321

LOCALIZED CORRQSION AND RROSION CRACKIN
HARACTERISTI! FILOW-AL -CONTENT IRON-AL ALLOY.

J. G. Kim and R. A. Buchanan

Dept. of Materials Science and Engineering
University of Tennessee
Knoxville, TN 37996-2200

ABSTRACT

The aqueous corrosion behavior of FAPY, a new low-Al-content Fe-Al alloy (Fe-16.1A1-
5.4Cr-1.1Mo-0.11C-0.11Zr-0.06Y, at. %), was studied in various electrolytes and compared with
reference materials. Corrosion rates for FAPY were much closer to that of 304L stainless steel
than to the plain-carbon and low-alloy steels evaluated. Three-week crevice corrosion tests were
performed in chloride-containing solutions on FAPY, and for comparison on 304L stainless steel.
The FAPY alloy was less resistant to crevice corrosion than the 304L stainless steel. In the 3.5 wt.
% NaCl solution, the FAPY alloy was subject to severe crevice corrosion. Slow-strain-rate
corrosion tests were conducted at the freely-corroding open-circuit potential and at
potentiostatically-controlled anodic and cathodic potentials to evaluate the environmental-
embrittlement susceptibility. It was found that the FAPY alloy was susceptible to hydrogen
embrittlement and anodic-dissolution stress corrosion cracking, but at the freely-corroding and
hydrogen-producing-cathodic potentials, the ductilities were significantly higher than those for
Fe3Al-based iron aluminides.

INTRODUCTION

Iron aluminides based on the Fe3 Al stoichiometry posses excellent resistance to high-
temperature oxidation and sulfidation. However, a major deterrent to their commercialization is
the limited room-temperature ductility. Investigations have shown the low ductility to be caused by
hydrogen embrittlement which occurs due to the reaction of water vapor with active aluminum. 1-3
Recent studies at the Oak Ridge National Laboratory (ORNL) have shown that the environmental-
embrittlement effect can be minimized by reducing the aluminum content from its Fe3Al-based
value of 28 at. % to a value of 16 at. %, which places the new alloys in the disordered phase field.4
The new low-Al Fe-Al alloys posses room-temperature ductilities in excess of 25 %,4 while
retaining good high-temperature oxidation and sulfidation resistance. The objective of the present
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present study was to investigate the aqueous corrosion and stress corrosion cracking behaviors of
one of the new low-Al Fe-Al alloys.

PROCEDURES AND RESULTS

The new low-Al Fe-Al alloy investigated was designated as FAPY by ORNL and consisted
of Fe-16.1A1-5.4Cr-1.07Mo-0.11C-0.11Zs-0.06Y (at. %). Prior to testing, specimens were
annealed in air for 1 hour at 800 ©C and air cooled. In addition to the FAPY alloy, and depending
on the specific evaluation, the following materials were evaluated for comparison: AISI 1010
plain-carbon steel, A387-G22 2 1/4 Cr - 1 Mo low-alloy steel, AISI 304L stainless steel, and the
Fe3Al-based iron aluminides, FA-84 (Fe-28A1-2Cr-0.05B, at. %), FA-129 (Fe-28A1-5Cr-0.5Nb-
0.2C, at. %), and FAL-Mo (Fe-28Al-5Cr-1Mo-0.08Zr-0.04B, at. %).

Anodic Polarization Behaviors

Cyclic anodic polarization evaluations were performed on FAPY, and for comparison on
the plain-carbon, low-alloy and stainless steels. Tests were conducted in the following electrolytes:
distilled water (plus 0.01 wt. % NaySO4 to provide adequate conductivity), tap water
(approximately 15 ppm CI°), a mild acid-chloride solution (200 ppm CI-, pH=4), a 3.5 wt. % NaCl
solution (pH = 7) and 1 N NaOH. An EG&G Model 273 potentiostat was employed to conduct
the polarization tests at a scan rate of 600 mV/h. Each solution was aerated by sparging with pure
oxygen before as well as during the test. The results are shown in Figures 1-5.

In the distilled water (Figure 1), the plain-carbon and low-alloy steels exhibited active
corrosion, i.e., no passivation, whereas the FAPY alloy and the stainless steel exhibited passivation
to very high potentials. The polarization behaviors in tap-water (Figure 2) showed no significant
differences compared to those in distilled water, except that FAPY demonstrated a large hysteresis
loop indicating susceptibility to localized corrosion. In the mild acid-chloride solution (Figure 3),
the plain-carbon and low-alloy steels underwent active corrosion only, whereas the FAPY alloy and
the stainless steel remained passivated to their respective breakdown potentials. The corrosion,
breakdown and protection potentials were higher for the stainless steel than for the FAPY alloy. In
the much-higher-chloride 3.5 wt. % NaCl solution (Figure 4), again the plain-carbon and low-alloy
steels underwent active corrosion only; however, the FAPY alloy and the stainless steel remained
passivated to their respective breakdown potentials. The breakdown and protection potentials were
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higher for the stainless steel than for the FAPY alloy. Comparing the results in the mild acid-
chloride solution (Figure 3) and the 3.5 wt. % NaCl solution (Figure 4), the breakdown and
protection potentials for both the FAPY alloy and the stainless steel decreased in the 3.5 wt. %
NaCl solution due to the higher chloride concentration. In the highly-basic 1N NaOH solution
(Figure 5), all of the materials exhibited very similar and excellent corrosion behavior by

- passivating to high potentials. Overall, the polarization behavior of the FAPY alloy was much
closer to that of the 304L stainless steel than to the plain-carbon and low-alloy steels.
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Fig. 1. Cyclic anodic polarization curves in aerated distilled water.
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Fig. 4. Cyclic anodic polarization curves in aerated 3.5 wt .% NaCl solution.
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rrosion R

Corrosion rates were determined by two different methods: the electrochemical
polarization-resistance method, which provided corrosion rates over approximately the first two
hours of exposure, and a three-week immersion test method, whereby corrosion rates were
calculated from weight-loss measurements and represented three-week-average corrosion-rate
values. The same materials and electrolytes were evaluated as described in the previous section on
polarization behavior. The results are given in Table 1.

As seen in Table 1, the corrosion rates determined by the polarization-resistance method
(initial exposure values) were generally higher than those determined by the weight-loss method
(three-week average values), indicating that the corrosion rates decreased with time. In the distilled
water, tap water, mild acid-chloride solution, and 3.5 wt. % NaCl solution, the corrosion rates for
the FAPY alloy and the 304L stainless steel were similar and much lower than those of the plain-
carbon and low-alloy steels. In the highly-basic NaOH solution, the corrosion rates were quite low
for all of the materials.

Table 1. Results of corrosion rate measurements.

Average Penetration Rates (mpy)
Solution Material Polarization Three-Week
Resistance Immersion
1010 12.1 3.9
Distilled 21/4Cr-1Mo 6.3 3
Water FAPY <0.1 <0.1
304L SS <0.1 <0.1
1010 0.93 4.5
Tap 21/4Cr-1Mo 1.9 2.2
Water FAPY <0.1 <0.1
304L SS <0.1 <0.1
1010 56 4.8
200 ppm CI” 21/4Cr-1Mo 20 3.6
pH=4 FAPY 2.3 <0.1
304L SS <0.1 <0.1
1010 40 3.8
3.5 wt. % NaCl 21/4Cr-1Mo 39 3.2
FAPY 0.19 <0.1
304L SS <0.1 <0.1
1010 0.53 <0.1
1M NaOH 21/4Cr-1Mo 0.59 <0.1
FAPY 0.38 <0.1
304L SS 0.14 <0.1
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revi 1rosion Behavior.

Three-week crevice-corrosion tests were conducted on the FAPY alloy, and for comparison
on the FegAl-based iron aluminide, FAL-Mo, and on 304L stainless steel, using multiple
crevice assemblies which formed 60 crevice sites on each specimen. The tests were performed in
the mild acid-chloride solution (200 ppm ClI-, pH=4) and in the 3.5 wt. % NaCl solution. The
results are given in Table 2.

In the mild acid-chloride solution, the percentages of crevice sites that underwent active
crevice corrosion were 8 % for the FAPY alloy, 0 % for FAL-Mo, and 2 % for the stainless steel.
In the higher-chloride 3.5 wt. % NaCl solution, the percentages were 100 % for the FAPY alloy, 8
% for FAL-Mo, and 3 % for the stainless steel. The degree of crevice corrosion increased
significantly with increasing C1~ concentration for the FAPY .alloy. Overall, the resistance to
crevice corrosion in chloride environments for the FAPY alloy was considerably less than that of
the FAL-Mo iron aluminide and the 304L stainless steel.

Table 2. Three-week immersion test results for creviced specimens
in 200 ppm CI- (pH=4) and 3.5 wt. % NaCl solutions.

Solution Measurement Material
FAP-Y FAL-Mo 304L SS
No. of Crevice Sites 5 0 1
Attacked (60 max.)
200 ppm CI7, | Percentage of Sites 8 0 2
pH=4 Attacked
Max. Depth of Attack 80 0 4
(um)
No. of Crevice Sites 60 5 2
Attacked (60 max.)
3.5 wt.% NaCl, | Percentage of Sites 100 8 3
pH= Attacked
Max. Depth of Attack 50 50 4
(um)

low- in-Rate T

Slow-strain-rate tests were performed on the FAPY alloy in the mild acid-chloride solution
at a strain rate of 1.2 x 10°6 /s at the free-corrosion potential (E;qp) and at potentiostatically-
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controlled anodic and cathodic potentials. Tests were also performed in air for comparison. The
specimens, with gage sections of 12.7 x 1.78 x 0.63 mm, were polished with 600 grit SiC paper
after heat treatment and prior to testing. The results are given in Table 3.

The highest slow-strain-rate ductilities for FAPY were observed at Eqqpy and -200
mV(SHE), and these ductilities were comparable to that observed in laboratory air. Embrittiement
associated with pitting corrosion occurred at the applied anodic potentials (+300 and +500
mV(SHE)) and embrittlement associated with hydrogen occurred at the applied hydrogen-
producing cathodic potentials (-1000 and -1500 mV(SHE)). The slow-strain-rate ductilities for the
FAPY alloy (16 % Al) in the mild acid-chloride solution are compared in Figure 6 with those of
previously-evaluated FA-84 and FA-129, two Fe3Al-based iron aluminides (28 % Al). The trends
in behavior for all three materials were similar; however, the ductilities at all potentials were

significantly greater for the FAPY alloy in comparison to the Fe3Al-based iron aluminides.

Table 3. Slow-strain-rate test results for FAPY in the mild acid-chloride solution.

Applied Potential Time to Fracture (hr.) Fracture Stress Percent
(mV vs SHE) (MPa) Elongation

+500 8.3 110 24
-- - 2.3

+300 20.5 510 3.2
39.5 607 6.3

Ecorr 55 634 13.4

-- -- 17.3

-200 59 696 15.0

43 558 11.0
-1000 26.5 610 4.7
-1500 26.7 552 4.7

-- -- 4.7

Air 34 758 14.2

- - 14.2
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Fig. 6. Ductilities of FAPY, FA-84 and FA-129 under slow-strain-rate conditions
in 200 ppm CI-, pH = 4 solution as a function of potential.

SUMMARY AND CONCLUSIONS

A low-aluminum-content iron-aluminum alloy developed at ORNL, FAPY (Fe-16.1A1-
5.4Cr-1.07Mo0-0.11C-0.11Zr-0.06Y, at. %), was evaluated in various electrolytes at room
temperature to determine polarization behaviors, corrosion rates, crevice corrosion behaviors, and
slow-strain-rate embrittlement characteristics. Reference materials were also evaluated for
comparison. The results and conclusions are sumimarized as follows:

e With regard to cyclic-anodic-polarization behavior, both the FAPY alloy and 3041
stainless steel passivated to relatively high potentials in distilled water, tap water, a 200
ppm CI- (pH = 4) solution and a 3.5 wt. % NaCl solution, whereas 1010 plain-
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carbon steel and 2 1/4 Cr - 1 Mo low-alloy steel underwent only active
corrosion. All four materials passivated in a highly-basic 1 N NaOH solution.

¢ In terms of surface-average corrosion rates, as determined by electrochemical
polarization-resistance measurements and weight-loss measurements, the FAPY alloy
behaved much more like 304L stainless steel than the plain-carbon and low-alloy
steels in the distilled water, tap water and the two chloride solutions. In the
NaOH solution, all four materials exhibited very low corrosion rates.

e With regard to crevice-corrosion behavior in a 200 ppm C1- (pH = 4) solution and a
3.5 wt. % NaCl solution, the FAPY alloy was found to be less resistant than both an
FesAl-based iron aluminide, FAL-Mo (Fe-28Al-5Cr-1Mo-0.08Zr-0.04B, at. %), and
304L stainless steel.

e In terms of slow-strain-rate ductilities in the 200 ppm CI- (pH = 4) solution, the
FAPY ductility was found to be significantly higher than the two FejAl-based
iron aluminides evaluated, FA-84 (Fe-28A1-2Cr-0.05B, at. %) and FA-129 (Fe-
28A1-5Cr-0.5Nb-0.2C, at. %), at the free-corrosion potentials and at hydrogen-
producing cathodic potentials.
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INTERACTIONS BETWEEN CREEP AND CORROSION IN ALLOY 800°
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ABSTRACT

Metallic components within or immediately adjacent to gasifiers, such as gas
distributors, thermowells, transfer lines, and cyclones, are subjected to particularly severe
conditions of temperature, pressure, and hostile multicomponent gas environments. In
addition, metallic- heat exchangers/waste-heal boilers that are resistant to sulfidation,

- corrosion, and erosion in low- and medium-Btu gas environments are essential
components in large-scale gasification schemes, in both dry ash and slagging type
gasifiers. Components, in general, must be resistant to corrosion, erosion, and high-
temperature creep. Refractory linings are conventionally employed to mitigate corrosion
and erosion, and in some cases, internal cooling has been considered to avoid the problems
associated with the interaction of high-temperature creep and fatigue. Contrary to the
design situation for vessels and piping, no guidance in the form of a code or standard exists
for vessel internals and long-life external components, especially for service in corrosive-
erosive environments al elevated iemperatures. Designers currenily rely on their own
stress-analysis techniques and rules and use their experience with petrochemical
applications to incorporate the environmental effects in the design of components for coal
conversion sysiems. Such an approach may lead lo adequate design, but a substantial data
base is needed on the mechanical properties of materials exposed to complex gas
environments to provide a more viable basis for establishing long-term reliability of
components,

The purpose of the present work is Lo examine the high-temperature creep behavior
of Alloy 800, a high-chromium alloy that is widely used in coal conversion systems, after
exposure to oxygen and oxygen/sullur mixed-gas environments over a wide temperature
range. In addition, the data on the creep behavior of the alloy under various pretreatment
and test-exposure conditions are used {o establish performance envelopes for the alloy for
service in fossil energy applications.

BACKGROUND

In general, coal gasification processes result in a complex multicomponent,
multiphase mixture, the composition of which depends on several factors such as reaction
conditions, type of coal [eedslock, coal pretreatment, heat supply, reactor configuration,
and gas purification. Furthermore, gasification of coal releases a wide variety of
contaminants from coal feedstock, char, ash, and sulfur/chlorine/alkali-containing
species. The manner in which these conlaminants are released, transported in the gas

*Work supported by the U.S. Depariment of Energy, Office of Fossil Energy, Advanced
Research and Technology Development Materials Program, Work Breakdown Structure
Element ANL-3, under Contract W-31~109-Eng-38.
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phase, and subsequently deposited on relatively cooler metallic surfaces can significantly
affect the performance of downstream components.

Corrosion in Gasificaltion Environments

Experimental studies conducted in both laboratory and pilot-plant facilities have
clearly established that alloy sulfidation is the major mode of material degradation and
that a viable alloy should develop protective oxide scales on exposure to sulfur-containing
low-oxygen-partial-pressure atmospheres in coal gasification systems.1'3 In the early
stages of exposure, a high-chromium alloy (typical of structural materials used in
gasification systems) develops oxide and sulfide nuclei. Eventually, thermodynamic
conditions establish a continuous chromia scale via reoxidation of sulfide particles, while
the released sulfur is driven into the substirate along the grain boundaries. Oxide growth
occurs via chromium transport across the scale to the scale/gas interface, where it is
oxidized, leading to increased thickness. At the same time, sulfur in the gas phase is
adsorbed onto the scale/gas interface, and channels are established in the fine-grained
oxide scale through which the transport of base-metal cations Lo the scale/gas interface is
accentuated. If the sullur pressure in the gas phase exceeds the metal/metal sulfide
equilibria for the base-metal elements, sullides of these elements are formed at the oxide
scale/gas interface. As the sulflide grows, siresses develop in the oxide scale, which
eventually is breached and leads to sullidation at the oxide scale/substrate interface.
Because the transport rates of cations and sulfur through the sulfide phase are orders of
magnitude higher than those through the oxide scale, the sulfidation attack continues in
an accelerated manner. At longer exposure limes, the oxide is virtually destroyed and a
massive sulfide scale develops, a condition that represents breakaway corrosion for the
alloy. The same sequence of steps is operative in alumina-forming alloys, probably at a
much slower rate than in chromia-forming materials. An extensive data base has been
developed on the corrosion performance of various of commercial and experimental alloys
in a wide range of coal gasification environments.1-7

Important factors in assessing the performance of materials are the expected or
desired lifetimes of various plani components, ease of repair, and their relative cost. For
design studies of conceptual commercial plants, a plant life of at least 20 yr has been
assumed for major vessels and piping. For the heal exchanger/recovery systems, a tube life
of at least 10 yr is required. For industrial and utility gas turbines, a 100,000-h life is
desired. It is imperative that the shori{-term (up to 10,000 hours} materials performance
data be extrapolated to establish corrosion design allowances for components. Such
extrapolation is risky because the mechanisms of corrosion can change drastically with
time because of the complex nature of the exposure environment and possible excursions or
off-normal conditions, leading to irreversible damage, e.g., sulfidation, of the materials.
Therefore, it is essential that the materials selected [or service possess some degree of
tolerance to more aggressive exposure environments and one must develop performance



333

envelopes that include a wide range of operating conditions under which the component
materials will have adequate mechanical properties.

Time-Dependent Mechanical Properlies

Very limited information is currently available on the effects of multicomponent gas
environments, which are typical of medium-Btu coal gasifiction schemes, on the
mechanical properties of structural materials. Uniaxial and biaxial stress-rupture
properties of some heat-resistant materials have been evaluated in air and in a gas mixture
(containing 0.5 vol.%H2S), whose composition simulated gases that arise from high-Btu
gasification processes.8'9

The objective of this work is to evaluate the elfect of gas chemistry in the exposure
environment on long-term, time-dependent creep properties, and of key variables, such as
exposure temperature, applied stress, specimen pretreatment (e.g., thermal aging and
preoxidation) on the creep rate, creep life, and metallurgical structure of the material.

EXPERIMENTAL PROCEDURE

Material and Specimen Preparatlion

Alloy 800, which is widely used in coal-gasification applicalions, was procured in
=25-mm-thick flat stock suilable for fabricatlion of creep specimens. The composition (in
wt.%) of the alloy was Fe, 46.6; Cr, 20.7; Ni, 30.4; Al, 0.29; and Ti, 0.41. Creep specimens
were designed and fabricated according to ASTM Standard E139-70. All of the creep
specimens were solution annealed for 3600 s at 1050°C and water quenched. The grain size
of the specimens was =100 um. Some of the annealed specimens were enclosed in Vycor
capsules under vacuum, and furnace-aged for time periods of 160, 1000, and 2000 h at 843
and 927°C. In addition, several specimens were preoxidized in low-pOg environments for
subsequent creep testing in a sulfur-containing environment.

Creep Testing

The creep testing laboratory is equipped with seven direct-load and three indirect-
load creep machines, which were used to perform creep tests in air, low-pO2, and
oxygen/sulfur mixed-gas environments. The data acquisition system consists of a VIDAR
606 master scanner, a 502B integrating digital voltineter, a 5404 system controller, and a
teletype. Each of the creep machines is equipped with a high-temperature furnace and a
stainless steel or alumina specimen chamber with water-cooled heads at the top and
bottom. The test specimen was held in the uniform-temperature zone of the furnace by
means of a gripping device that incorporated a split sockel and solid clamping ring. Creep
strain in the specimens was measured by a linear-variable-differential transducer (LVDT)
that was attached between the fixed and movable pull rods of the creep assembly.
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Displacements of 5 x 10-3 mm could be accurately determined with the LVDT. Before the
start of each test, the LVDT was calibrated by measuring its output for displacements that
were set manually with a micrometer. The linear portion of the calibration curve Was used
to measure the strain in a specimen during creep testing.

A three-zone resistance-heated furnace was used toconduct creep tests at elevated
temperatures. Three Chromel-Alumel or platinum-platinum/rhodium thermocouples
were fed through the specimen chamber; one was spot welded onto each end of the grips on
the specimen near the shoulder region. The third thermocouple was held in the gas phase
adjacent to the gauge length porlion of the specimen. Temperature was maintained within
+2°C of the desired value for each test. The specimens were loaded at a constant rate to the
full load at the test temperature.

Creep Test Environments

Creep lests were conducted in air, 1 vol.%CO-CO29, and oxygen/sullur mixed gas
environments. In addilion, specimens were Lested in sullur-free oxidizing environments
for a period of time; subsequently, the gas was changed from an oxidizing to a sulfidizing
gas mixture. These latler tests were performed (o evaluate the effect, if any, of sulfur in the
environment on the fracture of the oxide scales thal had developed under load. Table 1 lists
the oxygen and sulfur partial pressures of the gas mixiures for several lemperatures used in
the study.

Table 1. Characteristics of gas environments used in creep tests

Test Environment Test Temperature {°C) POy (atm) PSo (atm)
Air 650 021
750 021 -
843 021 -
927 0.21 -
19% CO-COg 650 1.2x10°19
750 1.9x 10716 -
843 48x 10714
927 34x10°12 -
0O/$S mixed gas 650 1.2x 10722 1.3x10°8
750 12x10°19 1.6x 1077
843 1.3x 10718 20x1077
927 7.7x10°17 87x1077
Two-stage* 650 1.2x10°19 1.9x107°
750 19x10°16 2.0x10°8
843 49x 10714 1.1x10°7
927 3.4x10°12 45x 1077

*In the first stage, specimens were oxidized in the pOg values listed, and in the second

stage, Lthe specimens were exposed to Ho-H oS gas mixtures with the pSo values listed.
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RESULTS AND DISCUSSION

Creep Test Data

Creep strain data were accumulated as a function of test time for all of the specimens
tested in this study. The strain-time curves generally did not exhibit a clear demarcation
between primary, secondary, and tertiary creep stages. In several cases, the specimens
crept at a very slow rate and afler a substantial period, the creep process accelerated to
failure. Also, in some cases the creep strain-time curves were linear. The nature of the
creep strain-time curve was influenced by the test temperature, test environment, specimen
pretreatment, and applied stress. However, for a given applied stress, the test environment
did not have much effect on the shape of the strain-time curve. Typical results are
presented in this section.

Figure 1 shows the creep strain-time curves for specimens tested at 650°C at an
applied stress of 137.9 MPa in air, 1 vol.% CO-COg2, O/S mixed gas, and sequentially
oxidizing/sulfidizing environments. The creep curves were analyzed to evaluate creep
rates, rupture strain, and time Lo rupture; the resulls will be presented in the next section.
Figure 2 shows similar data for specimens at 750°C in several lest environments. Figures 3
and 4 show creep strain versus time curves for specimens tested at 843°C in several
environments at applied stress levels of 55.2 and 27.6 MPa, respectlively. Figure 5 shows
similar data for specimens tested at 927°C at an applied stress of 17.2 MPa.

Even though the creep strain-time curves are of widely varying shapes, an attempt has
been made to evaluate creep rate, which is useful to designers of components for service in
coal gasification service. The designers are generally interested in time to accumulate 1 or
5% strain as a function of applied stress and environment, as well as rupture time and
strain at rupture. The present data are not amenable (o evaluation of time to accurmulate
1% strain, primarily because the times to achieve 1% strain are substantially small when
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compared with the total test {ime. As a resull, time values were obtained for accumulation
of 5% strain, along with time to rupture and rupture strain. The results for tests conducted
at several temperatures and in different gas environments are listed in Table 2.
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Microstructural Information

Several of the tested specimens were examined in surface and cross section with a
scanning electron microscope equipped with an energy dispersive X-ray analyzer. Details
developed on some of the typical specimens are presented below. The major focus of the
evaluation is to analyze the scaling of the alloy under load in air and low-pO2
environments in the absence of sullur in the test environmenti, evaluate the scaling process
under load in O/S mixed gas, and establish the effect of sulfur on the mechanical integrity
of the oxide scales developed in sulfur-free environments.

The specimens tested in air and low-p0O2g environments exhibited predominantly
oxide scales, the composition of which was influenced by the oxygen partial pressure in the
exposure environmeni. Analysis of cross sectlions of fracture surfaces showed that air-
exposed specimens developed (Fe,Cr) oxide, whereas specimens exposed to low pO2
developed chromium oxide. Further, the cracked regions in these specimens developed

iron-rich oxide rather than chromium oxide. Significant internal oxidation was noted in
specimens tested in a low-pO9 environment.

The specimens tesied in O/S mixed gas developed an oxide scale or a sulfide scale,
depending on whether pO2 in the test environmeni was greater or less than the pO2 value
for the transition boundary (established from corrosion studies} between chromium
oxide/chromium sulfide formation. When pO2 (test) > pO2 (lransition), the alloy develops
chromium oxide scale. The alloy can develop a sulfide phase external to the oxide phase,
depending on the outward cation {ransport through the oxide scale. In this case, even the
cracked regions of the specimen exhibited oxide scale in contact with the alloy substrate
and a sulfide scale on the gas side of the interface. When pO2 (test) > pOg (transition), the
alloy develops a massive sulfide scale and the time to ruplure of the specimen is
substantially reduced. Under these conditions, the alloy becomes embrittled because sulfur
diffuses along the grain boundaries in the alloy.
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Table 2. Creep test data for specimens tested under different conditions

Test Test Specimen Applied Rupture Rupture  Average Creep
Temperature (°C) Environment® Number Stress (MPa) Time (h) Strain (%) Rate (%/h)
650 Air 33 103.4 14050 12.2 0.00021
Afr 32 137.9 6630.1 85 0.00066
COCO9 39 137.9 9950 180 0.00079
O/S gas 38 137.9 3061 11.2 0.0022
Two-stage 40 137.9 1560 185 0.0023/0.055
750 Air 22 689 5165 189 0.0017
COCO9 27 68.9 2416 29.8 0.0105
O/S gas 36 68.9 2141 134 0.0046
Two-stage 48 68.9 1223 102 0.0093/0.019
Air 28 89.6 324.8 385 0.065
CO-COo2 43 89.6 473.0 20.3 0.021
Air 25 103.4 201.8 34.0 0.158
COCO4y 26 103.4 269.4 29.0 0.063
/S gas 29 103.4 255.4 186 0.043
Two-slage 31 103.4 108.0 17.8 0.111/1.25
Air 30 124.1 75.4 35.3 0.335
CO-CO9 42 124.1 47.3 270 0.300
843 Air 35 27.6 8401 17.4 0.002
CO-CO2 41 27.6 9620 23.3 0.0037
0/S gas 21 276 1628 2.6 0.0016
Two-stage 45 27.6 1275 845 0.004/0.028
Air 8 414 620 239 0.0146
CO-CO2 15 414 2697 295 0.0042
O/S gas 18 414 618 232 0.0463
Air 7 55.2 79.6 38.3 0.481
CO-COq % 55.2 191.7 23.7 0.077
O/S gas 13 55.2 24.2 12.2 0.175
O/S gas 16 55.2 27.3 86 0.171
927 Air 12 17.2 2311 14.8 0.0054
COCO2 37 17.2 3482 343 0.0050
O/S gas 20 17.2 1975 12.3 0.0047
Two-stage 49 17.2 1180 119 0.0078/0.029
Two-stage 51 17.2 2412 17.4 0.0032/0.0088
Air 11 276 310.1 19.8 0.027
CO-COg 23 276 369.8 26.3 0.023
0/S gas 17 276 473.2 26.3 0.0416
Air 10 41.4 16.9 385 1.65
CO-CO9 44 414 35.4 338 0.954
0/S gas 14 414 6.3 16.8 1.32

8Two -stage = Test environment where, in the first slage, specimens were oxidized in low pO 9, and in the
second stage, the specimens were exposed to an g -[19S gas mixture.
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The corrostion morphologies of specimens tested in two stages, namely oxidation.in
Stage 1 followed by exposure to Hp/HaS in Stage 2, were more complex and were influenced
by the time of exposure in Stage 1, sulfur partial pressure in Stage 2, and test temperature.
Additional tests and more detailed analysis of tested specimens are needed to fully evaluate
the performance of Alloy 800 under these conditions. Figure 6 shows the scanning electron
microscopy (SEM) photomicrographs of cross sections of Specimens IN 21, IN 41, and IN 45,
which were tested in 1%CO-COg2, O/S mixed gas, and two-stage environmental conditions.

Creep Correlations

Creep data obtained for specimens tested under differing applied stress values and
exposure conditions were used to generate correlations between time to rupture, applied
stress, and average creep rate for accumulation of 5% strain. Figure 7 shows dependence of
average creep rate for 5% strain accumulation at 750 and 843°C on applied stress for tests
conducted in different gaseous environments. In general, the creep rates for the specimens
were not significantly affected by variation of the test environment. Figure 8 shows
dependence of time to rupture at 750 and 843°C on applied stress for tests conducted in
different gaseous environments. It is evident that the sulfur-containing environment
results in substantial reduction in rupture life of the alloy. The effect is more pronounced if

Figure 6. SEM photomicrographs of cross sections of specimens tested in several gaseous
environments
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the specimen was preoxidized under load and subsequently exposed to a sulfur containing

atmosphere. In the two-stage tests, the original oxide seemed (o have been completely

destroyed with substantial embrittling of the specimens due to sullur diffusion in the grain

boundaries of the alloy.

Correlations have been developed between rupture time and average creep rate for
accumulation of 5% strain, and between rupture time and rupture strain for tests conducted
at 650, 750, 843, and 927°C in different gaseous environments. The results indicated that,
for a given rupture time, the creep rates are somewhat greater in a sulfur-containing
environment than in an environment without sulfur. On the other hand, the rupture stains
were substantially smaller in the presence of sullur, indicating a profound embrittling
effect of sulfur in the exposure environment.

SUMMARY

An extensive creep tesl program was conducted (o evaluate the role of sulfur



341

containing environments on the creep properties of Alloy 800 and to establish the role of
sulfur in the scaling process, creep crack propagation, and rupture life. Tests were
conducted at 650, 750, 843, and 927°C in air, low-PQg, O/S mixed-gas environments. In
addition, tests were conducted sequentially in a sulfur-free, low pOg environment followed
by an Hg /H2S environment. Several conclusions can be drawn from the study.

¢ In the absence of sulfur in the test environment, the creep properties of the Alloy
800 are improved in low-pOg2 atmospheres when compared ‘with those obtained in air.

* In O/S mixed gas environments, the alloy exhibited minimal effect if pOg (test) >
pO2 (Cr oxide/Cr sulfide transition boundary). The alloy exhibited substantial reductions
in creep life and creep rupture ductility if pO9 (test) < pOg (transition boundary).

» Average creep rate values for accumulation of 5% strain calculated {rom creep
strain-time data showed negligible effect due to variations in chemistry of test gas
atmospheres.

» Extensive microstructural analyses conducted on several of the tested specimens
indicated that the creep performance of the materials is predominantly influenced by the
corrosion behavior of the alloy in different exposure environments.
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ABSTRACT

For a halide-activated pack cementation process, codeposition of
Cr and Si into diffusion coatings on steel surfaces can be achieved by
using two halide salts to jointly optimize the partial pressures of
CrClz(v) and SiFz(v). The selection of the second salt is the key point
for this process. A SOLGASMIX program was used to calculate the
equilibrium vapor pressures of different metal halide gas species for
different activator salt combinations. Two salts with.the same cation
develop low partial pressures for CrCly(v) and SiF;(v), which are not
high enough to codeposit Cr and Si into a coating. Two salts with
different cations produce a different result. Some combinations, such
as NaCl and CaFy, have high and comparable partial pressures of CrCls(v)
and SiFy(v). However, other combinations either have low partial
pressures, or the partial pressures of CrCly(v) and SiF;(v) are not of
the same magnitude. The role of the partial pressure for the alkali
metal is elucidated. Experimental verifications are consistent with the
theoretical predictions, and thus coated steels exhibit excellent
corrosion resistance to cyclic oxidation and aqueous corrosion.

INTRODUCTION

The pack cementation coating processl is a self-generated Chemical
Vapor Deposition (CVD) process carried out at high temperature to form
diffusion coatings which can improve the enyironmental resistance of
steels. The deposition of the individual elements Al, Cr or Si is
commonly practiced commercially, but the codeposition of two elements
simultaneously suffers an equivalent difficulty as electroplating an
alloy, and this process is not commonly practiced. However, the
addition of Cr plus Si into a steel surface to change the composition
locally can greatly improve the resistance of the alloy to high-

temperature oxidizing gases or to an ambient corrosive environment.

Chromium, as delivered by the CrCls(v) species, is the main
element used in the coating process to improve the oxidation and
corrosion resistance of steels. However, as illustrated in Fig. 1 (a),
the deposition and diffusion of chromium into steels in which the carbon

content is higher than 0.004wt%2 is limited by the formation of a thin
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tendency for alloying. Also, excess binary halide salts are considered
to be present in the pack at unit thermodynamic activities so that the
initial input amounts do not influence the equilibrium partial pressures
of any gaseous species. The initial amount of Ar gas (1x10-4 mol) in
the pack is chosen using the ideal gas law, but this gas does not enter

into any reactions with the components.

In the cementation coating pack, the partial pressures of the
silicon fluoride vapors are determined by the activity of the silicon
and the halogen gas, e.g., according to the reaction: Si + xF(g) =
SiFx(v). 1In these systems with high temperatures and low halogen
activities, the partial pressures of the atomic halogens exceed those
for the molecular species. When the Si metal activity is held constant
(unity in this study), the partial pressure of SiFy(v) 1is dependent only
on the pressure of F(g), which is determined by the decomposition
reaction for the halide salt: NaF(s) = Na(v) + F(g). When the activity
of NaF(s) is held constant (unity in this study), the pressure of F(g)
is linked by an equilibrium constant to the vapor pressure of the Na(v)
gas species. Therefore, the partial pressures of the SiFy(v) species
are dependent on the Na vapor pressure in the pack. A similar

interdependence describes the relationships between CrCl;(v) and the

partial pressures of Na(v) and Cl(g) generated from an NaCl activator

salt.

Table I shows the standard Gibbs energies of formation per mole of
Cl, and F, for different metal halide vapors and the halide salts at
1400 K. The thermodynamic calculations for cementation packs with
various activators were carried out by using a computer program,
SOLGASMIX, evolved from Erikssonl. This program is capable of treating
the mutual equilibria of multiple condensed phases and a gas phase.
Table II shows typical input data for the program and the resulting
output (eqﬁilibrium) information, in this case for the mutual
equilibrium of pure Cr, Si and NaF at 1400K. According to the standard
Gibbs energies of formation of all possible compounds in the system (as
given in Table I) and the initial molar input of elemental components
(given in Table II), the program redistributes the elements to generate

the equilibrium partial pressures for the various vapor species at the



345

Table I. Standard Gibbs Energies of Formation (Kcal/mol) at 1400K

Kcal/mole C1, Kcal/mole F,
NaCl .} -131.56 NaF -198.8
KCl -138.09 KF -195.06
" HMaca, -101.1 MgF, -209.75
CaCl, -141,7 CaF, -238.05
CrCl, (v) ~-53.3 CrF (v) -60.4
CrCls (v) ~43.9 CrF, (V) -116.7
CrCly(v) -33.8 CrFs (V) -129.2
SicCl(v) -25.3 SiF (v) -77.3
sicl, (v) -52.4 SiF, (V) -150.5
8icCls (v) -54.3 SiF3(v) -160.1
SiCl, (v) -57.3 SiF4(v) -169.0
Table II. Example Input and Cutput Data for SOLGASMIX.
T= 1400 K P = 1.00atm
Input Conditions
Species Amounts
Cr (c) 1.800E+01 (gm)
Si (c) 2.000E+00 (gm)
Ar 1.000E-04 (mol)
NaF (c¢) 1.000E+00 (gm)
c (c) 1.000E-4 (gm)
Al1,0, (c) 8.000E+01 (gm)
Output Gas Phase Equilibrium Compositions
Species Moles Mol. Frac P (atm)
Ar 1.00000E-04 9.7284$E-01 9.72845E-01
Na 1.92375E-06 1.87152E-02 1.87152E-02
SiF, 4 .09908E-07 3.98777E-O§ 3.98777E-03
NaF 2.27212E-07 2.21042E-03 2.21042E-03
NajgF2 1.00183E-07 9.74627E-04 9.74627E-04
SiFjy 7.06561E-08 6.87374E-04 6.87374E-04
CcO 2.15244E-08 2.09399E-04 2.09399E-04
AlF, 1.66027E-08 1.61519E-04 1.61519E-04
SiF, .8.36225E-09 8.13518E-05 8.13518E-05
AlF 5.78462E-09 5.62754E-05 5.62754E-05
Sio ’5 .53609E-09 5.38576E-05 5.38576E-05
AlF, 1.74267E-09 1.69535E-05 1.69535E-05
SiF 1.79392E-12 1.74520E-08 1.74520E-08
Al,Fg 8.57486E~-13 8.34201E-09 8.34201E-09
CrF 8.64653E-14 8.41173E-10 8.41173E-10
CrF2 .4.49571E-14 4.37363E-10 4.37363E-10
0, 1.20204E-29 1.16940E-25 1.16940E-25
Fy 2.71406E-32 2.64036E-28 2.64036E-28
Qutput Condensed Phases
Species Moles Activities
Al1,0; (c) 7.85000E-01 1.00000E+00
Cr (c¢) 3.46000E-01 1.00000E+00
Si (c) 7.11995E-02 1.00000E+00
NaF (c) 2.38176E-02 1.00000E+00
C (c) 9.99785E-05 1.00000E+00
Na,Si,05 (1) 1.82743E-09 1.00000E+00

e
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CrCl,(v) CEFt7) (negl.)

SiCl, (v) SiF, (v)

Cr |NaCl| Sij Cr | NaF | Sj

Single Activator Cementation Packs

CrCl,(v) _CFFt9) (negl.)

SiCl, (v) SiF, (v)
Na(v)

Cr NaCl| NaF Si

Dual Activator Cementation Pack With "Common Component"

CrCl,(v) _CeF(9) (negl.)

SiCl, (v) SiF, (v)

Cr MgClL| NaF Si

Dual Activator Cementation Pack Without "Common Component"

Fig.2 Schematic Nustration of Multiphase Equilibria Evaluated to Demonstrate the
Importance of the Common Component Effect.
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minimum Gibbs energy state. Table II presents the resulting equilibrium
vapor pressures; in accordance with the assumptions of\unit activities
for the pure reactants, the results do not depend upon the amounts of
the reactants (in excess). To demonstrate the effect of a common
(alkeli) component in these multiphase equilibria, the SOLGASMIX program

has been evaluated for the conditions shown schematically in Fig. 2.
COMPUTATIONAL RESULTS

Table III shows the calculated vapor pressures of metal halides,
and the vapor pressures of halide gases, using a single salt and two

salts (with or without a common cation).

8i e Salt

According to Table I, NaCl is less stable than KCl, so the partial
pressure of atomic chlorine for equilibrium between NaCl with Cr or Si
is higher than that for equilibrium with KCl. Therefore, as shown in
Table III, the vapor pressures of CrCl,(v) and SiCl,(v) using NaCl as a
single activator are higher than those using KCl as an activator. aAn
equivalent result is calculated for MgCl, and CaCl,. The vapor
pressures for CrCl,(v) and SiCl,(v) using MgCl, as a single activator
are higher than those using CacCl,. However, KF is less stable than
NaF, so the partial pressure for SiF,(v) in the equilibrium for Si with
KF is higher than that for the equilibrium of Si with NaF. The vapor
pressure of CrFy(v) is always negligibly small here. Analogous relative

vapor pressure behavior occurs for the use of MgF, or CaF,; single salts.

Two Salts (Common Cations)

According to Table III, as a single salt, NaF generates a high
sodium vapor pressure (1.86x10-2), much higher than that for NacCl
(1.28x%10-4).. When these two salts are considered for joint use as a
mixed activator, the sodium vapor pressure remains the same as that
using NaF as a single activator. Therefore, the partial pressures of
F(g) and SiF,(v) are the same as for the use of the single salt NaF.
However, because the sodium vapor pressure using the two salts is much

higher than that using the single salt NaCl, the partial pressures for
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Cl(g), CrCl,(v) and SiCl,(v) using two sodium salts are lowered by 3 tq
4 orders of magnitude compared to the use of the single salt NaCl. An
analogous result happens for the same reason for KCl plus KF (salts with
a common cation); the partial pressures for Cl(g), CrCl,(v) and SiCl,(v)

are greatly reduced.

The vapor pressures for Mg in packs involving either MgF, or MgCl,
as a single activator differ only modestly. Therefore, when both MgF,
plus MgCl, are used as dual activators, the vapor pressure of Mg is
close to that using either single salt. Therefore, the partial pressures
for Cl(g), CxCl,(v), SiCl;(v), SiF,(v) and F(g) using the two Mg salts

are approximately the same as those using a single salt.
T Salts (Diff . )

When two salts with different cations are used together as
activators, the resulting partial pressures for Cl(g), CrCl,(v) ,
SiCl,(v) , SiF,(v) and F(g) follow certain trends. For instance, when
NaF plus KCl are used together, the resulting partial pressure for K is
1.02x10"2 (more than 2 orders of magnitude higher than that using single
KCl); the partial pressure of Na is 1.69x10~2 (little change from using
the single NaF salt). Therefore, the resulting partial pressures for
SiF,(v) and F(g) are approximately the same as those using single NaF,
but the vapor pressures for Cl(g), CrCl,(v) and SiCl,(v) are about 3 to
4 orders of magnitude lower than those using the single KCl salt. Other

salt combinations follow the same rules and trends.

From an engineering standpoint, the codeposition of 25Cr and 3Si
into steel in a single cementation pack process involves the practical
problem of booéting the vapor pressure of CrCl;(v) to compete with
SiFy(v) and SiCly(v). Table III offers some promising possibilities
for the use of two activator salts with different cations. For example,
the dual salt activators NaCl + CaF,, KCl + CaF3, CaCly + NaF, and
CaCl; + MgF; might be useful for codepositing Cr and Si, because they
generate vapor pressures for CrCl,(v) and SiF,(v) of comparable and

sufficiently high magnitudes.
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Even though different cation salts were used in the calculation, a
common component still exists in the pack. Si used as the metal source
is likely to become the common cation when it reacts with the activator
salts to form both its own chloride and fluoride of comparable partial
pressures. In the cases studied in Table III, Cr indeed is not the
common component, since Cr fluoride species are always negligible. The
inherent Si common component leads to a lower Cr chloride vapor pressure
than the single salt situation, although salts with a common cation are
not intentionally used. Actually, during the pack cementation process,
a somewhat higher process temperature than 1400 K is used. Naturally,
reactions among the condensed reactants will nullify the assumption of
unit thermodynamic activities, but the calculated trends and underlying
interpretations should prove to be a useful basis for planning

experiments.

EXPERIMENTAL VERIFICATION

Experiments were conducted in an electric resistance tube furnace
in an Ar atmosphere. The packs tested contained 20wt.% Cr, 2wt% Si, and
2wt.% various activator salt(s). Alumina was used in the pack as the
inert filler, and an interstitial-free iron was used as the metal
substrate. The powder mixtures were mixed thoroughly in a ball mill.
The powder and the metal substrate were then charged into an alumina
crucible, covered with an alumina 1lid, sealed with a ceramic adhesive,
cured in a hot (100°C) oven, and placed in the electric resistance
furnace. The furnace was heated to 1150°C for 8 hrs, and then cooled to
room temperature. The metal coupons were retrieved, and cleaned
ultrasonically in both hot water and acetone. The surface compositions
of the coatings were measured using Energy Dispersive Spectroscopy (EDS)
analysis. The coating surface compositions as a function of the
calculated chromium chloride vapor pressure are plotted in Fig. 3. The
surface chromium concentration increases with an increase in the
calculated chromium chloride vapor pressure. This fact indeed
demonstrates that during chromizing/siliconizing the deposition of

chromium is controlled by the vapor transport of the halide species.
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TECHNOLOGICAL SIGNIFICANCE

Chromized-siliconized T1l steel with a surface composition of 25
wt.3Cr and 3wt% Si was subjected to a cyclic oxidation test at 700°C.
Figure 4 shows one example of the tests. An extremely low weight gain
(0.1862 mg/cm2) was recorded after 160 1-h cycles. The same coating
principle was also applied to improve the aqueous corrosion resistance
of interstitial-free iron and stainless steels. Figure 5 shows the
electrochemical polarization curves of the interstitial-free iron and a
316L stainless steel in a 0.6M NaCl/0.1M NaySO4 solution at room
temperature, measured before and after chromizing/siliconizing. The
coated steels exhibit higher transpassive potential (pitting potential)

and a wider passivation region than the original steels.

CONCLUSIONS

For the practical codeposition of Cr and Si into steels in a

halide-activated cementation pack:

l. The use of two salts with common cations as activators, e.qg.
NaCl + NaF, or KCl + KF, results in relatively low partial
pressures for Cl(g), CrCl,(v) and SiCl,(v), so that Cr could not

be deposited into the steel surface.

2. The dual use of two salts with different cations produces
differing results. Some combinations (e.g. NaCl + CaFy) show
relatively high partial pressures for both CxCl,(v) and SiF,(v)
that are also comparable in magnitude, an important condition for

codeposition in a single process step.

3. Most combinations of two salts with different cations are not
promising, because they either have relatively low partial
pressures for CrCl,(v), SiCl,(v) and SiF,(v) or the partial

pressures of CrCl,(v) and SiF,(v) are not comparable.



353

12@@ [ T T T i I I s
a) Interstitial Free Iron Coated
80| ' |
400 L |
>
u °r Uncoated 7
420} ]

1o p ia 19 1a 19 ia
I¢ PA/CMAZ'.!

eL=r--1 I I IR B AL I AL i IR

b) 316L Stainless Steel
1ooel Coated

5068t

Uncoated

EC MW

500

-1023 5] i 2 3 4 [
12~ 1@ 10 10 10 10 16 12 10
I¢ JA/THAZ)

Fig. 5 Electrochemical Polarization Behavior of a) Coated
Interstitial Free Iron and b) Coated 316L Stainless Steel in a 0.6M
NaCl/0.1M Naj (SO4) Solution (pH = 8) at Room Temperature.




354

4. In the multicomponent multiphase equilibrium considered, the
high partial pressures for the atomic alkali metal vapors are

important in deciding the effects of the common component.

5. Chromized-siliconized T1l steel demonstrates extremely slow
cyclic oxidation kinetics at 700°C. The chromized/siliconized
coating also greatly improves the pitting resistance of stainless

steels.
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DEVELOPMENT OF A MODIFIED 310 STAINLESS STEEL

R. W. Swindeman

Oak Ridge National Laboratory
P. O. Box 2008
Oak Ridge, Tennessee, 37830

ABSTRACT

Structural materials performance requirements were re-evaluated for use
in emerging fossil energy applications. Concepts included low emission boilers,
advanced steam cycle, and combined-cycle technologies. Both pressure-bearing
and non-pressure-bearing applications were considered. The adequacies of
martensitic and austenitic steels were examined, and comparisons of the
potential bf various alloy selections were undertaken. Both austenitic and
martensitic steels were judged to have applicability for boilers operating at
600°C while fine-grained austenitic alloys were judged to be best for service to
650°C. For applications in the range 650 to 760°C, modified 310 stainless
steels were judged to be good choices. Above 760°C, the alloys being
considered for pressurized fluidized bed combustors (PFBCs) included oxidation-
resistant stainless steels. For carbonizers and gasifiers operating below 900°C,
cobalt-bearing alloys and modified 310 stainless steels were of interest. Iron-
aluminide cladding was also considered, and experimental studies were begun to
examine compatibility with pressure boundary materials. Thc_e data base for
modified 310 stainless steels was expanded to 1038°C, and tésting times
ranged to beyond 10,000 h. The performance of weIdmenfs in modified 310
stainless steel was examined and found to be adequate to enable the use of the
material at 871°C. Exploratory work on fatigue was undertaken. For service

above 900°C, exploratory evaluations of cast high alloys (HP) and alloy 160




356

were begun. Creep, fatigue and crack growth testing was initiated on alloy 160.

Interactions and collaboration with industry were maintained.

INTRODUCTION

The need for more efficient coal combustion was identified ten years ago,
when research on advanced steam cycle concepts was begun by the Electric
Power Research Institute (EPRI) to improve the performance of pulverized coal
power plants (1). The initial thrust of the FE/AR&TD alloy development research
was to evaluate austenitic alloys that could be used for superheater tubing in the
boiler of the EPRI Phase 2 conceptual plant (2). Such a plant, producing steam
at 650°C and 35 MPa (1200°F and 5000 psi), was expected to be more
efficient than existing plants and have lower emissions. The EPRI Phase 2 effort
received very little support by the U.S. utility industry. Rather, state-of-the-art
combined-cycle concepts and second-generation combined cycle concepts
received increased attention from a few enterprising utilities, the EPRI, and the
DOE energy technology centers (3). Recognizing that issues remained regarding
the use of materials for second-generation combined-cycle systems, efforts
undertaken in the last year to collaborate with the fossil power industry in
various areas of structural materials technology. Topics that are covered
included structural alloys for low emission boilers, advanced steam cycle, and
second-generation combined cycle applications that incorporated gasifiers,

carbonizers, fluidized bed combustors, and indirect heaters.

LOW EMISSION BOILERS

Low emission boilers (LEB) are being designed with steam temperatures in
the range of 593 to 649°C (1100 to 1200°F), and pressures could be as high
as 35 MPa (5000 psi) (4). Choices must be made regarding the materials of
construction. Both ferritic and austenitic alloys are being considered. Main

steam line piping, reheat piping, and headers will be thick-wall components.
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Candidate materials include martensitic steels such as Gr91, NF616, and
MCM12 and austenitic steels such as 316N and 347H stainless steels. Although
base metal properties of these alloys appear to meet.the needs for the expected
service, issues remain regarding the performance of weldments. A small research
effort at ORNL has been directed at examining the performance of weldments
under creep rupture and fatigue loadings. Collaboration with utilities and
component manufacturers has been part of this effort. Exploratory creep-rupture
and fatigue testing of cross welds taken from heavy wall pipe of Gr 91 revealed
much reduced life as a result of weakness in the heat affected zone of the
welds. The reduced life is expected to be less significant at lower stresses, but
long-time testing has yet to be performed. More severe losses are expected in
NF616 and MCM12 weldments because of high strength levels in the base metal
and their tendency to form a brittle Laves phase.

Recuperator temperatures in some LEB designs are as high as 649°C
{1200°F). Some recupefator designs call for thin-section oxidation-resistant
steels alloys. Candidates include modified 300 series stainless steels, modified
alloy 800H, and nickel base alloys. Research undertaken to support the
advanced steam cycle may be applicable to such LEB recuperators, and a small
effort is underway to address this issue. An understanding of weld metal and
weldment behavior at long times is essential for reliable design of LEB
components, so research on weldments that was related to the advanced steam
cycle has continued-with this new application in mind. Cross-weld tests on
modified alloy 800H have been underway, and creep testing times exceeding
25,000 h have been achieved at temperatures in the range of 600 to 700°C
(1112 to 1292°). Both fine grain and medium grain size materials are being

examined.
SECOND-GENERATION COMBINED-CYCLE

Materials and design methods for second-generation combined-cycle

(SGCC) plants were examined. However, many different concepts for SGCC
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exist, and materials performance requirements differ greatly from one concept to
another. Fluidized bed combustors, carbonizers, gasifiers, and slagging
combustors are all being considered in the coal combustion or conversion
processes. Heat recovery and gas cleanup systems also vary. In spite of heavy
usage of refractories and structural ceramics, it seems likely that metals will be
needed for pressure retention, cyclones, gas stream piping liners, expansion
bellows, filter supports, blowback systems, and heat recovery tubing. The
material selection for these components will depend on the temperature,
composition, and alkali corrosion potential of the gas stream.

Materials and design methods for SGCC systems were examined, and, in
a collaborative effort with industry, criteria for design at high temperatures were
studied (). Concomitant with the study of criteria, exploratory mechanical
testing was undertaken of candidate materials. Some alloys were provided by
industry. Materials included alloy 800H, alloy 333, alloy 556, HR-160, modified
HP, and stainless steels such as 308S, 310S, and 2563MA. Also, the potential
of modified type 310 stainless steel for fossil energy applications at
temperatures above 815°C was assessed, and it was concluded that a 25Cr-
20Ni steel having a strength comparable to alloy 800H would be of commercial
interest. Two commercial heats of 310HCbN stainless steel tubing for testing.
One experimental heat of a Ta-modified 310 stainless steel (310TaN) was
procured as plate and included in the experimental investigations.

In Fig. 1, a comparison is shown of the creep curves for a few alloys of
interest at 927°C and 25 MPa (1700°F and 3.63 ksi). It may be seen that'the
310TaN stainless steel is substantially more creep resistant than 309 and
253MA stainless steels. Improved creep resistance over alloy 800H is also
noted. Further comparisons are provided in Figs. 2a and 2b. Here, the strength
to produced rupture in 10,000 h is compared for temperatures in the range of
760 to 982°C (1400 to 1800°F). The 310TaN stainless steel has more than
twice the strength of 310 stainless steel and is substantially stronger that

253MA and RA85H over the entire temperature range (Fig. 2a). Depending on
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the temperature, the 310TaN stainless steel is equivalent to or stronger than
RA333 and alloy 811 and approaches the strength of alloy 556 above 900°C.
Testing of 310TaN has been extended to beyond 10,000 h, and data for a
number of temperatures and stresses have been correlated on the basis of the
Larson Miller parameter. Such a correlation is shown in Fig. 3 where a
parametric constant of 15 has been used to collapse the data to a single curve
for all temperatures. A few tests on specimen from welds in 12.5-mm plate
were also tested under creep conditions. These data are compdred to base
metal data in Fig. 4, which plots log stress versus the Larson Miller parameter.
All specimens were cross welds, but two types of welds are represented. Alloy
556 filler metal was used to produce gas tungsten arc welds, and alloy 117
electrodes were used to produce shielded metal arc welds. Weldment rupture
lives fell near the parametric curve for base metal. An autogenous weld was

produced in sheet of the material and tested for formability. Small radius bends

30 T T T T T T T T T T
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Fig. 1. Comparison of the creep curve for 310TaN

stainless steel with curves for three structural alloys
.at 927°C and 25 MPa.
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were made with no evidence of cracking. A few fatigue tests were performed
around 816°C. Data indicated fatigue resistance was similar to other stainless
steels. A few tensile tests were performed on aged samples. These tests reveal
some loss in ductility, but room temperature elongation remained around 20%.
Additional aging studies are in progress. A few oxidation studies were
undertaken and results indicated that the oxidation rates for 310TaN stainless
steel were similar to 310 and 310HCbH stainless steels at 870°C.

For protection against sulfidizing environments, an examination of the
potential of iron-aluminide as a cladding material was explored (6). Coextrusion
were made with iron-aluminide on type 310 and 310 stainless steels. Samples
from these extrusions are being exposed to thermal cycling and aging.

An evaluation of the design and analysis of structural components in hot-
gas cleanup systems was undertaken several years ago. Emphasis at that time
was on the tubesheet that supported ceramic filters. Because of the low yield
strengths of commercially available high temperature structural alloys,
tubesheet alloys were judged to be susceptible to low-cycle fatigue failures
under restrained thermal cycling conditions. A nickel-chrome-aluminide
intermetallic alloy (cast IC 396M) with a very high yield strength was selected as
an alternative material for tube sheet construction. A database was gathered on
IC 396M sufficient for an elastic-plastic-creep analysis, and a re-analysis of the
critical region of the tubesheet was performed (7). It was found that the high-
strength intermetallic alloy would not be an improvement over commercial

wrought alloy in regard to thermal fatigue resistance.

SUMMARY

Progress has been made on the evaluation of structural materials for a
number of fossil energy applications, and most of the research involves
collaborative efforts with industry. The materials and research thrusts were
selected to meet the needs of industrial participants in advanced fossil energy

projects. For low emmision boilers, most materials of interest are either
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commercial or near-commercial in regard to fabrication technology. For
construction of components in second- generation combined cycle applications
were examined, and emphasis was placed on gathering data needed for

establishing design methods and analysis procedures.
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INVESTIGATION ON THE WELDABILITY OF HIGH TEMPERATURE ALLOY TUBING MATERIALS

C.D. Lundin and C.Y.P. Qiao

Materials Joining Research
Materials Science and Engineering
The University of Tennessee, Knoxville

ABSTRACT

Gleeble hot ductility, Varestraint hot cracking and Finger hot cracking evaluations on thick wall
commercial 310HCbN tubing material agree with and verify the weldability predictions based on the
Varestraint testing results from thin wall 310HCbN materials. A good correlation was found between hot
cracking and hot ductility testing results.

Short term stress rupture testing of modified 800H, NF709, NF616 and transition joints between
modified 800H and T91 was conducted. For welded modified 800H (with HD556 and Inconel 117 filler), the
HAZ exhibits a lower rupture strength as compared to the base metal or filler metal. For welded NF709
(with 709 filler), the weld metal shows a slightly lower rupture strength compared to the HAZ and base
metal. In general, the NF709 weldment (with NF709 filler) showed an equivalent or slightly lower rupture
strength compared to the modified 800H weldments (with ether HD556 or Inconel 117 filler).

A preliminary evaluation on iron aluminide clad stainless steel tubing was carried out. Arc spray,
GTAW and GMAW techniques were utilized for preparing the clad coupons. Comparison of the
characteristics of the interface in terms of the different fabrication techniques was addressed. Iron aluminide
weld deposited clad on stainless steel, by fusion welding, provides for an excellent bond between the iron
aluminide and stainless steel and shows relatively good operational ease.

INTRODUCTION

Three major evaluations: hot cracking assessment of 310HCBN type material (HR3C), short term stress
rupture testing of advanced austenitic alloy welds and a preliminary evaluation of iron aluminide weld deposited
cladding on stainless steel tubing were undertaken in the last fiscal year.

The weldability studies on the high temperature alloys have enhanced the basic understanding of this
group of alloys and provided information in further improvement of alloy behavior.

For coal fired power system units iron aluminide materials can play a significant role since iron
aluminides possess an excellent sulfidization resistance. To combine the advantages of stainless steel and iron
aluminide, a composite tubing material, in which iron aluminide is applied on the stainless steel tubing OD
surface to endure the fire side environment, was evaluated using different welding process approaches. The
results obtained from ORNL, B&W and The University of Tennessee on the evaluation of the iron aluminide
clad stainless steel tubes show promising effects and it is expected that this study will lead to industrial

structural application of the iron aluminide clad materials.
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MATERIALS AND EXPERIMENTAL PROCEDURES

Tubing materials of modified 800H, 310HCbN, NF709, NF616, T91 and plate material of standard AISI
304 were utilized. Filler material of HD556 (wire), Inconel 617 (wire) Inconel 117 (SMAW electrodes),
NF709 (both wire and SMAW electrodes) and NF616 (both wire and SMAW electrodes) were used to fabricated
the welded coupons. Inconel 617 filler was employed to make the modified 800H/T91 transition joint
coupons. The chemical composition (wt.%) of the base materials involved in the study is given in Table 1.1

while the compositions of the filler materials are shown in Table 1.2.

Table 1.1. Composition of the base materials.

Mod. 800H | NF709 | 310HCbN | 310HCbN | 310HCbN | NF616 T91 304
(V988-1) | (E45243) | (HR3C-A) | (HR3C-B) | (HR3C-C) | (2W104) | (UT-B) nominal

C 0.100 0.060 0.046 0.060 0.060 0.090 0.093 | 0.08 max
S 0.006 0.001 0.010 0.001 0.001 0.002 0.001 -

P 0.022 0.006 0.018 0.014 0.013 0.005 0.018 -

Cr 20.13 20.28 24.23 25.65 25.80 9.01 8.28 18 - 20
Ni 30.09 24.95 18.86 20.15 20.35 - 0.30 8§-10
Mo 1.89 1.50 0.18 - - 0.50 0.90 -
Mn 2.00 1.00 1.61 1.22 1.20 0.45 0.42 2.0 max.
Si 0.19 041 0.64 0.40 0.40 0.06 0.39 1.0 max
\4 0.59 - 0.008 - - 0.20 0.18 -

Al 0.01 - - - - - 0.034 -

Ti 0.28 0.05 0.009 - - - 0.001 -
Nb 0.22 0.26 0.32 0.47 0.45 0.050 0.066 -

N 0.007 0.167 0.202 0.246 0.250 0.048 0.047 -
Cu 0.01 - 0.08 - - - 0.07 -

B 0.006 0.005 - - - 0.004 | <0.001 -

W - - - - - 1.77 <0.01 -
Co - - 0.12 - - - 0.019 -

Sn - - - - - - 0.06 -

Sb - - - - - - 0.002 -
As - - - - - - 0.015 -

0 - 0.044 - - - 0.05 -

Fe Bal. Bal. Bal. Bal. Bal. Bal. Bal. Bal.

The assessments of the welded fabrication related HAZ hot cracking tendency were conducted on all
three heats of 310HCbHN tubing materials. Among them, heats HR3C-A and HR3C-B are thin walled tubing
and the size was not suitable for preparation of the standard Gleeble hot ductility test samples, thus, only
Varestraint hot cracking tests were performed on these two heats. Heat HR3C-C was used to conduct
Varestraint hot cracking, Finger hot cracking and Gleeble hot ductility tests. Two different heat treatment
conditions were evaluated for Heat HR3C-A (HR3C-Al (as-received) & HR3C-A2 (annealed at 1200°C for 1
hour)) and both tubes were used to carry out Varestraint hot cracking tests.

Finger hot cracking tests were performed on modified 800H (V988-1), modified 800H (BWT7) and
HR3C-C. Tubes V988-1 and BWT7 have the same composition. However, microstructural differences
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(especially, the amount and distribution of precipitates) were evident.

Modified 800H, NF709, T91 and NF616 were used in preparing the welded coupons with HD556,
Inconel 117, Inconel 617, NF709 and NF616 filler metal. Short term stress rupture testing was conducted on
specimens extracted from the welded coupons of this group of materials.

AIS] 304 stainless steel plate was used as the base material for the initial aluminide cladding study. The
GTAW and GMAW fusion welding processes were used to deposit iron aluminide. The iron aluminide clad
stainless steel coupons fabricated by hot extrusion (at B&W) and samples from the arc sprayed clad were also
used for the metallographic evaluations. A composite Fe-Al wire (Al core - Fe sheath) was used for preparing
the weld clad coupons.

Optical light microscopy (OLM) and scanning electron microscopy (SEM) were employed to perform
the metallographic evaluations. A quantitative energy dispersive spectrum computer program (Automation

Runner) was employed for chemical analysis.

Table 1.2. Composition of the filler materials.

NF709 NF709 Inconel 617] NF616 NF616 HD556 Inconel 117
(wire) | (SMAW electrode) (wire) (wire) | (SMAW electrode) | (wire) | (SMAW electrode)
C | 0.040 0.040 0.08 0.070 0.09 0.080 0.120
S 0.004 0.003 0.001 0.007 0.002 0.005 0.004
P 0.005 0.003 - 0.008 0.008 - 0.006
Cr 21.0 20.0 22.14 8.9 8.9 21.14 23.31
Ni 25.6 24.7 54.38 0.4 0.6 18.78 50.07
Mo 1.6 1.5 8.79 0.5 0.5 2.89 9.69
Mn 1.09 1.26 0.02 0.86 1.70 1.35 1.73
Si 0.2 0.4 0.17 0.2 0.5 0.49 0.47
V 1 0.036 - - 0.098 0.024 -
Al - - 1.37 - - 0.34
Ti | 0.05 0.06 - - - -
Nb 0.24 0.23 - 0.05 0.05 0.92 0.62
N | 0.228 0.160 - 0.082 0.038 - -
Cu - - - - - - 0.04
W - - - 1.62 1.68 2.25 -
Co - - 12.66 - - 19.08 11.73
La - - - - - 0.024 -
Ta - - - - - 0.02
Fe Bal, Bal. 0.39 Bal. Bal. Bal. 2.19

RESULTS AND DISCUSSIONS

Hot Ductility and Hot Cracking Evaluations for 310HCbN Alloy

Hot Ductility Tests
A summary of the hot ductility test results for HR3C-C and the previously obtained hot ductility testing
results on modified 800H and NF709 is presented in Table 2. HR3C-C has greater ductility recovery during on-
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cooling testing than modified 800H and NF709. Thus, this 310HCbN type material has greater HAZ hot
cracking resistance. The ductility as function of temperature for HR3C-C is shown in Figures 1. Again, itis

indicated that the HR3C material is not sensitive to HAZ liquation cracking.

Table 2. Summary of hot ductility test results.

Material DRR-1 (%) | DRR-2 (%) NDR (C°) RDR (%) ZDT (°C)
Mod. 800 (V988-1) 50 13 75 18 1300
NF709 (E45243) 17 79 40 35 1308
310HCBbN (HR3C-C) 130 93 20 100 1320

80
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500 1000 1100 1200 1300 1400
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Figure 1. Ductility behavior of 310HCbN strength behavior of 310HCbN (HR3C-C).

Varestraint Hot Cracking :I‘ests

A summary of the Varestraint hot cracking test results at 4% augmented strain for the 310HCbN
alloys and the results from modified 800H and NF709 is presented in Table 3 in terms of total crack length,
maximum crack length and cracked HAZ length (base metal HAZ) for all three zones. Higher hot cracking
resistance in all three zones for 310HCDN is evident contrasted to modified 800H.

Table 3. Summary of Varestraint hot cracking tests at 4% augmented strain.

Material Base Metal HAZ Fusion Zone Weld Metal HAZ
MCL TCL CHL MCL TCL MCL TCL
Mod. 800 (V988-1) 0.44 1.75 2.60 1.97 11.28 0.14 0.26
NF709 (E45243) 0.14 0.47 1.36 0.82 5.88 0.17 0.46
310HCbN (HR3C-Al) 0.09 0.22 1.06 1.33 6.53 0.24 0.90
310HCbN (HR3C-A2) 0.23 0.53 1.58 1.34 8.38 0.09 0.13
310HCbN (HR3C-B) 0.12 0.29 1.25 0.72 6.74 0.16 0.76
310HCbN (HR3C-C) 0.18 0.43 0.97 0.79 7.87 0.15 0.44
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Finger Hot Cracking Te

Finger hot cracking test results in terms of maximum crack length (MCL), total crack length (TCL) and
average ratio of crack length to weld width were determined and are documented in Table 4. 1t is indicated that
HR3C-C shows a greater hot cracking resistance than modified 800H. For the*modified 800H ageing at 1200°C
for 1 hour increasés the hot cracking tendency compared to the as-received condition. Modified 800H (V988-1)
shows a slightly lower hot cracking tendency than modified 800H (BWT7) (It should be pointed out that the
Finger hot cracking test only indirectly reflects base metal HAZ hot cracking tendency.). However, the ranking
from the Finger hot cracking tests agrees with the Varestraint hot cracking tests. A bar graph showing Finger
hot cracking behavior is presented in Figure 2. ’

Table 4. Summary of Finger hot cracking testing results.

Mod. 800H Mod. 800H Mod. 800H Mod. 800H 310HCbN

(V988-1) (Vo88-1) BWT?) (BWT?) (HR3C-C)

as-received aged 1 hr at 1200°C as-received aged 1 hrat 1200°C | as-received
mcLl 0.52 1.13 0.49 1.09 0.43
TCL2 0.81 2.53 1.39 3.78 0.63
Ratio3 0.95 2.98 1.61 473 0.74

1: maximum crack length. 2: total crack length. 3: average ratio of crack length to weld width.

5

W Maximum Crack Length
A Total Crack Length
44 B Ratio of Crack Length to Wald Widih

Crack Length to Weld Width (%)
&
Crack Length {mm)

2
v988-1
as-received

BWT7 BWT7
agad 1 hr at 1200°C  as-receivad agod 1 br at 1200°C  as-recelved

Figure 2. Figure hot cracking test results.

Stress Rupture Tests

HAZ softening was evident from a previous hardness evaluation of the weldments in advanced austenitic
alloys, especially, modified 800H. In order to reveal whether HAZ softening degrades the HAZ mechanical
properties, stress rupture tests were carried out on modified 800H, NF709 and transition joints between T91 and
modified 800H. Figure 3 shows stress as a function of rupture time for modified 800H and NF709 while Figure
4 shows the stress rupture behavior of NF616 and the transition joint between modified 800H and T91. A
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summary of stress rupture evaluation results including applied stress, rupture time, failure location, and the
rupture ductility is given in Table 5.

The stress rupture results agree with the prediction from the microhardness measurements, in which
mechanical property degradation was evident in the HAZ of modified 800H weldments. According to the stress

rupture testing results, the HAZ of modified 800H shows lower rupture strength as compared to the base metal.

Table 5. Summary of Stress Rupture Testing Results.

Sample & Filler Material Rupture Location Stress Rupture Time | Ductility
(ksi) (hp (%)
Mod.800H/HD556 Fine Grained HAZ 40 12 64
Mod.800H/HDS556 Fine Grained HAZ 35 42 73
Mod.800H/HD556 Coarse Grained HAZ 30 152 75
Partially Melted HAZ Adjacent 25 624 68
Mod.800H/HD556 to Fusion Boundary
Mod.800H/Inconel 117 HAZ 40 10 72
HAZ
Mod.800H/Inconel 117 | (the end away from Fusion Line) 35 8.3 68
Fusion Zone
Mod.800H/Inconel 117 | (Significant necking occurred in 30 6.7 44
HAZ)
NE709/NE709 Fusion Zone 40 10 69
Base Metal
NF709/NF709 (Crack at Fusion Zone almost 35 125.9 23
through the cross section)
NE709/NF709 HAZ 30 12 46
BM of Mod.800H Base Metal 45 51 57
BM of Mod.800H Base Metal 40 101 66
Mod.800H/T91/617/filler
PWHT: 1400°F; 30 mins. the HAZ at T91 side 14 0.9 83
Mod.800H/T91/617/filler
PWHT: 1400°F; 30 mins. the HAZ at T91 side 12.8 0.5 92
Mod.800H/T91/617/filler
PWHT: 1400°F; 30 mins the HAZ at T91 side 11.43 5 92
Mod.800H/T91/617filler
as-welded the HAZ at T91 side 14 1.6 66
Mod.800H/T91/617filler
as-welded the HAZ at T91 side 12.8 2.4 84
Mod.800H/T91/617/filler
as-welded the HAZ at T91 side 11.43 3.1 89
Mod.800H/T91/617filler
as-welded the HAZ at T91 side 10 15.8 88
NF616/NF616/NF616filler
PWHT: 1400°F; 30 mins. HAZ 12.8 32 65
NF616/NF616/NF616filler
PWHT: 1300°F; 30 mins. HAZ 11.43 56 57
NF616/NF616/NF616filler
PWHT: 1400°F; 30 mins. HAZ 11.43 87 65
NF616/NF616/NF616filler
PWHT: 1400°F; 30 mins. HAZ 10 227.3 38
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Figure 3, Stress rupture behavior of modified Figure 4. Stress rupture behavior of transition
800H and NF709. and joint between modified 800H and T91, and NF616.

The NF709 weldments showed a rupture strength similar to modified 800H although no significant HAZ
softening was found in NF709 (a cold worked schedule is not incorporated for NF709 base metal performance).
As was expected, all transition joint (modified 800H to T91) specimens ruptured in the HAZ of the T91
for both as-welded and the welded + PWHT (1400°F for 30 minutes) conditions. PWHT slightly reduced the
rupture strength of the HAZ on the T91 side of the transition joint. Tungsten containing (1.8 wt.%) 9Cr type

steel, NF616, showed significantly higher weldment stress rupture strength compared to T91.

Metallographic Evaluation of Iron Aluminide Clad Stainless Steels

Based on etching response, the UTFA-1 etching practice {6] was selected for metallographic samples.
Using this etching practice, grain boundaries can be definitively revealed and segregation bands are darkened in
the iron aluminide cladding. The different grain orientations and constituents can be distinguished by choosing
the proper etching conditions.

A typical microstructural morphology of the bond region of the iron aluminide clad stainless steel
samples fabricated by arc spray is shown in Figure 5. Small scale porosity and lack of fusion were found in
this type of cladding. With back scattered electron imaging, the EDS analyses indicate that the dark areas
(lettered A and B) are rich in Al and bright gray areas (lettered C and D) are predominantly pure Fe. The areas E
and F contain both Fe and Al. Therefore, in the as-sprayed condition, the clad material is mixture of Fe3Al,
FeAl, FeAl3, Fe and Al It is evident that further experimental work should be carried out on the arc-spray
technique with the composite wire to produce the desired iron aluminide clad (single iron aluminide phase) on

stainless steel.




372

ARORT XA

% o SR A
R
o

S

Figure 5. Typical microstructural morphology of bond area of the iron aluminide clad stainless steel
with arc spray technique.

Figure 6 (a) shows the typical microstructur.l raorphology of the interface region between the iron
aluminide clad and 304 matrix of the B&W fabricated tuber at (hot extrusion). Excellent bonding is evident.
Figure 6 (b) shows a GTAW autogenous bead on the OD surface of the hot extruded iron aluminide clad tube
coupon. It is clear that interface: cracks are observed under the weld. This indicates that the interface may be the
critical location for this type of clad tube and interface cracking may occur under welding residual stresses during
welding of the tubing.

Figure 7 shows the typical microstructure in a cross section through the iron aluminide GTAW clad 304
stainless steel. Excellent bonding between the clad and matrix was obtained in addition to a single iron
aluminide phase. Since cladding by fusion welding can be performed during the last stage of the structural
fabrication, interface cracking tendency induced by tube butt welding may be minimized.

Figure 8 shows the SEM morphology in the bond area in the GMAW iron aluminide clad. EDS
quantitative chemical analysis was conducted across the bond area. In order to define the locations where EDS
was performed, "crosses" are shown on the micrograph. The EDS results along Lines ab, cd and ef in Figure 9
are presented in Figures 9, 10 and 11, respectively. As indicated in Figures 9, 10 and 11, a single phase Fe3Al
(D03) was obtained in the clad. It is revealed by EDS that base metal has been diluted into the clad. Since a
small amount of Cr (about 5 at.%) has a beneficial effect on ductility without reducing corrosion resistance 8],
the enhanced Cr content in the clad may be beneficial to clad deposition behavior. An in situ melted zone
(showing solidification substructure) was observed between the clad and matrix. The existence of an in situ
melted zone provides for a relatively uniform chemical and mechanical property gradations and is expected to

benefit bonding behavior.
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(@) Figure 7. Typical microstructure of the cross section
of GTAW welded iron aluminide clad stainless steel
sample.

: 1u0 -
I
®
’ Figure 6. The bond area microstructural Figure 8. SEM morphology of GMAW
morphology; (a) as-extruded condition; (b) with welded iron aluminide clad stainless steel sample.

GTA weld on top of the iron aluminide clad.
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Silicon is also diluted into the clad although the amount of Si present in the clad is low. Silicon

segregation in the iron aluminide clad may tend to form other secondary phases and/or cause an eutectic

reaction. Weld solidification cracks were found in the GMAW clad iron aluminide samples. To minimize

the crack sensitivity, adjustment of the alloying elements of the filler may be needed.

1.

SUMMARY

Alloy 310HCbN showed a better hot cracking resistance compared to modified 800H tubing material

based upon the results obtained from the Varestraint hot cracking test, Finger hot cracking test and Gleeble hot

ductili
2.

ty test.

The results from short term stress rupture testing of the weldments of advanced austenitic alloys indicate

that HAZ mechanical property degradation occurs in modified 800H. No HAZ mechanical property degradation
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was observed in NF709 weldment and, the rupture strength of the NF709 weldment is similar to that of
modified 800H,

3. The GTAW and GMAW processes were employed to deposit iron aluminide as a clad on austenitic
stainless steel. Excellent bonding was obtained using GTAW and GMAW. These approaches provide a
promising opportunity for industrial applications of iron aluminide clad tubing.

4. Weld solidification cracks were found in the iron aluminide clad. To minimize the solidification cracking
tendency, major compositional adjustments in the alloy system and/or addition of minor alloying elements to
the filler may be needed.

S. Silicon rich precipitates and other secondary phases which may form in the aluminide clad, at elevated
temperature, should be investigated in order to reveal whether these secondary phases are detrimental to cladding
performance.
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ABSTRACT

This paper summarizes recent progress in developing CryNb/Cr(Nb) alloys for
structural use in advanced fossil energy conversion systems. Alloy additions were added
to control the microstructure and mechanical properties. Two beneficial elements have been
identified among all alloying additions added to the alloys. One element is effective in
refining the coarse eutectic structure and thus substantially improves the compressive
strength and ductility of the alloys. The other element enhances oxidation resistance
without sacrificing the ductility. The tensile properties are sensitive to cast defects, which
can not be effectively reduced by HIPping at 1450-1580°C and/or directionally solidifying
via a floating zone remelting method.

INTRODUCTION

The objective of this task is to develop new-generation structural materials based on
intermetallic alloys for use as critical hot components in advanced fossil energy conversion
systems. The intermetallic phase, CroNb, with a C-15 complex cubic structure,! has been
selected for this development effort because of its high-melting point (1770°C),2-3 relatively
low density (7.7 g/cm?),4 and potential resistance to oxidation and corrosion.2 This
intermetallic phase, like many other Laves phases, has a wide range of compositional
homogeneity,3 suggesting the possibility of improving its mechanical and metallurgical
properties by alloy additions.

The major concern with CrpNb and other A;B Laves phases is their poor toughness
and fracture resistance at ambient temperatures. 256 The single-phase CryNb is very hard
(~800 DPH) and brittle at room temperature. Because of the brittleness, our development
effort has been concentrated on two-phase structures containing the intermetallic phase
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Cr,Nb (hard phase) and the Cr-rich solid-solution phase (ductile phase). Previous studies
indicated that the two-phase alloys exhibited plastic deformation under compression tests at

room temperature, with strength much superior to nickel-base superalloys at and above
1000°C.5.78 Bhandarker%:10 has demonstrated that a dispersion of Fe,Ta Laves-phase
particles dispersed within grains of a ferritic steel produced good elevated-temperature
strength without causing low-temperature embrittlement. Recently, considerable effort has
been devoted to the development of new superalloys containing Laves phases for high-
temperature structural use.5-8, 10-16

Our results obtained so far indicate that the two-phase CroNb/Cr(Nb) alloys have
excellent strength for structural use at ultrahigh temperatures (e.g., 1000-1200°C).5-8
Potential applications include hot components in advanced energy conversion systems,
advanced heat engines, and high-temperature cutting and grinding tools. Current studies
are focused on enhancement of fracture resistance and oxidation resistance. This report
summarizes our recent progress on controlling microstructure and improving mechanical
properties of CroNb/Cr(Nb) alloys through alloying additions and material processing. A
detailed study of the corrosion behavior of these alloys has been reported separately by
Tortorelli et al.17-19

ALLOY PREPARATION AND PROCESSING

CryNb/Cr(Nb) alloys weighing 300 g were prepared by arc melting and drop
casting in copper molds (1" diam. x 3" long). In order to minimize the interstitial content
(e.g., oxygen) in these alloys, high-purity niobium and chromium metal chips were used as
charge materials, and the alloys were melted in a high vacuum (10-5 Pa) furnace. Cast
molds were pre-heated to 100-300°C in order to control solidification and to reduce thermal
shock during drop casting.

Oxide slags in cracked pieces were observed on the top of alloy buttons and ingots.
Sometimes, these oxides were found to be trapped inside alloy ingots. Careful x-ray
fluorescence studies indicate that these oxide slags contain mainly zirconium and
aluminum. Removal of zirconium and aluminum from the alloys dramatically reduces the
slag amount. The drop-cast behavior of the alloys is also sensitive to alloy additions. The
drop castability can be substantially improved by certain alloying elements; however, these
elements can only be identified by melting and casting practice.

The cast alloy ingots generally contain cast cavities, which vary in size from a few
to several hundred um.. The existing phase diagram of the Cr-Nb system indicates an
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eutectic temperature of 1620°C for the CroNb and Cr-rich phases.3 Accordingly, the
CryNb/Cr(Nb) alloys were HIPped at 1450 and 1580°C at a maximum stress of 207 MPa
(30 ksi) in order to reduce or eliminate the cavities. Metallographic examination of the
ingot interior indicates only marginal reduction in cast porosities by these HIPpings. This
observation indicates extremely high strength at these temperatures and/or a higher melting
point of these alloys. Thus, we re-examined the incipient melting point of the chromium
niobium (CN) alloys. In this study, alloy specimens were rapidly heated from 1200°C to a
preset temperature and kept at that temperature for 6 min., followed by turning off the
power. Our studies indicate that the melting point of CN alloys is ~1670 % 20°C, which is
about 50°C above the reported eutectic temperature for the Cr-Nb system. Based on the
determined melting point, we plan to HIP the alloys again at a temperature close to 1650°C.
Two alloys, CN-67 and -65 (see Table 1), were processed by floating-zone
remelting at a velocity of 1.9 - 2.4 cm/hr in high-purity inert gas at the University of
Tennessee, using drop-cast ingots as a starting material. Figure 1 shows the rough ingot
surfaces, which resulted from evaporation of chromium and formation of surface oxides
during crystal growth. Metallographic examination of sectioned ingots shows large holes
formed near the ingot surfaces (probably due to chromium evaporation) and cast micro-
cavities away from the surface region. This observation indicates that cast cavities in these
alloys cannot be completely eliminated by directional solidification through a floating-zone

remelting method.

B Fig. 1 CN-65 alloy ingot
prepared by levitation-zone
remelting.

CN-65-1 2nd PASS
2-15-94
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EFFECT OF ALLOYING ADDITIONS ON
MICROSTRUCTURE AND PHASE COMPOSITION

During this year, a total of 25 new alloys were prepared. A partial list of the alloy
compositions is shown in Table 1. The alloys with 5.6 to 12 at. % Nb basically contain
primary Cr-tich solid solution surrounded by the eutectic structure (Fig. 2a), a mixture of
Cr,Nb-type and the Cr-rich phases. The supersaturated Cr-rich solid solution (bright-
contrast phase) precipitates out CryNb-type particles when annealed above 1000°C. The
brittle, coarse CryNb particles in the eutectic structure are, in most cases, interconnected
into a skeleton (dark-contrast phase in Fig. 2a) which is believed to be one of the major
causes of poor fracture resistance of the CN alloys.
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Fig. 2 Optical micrographs of (a) CN-61 and (b) CN-60 annealed for 3 d at 1100°C.

Alloying additions were added to refine the coarse CrpNb eutectic structure in the
CN alloys. Among all elements added to the alloys, the element referred to as XM is most
effective in refining the interconnected eutectic structure (Fig. 2b). As shown in Fig. 3, the
eutectic skeleton is broken into blocky CryNb-type particles in the alloy containing 6%
XM. Another element, referred to as XO, is found to be most effective to date in
improving oxidation resistance of the CN alloys. Because of their beneficial effects, a
series of alloys containing these two elements were prepared as shown in Table 1. Our
studies of the mechanical properties and oxidation resistancel9 suggest the optimum
amount of XM and XO in the same alloy to be 6 and 4%, respectively.



Fig. 3 Backscattered electron images of (a) CN-61 and (b) CN-60 annealed for 3 d at

1100°C.
Table 1. Nominal Alloy Compositions of Selected CN Alloys

Alloy Number Composition (at. %)
CN-60 Cr-12.0Nb-4.0Re-2.0A1-6.0XM
CN-80 Cr-12.0Nb-1.5A1-6.0XM
CN-72 Cr-12.0Nb-1.5A1-0.1Zr-6.0XM
CN-61 Cr-12.0Nb-4.0Re-2.0A1-4.0XO
CN-81 Cr-10.0Nb-1.5A1-6.0XM-4.0XO
CN-67 Cr-8.0Nb-1.5A1-0.1Zr-6.0XM
CN-64 Cr-5.6Nb-1.5A1-0.1Zr-4.0XM
CN-65 Cr-5.6Nb-1.5A1-0.1Zr-6.0XM
CN-69 Cr-5.6Nb-1.5A1-6.0XM
CN-70 Cr-5.6Nb-1.5A1-0.1B-6.0XM
CN-68 Cr-5.6Nb-1.5A1-0.1Zr-4.0Re-6.0XM
CN-66 Cr-5.6Nb-1.5A1-0.1Zr-10.0XM
CN-71 Cr-5.6Nb-1.5A1-0.1Zr-15.0XM
CN-74 Cr-5.6Nb-1.5A1-0.1Zr-6.0XM-4.0XO
CN-75 Cr-5.6Nb-1.5A1-0.1Zr-6.0XM-6.0XO
CN-76 Cr-5.6Nb-1.5A1-0.1Zr-6.0XM-8.0XO

Figure 4 shows the effect of heat treatment on the microstructures of the CN-65
alloy containing 5.6% Nb. Fine precipitates distribute uniformly across grains and some
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coarse CryNb particles are observed at grain boundaries in the specimen (Fig. 4a) annealed
at 1100°C for 3 days. HIPping at 1450°C apparently dissolved a major part of the fine
precipitates within grains but did not remove the coarse CrpNb particles at grain boundaries
(Fig. 4b). A few cavities are visible in the HIPped specimen. Figure 5 shows the
microstructure of the alloy containing 6% XM and 6% XO, where the eutectic structure can
be easily identified. Comparison of Fig. 5 with Figs. 3b and 4a suggests that XO additions
stabilize the classic eutectic structure.

The composition of phases in CN alloys was determined by electron microprobe
analyses. Table 2 summarizes the composition of the phases determined by wavelength-
dispersive spectrometry (WDS). The Cr-rich solid solution, the matrix phase, contains a
low level of niobium, ~1%. The CryNb-type phase, on the other hand, contains more than
20% Nb, and the exact amount of niobium in the CroNb-type phase depends on the
partitioning of alloying additions in the CN alloys. The element XM partitions more or less
equally in the CroNb and the Cr-rich phases. The analysis of the composition of CroNb-
type phase in CN-65 indicates that XM essentially occupies the niobium sites. The element
XO in CN-75 partitions strongly in the Cr,Nb-type phase, as indicated in Table 2. The
partitioning ratio of XO in the CryNb-type and Cr-rich phases is 5.6 to 1. Unlike XM,
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Fig. 4 Optical micrographs of CN-65 (a) annealed for 3 d at 1100°C, and (b) HIPped for 2
h at 1450°C.



Fig.~ 5 Backscattered electron image
of CN-75 annealed for 3d at
1200°C.

Table 2. WDS Compositional Analysis of CN Alloys*

Cr-rich Matrix Cr-rich Matrix
CroNb-type Phase  Without Fine CpNb ~ With Fine CryNb
Alloy Number (at.%) Precipitates (at.%) Precipitates (at.%)
CN-65 Cr= 670 Cr= 909 = 88.2
Nb= 25.8 Nb= 1.2 = 44
XM= 54 XM= 6.7 XM= 6.2
Al= 1.8 Al= 12 Al= 1.2
= 00 Zr= 0.0 Zr = 0.0
CN-60 = 634 Cr= 790
Nb= 254 Nb = 7.6
XM= 5.0 XM= 6.8
Re = 4.2 Re= 5.1
Al= 2.0 Al= 1.5
CN-75 Cr= 550 Cr= 902 Cr= 86.8
Nb= 223 Nb= 0.6 Nb= 3.0
XM= 179 = 5.2 XM= .55
XO0= 140 XO0= 25 X0 = 34
Al= 0.8 = 1.5 Al= 1.3
= 0.0 = 0.0 Zr = 0.0

*Specimens annealed for 3 d at 1100°C or 1200°C.

XO miainly occupies the Cr sites instead of the niobium sites. The elements rhenium and
aluminum partition approximately equally in the two phases. Zirconium was not detected
in the CN alloys, and was probably lost due to its formation of ZrO, slags during melting.
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The alloys CN-60 and CN-61 were examined by transmission electron microscopy
(TEM). Both alloy specimens were annealed for 3 d at 1100°C, and then cut into 3 mm
disks and ground to a thickness of approximately 50 pm, followed by ion milling at 6 kV.
The specimens were examined in a Philips CM30 at 300 kV. Energy dispersive
spectroscopy (EDS) was performed with an EDAX 9100 spectrometer. The EDS analyses
were made on precipitates that intersected the ion milling perforations, thereby minimizing
the contributions from surrounding matrix material.

Both alloys showed a mixture of the Cr-rich solid solution and Cr,Nb-type phases.
The small precipitates in the Cr-rich matrix ranged up to 0.4 pm in diameter. Figure 6a
shows the eutectic structure (dark areas) in CN-61 (containing 4% XO) with only a few
secondary precipitates visible. Figure 6b shows a region in CN-60 (containing 6% XM)
with an extensive secondary precipitation. EDS analyses of the matrix versus the
precipitates were made along the edge of the specimen as shown in Fig. 6b. Figure 6¢
shows dislocations in the Cr-rich matrix in CN-60. While many of the dislocations
appeared to have interacted with small precipitates by bowing between them, many other
dislocations have formed low-angle network structures.

EDS results were averaged and are shown in Table 3. Basically, the data in Table 3
agree well with those in Table 2 determined by electron microscopic analysis. In CN-60,
the XM and rhenium additions did not preferentially partition to CroNb particles. Only
about 1% of niobium remained in solution, with the rest precipitating out. In CN-61, the
XO additions did preferentially precipitate out with the niobium in CrpNb-type particles,
while again the rhenium levels were similar in both matrix and in the CrpNb-type phase.
Apparently, no zirconium was retained by the alloy.

MECHANICAL PROPERTIES

Compressive Properties

Because the cast CN alloys, even in the HIPped conditions, contain defects such as
cavities, the compressive properties are much less sensitive to these defects.

Therefore, the compressive properties of the CN alloys were determined at
temperatures to 1200°C. Alloy specimens were annealed for 3 d at 1100°C prior to testing
at room temperature in air and at elevated temperatures in vacuum. Tables 4 and 5
summarizes the results at different temperatures. For the alloys containing 12 at.% Nb, the
yield strength at room temperature increases significantly by alloying with XM, rhenium,
and XO. However, only XM improves the room-temperature ductility. XM is also very
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. SOV

Fig. 6 TEM micrographs of (a) the eutectic CryNb structure in CN-61, (b) blocky particles
in CN-60, and (c) dislocations in CN-60. All specimens were annealed for 3 d at 1100°C.




Table 3. EDS/TEM Compositional Analysis of CN-60 and CN-61
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Concentrations (at.%)

Alloy
No. Cr Nb Re Al XM X0
CN-60
nominal 76 12 4 2 6
matrix 86 1 5 0 7
secondary 52 39 5 0 3
precipitation
large 63 28 4 0 5
precipitates
CN-61
nominal 78 12 4 2 4
matrix 91 1 3 1 5
large 53 28 4 1 13
precipitates
secondary 57 29 5 0 15
precipitates
Table 4. Compressive Properties of CN Alloys Tested at
Room Temperature in Air
Concentration of .
Alloy Key Elements Strength, MPa (ksi) Ductility
No. (at.%) Yield Ultimate (%)
CN-4 12Nb 960 (139) 1760 (255) 54
CN-44 12Nb-4Re 1230 (179) 2050 (298) 4.3
CN-60 12Nb-4Re-6XM 1793 (260) 2546 (369) 8.5
CN-61 12Nb-4Re-4X0O 1395 (202) 1946 (282) 52
CN-7 6Nb 702 (102) 1261 (183) 9.5
CN-65 5.6Nb-6XM 1116 (161) 2228 (323) 16.0
CN-65* 5.6Nb-6XM 1097 (159) 2116 (307) 18.5
CN-68 5.6Nb-4Re-6XM 1111 (161) 2023 (293) 17.7
CN-70* 5.6Nb-0.1B-6XM 1047 (152) 2059 (297) 16.3
CN-75 / 5.6Nb-6XM-6XO 1300 (189) 2080 (302) 16.2

*HIPped at 1450°C and annealed 3 d/1100°C.

effective in improving both the strength and ductility of the CN alloys containing 5.6-6%
Nb at room temperature (Table 4). The alloy CN-65 containing 5.6% Nb and 6% XM
showed a yield strength of 1097 MPa and a ductility of 18.5% at room temperature.
Alloying with 6% XO together with 6% XM appears not to lower the room-temperature
ductility of the 5.6% Nb alloy.
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At 1000 and 1200°C, both XM and rhenium effectively increase the compressive
strength of the CN alloys containing 5.6 and 12% Nb (Table 5). The ductility of the alloys
is not sensitive to alloying additions, and all the alloys showed ductility of more than 23%.
HIPping at 1450°C appears not to affect the ductility at either room or elevated
temperatures. The CN alloys are much stronger than Ni-base superalloys, whose strength
drops to about zero at 1200°C.

Table 5. Compressive Properties of CN Alloys Tested at

1000 and 1200°C in Vacuum
Concentration of :
Allo Key Elements Strength, MPa (ksi) Ductility
No. (at.%) Yield Ultimate (%)
1000°C
CN-4 12Nb 685 (99) 856 (124) 22.8
CN-44 12Nb-4Re 855 (124) 1061 (154) 26.2
CN-60 12Nb-4Re-6XM 896 (130) 1632 (237) 29.2
CN-61 12Nb-4Re-4X0O 741 (107) 1257 (182) 28.5
CN-7 6.0Nb 436 (63) 738 (107) 32.7
CN-65 5.6Nb-6XM 634 (92) 1203 (174) 33.8
CN-68 5.6Nb-4Re-6XM 675 (98) 1118 (162) 26.5
CN-70* 5.6Nb-0.1B-6XM 778 (113) 1394 (202) 23.1
CN-75 5.6Nb-6XM-6X0O 710 (103) 1302 (189) 32.4
1200°C
CN-4 363 (53) 487 (71) >31.5
CN-44 432 (63) 566 (82) >4.1
CN-60 535 (78) 664 (96) > 5.6
CN-61 393 (57) 599 (87) >30.0
CN-7 258 (37) 309 (45) 314
CN-65 404 (59) 547 (79) 30.4
*HIPped at 1450°C.
Tensile Properties

Tensile properties of HIPped and/or directionally solidified specimens were
determined at room temperature and 1000°C. As mentioned before, these specimens
contain cast defects (even after HIPping), and only the highest fracture strength for each
alloy are reported in Table 6. The alloys showed a fracture strength at a level of 200-500
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MPa, which appears to be independent of alloy composition. There is no apparent
difference in fracture strength at room temperature and 1000°C, suggesting that the fracture
process is dominated by cast defects in the alloys. Further studies are required to reduce
cast defects by either HIPping at higher temperature (>1580°C) or hot extruding the CN
alloys. A recent study of two-phase alloys based on Nb and NbsSi3 indicates that their
tensile ductility and strength can be dramatically improved by hot extrusion of the alloys at
1426°C.

Table 6. Tensile Properties of CN Alloys Tested
at Room Temperature in Air and 1000°C in Vacuum

Alloy Composition Treatment Fracture

Alloy No. (at.%) Condition* Stress,
MPa (ksi)

Room Temperature
CN-70 Cr-5.6Nb-1.5A1-0.1B-6XM HIP/1450°C 326 (47.3)
CN-65 Cr-5.6Nb-1.5A1-0.1Zr-6XM HIP/1580°C 487 (70.7)
CN-65 Cr-5.6Nb-1.5A1-0.1Zr-6XM DS 367 (53.3)
CN-67 Cr-8Nb-1.5A1-0.1Zr-6XM DS/HIP/1580°C 207 (30.1)
CN-74 Cr-5.6Nb-1.5A1-0.1Zr-6XM-4XO HIP/1580°C 416 (60.4)
1000°C

CN-70 Cr-5.6Nb-1.5A1-0.1B-6XM HIP/1450°C 478 (69.4)
CN-65 Cr-5.6Nb-1.5A1-0.1Zr-6XM HIP/1580°C 360 (52.2)
CN-67 Cr-8Nb-1.5A1-0.1Zr-6XM DS/HIP/1580°C 382 (55.5)
CN-74 Cr-5.6Nb-1.5A1-0.1Zr-6XM-4XO HIP/1580°C 248 (36.0)

HIP = hot isostatically pressing
DS = directional solidification by levitation zone remelting

Fracture surfaces of the tensile specimens tested at room temperature and 1000°C
were examined using a scanning electron microscope operated at 10kV. The CN alloys
showed mainly cleavage fracture at both temperatures with a more ductile appearance at
1000°C. Cast defects are visible on the fracture surfaces.

Creep Resistance

We recently initiated creep tests of CN alloys containing XM. The alloy CN-70
showed no measurable creep deformation at 1200°C at a stress of 55 MPa (8 ksi),
indicating excellent creep resistance. The alloy exhibited a creep rate of 1.5 x 107 h-1 at
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1000°C at a stress of 345 MPa (50 ksi). The alloy is much more creep resistant than Ni-
base superalloys.
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ALLOYING EFFECTS ON THE HIGH-TEMPERATURE

OXIDATION RESISTANCE OF Cr-( .1)ND
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ABSTRACT

Alloying effects on the high-temperature oxidation resistance of Cr-CryNb were
examined on the basis of isothermal exposures to air at 950°C. Additions of either Re and
Al or Fe, Ni, and Al had relatively little effect on weight gains relative to the Cr - 6% Nb
binary alloy. One alloying element that improved the mechanical behavior of Cr-CroNb
alloys substantially increased the oxidation rates and spallation susceptibilities of Cr - 6 and
- 12% Nb alloys. However, the addition of another element completely offset these
deleterious effects. The presence of this latter element resulted in the best overall oxidation
behavior (in terms of both weight gains and spallation tendencies) of all Cr-CraNb
compositions. Its beneficial effect can be attributed to improvement in the oxidation
resistance of the Cr-rich phase.

INTRODUCTION

Chromium-based alloys incorporating the CroNb Laves-phase are potential new
materials for use in hostile environments of advanced heat engines and energy systems that
operate at very high temperatures.!-2 The intermetallic Cr,Nb phase, with a C-15 complex
cubic structure,3 has a high-melting point (1770°C)*-5 and relatively low density (7.7
g/cm?).6 Results to date indicate that the two-phase Cr,Nb/Cr(Nb) alloys have excellent
strength for structural use at high temperatures (1000-1200°C).12.7.8 However, such
alloys suffer from poor toughness and fracture resistance. Current development efforts are
focused on improving these properties as well as evaluating the high-temperature oxidation
resistance of Cr-CryNb alloys under relevant metallurgical and environmental conditions.
Relatively low oxidation rates over extended periods of time are necessary for deployment
of such alloys at the high temperatures envisioned for potential applications.

Previously-reported oxidation results showed that elevated-temperature (900 and
950°C) exposures of Cr-CraNb alloys containing 6 and 12 % Nb resulted in multilayer
scales with an outer layer of chromia and inner products containing niobium.8 (ALl
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concentrations are in at. %.) Spallation and indirect evidence of isothermal scale cracking
were observed. The alloy with the higher concentration of niobium showed better
oxidation resistance in terms of weight gain and scale adherence.8 This was attributed to its
greater volume fraction of the CroNb-Cr eutectic at the expense of the Cr-rich phase. While
parabolic kinetics were observed at 900, 950, and 1000°C, an isothermal exposure
temperature of 1100°C led to accelerated reaction of binary Cr-12% Nb manifested in the
form of breakaway oxidation.? Alloying additions of Al (up to 18%) or Re (2%) did not
improve the isothermal oxidation resistance of Cr-12% Nb, nor did the reduction in the
level of impurities.? Further studies have now been conducted to evaluate effects of other
alloying additions on the isothermal oxidation resistance of Cr-CraNb alloys in air and form
the basis of the present paper. The work has been mainly focused on 6% Nb alloys as
these have been shown the most promise in improving room-temperature compressive
ductility.2

EXPERIMENTAL PROCEDURES

Alloys of Cr-Cr,Nb were prepared by arc melting and drop casting into water-cooled
copper molds. High-purity niobium and chromium metal chips were used as charge
materials, and the alloys were melted in a high vacuum (10-5 Pa) furnace. Details regarding
alloy preparation and processing are described elsewhere.2:10 Table 1 lists the alloy
compositions discussed in this paper. As described below, the element referred to as XM
was effective in refining the interconnected eutectic structure and improving mechanical
behavior, while XO was beneficial to oxidation resistance. (These two elements cannot be
currently disclosed due to patent considerations.) Rectangular specimens (approximately
8 x 8-16 x 1 mm) were cut or machined from as-cast or homogenized (1100°C, 3 days,
vacuum) ingot pieces. All major surfaces were mechanically ground with 600-grit SiC
abrasive before exposure.

Weight changes due to isothermal oxidation were measured using Cahn 1000
microbalances and a computer-controlled data acquisition system. The specimens were
exposed to flowing, preheated, dried air (2 cc/s) at 950°C for up to 180 h. At the end of
each experiment, the specimens were furnace cooled and visually checked for loss of
corrosion products by spallation. Selected specimens were analyzed by scanning electron
microscopy (SEM).
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Table 1. Nominal compositions of alloys used in this study.

Alloy Concentration (at.%)(@)
No. Nb Al Re XM X0 Zr

CN-4 12
CN-7 6
CN-52(b) 5.6 1.5 4
CN-53(c) 5.6 1.5
CN-60 12 2 4 6
CN-61 12 2 4 4
CN-65 5.6 1.5 6 0.1
CN-73(d) 5.6 1.5 6 0.1
CN-74 5.6 1.5 6 4 0.1
CN-75 5.6 1.5 6 6 0.1
CN-76 5.6 1. 6 8 0.

(@) Balance is Cr. Identities of elements denoted as XM and XO cannot be currently
disclosed due to patent considerations

(6) 0.1% Hf
(c) 29 Fe, 2% Ni, 0.1% Hf
(d) Other <0.1%

RESULTS

Figure 1 compares the weight gain behavior of several 5.6% Nb alloys exposed to
air at 950°C. Additions of either Re and Al (CN52) or Fe, Ni, and Al (CNS53) had little
effect on weight gains relative to the Cr - 6% Nb binary alloy (CN7). On the other hand,
XM had a severe detrimental influence: the weight gains and rates for the alloys with 6%
XM (CNG65 and CN73) were substantially higher than for the XM-free compositions. The
XM-containing alloys showed linear kinetics rather than the parabolic behavior associated
with formation of protective oxide scales. As shown in Fig. 2, XM had a similar, although
somewhat less dramatic, effect on the thermogravimetric results for Cr-CroNb alloys with
12% Nb.

Figure 2 also indicates that the presence of XO in Cr - 12% Nb (CN61) results in
oxidation behavior that is comparable to, or slightly better than, that of the binary
composition. Because of this, the combined effect of XM and XO on air oxidation
resistance was examined through exposures of alloys CN74, CN75, and CN76 (see
Table 1). The results from this series of exposures are shown in Figs. 3 and 4. The data
in Fig. 3 indicate a substantial improvement in oxidation behavior when 4 - 8% XO is
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Fig. 1. Weight change versus time for Cr-~6% Nb alloys oxidized in air at 950°C.
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Fig. 2. Weight change versus time for Cr-12% Nb alloys oxidized in air at 950°C. Results
from duplicate specimens of CN61 are included.

present in XM-containing alloys. In Fig. 4, the thermogravimetric results for the alloys
with XM + XO are compared to those for CN61 and the Cr - 6% and - 12% binary
compositions.8 Alloys CN74, CN75, and CN76 (5.6% Nb) had smaller weight gains and
rates than Cr - 6% Nb (CN7) and also compared favorably to Cr - 12% Nb (CN4). The
differences in the thermogravimetric results among the three Cr - 5.6% Nb - 6% XM - XO
compositions were insignificant (Fig. 4). Oxidation rates of XO-containing alloys
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Fig. 3. Weight change versus time for Cr-5.6% Nb - 6% XM - (0-8%) XO alloys oxidized
in air at 950°C. The curves for CN-74 and CN-75 are essentially identical.
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Fig. 4. Weight change versus time for Cr - 5.6% Nb - 6% XM - (4-8%) XO, Cr -
12% Nb - 4% XO, Cr - 6% Nb, and Cr - 12% Nb alloys oxidized in air at 950°C. The
curves for CN-74 and CN-75 are essentially identical.

appeared to be relatively insensitive to the concentration of this element in the range
investigated (4 - 8%). Furthermore, there was essentially no difference between the weight
change results for the Cr - 5.6% Nb - 6% XM - XO alloys and that of Cr - 12% Nb -
4% XO (CN61). Indeed, in contrast to the difference in oxidation behavior of CN7 and
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CN4 (ref. 8 and Fig. 4), the presence of XO appeared to eliminate differences in oxidation
resistance observed for the binary 6 and 12% NbD alloys.

In order to ascertain whether significant differences in oxidation behavior could be
due to certain microstructural differences, several of the alloys listed in Table 1 were
exposed in both the as-cast and homogenized conditions. In isolated cases, an as-cast alloy
showed extremely high weight gains. However, the typical differences in isothermal
oxidation behavior were small, with the as-cast specimens showing slightly higher weight
gains than the homogenized versions of the same composition (Fig. 5). Therefore, in
general, such differences in starting microstructure did not appear to change the relative
effects of the observed influences of compositional modifications.

= CN52 (As Cast) o
——CN52 (H) 950°C

8 1= ==CN53 (As Cast) [ .
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Fig. 5. Weight change versus time for as-cast and homogenized (H) Cr - CroNb alloys
oxidized in air at 950°C.

The results of visual examination of specimen surfaces after cooling to room
temperature following isothermal exposure at 950°C are given in Table 2. A significant
variation in spallation tendency was noted. Alloys with XM suffered extensive spallation,
while those with XO showed much less scale loss. An example of a specimen that suffered
substantial spallation (CN60, see Table 1) is shown in Fig. 6. Note the scale cracking and
multiple layers of surface products.
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Table 2. Summary of visual observations of Cr-CroNb specimens after isothermal
exposure to air for 150 to 180 h at 950°C.

Alloy % Area Showing Appearance of
Some Spallation Scale(s)
CN52 25-50{a) upper scale gray; lower: green-gray
CNS3 <10 gray
CN60 75 gray and dark gray
CNé61 <10fa) gray
CN65 100 many large gray fragments; surface dark gray
CN73 100 many large gray fragments; surface dark gray
CN74 25-50(a) upper scale gray; lower: green-gray
CN75 <10 gray
CN76 25(a) upper scale gray; lower: dark and light gray

(@) Duplicate specimens

kV X180 388rm
Fig. 6. Scanning electron micrograph of oxidized surface of Cr - 12% Nb - 4% Re - 2% Al
- 6% XM after cooling from the isothermal exposure temperature of 950°C.

DISCUSSION

The alloys of the present study are in the hypoeutectic part of the Cr-CroNb. two-
phase region. The eutectic (17 at. % Nb) is composed of a CroNb matrix with a dispersion
of Cr-rich material and Cr-rich regions with very fine CrpNb precipitates.l It was
previously shown that the oxidation of Cr -6 and -12 at. % Nb alloys in air at 950°C led to
the formation of multilayer scales with an outer layer of chromia and inner products
containing niobium.8 A porous inner layer preferentially formed on a Cr-rich phase.8 The
alloy with the higher concentration of niobium showed better oxidation resistance in terms
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of weight gain and scale adherence. Because the increase in niobium concentration from 6
to 12% results in a higher volume fraction of the eutectic mixture, the poorer overall
oxidation resistance of the 6% Nb alloy appeared to be related to the greater abundance of
the Cr-rich phase.8

The presence of the element denoted as XM refines the coarse eutectic structure of
Cr-CryNb and, in so doing, substantially improves the compressive strength and ductility
of the alloys.10 However, the present results clearly indicate that this element has a
substantial deleterious effect on the oxidation behavior of Cr - 6 and -12 % Nb alloys
(Figs. 1 and 2). The rates of weight gain, and spallation tendencies, of alloys containing
6% XM are significantly greater than those shown by any of the other compositions. For
5.6% Nb - 6% XM alloys, the oxidation rates were approximately linear (Fig. 1). Indeed,
this set of XM-containing alloys appeared more susceptible to air oxidation than the Cr-
12% Nb-XM composition (compare Figs. 1 and 2). As such, this dependence on niobium
content is consistent with the results of the earlier study of binary 6 and 12% Nb alloys.®
The conversion of the interconnected CroNb-phase into a finer distribution (mainly for the
12% Nb alloy)!0 does not appear to be beneficial to oxidation resistance. Any
microstructural influence, however, is probably secondary to direct chemical effects of the
presence of XM on the overall oxidation behavior of these alloys.

The marked detrimental influence of XM on the oxidation behavior of Cr-CroNb
can be completely offset by the addition of XO (see Fig. 3). Liu, Horton, and Carmichael
have shown that XO strongly partitions to the CroNb(Cr) phase and stabilizes the eutectic
structure.10 Such a concentration of XO in the eutectic phase can decrease its susceptibility
to reaction with oxygen and, when combined with the observed morphology of the
CroNb(Cr), positively affect oxidation resistance. However, it is believed that it is the
smaller concentration of XO in the Cr-rich phase that is actually the cause of improved
overall oxidation behavior of the XO-containing alloys. This element has a known
beneficial effect for chromia-forming systems, and, as the Cr-rich phase is thought to be
the more susceptible microstructural component,8 improvement in its oxidation resistance
can have a substantial effect on weight gains and spallation resistance.

Corroboration of the role of XO in preferentially improving the oxidation resistance
of the Cr-rich regions of Cr-CrpNb alloys awaits microstructural analysis of properly
prepared cross sections. However, there are specific results that tend to support such an
influence of XO. Figure 4 shows that there is little difference in the isothermal oxidation
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behavior between XO-containing 6 and 12% Nb alloys (that is, between alloys with
different volume fraction ratios of the two phases). This is in contrast to previous findings
(described above and in ref. 8) and supports the hypothesis that XO is specifically
increasing the oxidation resistance of the Cr-rich phase. If the XO additions acted to
preferentially improve the oxidation resistance of the eutectic phase, differences in behavior
between 6 and 12% Nb alloys should increase, which is the opposite effect to what is
shown by the present data. Furthermore, while there is definite evidence that scale
cracking occurs for Cr-6 and -12% Nb alloys during isothermal exposure at 900 and
950°C,39 the discontinuities in the thermogravimetric curves that typically indicate such
processes!! are not observed for the XO-containing alloys (compare the results for CN74,
C75, and CN76 with those for CN4 and CN7). This finding suggests that the presence of
this element reduces the susceptibility for isothermal scale cracking normally observed for
the binary Cr-CraNb alloys. As much of the scale cracking and the spallation during
subsequent cooldown appeared related to the Cr-rich regions,3:9 the presence of a small
concentration of XQO in the Cr-rich phase can therefore significantly improve the oxidation
of the alloys by reducing cracking and the resulting accelerated oxide growth and loss of
product.

As described above, it was previously reported that 12% Nb alloys were superior in
oxidation behavior to the 6% alloys.8 Subsequent work with other alloys did not reveal
any compositional modifications that improved the behavior to the point where they
matched or exceeded that of the 12% Nb binary composition.® The present results show
that, regardless of the presence of XM, the effect of XO is to improve the overall oxidation
resistance (in terms of both weight gains and spallation, see Table 2) such that those alloys
containing this element show the best behavior of any Cr-Cr2Nb composition examined to
date. As the differences in the isothermal oxidation results among the three Cr - 5.6% Nb
- 6% XM - XO compositions are quite small (similar weight gains and rate constants for 4,
6, and 8% XO, Fig. 4), the choice of the appropriate XO level can be based on mechanical
properties (or other) considerations. 10

SUMMARY AND CONCLUSIONS

The effects of several alloying additions on the high-temperature oxidation
resistance of Cr-CroNb were examined on the basis of isothermal exposures to air at
950°C. Additions of either Re and Al or Fe, Ni, and Al had relatively little effect on weight
gains relative to the Cr - 6% Nb binary alloy. One alloying element that improved the
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mechanical behavior of Cr-CraNb alloys substantially increased the oxidation rates and
spallation susceptibilities of Cr - 6 and - 12% Nb alloys. However, the addition of another
element completely offset these deleterious effects. The presence of this latter element
resulted in the best overall oxidation behavior of all Cr-CraNb compositions and provides
the opportunity to improve the mechanical properties of this alloy system without
necessarily compromising oxidation resistance. The effects of this element were
manifested as relatively low weight gains, substantially reduced scale cracking and
spallation, and elimination of the dependence of oxidation behavior on niobium content
(that is, on the relative amounts of the Cr-rich and eutectic phases). Its beneficial influence
can be attributed to improvement in the oxidation resistance of the Cr-rich phase, which
otherwise showed preferential susceptibility to degradation upon exposure to high-
temperature air.
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ABSTRACT

Microstructural evaluations of Laves-phase alloys based on CroNb were
examined in order to determine phase relationships with heat treating
temperatures up to 1580°C. At ambient temperatures, single-phase CroNb
alloys are very hard and brittle due to the difficulty in generation and glide of
dislocations because of the complicated crystal structure (C-15). The following
results were revealed through examination of the Cr-CroNb two-phase region:
(a) with increasing amounts of the soft chromium-rich phase, the hardness
decreases; (b) the heat treatments studied provided the best dispersion of the
chromium-rich phase in the Cr - 6 at.% Nb (CN-7) alloy; (c) an anneal of 3 days
at 1100°C + 1 hour at 1580°C provided for the best dispersion of the Cr-rich
phase and break-up of the Laves-type phase in the CN-7 alloy. Previous
studies have shown [1] that the introduction of a soft chromium phase has
promising effects in improving the mechanical properties of brittle CroNb Laves-
phase alloys.

INTRODUCTION

The goal of this work is to develop a new generation of high-strength,
corrosion-resistant intermetallic alloys based on CroNb for use as critical hot
components in advanced fossil energy conversion systems.

The Cr2Nb Laves phase has a cubic crystal structure (C-15) with a
stacking sequence of an XYZ type, where X, Y, and Z represent closed-packed
layers, similar to an f.c.c. structure; however, with each layer being composed of
four interpenetrating atomic layers. The unit cell contains 24 atoms and has a
lattice constant of 6.98 A [2-5],

This Laves-phase alloy has been selected for this development because
of its high melting point (1770°C) [6-7], relatively low density (7.7g/cm2) [8], and
potential resistance to oxidation and corrosion [6].
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The most important concern with CraNb as well as other A2B Laves
phases is their poor ductility and fracture toughness at ambient temperatures
[1,6,9]. Since the single-phase Cr2Nb is very hard [800 Diamond Pyramid
hardness (DPH) ] and brittle at ambient temperatures, the efforts of alloy
development have been placed on the Cr-Cr2Nb two-phase compositions
containing the intermetallic phase Cr2Nb and the chromium-rich solid solution

phase [1]. Previous studies have indicated that the two-phase Cr2Nb alloys
showed plastic deformation under compression at room temperature, with much
greater strength than nickel-base superalloys at and above 1000°C [1,101.The
results obtained to date indicate that the Cr-Cr2Nb alloys have excellent

strength for structural use at ultrahigh temperatures (i.e. 1000-1300°C) [1 ,10],

Work performed by Takeyama and Liu has indicated the following: (a) the
eutectic composition has a niobium concentration of 17 at.% rather than 12 at.%
as reported in the phase diagram shown in Figure 1 which was given by
Goldschmidt [6,7]; (b) the soft regions are effective in preventing crack
propagation originating in the brittle Laves-phase, which results in a high yield
strength with moderate ductility up to 1000°C [11.

The potential applications of this Laves-phase alloy include hot
components in advanced fossil energy conversion systems, advanced heat
engines, and high-temperature cutting and grinding tools [111. It has been
shown [1] that the mechanical and metallurgical properties of the Cr-CroNb
alloys can be improved through dispersion of the ductile Cr-rich phase or the
break-up of the brittle CroNb phase. This paper summarizes our recent alloy
development effort on controlling the dispersion of the Cr-rich phase and the
break-up of the Laves-phase (CraNb) in the Cr-rich matrix by means of
thermomechanical treatment.

EXPERIMENTAL PROCEDURE

- Chromium-niobium alloys weighing 350g were prepared by arc melting
and drop casting into pre-heated copper molds. High-purity niobium and
chromium metal chips were used as charge materials in order to reduce the
interstitial impurity (i.e. oxygen), and the alloys were melted in a high vacuum

(10-5 Pa) furnace. The preheating of the copper mold to 100°C before drop
casting was done in order to control alloy solidification and to reduce
microporosity formation during drop casting [11].

Table 1 lists the composition (at.%) of CN(Cr-Nb) alloys investigated in
this work. The alloys used in this study have nominal compositions of chromium
with a variation of 6 to 17 at.% Nb. The alloys were placed in a covered alumina
crucible and annealed at 1100°C for 3 d (days) + 1 h (hour) at 1400°C, 1500°C,
1550°C, or 1580°C under vacuum (10-6 Pa) for a total of four specimens per
alloy studied. The effects of annealing, 1 hour at 1400, 1500, 1550, or 1580°C
after 3 d at 1100°C, on the microstructures of the CN alloys were emphasized in
this investigation.
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Table 1. Alloy Compositions for the CroNb-based Intermetallics

Alloy Atomic percent Weight percent
CN-7 Cr-94% Cr-89.76%
Nb-6% Nb - 10.24%
CN-4 Cr-88% Cr-80.41%
Nb-12% Nb - 19.59%
CN-45 Cr-83% Cr-73.21%
Nb-17% Nb - 26.79%

Microstructures of these alloys were examined by optical and scanning

electron microscopy. The metallographic specimens were polished to 1 pm
using an alumina slurry. Samples were etched in a solution of 15 gm KOH, 15
gm K3Fe(CN)g, and 90 ml H20 for approximately 5 seconds. Microhardness
readings were taken for each specimen using a LECO M-400 Hardness Tester.

An average of three to five readings taken randomly across the sample gives
the reported hardness values.

RESULTS AND DISCUSSION
Microstucture and Phase Composition

The CN alloys contain two phases, the Cr2Nb intermetallic phase and
the chromium-rich solid solution which can contain up to as much as 5 at.% Nb
at the eutectic temperature of 1620°C.

The composition of the phases in the alloys CN-7, CN-4, and CN-45 was
determined by semi-quantitative EDS analyses as reported in Table 2. Figure
2(a) shows the optical micrograph of CN-7 heat treated for 3d/1100°C + 1 h at
1400°C. In the Cr-6 at.% Nb (CN-7) alloy, Cr-rich patches cover most areas, and
a small amount of the Laves-phase is seen as a network along the Cr-rich
patches [Fig. 2(a)]. The Cr-12 at.% Nb (CN-4) alloy is shown in Figure 2(b) with
the same annealing history as CN-7 in Figure 2(a). In this condition (CN-4), the
lighter patches are the chromium-rich matrix phase surrounded by the Laves-
phase, indicating that this is a hypoeutectic structure. Some dark spots can be
seen within the Cr-rich patches, and these spots are the CroNb particles that
are formed during cooling.
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Table 2. Semi-quantitative EDS analysis of CN-7, CN-4 and CN-45

Alloy Temperature (C°)

Laves-type phase

Cr-rich phase

(at. %) (at. %)
CN -7 3d/1100 + 1h/1400 Cr=90.1 Cr=982
Nb=9.9 Nb=1.8
3d/1100 + 1h/1580 Cr=729 Cr=97.3
Nb =27.1 Nb=27
CN -4 3d/1100 + 1h/1400 Cr=280.1 Cr=97.2
Nb = 19.9 Nb=28
3d/1100 + 1h/1580 Cr=75.7 Cr=97.3
Nb =24.3 Nb=27
CN -45 1h/1400 Cr=85.8 Cr=96.4
Nb = 14.2 Nb = 3.6
1h/1580 Cr=76.3 Cr=97.3
Nb =237 Nb=27

It has been shown [11] that the precipitation of the CroNb Laves-phase
particles from the Cr-rich phase is indeed sluggish. These precipitates are

extremely fine, with a size of less than 1 um for an alloy annealed for 3 days at

1100°C [1]. Heat treating at temperatures of 3d/1100°C + 1h at 1550 or 1580°C
did not reveal the fine CroNb particles within the Cr-rich phase. These
precipitates were partially dissolved due to an increase in the solubility of Nb in
Cr at these temperatures and the remainder of the particles went into the Laves-
type phase, thereby coarsening it. Thus, we see that there are two competing
mechanisms occurring during the annealing treatment; (1) break-up of the
Laves-type phase and (2) coarsening of the Laves-type phase due to CroNb
particles migrating from the Cr-rich phase at high temperatures. Heat treatments
at 1400 and 1500°C did not have much of an effect on the CroNb precipitates in
the Cr-rich phase from the 3 day anneal at 1100°C. These results can be
verified by the increased amounts of niobium seen in the Laves-type phase for
the 1580°C anneal as reported in Table 2 for both CN-4 and CN-7.

In Figure 2(b) and 3(b), it is seen that a heat treatment at 1h/1580°C after
a 3 day anneal at 1100°C provided a very good dispersion of the Cr-rich phase
in the CN-7 alloy by breaking up the Laves-type phase that was networked
along the Cr-rich phase [see Fig. 2(a) and 3(a)]. Not much improvement in
structures (i.e. Cr-rich phase dispersion) was seen at the four temperatures
investigated for the CN-4 alloy.

Scanning electron micrographs of the CN-4 alloy in Figure 3(c) for the
3d/1100°C + 1h/1400°C reveal the location of the fine CroNb precipitates in the
Cr-rich phase which were either dissolved during etching or pulled out during
polishing. In Figure 3(d), we see that there are no precipitates in the Cr-rich
phase. Figures 3(a) and (b) show SEM micrographs for the CN-7 alloy at
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3d/1100°C + 1h/1400°C and 3d/1100°C +1h/1580°C, respectively. Once again,
we see the evidence for the presence of CroNb precipitates within the Cr-rich
matrix at the lower temperature anneal (i.e. 1 h at 1400°C).

Hardness

Microhardness results are presented in Table 3 for the CN-4, CN-7, and
CN-45 alloys for different annealing conditions. The effects of annealing
temperature on hardness is shown in Figure 4(a) for the CN-4 alloy. The
change in room temperature hardness with niobium concentration of several
CN alloys of different thermomechanical history is shown in Figure4(b). No
microcracking was observed at the tips of the microhardness indents as was
previously reported for alloys in the as-cast condition [1]. The hardness
decreases with decreasing niobium concentration and increasing amount of the
soft Cr-rich phase. Previous work by Liu [10] has indicated that the hardness
tends to decrease as the coarsening of the fine CroNb particles within the Cr-
rich phase occurs for temperatures ranging from 950°C to 1200°C as shown in
Figure 4(a). In the present investigation, the hardness increased slightly for the
CN-4 and CN-7 alloys at annealing temperatures of 1550°C and 1580°C.
Annealing at 1550°c and 1580°c has the following effects: (a) dissolution of the
fine Cr2Nb precipitates in the Cr-rich phase due to an increase in the solubility
limit of Nb in Cr; (b) coarsening of the Laves-type phase from CroNb particles
once present in the Cr-rich phase and break-up of the Laves-type phase, as
mentioned previously, and; (c) re-precipitation of extremely fine CroNb particles
in the Cr-rich phase upon cooling from 1580°C. The re-precipitation of the fine
Cr2Nb particles in the Cr-rich phase can occur during cooling from
temperatures at or above 1400°C, which can lead to an increase in the
hardness as shown in Figure 4(a).

Table 3. Microhardness Values (DPH) for the CroNb-based Intermetallics
Alloy 1400°C __ 1500°C 1550°C 1580°C

CN-7 367+2 393+12 42449 40645
CN-4 465425 494412 502120 513433
CN-45 616431 618+26 618+17 613426

FUTURE WORK

Due to the slow kinetics involved in dispersing the Cr-rich phase,
annealing treatments at 1580°C for longer time periods (2 to 3 days) will be
performed on these alloys in order to achieve a better dispersion of the Cr-rich
phase and/or break-up of the brittle Laves phase. Following the annealing
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treatments at 1580°C, a second-stage annealing treatment will be performed at
1200°C for 2 days in order to further precipitate the CroNb particles in the Cr-
rich phase and coarsen them, thus reducing the hardness. Following annealing
treatments, compression testing of these alloys will be performed in order to
correlate the effect of microstructural change with the ductility of the material.
Other future work will include fracture and fatigue testing of these alloys under
different conditions, correlation of fracture and fatigue mechanisms with
microstructural evaluations, and theoretical modeling of these results.
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from the study of Takeyama and Liu (1), indicating two major differences: (1) the
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Figure 2(a). Optical micrograph of CN-7 showing chromium-rich patches
(light patches) which cover most areas, and a smail amount of the Laves-type
phase seen as a network along the Cr-rich patches for an anneal of 3d at
1100°C + 1 h at 1400°C.

Figure 2(b). Optical micrograph of CN-7 showing chromium-rich patches
(light patches) which cover most areas, and a small amount of the Laves-type
phase that has been broken up (i.e. dispersed) from the lower temperature
anneal. Sample was annealed for 3 d at 1100°C + 1 h at 1580°C.
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Figure 2(c). Optical micrograph of CN-4 showing chromium-rich patches
(light patches) surrounded by the Laves-type phase (CroNb) for an anneal of 3
d at 1100°C + 1 h at 1400°C. :
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Figure 2(d). Optical micrograph of CN-4 showing chromium-rich patches
(light patches) surrounded by the Laves-type phase (Cr2Nb) for an anneal of 3

d at 1100°C + 1 h at 1580°C.
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Figure 3(a). SEM micrograph of CN-7 showing chromium-rich patches (light
patches) which cover most areas, and a small amount of the Laves-type phase
seen as a network along the Cr-rich patches for an anneal of 3 d at 1100°C + 1
h at 1400°C.

Figure 3(b). SEM micrograph of CN-7 showing chromium-rich patches (light
patches) which cover most areas, and a small amount of the Laves-type phase
that has been broken up (i.e. dispersed) from the lower temperature anneal.
Sample was annealed for 3 d at 1100°C + 1 h at 1580°C.
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Figure 3(c). SEM micrograph of CN-4 showing chromium-rich patches (light
patches) surrounded by the Laves-type phase (CraNDb) for an anneal of 3 d at
1100°C + 1 h at 1400°C.

BBG.-

Figure 3(d). SEM micrograph of CN-4 showing chromium-rich patches (light
patches) surrounded by the Laves-type phase (CroNb) for an anneal of 3 d at
1100°C + 1 h at 1580°C.
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Figure 4(a). Hardness vs. Annealing Temperature for CN-4
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Studies for Solid Oxide Fuel Cells,

L. R. Pederson, Pacific Northwest
Laboratory

BREAK

Testing of Full Size Fiber Reinforced
Hot-Gas Filters Fabricated by Chemical
Vapor Deposition, R. G. Smith, 3M
Company

Advanced Electrolytes and Synthesis of
Advanced Catalysts and Membrane
Materials, L. R. Pederson, Pacific
Northwest Laboratory

ADJOURN
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6:30 - 8:30 p.m.

SESSION II - CERAMICS AND NEW ALLOYS

POSTER PRESENTATIONS - BUFFET RECEPTION

Modeling of Fibrous Preforms for CVI
Fabrication, T. L. Starr, Georgia Institute of
Technology

Development of Oxidation-Resistant Interface
Coatings, D. P. Stinton, Oak Ridge National
Laboratory

Joining of SiC Ceramics and SiC/SiC
Composites, B. H. Rabin, Idaho National
Engineering Laboratory

Densification of Nanosize Powders,
S. G. Malghan, National Institute of Standards
and Technology

Activation and Micropore Structure
Determination of Carbon-Fiber Composite
Molecular Sieves, F. Derbyshire, University of
Kentucky

Ceramic Catalyst Materials, A. G. Sault,
Sandia National Laboratories

Advanced Ceramic Materials and Electro-
chemical Processes at Interfaces,
L. R. Pederson, Pacific Northwest Laboratory

Microwave Assisted Chemical Vapor Deposition,
M. A. Janney, Oak Ridge National Laboratory

Effect of Heat Treatment Temperature on Creep-
Rupture Properties of Fe,Al-Based Alloys,

C. G. McKamey, Oak Ridge National
Laboratory

In-Situ Fireside Corrosion Testing,
J. L. Blough, Foster Wheeler Development
Corporation

Tensile Properties of As-Cast Fe,Al-Based
Alloys, S. Viswanathan, Oak Ridge National
Laboratory

Weldability of Iron Aluminides,
G. M. Goodwin, Oak Ridge National Laboratory

Weldability of Polycrystalline Aluminides,
G. R. Edwards, Colorado School of Mines

Electro-Spark Deposited Coatings for Fossil
Energy Environments, R. N. Johnson,
Westinghouse Hanford Company

High-Temperature Corrosion of Iron Aluminides,
K. Natesan, Argonne National Laboratory

Elastic Behavior of Nickel Aluminide and Iron
Aluminide-Based Intermetallics,
M. N. Srinivasan, Texas A&M University



417

FINAL PROGRAM
Wednesday, May 11, 1994

SESSION III — WORKSHOP ON NEW MATERIALS
DEVELOPMENT AND APPLICATIONS
R. R. Judkins, Chairperson
8:00 - 9:30 a.m.
Plenary Session — Materials Needs in Advanced Fossil Systems
David J. Beecy — Department of Energy, Office of Fossil Energy
John Mundy — Department of Energy, Basic Energy Sciences
John Stringer — Electric Power Research Institute
Cliff Smith — Department of Energy, Pittsburgh Energy Technology Center
Richard Dennis — Department of Energy, Morgantown Energy Technology Center
Workshop Sessions
9:30 - 12:00 and 1:00 - 2:45 p.m.

Group 1 — Alloys for Advanced Fossil Energy Systems (Combustion 2000; Externally Fired
Combined Cycle; Low Emission Boiler System; Hot Particulate Cleanup Systems)

Rapporteurs: Robert W. Swindeman, Oak Ridge National Laboratory and Carl Lundin,
University of Tennessee

Group 2 — Ceramic Composites for High Temperature Heat Exchangers, Air Heaters, and Hot
Gas Particulate Filters

Rapporteurs: David P. Stinton, Oak Ridge National Laboratory and Mary A. Alvin,
Westinghouse Science and Technology Center

Group 3 — Iron Aluminide Development for Coal Combustion, Coal Gasification, and Hot
Particulate Cleanup

Rapporteurs: Vinod K. Sikka, Oak Ridge National Laboratory and David Wasyluk, Babcock and
Wilcox
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Group 4 — Functional Materials for Fuel Cells, Gas Separations, and Catalysts
Group 4A — Fuel Cell Materials Development

Rapporteurs: Larry R. Pederson and Timothy Armstrong, Pacific Northwest Laboratory

Group 4B — Gas Separations Materials

Rapporteurs: Michael S. Hiese, Amoco Corporation, and Timothy D. Burchell, Oak Ridge
National Laboratory

Group 4C — Catalyst Materials
Rapporteur: Allen G. Sault, Sandia National Laboratories
3:00 - 4:30 PM
Plenary Session
3:00 PM — Group 1 Report
3:15 PM — Group 2 Report
3:30 PM — Group 3 Report
3:45 PM — Group 4A Report
4:00 PM — Group 4B Report
4:15 PM — Group 4C Report

4:30 PM — Adjourn
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Thursday, May 12, 1994

7:30
8.00

8:10

8:40

9:10

9:40

10:10

10:30

11:00

11:30

SESSION 1V - INTERMETALLICS AND ADVANCED AUSTENITICS
N. C. Cole, Chairperson

Registration Desk Opens
Welcome and Introductory Remarks

Low-Aluminum Content Iron-Aluminum
Alloys, V. K. Sikka, Oak Ridge
National Laboratory

The Influence of Processing on
Microstructure and Properties of Iron
Aluminides, R. N. Wright, Idaho
National Engineering Laboratory

Fracture Behavior of the Alloy Fe8Al
FAP-Y, D. J. Alexander, Oak Ridge
National Laboratory

Investigation of Moisture-Induced
Embrittlement of Iron Aluminides,

N. S. Stoloff, Rensslear Polytechnic
Institute

BREAK

Environmental Effects on Iron
Aluminide, J. H. DeVan, Oak Ridge
National Laboratory

Localized Corrosion and  Stress
Corrosion Cracking Characteristics of
Low Aluminum-Content Iron Aluminum
Alloys, R. A. Buchanan, University of
Tennessee

Interactions Between Creep and
Corrosion in Alloy 800, K. Natesan,
Argonne National Laboratory

12:00

1:15

1:45

2:15

2:45

3:00

3:30

4:00

4:30

LUNCH

Fundamental Study of Aluminizing and
Chromizing Processes, R. A. Rapp, The
Ohio State University

Development of a Modified 310 Stainless
Steel, R. W. Swindeman, Oak Ridge
National Laboratory

Investigation on the Weldability of High
Temperature Alloy Tubing Materials,
C. D. Lundin, University of Tennessee

BREAK

Cr,Nb-Based Alloy Development,
C. T. Liu, Oak Ridge National
Laboratory

Alloying  Effects on the High-
Temperature Oxidation Resistance of
Cr-Cr,Nb, P. F. Tortorelli, Oak Ridge

.National Laboratory

Fracture Behavior of Cr,Nb-Based
Intermetallics, P. K. Liaw, University of
Tennessee

ADJOURN
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