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INTRODUCTION

A neural network-based engine performance,
fuel efficiency and emissions prediction system
has been developed for both spark-ignited (Sl)
and compression ignition (Cl) engines. The
neural network (NN) system is able to predict
real-time engine power output, fuel consumption
and emissions using readily measured engine
parameters. The system consists of a predictive
engine model that is designed to run on a
microprocessor in parallel with the engine in real
time, taking input signals from the same sensors
as the engine itself. The NN model of the engine
is able to make highly complex, time-variant,
non-linear and multi-dimensional associations
between pre-selected engine input parameters
and outputs in realtime. This allows the
accurate prediction of engine performance (real-
time torque output), engine emissions (HC, CO,
NO, CO, and PM in diesel engines) and fuel
consumption across the full range of engine
operation. During limited dynamometer testing,
the NN model learns in real-time and on the fly
the precise relationship between all designated
inputs and outputs. Once in the field or when
operating in a vehicle, the model is able over
time to update those relationships and to adapt
to allow for engine or component wear, subtle
changes in fuel composition or extreme
combinations of operating or environmental
variables.

This system, which allows for virtual emissions
sensing, is equally well applicable to Si or CI

engines, and has been demonstrated in both
engine applications. Uses of this system include
emissions prediction for engine control, on-board
diagnostics and virtual emissions measurement
for light and heavy-duty vehicles, stationary
engines and marine, off-highway and locomotive
diesels. Further applications include engine
modeling, both for reducing the time required to
develop engine control algorithms, and for light

and heavy-duty vehicle emissions inventory
prediction.

MOTIVATION

Ever increasingly stringent  emissions
requirements and rising fuel costs place an
important premium on close control of
combustion in intemal combustion engines for all
applications. For the foreseeable future, Cl
engines will continue to be used in fuel cost-
sensitive applications such as in heavy-duty
buses and trucks, power generation, locomotives
and off-highway applications, as well as having
application in light trucks and hybrid electric
vehicles. Close control of combustion in these
engines will be essential to achieve ever-in-
creasing efficiency improvements while meeting
increasingly stringent NO, and PM standards.
Future direct injection Cl engines will utilize in-
creasingly higher combustion and injection pres-
sures with exhaust gas recirculation (to offset the
higher NO, levels produced by the elevated com-
bustion pressures), variable geometry turbo-
charging and possibly infinitely variable valve
timing, while being truly low emissions and fuel-
flexible.

Close control of combustion in future S| and ClI
engines will be of overriding concern for both
efficiency and emissions. As an example, in an
ultra low emissions vehicle or ULEV, operation
through one day with a failed engine sensor or
control system may well produce a higher
contribution to the emissions inventory than
operation for a year with a fully functional sys-
tem. Advanced on board diagnostic capability
(OBD) and the ability to reconfigure control “on
the fly” following fault detection will be an indis-
putable requisite in the future. These engines of
the future will require significantly more complex
control, having very many more degrees of
freedom than those of today.
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Standard classical “one-dimensional’ or map-
based control, in which fueling, boost and EGR
are controlled somewhat independently, will
prove woefully inadequate in dealing with the
multiple independent degrees of freedom pre-
sented by injection rate shaping, EGR, boost and
valve control. Future CIDI engines will require
truly simultaneously optimized, multidimensional
control. Moreover, the costs, time required and
complexity associated with engine development,
performance mapping, and control system devel-
opment and calibration, are increasing signifi-
cantly.

What is- required is a truly multidimensional,

adaptive, leaming control system that does not
require the laborious development of an engine
model, while having excellent performance and
emissions prediction capabilities across the full
life of the engine, for all engine operating
conditions. Neural network-based engine model-
ing offers all of these capabilities. The excellent
generalization capabilities achieved through on-
line leaming means that the engine control sys-
tem designer need make no assumptions about
the goveming equations dictating the engine
performance and combustion . characteristics.
The virtual sensing system automatically devel-
ops the engine control laws by learning the
engine behavior over time. This allows a truly
optimized and adaptive engine prediction and
control system to be developed with a minimum
of effort.

OPERATION OF THE VIRTUAL SENSING
SYSTEM

The system consists of a predictive engine
model that is designed to run on a micropro-
cessor in parallel with the engine in real time,
taking input signals from the same sensors as
the engine itself. The neural network (NN) model
of the engine is able to learn the highly complex,
non-linear and multi-dimensional associations
between the pre-selected input parameters and
outputs in real-time. Once the system has been
trained to mimic the performance and emissions
of the engine, it permits the accurate prediction
of engine performance (real-time torque output),
engine emissions (unburned hydrocarbons, car-
bon monoxide and oxides of nitrogen) and fuel
consumption across the full range of engine
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operation.
LEARNING

During limited dynamometer testing, the NN
model learns in real-time and on the fly the
precise relationship between all designated in-
puts and outputs. The NN model assigns global-
or general weights between all designated inputs
(engine operating parameters) and correspond-
ing outputs (torque, fuel consumption and
regulated emissions) on the basis of results
learned during engine dynamometer testing. A
further (local) set of weights is allowed to vary in
time across the life of the engine in the field,
thereby providing a true learning, adaptive
prediction system. As a result the NN model is
able to provide to the driver, to a smart diag-
nostic system or to an engine controller, the
apparent results from a virtual suite of sensors.
These virtual sensor results may either be un-
measured or unmeasurable engine parameters,
or duplicate estimation of already measured
variables. One immediate application is in the
virtual measurement of engine-out NO, emis-
sions for on-board diagnostics (OBD) in both
spark-ignited and compression ignition engines.

VIRTUAL SENSOR ARCHITECTURE

The neural network architecture used is that of a
partially recurrent net, which is found to have
more accurate mapping than a multi-hidden layer
net [1]. Figure 1 shows the schematic of the
neural network architecture, and the online
leaming or training configuration. The input vec-
tor includes instantaneous engine parameter
values as well as a receding history window of 5-
10 seconds of the same data (depending on
engine type). Including this sliding window has
been found to be necessary to capture the full
dynamics of fransient engine operation, including
turbocharger spool-up in diesel engines and the
emissions arising from transient fueling varia-
tions in Cl engines. All raw engine measure-
ments, either obtained from a fully instrumented
engine on a dynamometer during training or
obtained from an engine in the field during
normal operation, are captured at a regular 20
Hz data-sampling rate. This rate can be
increased or decreased depending on the
balance between desired accuracy and



computational effort required. The data are fil-
tered on-line through an infinite impulse re-
sponse filter to provide smoothing while retaining
their integrity. The transport delays and finite
response times inherent in the existing engine
sensors are taken into account in the virtual
sensor modeling.

APPLICATION TO DIESEL ENGINES

Virtual sensing has been applied to the predic-
tion of engine-out emissions, fuel efficiency and
power output of three engines, including a 300
hp heavy-duty diesel engine, certified to 1994
US EPA heavy-duty emissions standards. In
predicting the real-time performance of this
compression ignition heavy-duty diesel engine
(described in Table 1), the NN-based prediction
model uses the real-time values of:

intake manifold air temperature,
intake manifold boost pressure,
fuel rack position,

engine coolant temperature,
exhaust gas temperature,

engine speed, and

fuel rail temperature and pressure.

Using instantaneous values of these input pa-
rameters as well as a sliding, weighted window of
their most recent values (extending 10 seconds

back in time to capture turbocharger dynamics), -

the NN model is able to predict:

. instantaneous engine torque or power

output,

. fuel consumption (and carbon dioxide -
emissions),
exhaust gas temperature, and

. engine exhaust emissions (carbon mon-

oxide, unbumed hydrocarbons, oxides of
nitrogen and smoke, as measured by
whole exhaust opacity). .

A limited set of emissions data was obtained
from the engine described in Table 1, to conduct
a proof of concept study (the data had previously
been deskewed to remove the effect of variable
response and delay times in the measurement of
each of the emissions). The first 300 seconds of
the data set were included in the engine training
data, due to the limited total amount of data

available, while the last 50 seconds of each data
set shows the NN predictions on data on which
the net had not been trained. In either case, the
predictions are blind, implying no on-line leaming
or reinforcement. Figures 3 to 8 show the
predicted versus measured engine torque, HC,
CO, No, CO, and smoke emissions. All
emissions have been non-dimensionalized with
respect to the maximum value of that constituent
found in the complete data set. These figures
show the results of a blind prediction, although in
this Cl engine study alone, the difference
between the measured and predicted exhaust
gas temperature gives the local NN weights
limited authority in modifying the prediction in an
on-line adaptive fashion.

PROOF OF CONCEPT CIDI VIRTUAL SENSOR
DEMONSTRATION

Table 1: Cl Demonstration Engi'ne Parameters.

10 liter, in-line 6 cylinder DI

[Engine Type
Fuel diesel (D2)
.| Compression Ratio 15:1
Turbocharger 150 kPa gange maximum boost
Fuel Injection System | mechanical cam-driven jerk-type
Maximum Power 300 hp (224 kW) (at 2200 rpm)

VIRTUAL SENéING PREDICTION ACCURACY

In the case of Cl engine prediction, the virtual
sensor prediction model is able to predict these
engine performance and emissions parameters
to within 5-10% of their instantaneous values,

given approximately 30 minutes of highly trans-
ient hot engine dynamometer training, and to
well within 5% on an integrated basis. It should
be borne in mind that this is achieved within 30
minutes of training, and that more training will
reduce the instantaneous and integrated error
significantly. Moreover, it should also be remem-
bered that the virtual sensing system is cali-
brated (through training) to predict emissions in
real, measurable units, as opposed to merely
providing emissions trends. Finally, it should
also be noted that a significant further benefit of
the system is the fact that it provides relatively
high accuracy predictions of all regulated emis-
sions and CO,, simultaneously. In the case of
engine emissions, further testing of the system
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on a Sl engine has shown that the accuracy of
the prediction can be improved to the point that
it is of the same order as the accuracy of the
measurements provided by the emissions
analyzers used to provide the training data,
integrated across a transient engine cycle.

VIRTUAL SENSING SYSTEM TRAINING

For the diesel engine described above, it was not
necessary to vary all input parameters individ-
ually in a multi-dimensional test matrix, but rather
to exercise the engine (as a system) through a
wide cross-section of its expected performance
envelope. By this is meant that it is not required
to vary manifold air temperature, manifold boost
pressure, commanded fuel rack position, engine
coolant temperature, exhaust gas temperature,
engine speed and load, and fuel rail pressure
individually and independently, but rather to
provide the NN with as wide a range of engine
performance data as is feasible. The NN-based
system has excellent generalization capabilities,
provided that a wide range of representative
engine performance has been used in genera-
ting the training data. Modeling of cold-start
engine performance and emissions is quite
feasible and could be accomplished through
obtaining data from several cold starts at various
initial engine and ambient air temperatures.

REAL-TIME COMPUTATIONAL REQUIRE-
MENTS -

Typical virtual sensing computational power
requirements for running the NN model de-
scribed above in real-time with data rates of 20
Hz are easily met by an Intel Pentium 100 MHz
microprocessor-based personal computer. Run-
ning the NN on a dedicated RISC processor
would reduce its computational requirements
significantly, allowing for the use of a far cheaper
dedicated computational processor, for on-board
vehicle use. Efforts in reducing computational
overhead and effort are continuing.

APPLICATIONS OF VIRTUAL SENSING

The virtual sensing system described here has
immediate application in

. engine diagnostics,
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. engine control, and
. engine or vehicle modeling.
ENGINE DIAGNOSTICS

In terms of engine diagnostics, a virtual sensing
system may be integrated into a smart OBD
system to give immediate warning of emissions
exceedances. Moreover, the NN system can
provide real-time values of unmeasured or
difficult to measure parameters (such as NO,
emissions or PM emissions for diesel engines),
from which the engine can be controlled. Virtual
sensing can form the basis of a diagnostic
information system, and can provide significantly
more information on engine or vehicle perform-
ance and emissions than is presently available,
while still using an existing sensor suite. Virtual
sensing also allows the development of virtual
02,NO,, HC, CO and PM sensors, from which
the engine can be controlled in real time [2,3].
Real time fuel consumption and torque meas-
urement for on and off-highway CI engines is
also made feasible through this approach, as is
the real-time prediction of emissions from
stationary or marine” engines for continuous
emissions measurement (CEM) purposes.

By developing multiple NN performance predic-
tion systems, each employing a sub-set of the

full suite of available engine sensors, failure in a
single sensor can be detected by comparing the
results generated by each NN. Redundant pre-
diction of the same engine output variable in this
fashion could aid in the identification and isola-
tion of both sensor and integral engine compo-
nent failure. Virtual sensor prediction also pro-
vides a high level of redundancy albeit without
additional sensor cost or hardware complexity.
As an example, the instantaneous fuel consump-
tion of the diesel engine is calculated by the NN
based on the engine speed, rack position,
manifold boost pressure and temperature, en-
gine temperature and (perhaps) measured air
flowrate into the engine. The fact that several of
these input parameters are interrelated and
dependent on each other, provides a significant
level of in-built redundancy in the event of the
failure of one of the engine sensors in that set.

The additional input to the NN system of output
from further exhaust emissions sensing devices



(such as a viable NO, sensor, when developed)
would serve to strengthen the prediction
capabilities of the virtual sensing method. The
virtual sensor suite provides a true learning
capability, and could allow for reconfigurable
control to be used in the event of the failure of
such a sensor or an integral engine component.

ENGINE CONTROL

Spark ignited engines enjoy the benefit of a
remarkably powerful fueling feedback control
parameter in exhaust gas oxygen sensing. Cl
engines -on the other hand, suffer from the lack
of readily available feedback parameters. This
research seeks to redress that. The real-time
NN prediction of engine performance and emis-
sions allows for effectively “closed loop” control
on the basis of virtual sensing of NO,, CO, HC, or
PM emissions, without requiring any additional
engine sensors [2,3]. It can be used to control
specific actuators or devices, such as EGR
valves, fuel injection, ignition, boost control, or
can be used for the full multidimensional control
of fueling, ignition, EGR and variable valve timing
(VVT) in Sl engines, or fueling, boost, EGR and
variable geometry turbocharger (VGT) devices in
Dl engines. Moreover, using the NN system in a
predictive fashion will allow an engine to be
operated at any pre-selected optimum, such as
the lowest emissions level or the best power or

best efficiency limit. Figure 2 shows a schematic

implementation of a neural network-based
engine control system.

The addition of measured in-cylinder pressure
as an extra input into a Cl engine emissions
prediction model, will, it is believed, allow the
prediction of NO, emissions (specifically) on a
cycle-to-cycle basis. Exhaust gas temperature
(chosen for its robustness and ease of measure-
ment) has been explored as a surrogate
feedback parameter for Cl engines, with some
success.

ENGINE MODELING

Once developed on an existing or prototype
engine, NN engine predictive models can be
used to provide engine mapping data to reduce
the time required for controller development.
Instead of requiring extensive dynamometer time

to establish full transient engine performance
and emissions, the fully trained NN model of an
engine can be used as a computational surro-
gate of the engine itself. In this way, engine con-
trol laws can be developed and optimized com-
putationally, rather than requiring large amounts
of dynamometer time.

While the work presented here describes the

development of NN-based engine models, this
technique can be used to develop combined
engine and transmission models, or engine and
exhaust gas afterireatment device models in
which stack-out (as opposed to engine-out)
emissions are predicted. Likewise, a vehicle
model can be developed, either for light or heavy
duty vehicles, that includes transmission and
drive-line effects, using both chassis dynamo-
meter measurements of vehicle performance and
emissions, and engine dynamometer meas-
urements of engine-only performance.

A fully predictive engine model can also be used
in a strategy-based vehicle control algorithm,
such as in determining how to merge and
combine energy from two sources in a hybrid
electric vehicle. The model can also be used in
a forward-looking strategy, limited only by the
computational capability resident on the vehicle.

FUTURE APPLICATIONS

Further applications, such as engine and vehicle
modeling for emissions inventory gathering are
also feasible [4]. For example, once a NN model
of the emissions characteristics of a vehicle has
been established through limited testing on a
chassis dynamometer, a computational model of
the vehicle can be derived. This computational
emissions model of the vehicle can then be
“driven” across any driving cycle, or given
topographic data, across any road. Integrating
the fully predictive emissions model with a traffic
simulation model or real-time data from a GPS-
equipped vehicle, could allow the prediction of
emissions from the vehicle under a wide range of
vehicle operating conditions, driver behavior and
traffic conditions.

Many such applications of virtual sensing and

this method of neural network-based engine
performance and emissions modeling remain to
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be explored.
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Figure 1: Neural Network Architecture, showing Dynamometer-based Training to develop full
Input-Output Parameter Association and Weights.
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Figure 3: Measured versus Predicted Engine Torque for CI Engine NN Model
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Figure 5: Measured versus Predicted Carbon Monoxide Emissions for CI Engine
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Figure 6: Measured versus Predicted Oxides of Nitrogen Emissions for CI Engine
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Figure 7: Measured versus Predicted Carbon Dioxide Emissions for CI Engine
NN Model! Validation
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Figure 8: Measured versus Predicted Smoke Emissions for CI Engine NN Model
Validation
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