise involved using the codes FEMEIT and 2DynaEIT (Duraiswami
et al., 1995; O'Hern et al., 1995a) to reconstruct the size and position of an ICI placed within a
circular domain with constant conductivity. In this particular example, the domain was taken to have
a radius of R = 1, within which the conductivity was prescribed to have the following spatial
variation: '

0_={0,OST<0.5 . (52)
1,05<r<1

For both codes, numerical data sets were generated to provide the required input. FIDAP (Fluid
Dynamics International, 1995) was used to generate the required voltage data for FEMEIT as
previously discussed, and the validation code 2DynaEIT_fwd was used to generate the voltage data
for 2DynaEIT. Unfortunately, the FIDAP data set could not be used by 2DynaEIT, which requires
smooth boundary data at present, rather than voltages only at electrodes, as would be provided by an
experiment. It is anticipated that this limitation will be removed in the future from 2DynaEIT.

Both codes require the type of conductivity variation to be specified. FEMEIT was instructed to use
model 5, a “bubble” of arbitrary radius and pesition with arbitrary conductivity outside the bubble.
The width of the bubble boundary was set to 2P, = 0.1, and the ratio of the conductivities inside and
outside the bubble was set to 1 — P, = 0.02. 2DynaEIT was instructed to look for a circular “bubble” of
arbitrary radius and position, where the bubble here is a zero-thickness boundary separating a region
of zero conductivity from a region of unity conductivity. In both cases, the bubble was specified to have
an initial radius of 0.2 and an initial position of (0.7, 0.3), and the conductivity was taken to be zero
inside the bubble and unity outside the bubble.

Figure 25 shows the results from the FEMEIT and 2DynaEIT reconstructions. The mesh used by
FEMEIT is shown and consists of 441 nodes and 800 linear triangle elements. Since 2DynaEIT is a
BEM code, only the boundary was meshed. In this exercise, both the domain boundary and the bubble
boundary had 16 nodes equidistantly placed. The final positions of the nodes on the bubble are shown
in Figure 25. Although the initial guess was quite far from the actual conductivity field, both codes
accurately reconstructed the actual field. Interestingly, the times required by the codes to converge
were almost the same (a few minutes on a workstation).
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insulating cylindrical inclusion (ICl) reconstructions
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Figure 25. 2DynaEIT (Duraiswami et al., 1995) and FEMEIT ICI reconstructions.




2.4.6. EIT Reconstruction Algorithm: Extensions

As presently configured, FEMEIT is capable of utilizing two-dimensional experimentally generated
data: electrodes must have small widths and long lengths (infinitesimal strip electrodes) compared to
their separations. As previously discussed, the assumption of two-dimensionality is difficult to satisfy
in practice. As a first step toward a three-dimensional code with capabilities similar to FEMEIT,
another code called EITA3D has been written for infinitesimal point electrodes around an infinite
cylindrical domain within which the conductivity field is parametrized according to ¢ = c,(r;C,)/C, .
With this choice, no additional Jacobian information is required for the parameter C,, but a J: acoblan
must still be computed for the parameter 02 Since the voltages Vk { depend only on the parameter
C, and the conductivity spatial variation is purely radial, it is practlcal to compute the voltages once
for all (e.g. with FIDAP) for particular choices of the function ¢, at many values of the parameter C, .
Two types of conductivity fields have been examined thus far:

<
5, ={°’°-"/R<C2 with 0<C, <1 (an ICI or “hole”), (53)
1,C,sr/R<1
6, = 1+C,[2(r/R)* - 1] with -1<C,<1 (a parabolic variation). (54)

For each type of conductivity field, FIDAP was used to compute the V' k , at roughly 20 C, values
spanning the allowed range. A variant of a standard cubic-spline algorithm (Press et al., 1986} is used
to compute both the V(m) and the BV(m)/ 0C, for arbitrary C, values within the allowed range. Thus,
EITA3D performs no FEM calculatlons directly but rather uses the voltage values previously
computed by FIDAP to determine the updates.

Figure 26 shows the results of applying EITA3D to a data set generated by FIDAP using a
conductivity field having the “hole” type of variation with C, = 1 and C, = 0.1. Despite being
provided with the rather poor initial guesses of C; = 0.5 and C, = 0.8, EITA3D is observed to
converge smoothly to the correct values after only 9 iterations. Note, however, that this cannet be
called a true validation exercise since FIDAP was used to create both the input data set and the FEM
data used by EITA3D to determine C; and C,.

As presently configured, 2DynaEIT is not yet capable of utilizing experimentally generated data:
current injection is taken to be a smooth function of arc length around the outer boundary rather than
at discrete electrodes as in the experiments, exactly one boundary node per electrode is strictly
enforced, and the conductivity spatial variation consists of regions of zero conductivity embedded in a
constant-conductivity background. All of these issues appear to be resolvable if given sufficient
resources.

59




insulating cylindrical inclusion (ICI) reconstruction
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Figure 26. EIT determination of radius of an ICI using point electrodes and EITA3D.
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