bk fMay 1‘75-17, 19-95; .
| at |
Argonne |
Natlonal Laboratory |

o Argonne, Illinois
DISTR!BU ﬂON OF THIS DOCUMENT tS UNLIM%TED o




CONF-9505200

Proceedings of the

THIRTEENTH SYMPOSIUM ON ENERGY ENGINEERING SCIENCES
Fluid/Thermal Processes; Systems Analysis and Control

May 15-17, 1995
at
ARGONNE NATIONAL LABORATORY

Argonne, lllinois

Cosponsored by

Office of Basic Energy Sciences
U.S. DEPARTMENT OF ENERGY

and

Energy Technology Division
ARGONNE NATIONAL LABORATORY

Coordinated by

Argonne National Laboratory
9700 South Cass Avenue
~ Argonne, lllinois 60439

DISTRIBUTION OF THIS DOCUMENT 18§ UNLIMITED

§




THIRTEENTH SYMPOSIUM ON ENERGY ENGINEERING SCIENCES
Fluid/Thermal Processes; Systems Analysis and Control

FOREWORD

This Proceedings Volume includes the technical papers that were presented during the Thirteenth
Symposium on Energy Engineering Sciences on May 15-17, 1995, at Argonne National Laboratory,
Argonne, lllinois. The Symposium was organized into nine technical sessions, which included
33 individual presentations followed by discussion and interaction with the audience. A copy of
the schedule and a list of participants is appended to this volume.

This was the thirteenth annual Symposium sponsored by the Engineering Research Program of
the Office of Basic Energy Sciences of the U.S. Department of Energy. The technical areas
encompassed in this year's Symposium were fluid and thermal processes, and systems analysis
and control. The dominant theme was fluid mechanics, which constituted five of the sessions and
included 19 individual presentations. Each paper dealt with the research effort being sponsored
by the Engineering Research Program.

The DOE Office of Basic Energy Sciences, of which Engineering Research is a component
program, is responsible for the long-term mission-oriented research in the Department. It has the
prime responsibility for establishing the basic scientific foundation upon which the Nation's future
energy options will have to be identified, developed, and built. It is committed to the generation of
new knowledge necessary for the solution of present and future problems of energy exploration,
production, conversion, and utilization, consistent with respect for the environment.

Consistent with the DOE/BES mission, the Engineering Research Program is charged with the
identification, initiation, and management of fundamental research on broad, generic topics
addressing energy-related engineering problems. lIts stated goals are: 1) to improve and extend
the body of knowledge underlying current engineering practice so as to create new options for
enhancing energy savings and production, for prolonging useful life of energy-related structures
and equipment, and for developing advanced manufacturing technologies and materials processing
with emphasis on reducing costs with improved industrial production and performance quality; and
2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering
problems in the energy technologies.

In achieving these goals, the Engineering Research Program supports approximately 130 research
projects covering a broad spectrum of topics cutting across traditional engineering disciplines with
a focus on three areas: 1) mechanical sciences, 2) control systems and instrumentation, and
3) engineering data and analysis. The Thirteenth Symposium involved approximately one-fourth
of the research projects currently sponsored by the DOE/BES Engineering Research Program.

The Thirteenth Symposium was held under the joint sponsorship of the DOE Office of Basic Energy
Sciences and Argonne National Laboratory. Local arrangements were handled by Ms. Jacquie
Habenicht of ANL Conference Services. Ms. Nina Daly of the ANL Office of Technical
Communication Services was responsible for assembling these proceedings and attending to their

publication.

| am grateful to all who contributed to the success of the program, particularly to the participants
for their uniformly excellent presentations, their active involvement in discussions, and their
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infectious enthusiasm. The resulting interactions made this Symposium a most stimulating and
enjoyable experience.

James R. Welty, ER-15
Division of Engineering and Geosciences
Office of Basic Energy Sciences
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VISCOSITY OF COLLOIDAL SUSPENSIONS

E. G. D. Cohen*
and
I. M. de Schepper**

*The Rockefeller University
New York, NY 10021, U.S.A.
**Delft University of Technology
2629 JB Delft, The Netherlands

ABSTRACT

Simple expressions are given for the effective Newtonian viscosity as a function of concentration
as well as for the effective visco-elastic response as a function of concentration and imposed fre-
quency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical
mechanisms underlying these formulae are discussed. The agreement with existing experiments is

very good.

INTRODUCTION

We discuss here suspensions consisting of monodisperse spherical neutral colloidal particles with
a diameter 0. The problem we address is: in the absence of hydrodynamic interactions, what is
the effective viscosity of such a suspension, i.e., its viscosity as different from #7,, the viscosity of
the pure solvent? We are interested in this as a function of the volume fraction ¢ = 7wno3/6 of
the colloidal particles, viz. 7°f(¢), its effective Newtonian viscosity or 7°f(¢;w) its effective visco-
elastic viscosity, when an imposed oscillatory shear rate y(¢) = yel“* of frequency w is present. Here
n is the number density of the colloidal particles and 4 the amplitude of the imposed shear rate.

This is a very difficult problem, since it concerns a strongly interacting many particle system,
especially at large volume fractions. It is part of a large class of “effective” behavior problems,
which can usually only be treated in a systematic way at small ¢ by cluster expansions. Here we
outline an approximate, yet satisfactory solution of this problem, derived from first principles, which
leads to explicit formulae for 7°f(¢) = 7*f(p;w = 0) and 7°F(¢;w), which agree with experiment
and therefore appear to contain the right physics. In the next section we briefly outline the steps
that lead from the fundamental Smoluchowski equation to the basic equation we use to compute
n°f(¢;w). In the following section we present the solution of this equation, the explicit formulae
for n°f(¢) and n°(¢;w) and a comparison of them with experiment. In the last section, we discuss

our results.

THEORY

Basic Equation.

Starting from the N particle Smoluchowski equation in the absence of hydrodynamic inter-
actions and integrating this equation over the positions of all particles but two, one obtains an




equation for the nonequilibrium pair distribution function P2(R;r;¢;w;t) of the suspension, in-
volving the three-particle distribution function Ps. Neglecting P3 and the dependence of P2 on
the center of mass R = (r; + r2)/2 of the two particles at positions ri(i = 1,2), respectively, and
making a Fourier transform of P2 with respect to the relative coordinate r = r; — rz, one arrives

at an equation of the form(!:2l

0 2 w a- e ryet) — Aptwt _Q._ .
[+ e ‘k,,a—l%]és(k, $iwit) = 16" ky gp=Sea(ki ) (1)

Here 65(k; ¢;w;t) = S(k; §;w;t) — Seq(k; @) is the deviation of the nonequilibrium structure factor
S(k; ¢;w; t), the Fourier transform of Py(r; ¢;w;t), from that in equilibrium Seq(k; ¢), the Fourier
transform of the equilibrium radial distribution function g(r; ¢), where r = Ir] and k = |k|. Scq(k; ¢)
is known for hard spheres® and exhibits for 0.3 < ¢ < 0.55 a very sharp maximum at k =~ k~,
where k*c ~ 2r, i.e., for periodic particle configurations with a wave length A* = 2x/k* = o
(cf.fig.1). This sharp maximum at these large ¢ reflects a highly ordered state of the colloidal
particles in the suspension on this length scale (cf.fig.2), where each particle finds itself in a cage

formed by its nearest neighbors, out of which it can only escape, i.e., diffuse, with difficulty(24]. At
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Figure 1 (left). Hard sphere S(k) for ¢ = 0.49 (solid line, cf.Ref.3) and d(k) (dashed line, cf.below Eq.2), as functions
of ko.

Figure 3 (right). Reduced high frequency viscosity #2¥ (¢)/5. (closed symbols) and inverse self diffusion Do/DS%(¢)

{open symbols) as a function of ¢. Open and closed circles from Ref.9(a), open squares from Ref.9(b) and closed

squares from Ref.10. The solid line is x(¢) (cf.Eq.(4)); deviations due to hydrodynamic effects for intermediate ¢

(open squares) are visible.

small @, S.,(k; ¢) displays no such maximum and the colloidal particle diffusion approaches that of
free colloidal particles characterized by Dy, the Stokes-Einstein diffusion coefficient. The inverse
relaxation time 1/7(k; @) in eq.(1) approaches Dok? for small ¢ and is determined for large ¢, by a
-cage-diffusion coefficient D (k), derived from the analogous cage diffusion process in (pure) dense
hard sphere fluids, by replacing the low density hard sphere gas Boltzmann diffusion coefficient Dg’
by the Stokes-Einstein diffusion coefficient Dy, relevant for dilute colloidal suspensionsi?2:4-7]:

Dok?
X(9)Seq(k; )

Here the equilibrium radial distribution function g(r; @) at contact r = o : g(a;¢) = x(¢) is given
very well by the Carnahan-Starling approximation x(¢) =~ (1 - ¢/2)(1 - )73 = 1+ 3¢ + O(¢?),
where the O(¢)) term is exact (cf.fig.3) and d(k) = 1/[1 — jo(ka) + 2j,(ka)], with je(ko) the £-th
spherical Bessel function (cf.fig.1). 1/7(k;¢) is sketched and compared with the results of light
scattering experiments in fig.4 for a typical large #l6.7,

1/7(k; ¢) = D(k)k? = d(k) (0.3 < ¢ < 0.55) (2)




‘Solution and effective viscosity.
Solving the eq.(1) for 65(k; ¢;w;t), integrating the solution over k and ¢ and setting v = 0, one
‘obtains for the visco-elastic behavior of the colloidal suspension:

efff (. Y _ eff kgT [ 4 Seq(k; @) 2 1
U] (¢’w) - noo(¢) + 6—0—7r—2/o dk k [.S',,.:(k,qS)] 2Dc(k)k2 - tw -

(3)

Here nf(¢) is the infinite frequency, i.e., very short time, approximation to 7°f(¢;w) given by:

18(¢) = n:sx(8) (4)

while §{ (k; ¢) = dSeq(k; ¢)/dk. The second term on the right hand side of (3) is the contribution
due to cage-diffusion. '

2000
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Figure 2. (a) The central particle (black) is in a cage whose wall is formed by the particles connected by the thick
black line. Each wall particle is itself the center of a cage, of which the black particle is part of the wall. This is
illustrated for two wall particles of the black particle, for which the cage walls are formed by particles connected by
a solid line or a dotted line, respedtively; (b) cage diffusion collisions of central particle 1 for fixed wall particles 2 to
7. The interparticle distances have been considerably enlarged for clarity.

The high frequency part 7Ef(¢) of 7°f(¢;w) has been studied experimentally by a variety of
methods and the expression (4) is in very good agreement with experiment for all 0 < ¢ < 0.55
(cf.fig.3). The physical interpretation of (4) is that for very short times, even smaller than the
(Brownian) time tg = 02/4v, & 10~7 sec, where v, is the kinematic viscosity of the solvent, the
suspensgion viscosity is determined not only by that of the pure solvent viscosity 7,, but also by
a correction factor x(¢) which gives the increase in effective suspension viscosity due to the pairs
of touching (r = o) particles present in the suspension. This is a very short time contribution
to 7°f(¢;w), due to statistical thermodynamic, (i.e., hard sphere excluded volume) interactions,
arising from the canonical equilibrium distribution of the colloidal particles, rather than the usually
considered hydrodynamic interaction contributions. The time scale of the contributions of the
second term in (3) is much longer than that of the first term and is related to the time scale on
which the cage diffusion takes place, viz., the Péclet time%p = 02/4Dy = 10~3 sec.

For w = 0, one obtains then from (3) for the effective Newtonian viscosity 7f(¢) = n°f(¢;0) of
the suspension, with (2), the simple expression:

7 oy _ 1o &2[5.,(k;9))?
n (¢)—775X(¢)[1+40—7r/0 dﬂm] , (5)

with k = ko.




Although this expression for 7°®(¢) has been derived for large ¢ (0.3 < ¢ < 0.55) it is also
applicable to small ¢ < 0.3, since the second term in the square brackets mainly contributes for
¢ > 0.3 and the first term 7,x(¢$) adequately describes the smaller ¢ behavior (cf.fig.5). -

For w # 0, one obtains the effective visco-elastic behavior of the suspension. Since n°f{(¢;w)
is complex one can consider its real and imaginary parts 7°¥(¢;w) = (¢ w) — infi(¢;w) or -
equivalently those of 7*(¢;w) = [7°f(¢; w) ~ n°1(g; 00)}/[7°%(; 0) — n°(h; 00)), where 7°f(g; 00) =
75%($), used before. In fig.6 they are plotted as a function of w and compared with experiment(3],
‘They show a virtual absence of any concentration dependence within the spread of the experimental
data. The theoretical asymptotic large w behavior ~ (w-rp)‘l/ 2 for all ¢, is consistent with what.
is found experimentally.

‘Discussion

We conclude with a number of remarks.

‘1. The Newtonian viscosity of a colloidal suspension in the fluid phase 0 < ¢ < 0.55 can be obtained
without adjustable parameters for all concentrations from eq.(5). All that is needed, apart from
Dy, is the hard sphere diameter o to define the system. This can be obtained directly from electron
.microscopy or, for concentrated suspensions, from the first sharp maximum of S,(k; ¢4,

2. The good agreement between theory (eq.(5)) and experiment (figs.3,5), appears to confirm the
‘correctness of the two basic physical mechanisms, which are at the heart of the eq.(5): statistical
‘thermodynamic forces for very short times (< tg) and cage diffusion for longer times (> tp).

'3. Hydrodynamic interactions are relevant on a time scale 3> ¢g, but their effect is not detectable on
‘the'scale on which 7°f(¢) is plotted in fig.5, where an almost hundred-fold increase of the effective
viscosity of the suspension occurs over the fluid range 0 < ¢ < 0.55. They are surely present
(cf.fig:3), but relatively small at small ¢ and appear to be quenched at large ¢. ‘

4. This leads to the prediction that the same behavior for 7°(¢) and 7°f(¢,w) will be observed
for charged colloidal suspensions, at least at large ¢ > 0.3, if (a) one identifies the hard sphere
diameter o with the Debye sphere diameter and (b) w is not such that deformations of the Debye

spheres are relevant.
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5. For the very high frequency behavior 7¢#(¢) an Einstein relation holds for all 0 < ¢ < 0.55:

kpT
n5(4) = 67)?5(%)“(5/_2) (6)

Here DSfI(¢) is thé (effective) self-diffusion coefficient of the colloidal suspension at volume fraction
¢, i.e., the diffusion coefficient of a tagged colloidal particle with respect to the other (identical)
colloidal particles. In so far as Df(¢) can be measured by light scattering techniques!8®l, Defi(g),
‘which characterizes the diffusive decay of density fluctuations, allows a non-mechanical determi-

nation of 7Sf(¢). Together with the usual Einstein relation and eq.(4),(6) leads to: 7ff(¢)/n, =
Do/ DF(¢) = x(#) (ctfig4).

The physical origin of the validity of (6) is the inert character of the suspension surrounding
.two touching particles, at high frequencies, i.e., at very short times.
‘6. For large ¢ > 0.3 an expression for the Newtonian viscosity of an atomic liquid very similar to
'(3) for w = 0, has been derived. This illustrates a close physical analogy of concentrated colloidal
suspensions consisting of spherical particles on the one hand and simple atomic liquids, like liquid
argon or liquid methane, on the other hand712l, This analogy is based on a similarity of both
fluid systems to dense hard sphere fluids, a similarity used above (in section 2) to obtain the crucial
relation (2) for the colloidal suspension. The physical origin of this similarity is based on (a)
the similarity of Brownian and Newtonian motion on large time scales (¢ > t5)13 and (b) the
similarity of the cage-diffusion process in the two fluid systems. For further details we refer to the

literaturel4:12],
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Figure 6. Real part (a) and imaginary part (b) of the reduced complex shear viscosity n‘(qﬁ, w), as a function of
reduced frequency wri($) (with r1(¢) = rp/4 cf.Ref.1). The closed circles are from Ref.10. The dashed curves are
from Eq. 3 for ¢ = 0.4 and 0.5 (from left to right, respectively). The solid curve, for ¢ = 0, is exact and from Ref.11.
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GELATION UNDER SHEAR'
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ABSTRACT

An experimental small angle neutron scattering (SANS) study of dense silica
gels, prepared from suspensions of 24 nm colloidal silica particles at several
volume fractions ¢ is discussed. Provided that ¢$<0.18, the scattered intensity at
small wave vectors g increases as the gelation proceeds, and the structure factor
S(g,t = o) of the gel exhibits apparent power law behavior. Power law behavior
is also observed, even for samples with ¢ > 0.18, when the gelis formed under an
applied shear. Shear also enhances the diffraction maximum corresponding to the
inter-particle contact distance of the gel. Difficulties encountered when trying to
interpret SANS data from these dense systems are outlined. Results of computer
simulations intended to mimic gel formation, including computations of $(g,t), are
discussed. Comments on a method to extract a fractal dimension characterizing the
gel are included.

INTRODUCTION

The gelation of silicais of current interest both because gelation contains some interesting
physics and because silica gel technology is an essential factor in the preparation and fabrication of
modern ceramic materials [1]. A theme which has driven progress in the understanding and
subsequent improvement in design of many material systems is the relationship between the
properties of materials (mechanical, thermal, electrical, etc.) and their structure. Surprisingly,
structural studies are relatively rare in the technologically relevant dense gels. This paper

! Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.




summarizes some small angle neutron scattering (SANS) data which help to interpret the structural
changes that take place during the gelation of silica. Specifically, the motivation was to understand
better the evolution of the structure, on mesoscopic scales, of dense gelling silica spheres both
with and without the influence of an applied shear. We report on: (1) the evolution of the structure
factorin a gelling silica suspension (sol) subjected to an applied shear and compare this to similar
systems without shear; and (2) the methods we use to interpret SANS data from dense gelling
systems.

Experiments to probe the influence of shear on these systems are novel, but we anticipate that
shear will impact the structure and formation mechanism of gels. Consider a gel as a mechanically
and thermodynamically unstable microscopic network made up of some defined unit, for example,
a particle or segment of a polymer chain. Instability is frozen when the network growth and/or
rearrangement is restricted by the finite size of the container and the experimental conditions [2]. It
is, however, known [3] that a shear rate y applied to a system will affect its equation of state, its
thermodynamic properties, and therefore its phase stability criteria. Thus, a sheared system may
have phase behavior which is perturbed or even qualitatively different from its counterpart formed
in isolation. Since gelation can be treated as a phase change, a shear applied to the precursor or sol
can be expected to influence the final gel structure.

EXPERIMENT

This study [4] was carried out with colloidal silica particles, of nominal diameter o = 24 nm,
on the 30 m SANS instruments at the NIST Cold Neutron Research Facility. Silicaspheres were
suspended in a 70% H,O - 30% D,0O medium (to reduce the effect of multiple scattering) at
volume fractions ¢ of 0.10, 0.12, 0.18, 0.24, and 0.30. Gelation was initiated by lowering the
pH of the suspensions to 5.8 £ 0.1 with the addition of 0.1IM HCl. For gelation to proceedat a
reasonable pace, NaCl was added to some designated samples until the solutions reached 0.4M
NaCl.

The samples were placed in quartz cells of path length 1 mm, and the spectrometer was
configured to an incident wavelength of 0.6 nm at a detector distance of 13 m. The scattered
intensity was measured using a 2D position sensitive detector system, and, since asymmetry was
not observed in any of the samples, the detector counts were averaged azimuthally. The measured
scattered intensities were corrected for cell background and detector efficiency and were placed on
an absolute scale by normalizing to the scattering from an appropriate standard. The structure
factor was obtained by dividing this normalized intensity by a theoretical polydisperse form
factor [4] modified to allow for instrument smearing. Data were collected after gel initiation at
10 min intervals for the first 3 h and then hourly until gelation was complete. Gelation was
considered complete when the measured intensity became time independent (usually after 6-10 h).

For the shear studies, the SANS instrument was configured at 13 m and 8 m at a wavelength
of 0.6 nm with the NIST 0.5 mm gap-width Couctte shearing cell [S] in the sample holder position
with the incident beam perpendicular to the flow direction. A gelation-initiated sample was loaded
into the Couette cell, subjected to a shear ratey = 4500 s-1, and the intensity recorded. A sector
average of the sheared intensities indicated possible weak anisotropy at the higher volume
fractions, but the data were circularly averaged and reduced following the procedure for the
unsheared suspensions and gels. Intensities were measured at regular intervals until the scattering
pattern from the shearing system was time-independent. At this point the shear was removed and




the intensity remeasured. Only very small relaxation was noted; in effect, the intensity did not
change significantly when the shear was removed.

RESULTS

The presentation of these results and their interpretation is a distillation of the discussions of
our work reported in Refs. [4, 6-8]. The data are summarized in Figures 1 and 2. Figure 1 (a)
shows a typical sequence of the variation of the structure factor S(q,¢) as a function of time after
gel initiation for a ¢ = 0.10 sample gelling in the absence of an applied shear. Atthe very earliest
times there is no appreciable small angle scattering, indicating the initial solution is relatively
homogeneous at the length scales probed by this experiment (several particle diameters). As the
gelation proceeds, however, there is a marked increase in the scattering at low ¢ and this becomes
more pronounced at longer times. At these later times, S(q,¢) displays an apparent power-law
increase with decreasing g. Behavior qualitatively similar to this was observed in all samples,
sheared and unsheared, that had silica volume fractions ¢ < 0.18, with the lowest volume
fractions showing the most intense small angle scattering. Quantitative differences between the
samples with ¢ < 0.18 measured with and without an applied shear were small.
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Figure 1: Measurered structure factors at y= 0: (a) as a function of time since gel
initiation, and (b), as a function of volume fraction after the gel has formed.

In contrast, samples with silica volume fractions above 0.18 (¢ = 0.24, 0.30) did not display a
rise in the small angle scattering (even at very long times) when a shear was not applied. This
result is apparent from Fig. 1 (b), which shows the scattering from the final gels as a function of
volume fraction. Thus, the power-law increase in the scattering at small angles observed in the
more dilute systems is not seen in the denser system. This power-law behaviorin S(g,¢) returns,
however, when shear is applied during the gelation of the higher density samples (Fig. 2).
Furthermore, in addition to this large increase in small angle scattering with shear, there is a
significant change observed in the particle-particle ‘contact’ peak located near go/2x =1. This
peak is broad and weak in the unsheared sample, but is much sharper and more intense in the
sample gelled under shear.




Qualitatively, the increase in small angle scattering at low g indicates that the samples evolve .
from an initially homogeneous suspension of silica particles to an arrangement that contains
structural inhomogeneities at length scales of the order of several particle diameters. These
inhomogeneities apparently do not form at allin samples with volume fractions greater than 0.18
unless a shear is applied. This is a surprising result. We might anticipate that a shear will disorder
the gel so as to prevent the formation of inhomogeneities; apparently the opposite is true.
Moreover, the distinct particle-particle contact peak seen in the higher density sheared gels (Fig. 2)
indicates that relatively dense clusters of these spherical silica particles have formed.
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Figure 2: Measurered structure factors for the ¢ = 0.24 gelled samples with and
without an applied shear. The results for ¢ = 0.30 are similar.

ANALYSIS

In low density gels, small angle x-ray [9], neutron [10], and light-scattering [11] studies show
a characteristic power-law increase in intensity with decreasing wavevector. This power-law
behavior, characteristic of fractal aggregation processes [12, 13], predicts that the mass of an
aggregate varies as m ~ é ’, where & is a length characterizing the aggregate size and d, is a
fractal dimension. It is easily shown that the structure factor S(g) of a collection of such Ob_]CCtS is
given by

S(g)~q ™" (1

at wavevectors in the range 2n/& << g << 27/0, provided that there are no correlations between
aggregates. The power-law slopes in the measured small-angle diffraction patterns of these low
density gels (where correlations can be expected to be small) are thus related to the fractal
dimension of the aggregates that form the gel.

It is tempting to apply Eq. (1) to our data and derive a fractal dimension from the slope of the
measured structure factors. But, in this study, the small angle neutron scattering measurements




were performed on dense gels for which an assumption that the collection of aggregates or clusters
of particles formed during gelation are uncorrelated cannot be justified. In these dense systems,
the small angle scattering can be described only by a much more complicated function of the
cluster shapes, cluster-cluster correlations, as well as the particle arrangements inside individual
clusters [7]. Cluster growth and/or cluster-cluster correlations must, therefore, be included in the
interpretation of the increased scattering at low angles. In other words, it is not necessarily the
internal arrangements of the silica particles inside a cluster that cause the rise in scattering as itis in
low density systems; rather, the size and shape of the clusters coupled with their correlation must
be a factor.

COMPUTER SIMULATION

The direct interpretation of such complicated scattering patterns requires that we evoke some
model of the particle rearrangement. We chose to simulate the gelation in a dense 2D system
where it is possible both to observe the particle positions as a function of time and to compare this
to an S(g.t) computed from these configurations. In this way it is possible to gain insight into
how cluster morphologies contribute to particular features of the corresponding diffraction patterns
and therefore be better able to interpret the measurements. Furthermore, it is possible to simulate
the effect of shear on the particle morphologies, and thus S(g,z), and to compare this to our
scattering measurements.

Details of the computer simulation are presented elsewhere [6], but, in brief, it consisted of
quenching (by molecular dynamics methods) a large (N = 14336), dense (p = 0.325), 2D
Lennard-Jones system, from a high temperature disordered fluid into the vapor/solid coexistence
region and observing the subsequent aggregation both with and without an applied shear. The
quench is intended to mimic the sudden change in interaction potential used to initiate gelation in
real systems — the subsequent evolution of the real and simulated systems should therefore be
qualitatively similar. In order to compare these simulations to experiment, S(g,#) was computed
from the simulation and compared with the experimental data and the simulated particle
morphologies. Typical results from the simulations are presented in Fig. 3.

Figures 3 (a) and (b) are taken from a simulation with no applied shear after a total reduced
time r = 500 since the quench. Atthis relatively late stage in the evolution of the system several
large clusters with elongated shapes have formed which, overall, shows an interconnected
morphology. Most interesting for our present purposes is the form of the computed S(g,¢). Like
the experiments reported earlier, S(g,?) shows a power-law-like rise with decreasing wavevector,
but, in this case, the origin of the small angle scattering in the simulation is clear; there is a peak in
S(g,t) at low angles which results from the cluster-cluster correlations evident in Fig. 3 (a). The
power-law slope cannot be identified with any particular internal feature of the clusters but instead
depends on specific details of the correlations which give rise to the peak in S(g,7).

Similar plots after the same time are presented in Figs. 3 (c) and (d) for the case where a shear
is applied. Here we find that the coarsening of the clusters has proceeded much more rapidly than
in the simulation where no shear was applied. While this might not be expected, as we may
anticipate that shear will disorder the systém, it is consistent with our experimental observation
that the application of a shear in the dense gels gives rise to small angle scattering where none is
present in the unsheared gels.
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Figure 3: Molecular dynamics computer simulations of quenched Lennard-Jones
disks: (a) and (c) are particle configurations at a reduced time ¢ = 500
without and with an applied shear; (b) and (d) are the corresponding S(q).

A DYNAMIC SCALING LAW

Close examination of the evolution of the cluster morphology showed that the aggregation
proceeds in such a way that, except for a change in scale, the morphologies are similar. That is,
the structure evolves in a temporally self-similar manner. If the clusters are mass fractals, the
corresponding structure factors should, therefore, scale as [8]

5(a/2a(®) ~ 4u(6)™" 5(q/3,) | @)




where g¢,,(¢) is the location of the low angle peak in S(g,f) and S(g/d,) is a time-independent
characteristic structure function which peaks at §,,. The fractaldimension 4, is allowed to take on
any value less than or equal to the dimensionality of the system and will depend on the structure of
the evolving clusters. For the simulations presented here, this relation is satisfied well provided
d, is assigned a value of 1.85 + 0.05. This result is presented in Fig. 4. Here the computed
S(g,t) have been scaled according to Eq. 2 and are found to lie on a universal curve. This result is
important because it suggests a way to obtain information (the fractal dimension) about the
structure of the evolving system, even in a dense system where correlations are inevitable, by
observing the time dependence of the structure factor.
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Figure 4: Computed stucture factors at different times during the evolution of the MD
computer simulation (no shear) scaled according to Eq. (2). The solid line is

the phenomenological theory of Furukawa [14] which has no adjustable
parameters. See Ref. [8].

CONCLUSION

Measurement of SANS data on silica gels ranging in volume fraction ¢ from 0.10 to 0.30,
were made with and without an applied shear. Those samples with ¢ < 0.18 showed apparent
power-law increases in their structure factors regardless of shear. The two higher density samples
only displayed power-law rises in S(g,¢) when a shear was applied, indicating that shear actually
assists the gelation processes that operate at lower density. A computer model based on the
quenching of a Leonard-Jones system reproduces many features of the measured diffraction data—
a power-law behavior and an increased tendency for ordering when a shear is applied. Comparing
the simulation results with the data, we conclude that the power law behavior originates from the
presence of cluster-cluster correlations and not from the internal fractal structure of these clusters.
We present a dynamic scaling relation which can instead be used to derive the fractal dimension of
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the evolving system even in the presence of these correlations.
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TRANSPORT PROPERTIES OF POROUS MEDIA
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ABSTRACT

The determination of the effective transport properties of a random porous
medium remains a challenging area of research because the properties depend
on the microstructure in a highly complex fashion. This paper reviews recent
theoretical and experimental progress that we have made on various aspects of
this problem. A unified approach is taken to characterize the microstructure
and the seemingly disparate properties of the medium.

I. INTRODUCTION

The purpose of this paper is to review progress that we have made in the last several
years on five basic aspects of the problem of determining effective transport properties of
random porous media: (i) derivation of rigorous bounds on transport properties in terms
of statistical correlation functions; (ii) quantitative characterization of the microstructure
of nontrivial models; (iii) 3D imaging of porous media using x-ray tomography; (iv) and
derivation of rigorous cross-property relations.

II. AVERAGED EQUATIONS

The random porous medium is a domain of space V(w) € R® (where the realization
§2 is taken from some probability space w) of volume V which is composed of two regions:
the pore region Vy(w) (in which transport occurs) of volume fraction (porosity) ¢; and a
solid-phase region Vz(w) of volume fraction ¢,. Let dV(w) be the surface between V; and
Vs.

A. Time Scales for NMR Relaxation

Nuclear magnetic resonance (NMR) is a powerful noninvasive technique for the study
of fluid-saturated porous media [1]. The relaxation times of water contained in a porous
medium are substantially smaller than those of bulk water, primarily because of enhanced
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relaxation mechanisms at the pore-solid interface. NMR relaxation depends upon the char-
acteristic length scales of the pore space and on the surface rate constant k. The decay of the
magnetization density m(x, ) at local position x and time ¢ is governed by a time-dependent
diffusion equation, the solution of which can be expressed as an expansion in orthonormal
eigenfunctions {, }:

m(x,t)

=2 e Tepu(x) (1)
n=1

where the coefficients a, are simply related to the pore-volume average of %, [2]. The
diffusion relaxation times 7,, are inversely proportional to the eigenvalues A,.

The net magnetization, usually the quantity of principal interest in NMR experiments,
is defined as

Mo

M) = /v m(x, t)dx . (2)

1

The mean survival time 7 of a diffusing particle before it gets completely demagnetized is
given by [2]

_ [ M)
T_fo T (3)

where M, = M(t = 0). The mean survival time 7 depends on the diffusion coeffcient, D, ,
and the microstructure.

B. Effective Conductivity

The effective conductivity o is given by an averaged Ohm’s law:
< J(x) >=0. < E(x) > (4)

where < E(x) > and < J(x) > represent the ensemble average of the local electric and
current density fields, respectively. The local fields satisfy the usual steady-state conduction
equations [3].

By mathematical analogy, results for o, translate into equivalent results for the thermal
conductivity, magnetic permeability, dielectric constant, and diffusion coefficient.

C. Fluid Permeability
The fluid permeabilty k£ of a porous medium, defined by Darcy’s law,

<u(x) >= —%Vpo(x) ; (5)

governs the rate at which a viscous fluid flows through it [4]. Here < u(x) > is the ensemble
average of the local fluid velocity which satisfies the steady-state Stokes equations [53], Vp,(x)
is the applied pressure gradient, and p is the dynamic viscosity. k& depends nontrivially on the
pore geometry and may be regarded to be an effective cross-sectional area of pore channels.

ITII. MICROSTRUCTURE/PROPERTY CONNECTION
A. Minimum Energy Principles
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Figure 1: The log of ks?/2¢, vs. log of ¢1 — ¢¢ for several different model microstructures
and a sandstone. Here s is the specfic surface and ¢$ is the porosity at which the pore phase
becomes disconnected.

For general random media, the complexity of the microstructure prevents one from
obtaining the effective properties of the system exactly. Therefore, any rigorous statement
about the properties must be in the form of an inequality, i.e., rigorous bounds on the effective
properties. Bounds are useful since they: (i) enable one to test the merits of theories and
computer experiments; (ii) as successfully more microstructural information is incorporated,
the bounds become progressively narrower; and (iii) one of the bounds can typically provide
a good estimate of the property for a wide range of conditions, even when the reciprocal
bound diverges from it.

Bounds are usually derived using minimum energy principles [3]. Recently, the mean
survival time 7 has been bounded from below in terms of moments of the pore size distribution
function P(8) [2,6]. P(6)dé is the probability that a point in the pore region V; lies at a
distance between § and § + dé from the nearest point on the interface 0V.

The nearest-neighbor distribution function H(r) has been shown to arise in rigorous
bounds on the effective conductivity ., mean survival time 7, and the fluild permeability &
for suspensions of spheres [6]. H(r)dr gives the probability of finding nearest neighbors in
a spherical shell of thickness dr at a distance r from the center of a reference particle.

More recently, we have derived the sharpest available bounds on the effective conduc-
tivity and elastic moduli of two-phase heterogeneous materials that are given in terms of the
n-point probability functions S1, Sa,.i., Sp [7]. Sn(r1,:.., 1) gives the probability of finding
n point at positions ri,...,r, in one of the phases.

Guided by rigorous bounds on the permeability, we have found a universal scaling for
the permeability of a class of porous media [8]. As Figure 1 demonstrates this includes
various sphere packings as well as a sandstone.

B. Brownian-Motion Simulation Technique

We have applied our Brownian-motion simulation technique to compute effective dif-
fusion properties, such as the effective conductivity of packings of spheroids [9] and mean
survival time associated with diffusion-controlled reactions in digitized, synthetic heteroge-
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Figure 2: Dimensionless mean nearest-neighbor distance A/o vs. packing fraction ¢ for hard
spheres. Thin solid line is theoretical prediction. Open circles are simulation data. Thin
dashed line, thick dashed line, and solid lines are upper bounds.

neous media [10]. The latter work can be used to understand the critical issues involved
when examining a digitized image of an actual material sample.

IV. MICROSTRUCTURE CHARACTERIZATION

Some of the different types of statistical correlation functions that have arisen in rigor-
ous bounds on transport properties were described in the previous section. Until recently,
application of such bounds (although in existence for almost thirty years in some cases)
was virtually nonexistent because of the difficulty involved in ascertaining the correlation
functions.

A. Unified Theoretical Approach

For statistically inhomogeneous systems of /N identical d-dimensional spheres, Torquato
[11] has introduced the general n-point distribution function H,(x™; x*~™; r?) and found a
series representation of H, which enables one to compute it. From the general quantity H,
one can obtain all of the aforementioned correlation functions and their generalizations [11].
This formalism has been generalized to treat polydispersed spheres, anisotropic media (e.g.,
aligned ellipsoids and cylinders), and cell models [3,6].

We have developed analytical expressions for the chord-length distribution function for
models of porous media with a polydispersivity in size [12,13]. A new coarse-graining pro-
cedure has been obtained to generate and analyze a wide class of model microstructures
[14].

The nearest-neighbor distribution function H(r) is a fundamental quantity that sta-
tistically characterizes a random system of particles (including liquid structure). We have
found analytical expressions for H(r) for nontrivial particulate models up to the random
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close-packing density [15].

Using H(r) we have been able to obtain new and fundamental rigorous results for the
mean nearest-neighbor distance A between particles [16]. In particular, we have found an
excellent approximation to A for equilibrium hard spheres that is valid up to random close
packing and rigorous upper bounds on A. We have proven that a certain region in the ¢-A
plane is prohibited to ergodic, isotropic hard spheres. (shaded region in Fig. 2).

We have very recently developed an exact algorithm to compute H(r) and other void
statistics [17]). Moreover, we have extracted various statistical measures from digitized rep-
resentations of consolidated-sphere models [18].

The important topological property of connectedness is reflected in the two-point cluster
function which we have evaluated exactly for a certain contimuum percolation model [19].

B. 3D Imaging Using X-Ray Tomography

We have very recently obtained high-resolution 3D digitized representation of a Foun-
tainbleu sandstone using x-ray tomographic techniques [20]. This digitized representation is
used to extract a number of morphological characteristics of the sample. Figure 3 shows a
slice of the sandstone which has a porosity of 0.15. Figure 4 depicts the two-point probability
function obtained from all of the slices.

V. CROSS-PROPERTY RELATIONS

An intriguing fundamental as well as practical question in the study of heterogeneous
materials is the following: Can different properties of the medium be rigorously linked to one
another? Such cross-property relations become especially useful if one property is more easily
measured than another property. For example, it is difficult to measure the permeability k
in situ.

Torquato [21] derived the first rigorous relation connecting the permeability k to the
mean survival time 7 of a porous medium:

k< D¢t . (6)

Generally, inequality (6) is not sharp because 7 is a reflection of the entire pore space,
whereas k is a reflection of the dynamically connected part of the pore space.
More recently, Avellaneda and Torquato [22] derived the first rigorous equality connect-
ing the permeability to the effective electrical conductivity of a porous medium containing a
conducting fluid of conductivity o1 and an insulating solid phase:
LZ
k=— 7
8F ? ( )
where F' = o1/c. is the formation factor and L is a length parameter which is a weighted
sum over the viscous relaxation times associated with the time-dependent Stokes equations.
It has been conjectured that for isotropic media possessing an arbitrary but connected
pore space, the following relation holds [23]:
Dt
k< —. 8
< ®)
We have continued to seek and test cross-property relations that connect the fluid per-
meability of porous media with diffusion properties, such as diffusion relaxation times, ob-
tainable from NMR experiments, and the electrical conductivity [24,25]. Based on the above
rigorous results, it has been proposed [24] that the approximate relation
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Figure 3: Sample filtered slice of Fountainbleu sandstone. The black region corresponds to
the grain phase.
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Figure 4: Two-point probability function vs. distance for Fountainbleu sandstone.
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should be accurate for a large class of porous media.

To test cross-property relation (9), we have recently analyzed the 3D tomographic image
of the aforementioned Fountainbleu sandstone (see Fig. 3) [20]. The quantity 7D was
determined to be 154 ym? from Brownian-motion simulations, F'~! was rigorously bounded
from above by the value 0.089 using three-point information [7], and ¢, was found to be
0.15. Thus, relation (9) predicts k ~ 2.1um?, which is in relatively good agreement with the
experimental value [25] of 1.3 um?.

The attentuation of elastic waves in fluid-saturated porous media depends on their
effective elastic moduli. We have rigorously linked the conductivity to the elastic moduli of
the medium [26-28].
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NMR STUDIES OF MULTIPHASE FLOWS. II
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ABSTRACT

NMR techniques for measurements of spatial distribution of material phase,
velocity and velocity fluctuation are being developed and refined. Versions of
these techniques which provide time average liquid fraction and fluid phase
velocity have been applied to several concentrated suspension systems which will
not be discussed extensively here. Technical developments required to further
extend the use of NMR to the multi-phase flow arena and to provide
measurements of previously unobtainable parameters are the focus of this report.

INTRODUCTION AND HISTORY

Nuclear magnetic resonance (NMR) has been used to study flowing fluids at The
Lovelace Institutes (TLI) for the past ten years. The advantage of the NMR method for flow
measurements is many-fold. Among the more obvious are that it is non-invasive and that, for
certain materials, it can examine a flow system without any opaqueness problems. Among the
possibly less obvious advantages is that the technique can measure many flow parameters not
limited simply to velocity and concentration but also to diffusion, turbulence, acceleration, etc.,
as primary parameters (as opposed to secondary parameters that are derived from the primary
parameters). The advent of NMR imaging (NMRI) allows us to spatially resolve all such
parameters.
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We have embarked on a program to study various properties of multiphase flows by
NMR. In particular, we wish to develop new techniques and apply them to problems in various
fields. The initial objective, five years ago under BES funding, of showing that spatially
resolved measurements of velocity and concentration of liquid/solid multiphase flows was
possible at any concentration of the solid component, has been fulfilled and some results were
presented at the Tenth Symposium on Energy Engineering Sciences in 1992 [1]. Our current
objectives are, on the one hand, to extend such measurements to higher order parameters such as
diffusion and fluctuations of velocity and, on the other hand, to improve the NMR hardware to
permit faster data acquisition which will yield better data for such parameters. In flows of
concentrated suspensions and granular materials velocity fluctuations are hypothesized to be a
crucial element of multi-phase transport processes [2, 3]. In this report, we describe progress
made in several of these areas which represent pre-conditions to actually making such
measurements in multiphase flows.

NMR AND LDA VELOCIMETRY IN A CURVED DUCT

In theory, NMR velocity measurements can produce 2- and 3-d datasets and arbitrary
velocity components can be measured. In practice, mainly simple flows have been used to
validate NMR methods, and the accuracy and precision of NMR velocity measurement
techniques in complicated flows have not been assessed. An NMR velocity measurement system
based on first order phase methods, and appropriate for measurement of a complex flow field
with a primary velocity component and two smaller "secondary” components was implemented.
Velocity dependent mis-registration was minimized by placing the phase-encoding interval
immediately before the read-out interval and using a short echo-time. A geometry amenable to
reliable measurement with transmission mode laser Doppler anemometry was chosen. The LDA
measurements were done at the University of New Mexico in the laboratory of Prof. R. Truman.
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Figure 1. The dimensions of the Plexiglas flow phantom are shown. Flowing

water entered a 61 cm straight duct, and turned in a section with centerline radius of 8.5

cm. Velocity components were measured after 90 ° of bend (M.L.). The cross section of

the duct was 1.9 cm on a side.




A duct having square cross-section (1.9 + 0.05 cm on a side) was constructed from
Plexiglas sheet and cylinder stock. The dimensions of the duct are shown in Figure 1. Water
from a constant height reservoir flowed through flexible tubing into a 61 cm straight section of
square duct, turned through a 180° section of duct, with centerline radius 8.5 cm, and exited
through a circular orifice into a second flexible tube. Tap water was used in the laser Doppler
measurements. Water doped with Gd (T ~ 0.25 s) was used in the NMR measurements.

The rf coil was modified to allow insertion of the phantom in the configuration shown.
Slots were cut in the outer can and between the "rungs" in the resonant circuit. To install the
flow model, the coil was partially disassembled, the curved section inserted through the rungs,
the efflux tube connected, and the rf coil reassembled. The fact that the downstream end of the
curved section was interrupted was less than optimal from the standpoint of comparison with
previous results.

Three orthogonal components of velocity in a curved duct of square cross-section were
measured with NMR, and two velocity components were also measured with laser Doppler
techniques. Comparison between the two methods showed that accurate measurements of 3-
dimensional flows can be made with NMR phase methods. Experiments using static references
gave the most reliable measurements in low velocity regions. In Figure 2, a set of low flow rate
measurements are shown.

k=100 0.2
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o 0.0 °

Figure 2. Comparisons between NMR (continuous lines) and LDA (points) are shown
for the two velocity components measured with LDA. The schematics on the left show
the locations of the measurement traverses, “O” refers to the outside of the curved tube.

At low flow rates, a single pair of vortices similar to low Dean number flow in a curved tube,
symmetric about the plane containing the duct axis, is observed. The sense of the secondary
flow is also the same as in a curved tube -- outward along the axis of symmetry, and inward
along the walls. NMR velocimetry provides measurements over the cross-section, as opposed to
measurements along a single line, and an example obtained at a higher flow rate is given in
Figure 3. A vector plot shows the distribution of the secondary velocity components in the duct.
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Below the vector plot, images of the velocity components are shown. The outer curved wall is
shown on the left of the images and the vector plot. At this flow, two vortex pairs are prominent.
The LDA confirmed the qualitative differences observed with NMR as a function of flow rate.

k=413

Re=826

V=4.2 cm/s

Q=15.3 ml.s
Va V¢ Vy

Figure 3. NMR data obtained in the curved duct at a flow of 15.3 cm’/s are shown. a
vector plot shows the presence of multiple pairs of vortices. The outer edge of the
curved duct is on the left, as in Figures 1 and 2.

NMR DIFFUSION AND TURBULENCE MEASUREMENTS

Some of the techniques for measuring flow velocity by NMR were reviewed three years
ago [1] and will not be reviewed here but the NMR methods for measuring molecular diffusion
and turbulent diffusivity will be described.

Molecular diffusion measurements by NMR is an area we have gone into in the past two
years. NMR can measure diffusion in the following way. In any NMR experiment, the nuclei
with gyromagnetic ratio y precess about the magnetic field B at frequency f according to the
Larmor theorem: f=(y/2m)B. Suppose an ensemble of spins is made phase coherent at t=0 and a
magnetic field gradient g is applied for a time 6. The gradient causes spins at different locations
Z, to precess in a magnetic field intensity distributed according to gz, i.e., the spread of frequency
across a distance z is (y/2n)gz and the incremental phase gain (or less) is (y/2m)gzd. If, an equal
but opposite gradient is applied at some later time A, the incremental phase changes reverse
exactly and the ensemble finds itself with a regained coherence, leading to an unattenuated NMR
signal. If, however, there is diffusion during the interval A, the full coherence will not be
regained because the incremental phase changes during the two gradient pulses will not be equal
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and opposite. Thus, NMR can be used to measure the diffusion coefficient by the signal
attenuation caused by the diffusive motion of the molecules during an appropriately designed
pulse sequence. In fact, any other incoherent motion will also attenuate the signal and this fact is
used to study turbulent diffusivity.

Diffusion in restricted spaces can be studied by NMR, too, because the technique, as
described above, measures the spin displacements in the interval A and the barriers to diffusion
modifies the range of displacements. Because barriers can only limit the range of molecular
motion, diffusion in restricted spaces can only increase the signal amplitude over unrestricted
diffusion. There is an inherent difficulty that as more restrictive or, equivalently, more diffusive
systems are studied, the gradient pulses that are used to define the range of incoherence will need
to be made more effective. In the expression for the phase increment, given above, the only
variables that can be changed for any given system are g and d, the amplitude and duration of
gradients. Because there is a practical limit to how large the gradient amplitude g can be made,
there is a need to consider lengthening the duration 8. This is the root cause of much of our
present research because much of the past derivations relating the diffusion coefficient D, the
restricted spacing a, and the signal, depend on an assumption that the gradient pulse length &
obeys the relation 8<<a2/D, i.e., it must be short enough that the molecule will not diffuse across
the restricted region of dimension a during 8.

- NARROW PULSE APPROXIMATION IN RESTRICTED DIFFUSION

An alternative manifestation of NMR signals being sensitive to molecular motion,
besides the measurements of velocities, is the use of NMR to investigate molecular diffusion and
the influence of barriers on such diffusion. Qualitatively, this is possible because any random
molecular motion that takes place between two gradient pulses, one to dephase the spins and the
other to rephase them, leads to an incomplete rephasing of the spins and shows up as a signal
attenuation. Standard techniques for microstructure determination has existed for over three
decades provided the magnetic field gradients used can be considered so short that no diffusion
takes place during them.

The problem of diffusion in the presence of barriers, considered in this and next sections
of this report, is an important one in many multiphase flow applications. The interphase
boundaries usually represent significant barriers to diffusion so that any information on such
boundaries leads to information about the multiphase structure.

Barriers to diffusion reduces the attenuation caused by diffusion because they reduce the
range of translational motion for the spins. Therefore, ever stronger gradients must be used to
study smaller and smaller restricted spaces. Because there is a limit to the strength of magnetic
field gradients that can be created, there is a need to increase the duration of the gradient pulses.
Thus, it is possible to violate the condition of “infinitely” narrow pulses, as diffusion is studied
for smaller restricted regions. With the recent impetus for probing diffusion in ever smaller
restricted spaces, this has become a meaningful question. A general expression for the
attenuation has been derived from stochastic theory of random spin motion with an assumption
of Gaussian displacements. The echo attenuation is divided into contributions A and B. A
represents the contribution in the presence of the gradient while B is the contribution with the
gradient off so that F=A/(A+B) must be small for the narrow pulse approximation to hold.
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Figure 4 is a plot of equal values of F as a function of two times, the duratlon of the gradient
pulses 8, and the interval between the gradient pulses A, both in units of a 2/D which is the time
for a molecule to diffuse with a diffusion coefficient D across the restricted space of dimension a.
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Figure 4. The fraction F of the total attenuation occurring during the application of the
gradient pulses or a PGSE experiment as a function of the time intervals & and Q.

We have performed an alternative derivation of the same criterion for the validity of
narrow pulse expressions for restricted diffusion from the diffraction-like behavior of NMR
signal attenuation as a function of qa=ygda/2r, where q is, in effect, a reciprocal lattice vector for
restricted diffusion [4]. In the narrow pulse approximation, the signal has minima at multiples of
g=1/a. From the results of Blees [5], we plotted contour lines of constant fractional deviation of
a particular minimum as a function of 8D/a® and AD/a” as before and the curves have shapes
identical to those of Fig. 2.

We have found that the condition F<<0.1 is equivalent to a 5% shift in the second
minimum position in qa. Although neither of these conditions seems very strlct they lead to the
conclusion that gradient pulse duration 6 must be much shorter than 0. 02D/a* in order for the
narrow pulse expressions to be valid, a surprisingly strong criterion.

ANALYTICAL EXPRESSION FOR TIME-VARYING GRADIENTS

Although analytic expressions for NMR echo signals from an assembly of atomic nuclei
undergoing diffusion in free and confined spaces were derived more than 30 years ago, a general
expression without the assumption that molecular diffusion does not take place during the |
gradient pulses still does not exist. This is a problem that is gaining in importance as more and
more smaller spaces or larger diffusion coefficients are studied. That this is so can be seen by the
fact that the appropriate time unit for these problems is a/D which is how long a molecule with
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diffusion coefficient D takes to diffuse across a restricted space a. Thus, smaller restricted spaces
has the same effect as larger D.

We have derived an approximate analytical solution for diffusion in the presence of a
gradient pulse that is not infinitesimally short by approximating the pulse with a series of
gradient impulses each of which has a known narrow-pulse solution. We examined the
convergence of the solution as a function of the order of the approximation, i.e., the number of
impulses used, and found that 8 impulses is sufficient for most combinations of parameters.
Because the method is general, it can be used for any shape gradient pulse, and its use is not
limited only to rectangular pulses. Furthermore, the formalism is also applicable to non-uniform
initial magnetization distribution.

STUDIES OF DIFFUSIVE AND TURBULENT SPECTRA

There have been suggestions of using gradient pulses that are tailored to probe particular
frequency components of spectral density associated with coherent or incoherent motion [4]. We
have derived relations for the signal attenuation as a function of sine and cosine coefficients of
sinusoidal magnetic field gradients used during an otherwise standard NMR pulsed gradient spin
echo diffusion experiments. We then performed experiments in three model systems: 1)
diffusion measurements of water in an effectively unconfined space; 2) measurements of water
diffusing between mica sheets spaced 25 um apart; and 3) measurements turbulent diffusivity of
water flowing in a circular pipe.

For water at room temperature in an unconfined space, the spectral density for diffusion
is independent of frequency in the range studied, up to 100 Hz, as expected. On the other hand,
in restricted spaces, deviation from the unconfined behavior is expected at the lower frequencies
where the molecules have enough time to encounter walls. Experimentally, we measure the
expected behavior, i.e., the spectral density is flat above 22 Hz but decreases below this threshold
which is consistent with the known spacing between the mica sheets of 25 um, as shown in Fig.
5.

We wish to extend this technique to the measurement of turbulent diffusivity. A
preliminary experiment in water flowing in a circular pipe with Reynolds numbers between
2,000 and 12,000, yielded spectral densities that did not follow the correlation time-based curves
used to fit spectral density for diffusion. This is to be expected because in turbulent diffusivity,
the eddies are not uncorrelated as smaller ones are subdivided from the larger ones in order that

the energy can be dissipated.
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Figure 5. Results from spectral density of diffusion measurements (points) in a stack
with 25 pm spacing shows good agreement with theoretical prediction. The technique is
being evaluated for measurement of the size spectrum of turbulent eddies.
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ABSTRACT

The initiation of slug flow in a horizontal pipe can be
predicted either by considering the stability of a slug or by
considering the stability of a stratified flow. Measurements of
the shedding rate of slugs are used to define necessary
conditions for the existence of a slug. Recent results show that
slugs develop from an unstable stratified flow through the
evolution of small wavelength waves into large wavelength
waves that have the possibility of growing to form a slug. The
mechanism appears to be quite different for fluids with
viscosities close to water. than for fluids with large viscosities
(20 centipoise).

INTRODUCTION

The prediction of flow regimes is a central problem in the analysis of gas-liquid flows
in pipes. Early work had used two-dimensional flow maps that employed variables such as
the superficial gas and liquid velocities. These have proven unsatisfactory since they cannot
represent the influence of the large number of variables that define multiphase systems.
Pioneering works in this area are the papers presented by Dukler and his coworkers [1][2].
These papers suggest physical criteria and equations that define transitions from one regime
to another. Flow maps can then be constructed for particular situations.

During the past 15 years the mechanisms suggested in references [1] and [2] have been
examined more carefully and we now realize that some of the physics is flawed. This
accounts for the failure of this approach to explain many observed phenomena. There is a
need to develop an updated equation-based approach which utilizes improvements in our
understanding of this problem.

This paper presents recent results on the transition from a stratified flow to a slug flow
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in a horizontal pipe. Taitel & Dukler [1] suggest, on the basis of geometric arguments, that
the height of the liquid in the stratified flow, h;, needs to be larger than one-half of the pipe
diameter, D, in order for a slug to form. This constitutes a necessary condition for the
existence of slugs. A closer examination of data reveals that the proposed critical h; /D is too
large.

This paper summarizes results of a M.S. thesis from this laboratory [3] which relates
the stability of slugs to the height of the liquid. The idea behind the analysis is quite simple:
Slugs pick up liquid at the front as they propagate downstream and shed liquid at the rear.
If the pickup rate is smaller than the shedding rate, slugs will decay. The critical problem is
to define the volumetric shedding rate, Q; .

Ruder et al [4] developed this idea by assuming the back of the tail as a Benjamin
bubble so that

Q, =A [0.542 (&D)*3] 1)

where A is the pipe area and D is the pipe diameter. This assumption provides only a
limiting value of the critical hL/D at small gas velocities. A series of studies were, therefore,
carried out in which Q; was measured for individual slugs. The system was air and water
flowing in a horizontal pipe. The results of this study provide a necessary condition for the
existence of a stable slug that is consistent with measurements.

For large h; /D, Wallis and Dobson [5] suggested that the initiation of slugs might be
considered to result from the stability of a stratified flow to long wavelength disturbances.
The following critical condition was suggested:

1
U-u = K |8PHG 2 )
Pc

where U is the gas velocity, u, the liquid velocity and Hg, the height of the gas space. The
use of an inviscid analysis gives K=1, but Wallis found for air and water that Kz.;.. Taitel

and Dukler adapted (2) to the geometry of a circular pipe and suggested that

h
k=[1-_1% 3
D

The inviscid analysis yields a wave velocity, C, equal to u. Therefore, the inertia of
the liquid is neither stabilizing nor destabilizing. Lin & Hanratty [6] carried out a viscous
long wavelength analysis. The wave velocity is, then, not equal to u and liquid inertia is

destabilizing. They found that K is a function of liquid viscosity. For water Kz%; for

liquids with viscosities greater than 20 centipoise, K=1.
Equation (2) has two important features. It suggests that a slug evolves directly from




a long wavelength disturbance that grows until it reaches the top of the pipe. It also suggests
that the gas velocity needed to generate a slug increases with D2, Measurements with air
and water agree with this analysis [7]. However, studies with viscous liquids [8] reveal no
influence of pipe diameter if the liquid viscosity is 20 centipoise or greater.

This disagreement suggests that the physical mechanism suggested by (2) is incorrect
even though it correctly predicts the transition for an air-water flow. This paper summarizes
recent results which show that slugs evolve from small wavelength waves and not from the
direct growth of a large wavelength instability.

The implications of these new results from the viewpoint of predicting flow regimes
is discussed.

STABILITY OF A SLUG

If conservation of mass is used in a frame of reference moving with a slug, the
following equation is obtained for incompressible fluids:

(C-up)) Ay - 0, =4 (10) i;’?‘, @)

where C is the slug velocity, uy ; the velocity of the liquid in the layer in front of the slug,
Ay 1, the area occupied by the liquid in front of the slug, o, the void fraction in the slug, L,
the length of the slug and t, time. For a neutrally stable slug, dL/dt=0, and

P ®)
C"'MLI

For AL1<AL]C slugs will decay; for AL1>AL]C slugs will grow.
If the back of a slug can be modelled as the nose of a bubble an equation for C similar
to what is used for elongated bubbles in vertical tubes can be explored:

C=C, + C,u;3, (6)

where C_, is the bubble velocity in a stationary fluid and uj 5 is the average liquid velocity

U U
uL3=__S_G_+__5_L_ @)
1 -(S-1)ot

where Ugg is the superficial gas velocity, Ug; , the superficial liquid velocity and S the ratio
of the gas and liquid velocities in the slug.

The second term in (7) represents the contribution of fluid convection to the slug
velocity. For vertical flow with a turbulent liquid C has a value approximately equal to the
ratio of the centerline and average velocities, C=l.2.

The motion of the bubble relative to the liquid causes a displacement of liquid inside
the slug given by
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0, =(C-up3) A(1-0)

Now if (6) is substituted into (8) and (5) the following relations are obtained:

QL={C°° + (Co—l)uw] Al -0)

L€ [c“ + (Co—l)uu]l-oc
- [C,o * Coups ‘"u]

At large gas velocities up ; can be neglected and C_<<C y; 5 so

LC (c,-1)(1-0)

Ll (CO)

If C,=1.3 and (1-a) = 0.3, equation (11) gives

A
“Ho_o.16
A

h
_L o021
D

DESCRIPTION OF EXPERIMENTS

The flow facility consists of a horizontal pipeline with a diameter of 0.0953 m and a
length of 26.5 m. The experiments were conducted at atmospheric conditions. The gas and
liquid phases were combined at the beginning of the pipeline in a tee section with the liquid
phase flowing in the run and the gas phase entering from the top of the tee.

Measurements of the variation of the liquid holdup were obtained with a conductance
probe that consists of two parallel chromel wires. A complete description of the film height
analyzer, including a circuit diagram, may be found in Williams [9].

Conductance probes were used at -II% = 200, 220, and 250. Two conductance probes

are needed fo measure the slug velocity and the flow of liquid out the tail of the slug. A third
conductance probe is added in order to observe changes in a slug as it progresses along the
pipeline. The third probe also provides better measurements of C and Q;_ by averaging results
from the first and second probes and from the second and third probes.

Pressure pulsations associated with the passage of a slug were measured with a
piezoresistive pressure transducer located 0.127 m downstream of the first conductance probe.
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The transducer was mounted flush with the wall so that no disturbances were introduced into
the flow.

The magnitude of the signals from the conductance probes give the liquid holdup, (1-
o), when a slug passes and the height of the liquid layer when a stratified flow was present.
The slug velocity, C, was determined from the time needed for a slug to move between two
of the measuring stations.

Values of Q; were obtained from measurements at two stations using the equation

-(c- -4y 14
| 0, =(C-u) Ay — -9
This was accomplished by attaching a control volume fixed to back of the slug.

Term dV/dt was determined by measuring the change of the volume of the liquid
inside the control volume between two stations. The front of the control volume was located
sufficiently ahead of the slug so that the area of the stratified flow in the front of the slug,
A; |, was the same at all three stations. Velocity up ( was calculated from A and the gas
velocity by using stratified flow relations developed by Andritsos and Hanratty [10].

STABILITY OF SLUGS

Measurements of Q; are presented in Figure 1. It is noted that they agree with the
Benjamin solution only for small values of Ugs. These measurements and equation (5) were
used to calculate critical values of A;; (or hy /D). A trace obtained from the conductance
probes is shown in Figure 2. Peaks could be identified as slugs from measurements of
pressure pulses. Neutral stability is designated by the line indicating the stability height. The
correlation is not perfect, but there is a tendency to find growing slugs when AL1>AL1C and
decaying slugs when AL1<AL1C.

Values of the critical hy ;/D for different Ugg, calculated from (5) are shown as the
dashed curve in Figure 3. The solid curve is the stability condition for a stratified flow. The
points are the observed h;/D at which slugs appear for a fixed gas flow. At low gas
velocities the necessary condition for the existence of slugs lies below the stability condition
for a stratified flow. However, at high gas velocities the opposite is the case. Good
agreement is noted between the observed transition at large Ugg and the necessary condition
for the existence of a slug.

The curve representing the stability of a stratified flow would be shifted to the left
with increasing gas density. Therefore, at sufficiently high gas densities one could expect that
the initiation of slugging would be defined by stability conditions for a slug at all gas flows,
rather than just at high gas flows.

The asymptotic behavior of the dashed curve in Figure 3 gives a critical hy /D=0.21.
This is exactly the prediction from (11) if C=1.31. Measurements of slug velocity are
represented quite well by the equation
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From (7) and (15) it is observed that

o

1 +{s-1)a

Therefore C =1.31 corresponds to a slip ratio of 1.
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Figure 1 The mean value of the shedding velocity
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STABILITY OF A STRATIFIED FLOW

The transition to slug flow shown in Figure 3 for small gas velocities is governed by
the stability of stratified flow. The mechanism for this transition for air/water has recently
been explored by Fan et al [11]. A carefully designed entry was used to bring the gas and
liquid together smoothly. Conductance probes were located along the pipeline to study the
evolution of waves to form a slug.

Measured wave spectra are shown in Figure 4 for Ugg=1 m/s. The abscissa is the

frequency (in cps).made dimensionless with \/EB . The ordinate is the dimensionless spectral
density function. The measurements at L=3.36 m and at L=7.02 m show a primary peak at
£=0.06 (0.6 cps) and a secondary peak at f=0.12 (1.2 cps). These would correspond to very
long wavelength waves that are observed visually as a swell. They would be predicted to
appear by long wavelength theory. These waves do not evolve into a slug. Two peaks at
- f=0.12 and f=0.25 are observed in the spectral density function for the pressure fluctuations.

The peaks at £=0.06 and {=0.12 are still evident at L=10.1 m, but a peak with a large
amount of energy appears at f=1.2 (12 cps). This corresponds to a capillary-gravity wave
generated by Jeffrey’s sheltering mechanism. A peak with a smaller amount of energy is also
observed at f=0.5 (5 cps). As discussed in [11] the larger wavelength wave evolves from the
f=1.2 wave through a resonance mechanism. This peak grows with distance downstream and
the higher frequency peak shifts from f=1.2 to f=1.0. At 20.78 m, the f=0.5 wave is
dominant. In a longer pipe this wave could stabilize to a fixed height (at which energy fed
by the gas flow is balanced by viscous dissipation) or it could continue to grow until it breaks
or forms a slug. There appears to be a critical liquid height (larger than that required for the
existence of a stable slug), below which slugs cannot form from these waves.

The mechanism for the formation of slugs in these experiments at low gas flows
appears to be different from what is suggested by (2). This is a paradox since equation (2)
does a good job in predicting the initiation of slugs for liquids with viscosities close to that
of water.

Figure 5 shows transition data obtained for a 100 cp liquid in a 9.53 cm pipe. The
open triangular points represent a transition to slugs. The open squares indicate a transition
to large amplitude waves. Because of the large viscosity, waves of the type described in
Figure 4 are not present. The stratified flow that exists to left of the triangles has a smooth
interface.
The transition points at large Ug; are, more than likely, defined by the stability
condition for a slug, equation (5). However, it is noted by comparing Figures 3 and 5 that
transition occurs at slightly higher h; /D for the more viscous liquid. This suggests that C,
in (6) could be larger for large viscosity liquids, as has been found for large bubbles in a
vertical tube.

At small gas flows the initiation of slugs, shown in Figure 5, occurs because of an
instability of the stratified flow. A comparison of Figures 3 and 5 shows that larger values
of h; /D are required for an instability to occur with large viscosity liquids. The waves
described in Figure 4 cannot occur. The first instability of the stratified flow occurs when the
gas gap becomes small enough (for a given gas flow, Ugg) that the gas velocity above the
liquid can cause a Kelvin-Helmholtz instability. The first disturbances that appear at the
interface are capillary-gravity waves. These rapidly evolve into slugs by a mechanism which




has not been identified. The solid curve in Figure 5 represents the critical condition for the
initiation of a Kelvin-Helmholtz instability.
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Figure 5 [Initiation of slug flow or KH waves for a
100 cp liquid in a horizontal 9.53 cm pipe.

DISCUSSION

The flow regime criteria developed by Dukler and his coworkers have had an
important impact on the analysis of two-phase flows. They are widely used - despite the
recognition that they do not always give accurate results. Recently, more careful attention has
been given to the physics defining the transitions. It is now possible to use these new insights
to develop improved predictions of flow regimes.

A necessary condition for the existence of slugs of hL/D 0.5 was suggested in [1] on
the basis of geometric arguments. This paper develops an improved definition of this
condition by considering the stability of slugs.

Equation (2) along with the long wavelength viscous analysis of Lin & Hanratty [6]
does a good job in predicting the evolution of slugs from the instability of a stratified flow
if the liquid viscosity is close to that of water. However, the observed mechanism appears
to be different from what is suggested by (2). This issue needs to be resolved.

The waves which eventually evolve into slugs for stratified air-water flows are
generated by a mechanism whereby energy fed to the waves by gas phase pressure variations
in phase with the wave slope is larger than energy dissipated by viscous effects. As the
viscosity of the liquid increases the critical gas velocity for the appearance of these waves
also increases. For large enough liquid viscosities these waves are not present. In this case
slugs evolve from capillary-gravity waves generated by a Kelvin-Helmholtz mechanism,
whereby destabilization results from pressure variations 180° out of phase with the wave
height. When the height of the liquid layer is too small to sustain a stable slug these Kelvin-
Helmholtz waves evolve into large amplitude irregular waves. Under these conditions the
initiation of slugging is governed by the stability condition for slugs.
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THE DRIFT FORCE ON AN OBJECT IN AN INVISCID
WEAKLY-VARYING ROTATIONAL FLOW

Graham B. Wallis

, Thayer School of Engineering, Dartmouth College
Hanover, NH 03755 U.S.A.

ABSTRACT

The force on any stationary object in an inviscid incompressible extensive steady flow
is derived in terms of the added mass tensor and gradient of velocity of the undisturbed
fluid. Taylor’s theorem is extended to flows with weak vorticity. There are possible
applications to constitutive equations for two-phase flow.

INTRODUCTION

Any vector field (e.g., velocity) may be generated by a combination of flux and circulation
sources. For example, an object in a potential flow may be “created” by putting a distribution
of dipoles over its surface, to represent the jump in potential there, or a set of circulation source
loops around its surface, to account for the jump in velocity [1]. A set of internal sources and
sinks could also be used. Though various combinations of these elements can be selected, the
resulting system has a unique dipole moment or polarization, characterizing a particular ob ject
in a certain environment {2].

Flux sources, which are simpler conceptually, usually have little physical meaning and resem-
ble mathematical devices for setting up a real flow situation. Circulation sources are physically
evident as vortex lines which have a clearer manifestation and actually exist in a real flow with
rotation. The c¢ontribution of this paper is to show how weak vorticity in an inviscid flow inter-
acts with a solid object. The results are of a general nature and apply to objects of any shape.
Vorticity is bound in the fluid and is “entrained” by the object in much the same way as fluid is
entrained by “drift”. The added mass tensor provides the theoretical key to the solution of both
problems.

FLUX SOURCES

An object of volume V moving at velocity v in an irrotational flow may be generated by
internal sources and sinks of strength m; located at r.
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The dipole moment of these sources is [1]
D=/rm,~=/¢ds+Vv (1)

If the object is moving in an extensive fluid at rest far away, the added mass tensor { is

defined by’
/ ¢ds =C -vV (2)

which does not depend on the details of conditions “at infinity” in the way that the induced net
momentum does. Because of the linearity of Laplace’s equation in this situation we may define
the polarizability, D, such that

D=D.-vV (3)

Combining (1) to (3) the two tensors are simply related by

D=C+1 | (4)

Since C is a symmetric tensor depending only on the shape of the object, so is D.
When the same object is at rest in fluid with a uniform velocity U far away, the sources and
sinks are the same and dependent on the relative motion so that

D=-D.UV (3)

The force on a flux source is —pUm;. Forces between sources are mutual and cancel. There
is no net force from the fluid on the sources (i.e., on the object) because > m; = 0. The moment
of the forces from the fluid on the object is, using (4) and (5),

Mz—erpUmiszermi
=pUxD=-pVUxD-U=pVU-CxU - (6)

which is a compact version of the result given by Lamb [3].

When the object is in an irrotational flow that varies slowly on the scale of the object and
can be described by a velocity

u=U+r.VU | (7)

before insertion of the sources, the resultant force is '
Fp = —p(m; + mj)(U + r-VU) : (8)
where m represents a small perturbation,with 3> m} = 0, in response to the gradient in the

external field. To first order, (8) reduces to
F,=-p) mr-VU=—pD.VU (9)

which we call the “polarization force” representing an interaction between the polarization and
the external velocity gradient. Using (4) and (5), (9) can be put in the form

F,=pV(U-VU+U.C.VU) (10)
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where the first term is the “buoyancy” force due to the external pressure gradient and the second
term is compatible with a result derived by Taylor [4] and described by Lamb [3] in the alternative
form

U-g-VU=V(%U-g-U) (11)

which follows because C is symmetric and V x U = 0 in an irrotational flow.

CIRCULATION SOURCES

When a flow is rotational it contains vortices (circulation sources) that travel with the fluid.
If a certain vortex line is marked, it will follow a trajectory which is the same as for a “time-line”
recording the position of elements of fluid composing the vortex at subsequent intervals of time.
If the vorticity is weak, these trajectories are determined by the “main” flow, the effect of vortices
‘on each other being small. This picture formed the basis of Lighthill’s analysis [5] of the wake of
an object in a shear flow, and was later used by Auton [6] to derive the “lift” force on a sphere.

A vortex line passing close to an object will be deformed and will “drift” just as elements of
fluid do. The velocity field from the vortex may be countered by internal sources m!. Since these
have zero total sum and are “small” for “small” vorticity they contribute no net force, as in (8), to
first order. Moreover, in an inviscid fluid, no net circulation is generated on the object. “Bound”
vorticity would have to be generated some other way and it not part of the present analysis.

CROSS-STREAM VORTICITY

Let the main flow past a stationary object have velocity U in the x-direction. Let the
oncoming flow have uniform vorticity in the cross-stream z-direction. Because of the component
Cz of the added mass coefficient, and the resulting impulse on the fluid by way of (2), there is
a drift volume in the wake of the object representing fluid, and corresponding vorticity, that is
retarded by the presence of the object.

We now consider a rectangular control volume around the object, with faces normal to the
coordinate axes and large compared with the object. The total z-direction vorticity in this volume
is augmented by an amount C,,Vw, because of the drift of fluid into this volume, as described
by Lighthill {5] and sketched in Figure 1. The corresponding perturbations in velocity on the
boundaries of the control volume may be determined from the basic equation of vector field

theory:
/de:—/uxds (12)

This is to be applied to the z-component of vorticity, and therefore picks up the following
components on the x- and y-faces of the control volume,

CpzVw, = /wde = /'&ydsx - /ﬂxdsy (13)
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Figure 1. Vortex Lines, Originally in the z-Direction, Stretched Around an Object
and Entrained by Drift in the Wake

Multiplying by pU we get
pVC,  Uw, = /,oU'&ydsac - /pUﬁ,dsy (14)

Now, on the y-faces far from the object the main flow is in the x-direction and therefore the
perturbation in pressure is given by Bernoulli’s equation as

Using (15) in (14), the right-hand side is recognizable as the sum of the y-direction momentum

flux through the x-faces and the pressure over the y-faces, which are exactly the terms in a

momentum balance which shows the “drift” force from the fluid on the object in the y-direction
to be,

Fay = —pVCprUw, (18)

A more detailed derivation of this force is given in [7], where it is also related to the x-
component of vorticity induced in the wake by bending of the vortex lines, originally in the z-
direction. This x-vorticity in the wake loops arourid the object, the overall appearance resembling
the bound vorticity and trailing vortex system for a conventional lifting surface.

Now, if the object is not oriented with one of its principal axes of added mass in the direction
of the main flow, there will also be components of “interphase impulse”, given by (2), in the
transverse directions. For instance, the component Cy, (since C is symmetric, it is not necessary
to be fussy about the order of the subscripts) leads to displacement of the fluid streamlines in
the y-direction due to relative velocity in the x-direction. The z-direction vortex lines that were
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parallel upstream of the object are then bent in the wake as a result of this transverse “drift”. If we
look upstream in the negative x-direction from the far wake, these vortex lines will all be bent into
the same shapes, independent of x, and form a set of vortex sheets, representing “streamlines” for
vorticity (Figure 2). The z-direction vorticity in the wake is related to the corresponding velocity
variations by 5 5
_ Ouy Uy
Wy = rre By (17)

but du,/dz = 0 in a fully-developed wake and therefore

Ugp = — /wzdy (18)

The right hand side of (18) represents the z-vorticity flux which is constant along a “streamline”
for vorticity. Therefore the cross-sections of vortex sheets in Figure 2 also represent contours of
constant u;. The perturbation in u, is

Uy = — /Ozdy =w,Y (19)

where Y is the displacement of a vortex line now lying at the point of interest. When (19) is
integrated over the entire face of the control volume lying in the wake, there is a perturbation in
outgoing mass flux in the amount

m = p/&zdydz = pwz/Ydydz = —pw,VCypy (20)

where the concept of “drift volume” in the y-direction has been used. The negative sign is needed
because v in (2) is replaced by —U. The increased mass flux 72 comes from fluid that is drawn
into the sides of the control volume. The mechanism for “pumping” this secondary flow is the
perturbation in vorticity in the wake. These perturbations form loops in the y-z plane that add
to the original uniform vorticity to produce the pattern shown in Figure 2. In the extended wake
these loops form cylindrical sheets of secondary vorticity that generate axial velocity much as the
coils on a solenoid generate its axial magnetic field.

A fully developed wake cannot maintain pressure perturbations (which would lead to further
“development”) and the momentum flux out of the control volume on the wake side is increased
by

p/ [(U +@)? - U?| dydz = 2Um (21)

Combining (21) with the flux of momentum into the sides of the control volume, pUrn, the
net force due to velocity perturbations induced by vorticity is

For = pVUCzywz : (22)

Results similar to (16) and (22) follow if there is vorticity in the transverse y-direction.
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Figure 2. Drift of z-Direction Vortex Lines in the y-Direction Behind an Asymmetric Object

STREAMWISE VORTICITY

A uniform upstream vorticity w; is carried along the streamlines of the primary flow and will
be diverted sideways in the wake if there are components C;, and C, to the added mass tensor.
The effect of Cgy is to displace streamlines in the y-direction, which can also be represented by
Figure 2 which now represents the location in the wake of vortex sheets originally in the x-z
plane. These contours now represent constant values of @, in the amount —Yw,, by arguments
resembling those leading to (19). This produces negligible effect on the sides of the control volume
but introduces a perturbation in the flux of z-momentum in the wake and a corresponding drift
force in the amount

Fy, = pVUCrywy (23)

similar effects occur if there is a C,,, with corresponding results.

SYNTHESIS

All of the components of “drift force” derived above may be added together, assuming each
is small so that interactions can be neglected, to give

Fy=pVU-Cxw (24)

This must be added to the polarization force in (10) to obtain the net force

F=pV(U.VU+U-C-VvUT) (25)
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Since C is symmetric, the second term in (25) is exactly equal to Taylor’s Force derived in
(11) for inviscid flows. Therefore Taylor’s Force is equally valid in flows with weak rotation.

DISCUSSION

The derivations in this paper are given with more detail in [7] where they are shown to be
compatible with Auton [6] and Auton et al. [8]. Some results are derived there for an oncoming
shear flow passing over an object in a tube, showing that it is not necessary for the control volume
to be “large” or for the flow to be unbounded.

The quantity appearing in 1U C - U, when multiplied by pV, has the form of the “kinetic
energy due to relative motion” Wthh plays a key role in effective continuum conservation equations
for inviscid two-phase dispersions developed by Geurst [9,10] and Wallis [11,12]. Indeed, the forces
described by (24) and (25) are recovered from Wallis [12], equation (87), in the limit when C is
isotropic, the volume of the particle is constant, there is no unsteady flow and the particle is at
rest. Geurst’s equations have the desirable property of being objective. It appears that the drift
force is necessary in order to make the overall interaction force objective, as discussed in a more
restricted case by Drew and Lahey [13,14].

Since the mean pressure gradient in the fluid flow is
Vp=-pU.VU (26)

the force in (25) is equivalent to minus the volume of the object times the gradient of a “particle
pressure”:

1
szl_’_§/)U'g'U (27)

"which can be shown (Wallis [15}) to be the same as the mean bulk stress in the object when a
uniform flow is oriented along a principal axis of C and no external forces act on the object, or
more generally when the restraining torque in (3) is applied by simple couples composed of equal
and opposite forces acting perpendicular to a lever arm between them.

ACKNOWLEDGEMENT

This work was performed under the U.S. Department of Energy, Contract #DE-FG02-
86ER13528, administered by Dr. Oscar Manley.

REFERENCES

1. Cai, X. and G.B.Wallis 1993 The Added Mass Coefficient for Rows and Arrays of Spheres
Oscillating Along the Axes of Tubes, Phys. Fluids A A5 (7), 1614-1629.

2. Wallis, G.B. 1993 The Concept of Polarization in Dispersed Two-Phase Potential Flow,
Nuclear Engineering and Design, 141, 329-342.

47




10.

11.

12.

13.

14.

15.

Lamb, H. 1932 Hydrodynamics, 6th ed., Cambridge University Press.

Taylor, G.I. 1928 The Forces on a Body Placed in a Curved or Converging Stream of Fluid.
Proc. Roy. Soc., A120, 260-283.

Lighthill, J. 1956 Drift, J. Fluid Mechanics, 1, 31-53.

“Auton, T.R. 1987 The Lift Force on a Spherical Body in a Rotational Flow, J. Fluid Mech.,

183, 199-218.

Wallis, G.B. 1995 The Drift Force on an Object in an Inviscid Weakly-Varying Incompress-
ible Flow, being revised for J. Fluid Mechanics.

Auton, T.R., Hunt J.C.R. and Prud’homme, M. 1988 The Force Exerted on a Body in
Inviscid Unsteady Non-uniform Flow, J. Fluid Mechanics, 197, 241-257.

Geurst, J.A. 1985 Virtual Mass in Two-Phase Bubbly Flow, Physica, 129A, 233-261.

Geurst, J.A. 1986 Variational Principles and Two-Fluid Hydrodynamics of Bubbly Liq-
uid/Gas Mixtures, Physica, 135A, 455-486. _

Wallis, G.B. 1989 Inertial Coupling in Two-Phase Flow: Macroscopic Properties of Suspen-
sions in an Inviscid Fluid, Multiphase Science and Technology, 5, 239-361.

Wallis, G.B. 1991 The Averaged Bernoulli Equation and Macroscopic Equations of Motion
for the Potential Flow of a Dispersion, Int. J. Multiphase Flow, 17(6), 683-695.

Drew, D.A. and Lahey, R.T., Jr. 1987 The Virtual Mass and Lift Force on a Sphere in
Rotating and Straining Inviscid Flow, Int. J. Multiphase Flow, 13, 113-121.

Drew, D.A. and Lahey, R.T., Jr. 1990 Some Supplemental Analysis Concerning the Virtual
Mass and Lift Force on a Sphere in a Rotating and Straining Flow, Int. J. Multiphase Flow,
16, 1127-1130.

Wallis, G.B. 1994 The Particle Pressure of Arrays in a Potential Flow, Nuclear Engineering
and Design, 151, 1-14.

43




ACTIVE CONTROL of CONVECTION
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ABSTRACT

Using stability theory, numerical simulations, and in some instances experiments, it is
demonstrated that the critical Rayleigh number for the bifurcation (i) from the no-
motion (conduction) state to the motion state and (ii) from time-independent
convection to time-dependent, oscillatory convection in the thermal convection loop
and Rayleigh-Bénard problems.can be significantly increased or decreased. This is
accomplished through the use of a feedback controller effectuating small
perturbations in the boundary data. The controller consists of sensors which detect
deviations in the fluid's temperature from the motionless, conductive values and then
direct actuators to respond to these deviations in such a way as to suppress the
naturally occurring flow instabilities. Actuators which modify the boundary's
temperature/heat flux are considered. The feedback controller can also be used to
control flow patterns and generate complex dynamic behavior at relatively low
Rayleigh numbers.

INTRODUCTION

Until recently, most of the scientific community's work in the convection field has focused on
identifying and describing various physical phenomena. In contrast, our work focuses on directing
convective systems to behave in desired ways. The ability to control flow patterns is important from
both the technological and the theoretical points of view. In many material processing applications,
convection plays an important role. The ability to control the flow may lead to better quality
products and more economical processes than are currently possible. In some processes, it may be
desirable to operate at Rayleigh (R) numbers higher than the one at which convection occurs and yet
have no convection. In other processes, it may be desirable to suppress (laminarize) chaotic or
turbulent motions and maintain a steady, time-independent flow in order to minimize flow
unpredictability, remove temperature oscillations which may exceed safe operational conditions,
and/or reduce drag. In still other processes, it may be advantageous to induce chaos, under
conditions at which it would not normally occur, so as to enhance mixing, heat transport or chemical
reactions. From the theoretical point of view, the ability to control the transition and routes to chaos
and to stabilize otherwise nonstable equilibrium states may assist us in obtaining a better
understanding of the dynamics of convective systems and the transition to turbulence.

Our work on active feedback control of convection has focused on two simple paradigms: the
thermal convection loop which is an experimental analog of the celebrated Lorenz equations [1] and
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the classical Rayleigh-Bénard problem: The: thermal convection loop has the advantage that its flow
dypamics can: be approximated by a low-dimension, dynamic model and that the theoretical
predictions: can be verified by relatively simple experiments. After succeeding in controlling flow
patterns. in the thermal convection loop, we utilized the physical insights we gained there to modify
the flow patterns of a more: complicated convective system, the Rayleigh-Bénard problem which is a
paradigm of convective phenomena occurring in various material processes. Our work on these
problems had: proven applicable to: other flow phenomena as well. For instance, we have successfully
demonstrated. that the loss. of stability of planar Poiseuille flow can be 51gmf1cant1y delayed or
advanced through active: feedback contrel [2].

THE THERMAL CONVECTION LOOP

The thermal convection loop is made of a pipe, bent into a torus, standing in the vertical plane.
The lower and upper halves of the torus. are heated and cooled, respectively. The heating and cooling
conditions. are symmetric with respect to the loop axis that is parallel to the gravity vector. In the
absence of a controller, as the temperature difference between the heated and cooled sections of the
thermal convection loop. inereases, the flow in. the loop changes from no-motion to steady, time-
independent motion to. temporally oscillatory, chaotic motion with occasional reversals in the
direction of the flow. The bifurcation diagram of the uncontrolled system is depicted in Fig. 1. With
the use of a feedback controller making small perturbations in the boundary conditions, we have
demonstrated that it is possible to:

(i) maintain the no-motion state at significantly higher temperature differences between the
heated and the cooled portions of the loop than the critical one corresponding to the onset of
convection in the uncontrolled system [3];

(i1) maintain steady, time-independent flow under conditions in which the flow would otherwise
be chaotic [4,5].

(iti) stabilize periodic, non-stable orbits which exist in the chaotic regime of the uncontrolled
system [3];

(iv) induce chaos. in otherwise laminar (fully predictable), non-chaotic flow [5]; and

(v) render a subcritical bifurcation supercritical through the use of a nonlinear controller [6].

To make some of this work more concrete, we report in Figs. 2-4 a sample of our observations.
Fig. 1 depicts the bifurcation diagram for the flow in the uncontrolled loop. For Rayleigh numbers
R<R], the no-motion state is globally stable. As R is increased above R j, the no-motion state loses
stability and is replaced by time-independent motion either in the clockwise or the counterclockwise
direction. When R is further increased to R=R2, a second bifurcation occurs, and the time-
independent motion loses stability. The loss of stability occurs through a subcritical Hopf bifurcation
into a non-stable, limit cycle. Above R2, the time-independent motion is replaced with a complicated
time-dependent, chaotic motion. Fig. 2 depicts the experimentally observed temperature difference
(AT3.9) between positions 3 and 9 o'clock around the loop as a function of time in the chaotic regime
of the uncontrolled system. Changes in the sign of AT3.9 indicate a change in the flow direction.
When AT3.9>0 (<0), the flow is in the counterclockwise (clockwise) direction. Fig. 3 shows the effect
of the controller. To highlight this effect, the figure depicts the experimentally measured AT3.9 as a
function of time both before and after the activation of the controller. Witness that once the
controller has been engaged, the seemingly random; violent oscillations of Fig. 2 disappear and the
flow is laminarized. The boundary conditions corresponding to Fig. 2 were altered only slightly to
produce the almost time-independent flow shown in Fig. 3 for r>33 minutes. The feedback
controller operates by sensing any deviation of AT3.9 from its desired value and altering slightly the
heating rate, according to a prescribed control rule, in such a way as to nullify the deviation. The
observed behavior is in agreement with our theoretical predictions.

The Hopf bifurcation occurring in the thermal convection loop as well as in many other flow
systems (i.e., shear flows) is subcritical. In the case of subcritical bifurcations, often the size of the
domain of attractlon of the time-independent state is fimited. In fact, in shear flows, the transition to
turbulence typically occurs at subcritical Reynolds numbers, This is apparently du_e to disturbances
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which grow sufficiently large so as to escape the domain of attraction of the laminar state and cause
the system to snap through the nonstable limit cycle to a possibly chaotic or turbulent attractor. In
order to increase the domain of attraction of the time-independent state, we drew inspiration from [7]
and used nonlinear control to render the subcritical bifurcation supercritical. The bifurcation
diagram of the thermal convection loop with and without nonlinear (cubic) control is depicted in Fig.

4. The theoretical predictions were successfully verified in experiments.
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Fig. 1. The (unscaled) bifurcation diagram |Fig. 2: The experimentally observed

depicting various flow patterns in the
uncontrolled loop as a function of the
Rayleigh number. Stable and nonstable states
are denoted by solid and dashed lines,
respectively. The dark region represents the
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exists for R>Rag.

temperature difference, AT3.9, is depicted as a
function of time for the uncontrolled thermal
convection loop.
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temperature difference, AT3.9 is depicted as a
function of time both before and after
activation of the controller. The controller was
activated 33 minutes into the run. Observe the
difference between the chaotic oscillations and
the controlled (laminarized) flow.

convection loop problem is shown without
control {k, k,}={0,0}, with linear proportional
control fk, ku}={-1,0}, and with linear and
nonlinear controllers {k, kp}={-1,-1]. k and kp
denote, respectively, the linear and nonlinear
controller gains.
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THE STABILIZATION OF THE NO-MOTION STATE IN THE RAYLEIGH-BENARD
PROBLEM

Encouraged by our success with the thermal convection loop, we impilemented similar ideas in
two more complicated flow systems: the Rayleigh-Bénard problem of a Newtonian fluid and the
Lapwood problem of a saturated porous medium heated from below and cooled from above. In both
cases, as the Rayleigh number, R, increases, the uncontrolled system undergoes a sequence of
bifurcations from no-motion to time-independent motion (at R=RJ) to time-dependent motion (at
R=R?2). The magnitude of R] depends on the container's geometry. The magnitude of R2 depends
on both the container's geometry and the fluid's Prandtl number (Pr). As the Prandtl number
decreases so does the magnitude of R2. In this section, we describe the stabilization of the no motion

state. In other words, we use a controller to increase the magnitude of R;.

The controller consists of sensors and actuators. The bottom surface consists of individual
. heaters, each equipped with a separately controlled power supply. The heaters serve a dual purpose.
They supply the nominal heat flow needed to drive the convection as well as serve as actuators which
effectuate the control. The sensors are diodes embedded on the heated surface and located at the
layer's mid-height. They detect deviations in the fluid's temperature from the desired conductive
values and direct the actuators to act in such a way as to enhance the disturbance-dissipating
mechanisms in the fluid. More specifically, when the sensors detect an increase (decrease) in the
fluid's temperature caused by an ascending (descending) column of fluid, they direct the actuators to
reduce (increase) slightly the container's bottom temperature beneath the ascending (descending)
fluid column. Through this action, the buoyant forces are reduced, thereby increasing the time
available for conduction to dissipate disturbances before they have the opportunity to manifest
themselves. Once the disturbances have been dissipated, the container's bottom temperature is
restored to its nominal, uniform value.

For example, in the case of a linear,

”£ proportional control, the control law can be

"""""""""""""""" written as g = Keé -where € is a n-dimensional
vector describing the deviations of the measured

e temperatures from their desired values, g is a m-
dimensional vector describing the actuators’
output, and K is a m X n matrix whose entries
are the controller gains. The simplest situation,
which we have studied thus far, is that of a single
sensor being linked to a single actuator through
a feedback loop. In such a case, the matrix K is
square and diagonal. In the future, we will also

[ d r {time ingacendent)

o 0/3.117 (time indeaencent)

- r{tima dependent Pre7.0)
- 0dd Modes
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study other scenarios such as when the matrix K
k is not diagonal as well as nonlinear control

schemes. '
Fig. 5: The normalized critical Rayleigh Due to its accessibility to analytical
treatment, we initially focused our attention on
(r= } and wave (a/3.117) numbers the problem of an unbounded, horizontal fluid
1707.762 ) layer. Using linear stability analysis, we first
are deplc'ted as functions of the thermal  gemonstrated that R, in a saturated porous layer
controller's gain (Kp) for Pr=7. The solid  (he T apwood problem) could be significantly
and dotted curves describe the loss of stability increased [8]. The porous media problem was
through, respectively, a simple eigenvalue studied for three reasons: (i) it is relevant to

(exchange of stability) and a Hopf 0y technological processes such as transport
bifurcation. The dashed curve describes 1oss i, the mushy region of solidification processes
of stability of the first odd mode. and gel electrophoresis of macromolecules; (ii)
it allows simpler and more complete analytic
treatment; and (iii) if necessary, experiments in porous media can be conducted in a cruder and less
expensive apparatus than would be required in the Newtonian fluid case since the onset of convection
in porous media occurs at much higher temperature differences between the container's bottom and
top than it does in a Newtonian fluid.
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Subsequently, we carried out stability analyses of the controlled, no-motion state of a
Newtonian fluid (the Rayleigh-Bénard problem) heated with a uniform temperature [9,10] and with
uniform flux [11}. For example, for the uniform temperature heating and cooling, we demonstrated
that the critical Rayleigh number for the onset of convection can be postponed from 7708 (in the
uncontrolled system) to at least about /7,000 (in the controlled system). It is likely that with more
sophisticated control strategies than the ones we have used, additional increases in R] would be
possible. Fig. 5 depicts a stability diagram which shows the normalized Rayleigh number (R 7/1708)
as a function of a proportional controller gain.

In order to study the

s supercritical flow dynamics in the
127 A uncontrolled and controlled systems
- e and the stability in cylindrical
~ 7(0.0,-0.5) Cermmrmaerm e m——— M y y 3
16 pm-m-oo-sn e TemTTTT bttt containers, we developed numerical
. ! V4 . p . .
ol ' o codes. The numerical simulations
' [02.99) '/ R demonstrated that the controller can

successfully suppress non-linear
disturbances. Fig. 6 illustrates the

0.4 (00,051 /20 - controlled system's response to
X po ‘ R random disturbances. For Rayleigh
o2r \ ANy number, R=3000, Pr=0.7, and
oL ~o B = . controller gain Kp=3, Fig. 6 depicts,
as functions of time (¢), the mid-
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Fig. 6: The temperatures, 7(0,0) (solid line) and T(0,-0.5) (dot-dashed line) on the left hand

(dashed line), and the , vertical velocity v(0,0) are depicted as side of the computational domain.
functions of nondimensional time (¢) for R=3000 and For the controlled system, the critical
Pr=0.7. For 0<t<4, the controller is off. For 4<t<8, the Rayleigh number, wavenumber, and
controller with gain A is active. For ¢t>8, the controller cell width are, respectively, Rc=3538,
counteracts the action of random disturbances. ar=3.877,and Ly=0.81.
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Fig. 7: The temperature field (isotherms) for| Fig. 8: The temperature field (isotherms)
R=10,000 and Pr=0.7 in the presence of a| associated with time-independent flow in the
controller with gain K, =8.0 and random| absence of a controller for R=70,000 and
fluctuations in the temperature field. The almost| Pr=0.7. The boundary conditions are similar
horizontal isotherms indicate lack of convection.| to the ones in Fig. 7.

This figure should be contrasted with Fig. 8.

The initial conditions in Fig. 6 correspond to a no-motion state (t=0). In the beginning, the
controller is off and the nondimensional bottom (z=-0.5) temperature is uniform, 7(0,-0.5)=1. As a
result of a thermal disturbance intentionally introduced at point (0,0), counter-clockwise motion
begins. In order to contrast the controlled and uncontrolled states, we allow the motion state to
achieve equilibrium (this normally will never happen when the controller is active). At time =4, the
proportional controller with a gain Kp=3 is switched on. Since, in this case, we are dealing with
established motion, the controller alters significantly the container's bottom temperature. This
alteration in the container's bottom temperature causes a prompt reduction in the buoyancy force,
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which, in turn, causes the flow to slow down. This slow down provides sufficient time for thermal
dissipation to restore the conductive temperature field. As a result, the motion is successfully
suppressed. The fact that the controller succeeded in suppressing an established motion suggests that
it has a large domain of attraction. Once the motion has been suppressed, the controller restores the
bottom's nondimensional temperature to its nominal, uniform value of J, the mid-plane's
nondimensional temperature to its conductive value of 0.5, and the vertical velocity to its no-motion
value of zero. A glance at the temperature field (not shown here) reveals perfectly horizontal
isotherms. In other words, for 4<¢<8, a stable, no-motion state is sustained for supercritical Rayleigh
numbers with boundary conditions identical to the ones of the uncontrolled system.

We also tested the controller's response to small disturbances for >8. We introduced random
fluctuations in the temperature of magnitude up to +1%. Despite these disturbances, the container's
bottom temperature remained close to its nominal value of one and there was essentially no motion in
the fluid. In order to illustrate the temperature and velocity variations, it was necessary to stretch the
vertical axis (see the insert in Fig. 6).

Fig. 7 depicts a snapshot of the temperature field (isotherms) for a controlled layer (Kp=8) with
R=10,000 (r~5.85). The temperature field was subject to random disturbances of magnitude up to

+1% of the grid point's temperature. The fact that the isotherms remained essentially horizontal
suggests the absence of convective motion. This figure should be contrasted with Fig. 8 which
depicts the temperature field for the same conditions in the absence of a controller. Fig. 7 clearly
illustrates that the controller has successfully maintained a no-motion state under conditions in which
convection normally would occur.

Although the controller preserves the classical no-motion state of the Rayleigh-Bénard problem,
it has a profound effect on the supercritical behavior. The stability diagrams indicate that the
controller can cause a transition from the no-motion state to complicated, time-dependent,
supercritical motions at relatively low Rayleigh numbers. This suggests yet another potential
application of the controller. Rather than stabilizing an equilibrium state of a given system, the
controller could be used to create flow structures to suit particular requirements.

Before constructing an experimental apparatus to verify the numerical predictions, we needed
to determine the optimal number and location of the sensors and actuators required to effectuate the
control. We modified our numerical codes to analyze 3-D convection in an upright, circular
cylinder. Preliminary results were presented in [12]. Since the three-dimensional, time-dependent
computations required a considerable amount of computer time, a great effort went into code
optimization. Computations have been carried out to determine the magnitudes of Ry and R2 as
functions of apparatus geometry, various control strategies, the number of sensors and actuators, and
potential time delays.

We are now in the process of
constructing an experimental
apparatus. The experimental set-up
is described schematically in Fig. 9.
Briefly, the experimental apparatus
consists of an upright cylinder, 0.06m
= \ in diameter, heated from below and
Hi TR cooled from above. The height of
o 5 ' the fluid layer and the aspect ratio of

[rower Arpiters | - the apparatus (radius/height) can be
' | varied. About 40 sensors and 40
5 actuators are used to facilitate the

| Fower sopely control. The bottom of the
apparatus contains a network of

individually controlled heaters.

Fig. 91 A schematic description (not drawn to scale) of the
experimental set-up.

The need to use a relatively large number of sensors and actuators has required us to devise
novel solutions. Since we were not able to purchase the necessary actuators, we were forced to
microfabricate them ourselves. The heaters were manufactured by growing an oxide layer on the
back of a silicon wafer and spattering a thin nichrome layer on top of the oxide. Using
photolithography, we shaped the heaters to the desired form. Next, we spattered silicon nitride on top




of the nichrome layer and etched windows in the silicon nitride to allow the deposition of gold
electrodes on top of the heaters. The electrodes are used to assure uniform current density in each
heater. Bonding pads were deposed on top of the silicon nitride layer to accommodate electrical
leads for the supply of power .

Our theoretical studies suggest that the most effective location of the sensors is at the fluid
layer's midheight. We have selected diodes to serve as temperature sensors. Because the diodes allow
only unidirectional current flow, we have been able to significantly reduce the number of lead wires
and multiplexer channels compared to what would be required if we were to use other sensing devices
such as thermistors and/or thermocouples. The diodes are interconnected with two sets of intersecting
wires (Fig. 9). We denoted one set of parallel wires with letters A, B, ... and the other set with numbers
1, 2,.... The temperature sensed by diode C4 can be read by measuring the potential across wires C

and 4. In order to measure n? diodes, we need only two sets of n intersecting wires and a multiplexer
with 2n channels. In contrast, if we were to use thermistors or thermocouples, the number of lead

wires and multiplexer channels would be proportional to n2. We tested the operation of the diode
arrays, individually calibrated the diodes, and demonstrated that we can detect temperatures with a
precision better than 0.0/K.

Via a multiplexer, the sensors' output is transmitted to a computer. Any of the sensors can
control any of the actuators. According to a predetermined control law, the computer modulates the
actuators' power.

For the onset of convection experiments, we will use Dow-Corning 200 fluids. We can
customize the fluid to obtain the desired temperature difference between bottom and top at the onset
of convection. For example, for Dow Corning 200 with a viscosity of /000cs and a layer height of
0.02m, the critical temperature difference at onset is about 3K.

Initially, experiments will be conducted in the absence of a controller to determine, as a
function of the apparatus’ aspect ratio and the working fluid, the critical Rayleigh numbers for the
onset of convection in the uncontrolled system. A description of the post-critical flow patterns in our
apparatus will also be obtained. The measured results will be compared with our theoretical
predictions for the uncontrolled system. Subsequently, we will repeat the experiments in the presence
of a controller and observe the effect of the controller on the stability of the no-motion state as well
as on the supercritical flow patterns.

SUPPRESSION OF OSCILLATORY RAYLEIGH BENARD FLOWS

0.5

0.4 L .
l ] Another objective of our research work is

03 | | to delay or advance the secondary bifurcation

0.2 |-

! from time-independent flow into oscillatory
{\\ ‘ flow. The design of a controller is complicated
{ /\!\f ’, An
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os] )
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by the fact that the system is highly nonlinear
and closed form expressions for the time-
independent flow from which the oscillatory
‘ flow bifurcates are not available. We are using

FERE Wi ; the numerical code we described earlier to
04l i identify the critical Rayleigh numbers and the
] , . , — _| flow dynamics in an uncontrolled system. To
RS 20 40 50 80 100 verify the code we are comparing our theoretical
Time predictions with experiments [13]. The

Fig. 10: The angular veloc1ty u¢ at a point on numerical simulations allow us to obtain a wealth
the cylinder's midplane is depicted as a function ©of information which can not be readily
of time. The system is (not) controlled for measured in experiments and enhance our
(t<40) t>40. R=5000. understanding of the flow dynamics at high
Rayleigh numbers.

For example, for a cylindrical container, with an aspect ratio (radius/height) of one, contammg
Newtonian fluid of Pr=0.02 (i.e., gallium), we found that the first bifurcation from no-motion to
time-independent motion occurs at Rj~2200. A second bifurcation from time-independent flow to
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time-dependent flow occurs at R2~4800. A sequence of additional bifurcations follows in quick
succession until chaotic flow is observed for R>9000. A

For R<R2, the flow consists of two counterrotating cells. With the onset of oscillatory behavior,
the two cells oscillate angularly at relatively low amplitude. Using control strategies similar to ones
we described in the previous section, we were able to suppress the oscillatory behavior. Fig. 10
depicts the angular velocity u¢ at a point on the cylinder's midplane for R=5000. The initial
conditions correspond to a no-motion state. For t<40, the system was not controlled and oscillatory
motion has evolved. For ¢>40, the controller is active. The controller successfully suppresses the
oscillatory behavior and retains time-independent convection under the same conditions in which, in
the absence of a controller the motion would have been oscillatory.

CONCLUSIONS

We have tackled the complicated problem of controlling highly nonlinear, distributed
parameter systems. Through analysis, numerical simulations, and experiments (in the case of the
thermal convection loop only), we have demonstrated that flow patterns can be controlled. Our
immediate challenge now is to obtain experimental verification for our theoretical predictions for the
Rayleigh Bénard problem. If successful, this research may provide the material processing
community with an enabling technology.
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