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ABSTRACT

A hierarchical control system is being developed and applied to a mixed culture
bioprocess in a continuous stirred tank reactor. A bioreactor, with its inherent
complexity and non-linear behavior was an interesting, yet, difficult application for
control theory. The bottom level of the hierarchy was implemented as a number of
integrated set point controls and data acquisition modules. Within the second level
was a diagnostic system that used expert knowledge to determine the operational status
of the sensors, actuators, and control modules. A diagnostic program was success-
fully implemented for the detection of stirrer malfunctions, and to monitor liquid
delivery rates and recalibrate the pumps when deviations from desired flow rates
occurred. The highest control level was a supervisory shell that was developed using
expert knowledge and the history of the reactor operation to determine the set points
required to meet a set of production criteria. At this stage the supervisory shell
analyzed the data to determine the state of the system. In future implementations, this
shell will determine the set points required to optimize a cost function using expert
knowledge and adaptive learning techniques.

INTRODUCTION

Bioprocesses which utilize axenic cultures and sterile feeds predominate in the food,
pharmaceutical and specialty chemical industries. However, large scale bioprocessing for the
mining industry or waste water treatment utilize mixed populations of microorganisms for two main
reasons. First, and most important, is that mixed populations of indigenous microorganisms are
more effective and can ever improve the performance through natural selection. Not only do these
naturally occurring microorganisms behave as consortia, bacteria which have been added to enhance




activity may not be maintained within the indigenous microbial population. Difficulties and the
expense involved with the sterilization of feed stocks required for large scale processing is a second
reason that large scale processes must accommodate the presence of mixed microbial populations.

Control of any biologically-based process is complicated by the fact that microbial activity can
not be directly manipulated. Microbial activity can be indirectly influenced through the manipula-
tion of the physical and chemical environment. Furthermore, while the microorganisms are
controlled by their environment, the microbial culture’s environment is being changed by the
metabolic activities of the microorganisms. Mixed culture bioprocesses further compound control
issues by the additional requirement that the process must be regulated in such a manner as to
maintain the desired activities of all consortium members that are necessary for the process. Another
important consideration is that the main process variable, the microbial activity, can not be measured
on-line in a commercially reliable fashion.

An intelligent control system for mixed culture bioprocesses using acidophilic microorganisms
is of increasing importance to the mining industry. The long-term objective is a control strategy that
will optimize economics of bioprocess. To this end, a hierarchical control system is being developed
and applied to a nonlinear, unstable, mixed culture bioprocess in a continuous stirred tank reactor
(CSTR).! At the bottom of the hierarchy was a number of integrated set point controls and data
acquisition modules. The next level was a diagnostic system that used expert knowledge to
determine the operational status of the various sensors, actuators, and control modules. The top
level was a supervisory shell that is currently under development. This stage was capable of
identifying the bioreactor state by reading information from the low level sensors, control systems,
and the diagnostic system. In its envisioned, full, implementation, the supervisory shell will control
the operation of the reactor by using expert knowledge and the history of the reactor operation to
determine the set points required to meet a set of production criteria. In this paper, we describe the
microorganism, the integration of the diagnostic system and the results obtained to date as they will
be implemented into the top level supervisory shell.

SYSTEM DESCRIPTION

Microbial Culture

The mixed culture bioprocess used as the model system for this program is one that would be
utilized for the microbial desulfurization of coal. Thiobacillus ferrooxidans, the causative agent of
acid mine drainage, is a valuable microorganism for the bacterial leaching of sulfide mineral ores
and the oxidation of pyritic sulfur in coal. T. ferrooxidans is a microorganism that inhabits acidic
environments, utilizes CO, as a carbon source and Fe** as the energy source. In our test system, this
microorganism was defined as the biocatalyst with CO, and Fe*" as substrates. Fe’* and metabolic
products were the product and byproduct, respectively. In natural environments, acidophilic
heterotrophic microorganisms enhance the desulfurization activity of 7. ferrooxidans by scavenging
the metabolites and other inhibitory organic compounds. Thus, in later stages of the program, an
acidophilic heterotrophic microorganism will be added that will utilize, as its growth and energy
source, the metabolic products excreted by T. ferrooxidans.
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T. ferrooxidans (ATCC 23270) was cultivated at 30°C using a modification of the basal salts
medium of Johnson et al.> The medium (pH 1.8), contained per liter (NH,),SO,, 1.25 g;
MgSO0,-7H,0, 0.50 g; K,HPO,, 0.25 g; trace elements solution, I mL and 50 mM FeSO,.

Hardware

The bioreactor was a 2 liter continuous culture system (Multigen F-2000, New Brunswick
Scientific Co., Inc.) that was modified to receive external control signals for stirrer speed and
heating. A stainless steel lid was constructed and fitted with 4 liquid inlet ports; sampling port;
thermocouple; heating probe; sensors for oxygen, pH and redox (Ingold Electrodes, Inc., Wilming-
ton, MA); air exhaust through a demister/condensation column; and an impeller and aeration
assembly. Air and CO, were humidified by sparging through sterile water. Five peristaltic pumps
(Masterflex 7520-35; Cole-Parmer Instrument Co., Niles, IL) were used feed water, basal salts, iron
solution, acid and base into the bioreactor. Passive over flow was used to maintain the working
volume of the reactor. Each of the three main pumps, i.e., water, nutrients and iron, had a fuzzy
logic control loop to maintain the desired flow rates.

A Macintosh IIx computer equipped with a NB-MIO-16HX multifunction Input/Output board
and two NB-AO6 analog output boards (National Instruments, Austin TX). These boards provided a
* total capacity of 16 analog input, 14 analog output, and 32 digital I/O lines for the bioreactor
system. The I/O lines were isolated and conditioned with 5B series back plane and isolation
modules. Additionally, the Macintosh was equipped with a 4 port serial board. Combined with the
computer’s 2 ports, this provided six RS-422 serial lines. The RS-422 ports were wired with custom
made cables that made them compatible with the RS-232 instruments used in the system. The pump
subsystem of the bioreactor used 1 analog input, 5 analog outputs, and 4 serial lines. The computer
and all of the instruments in the system were protected with a Fortress uninterruptable power supply
(Best Power Technology, Inc., Nedcedah, WI). Computer programming, data acquisition and
analysis was done using LabVIEW graphical programming language (National Instruments Corpora-
tion, Austin, TX). LabVIEW provided a convenient operator interface, as well as a sophisticated
language interface to the I/O boards for data acquisition and control.

Analytical Methods

Off-line titration of Fe** species with potassium dichromate’ was used to determine the
concentration of Fe (II). The concentration of Fe'* in solution was determined offline by absorption
at 304 nm.* On line measures for total organic carbon (TOC) were obtained by difference of total
carbon and inorganic carbon using a total organic carbon analyzer (Model TOC-5000, Shimadzu
Corporation, Columbia, MD). Dissolved organic carbon determinations were obtained by off-line
measures of a filtered (0.2 pm, Whatman Puradisc, polypropylene filter, Clifton, NJ) reactor fluid.
Cell counts were made by staining cells filtered onto black polycarbonate membrane filters (0.2 um,
Poretics, Livermore, CA) with acridine orange (0.01% final concentration in water adjusted to a pH
of 11 with NaOH). Prior to staining cells were washed with water adjusted to pH 1 with sulfuric
acid then with water adjusted to pH 11 with NaOH. After staining cells were washed with de-
ionized water and counted using an epifluorescence microscope.

Low-Level Sensing and Control System

On-line sensors were used to determine the pH, temperature, dissolved oxygen, redox potential,
and air and carbon dioxide flow rates (Figure 1). In addition a carbon analyzer was used on line to
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determine total organic carbon,
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solved carbon dioxide. The differ- oH T TEUPERATORE
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trol the pH and temperature of the 0, 4 > FE2+, FEB+
reactor. The pH was controlled by > CELLS
activating one of two pumps to CONTROL ACTIONS CONTROL INPUT

add acid or base as necessary and
the temperature maintained at the
desired set point above the ambi-
ent room temperature by turning
on or off a heater. The flow of air v
and carbon dioxide was controlled by mass flow controllers. Substrate feed concentrations were
controlled by setting the flow rates of two pumps that transferred basal salts and iron solution from
reservoirs into the reactor and the dilution rate controlled by adding water through a third pump.
The reservoirs were placed on scales and the pumps recalibrated every 24 hours using the scale
measurements. In addition, the effluent mass was measured as a check on the dilution rate. The
system accounted for the addition of acid or base for pH control when determining the water flow
such that the dilution rate remains constant.

Figure 1. Schematic of reactor with control actions and
control input variables obtained by on-line sensors and off-line
analyses.

Diagnostic System

At the next level of control, a diagnostic system used expert knowledge to determine the
operational status of the various sensors, actuators, and control modules. Sensed and controlled
parameters were examined to be sure that the measured values were within the tolerance of the
control system and, if not, the data was analyzed to determine the specific cause of the problem.
Other problems were diagnosed indirectly from combinations of sensor data. For example, the
increase in Redox and decrease in oxygen at 20 hours in Figure 2 was interpreted as a stopped stirrer
by the diagnostics program. The importance of detection and diagnosis of instrument failures
increases as run time increases. We have observed increased equipment malfunctions near the later
stages of our extended bioreactor operations.

Supervisory Shell

The top level was a supervisory shell that is currently under development. At its current stage
of development, the supervisory shell was capable of identifying the state of the bioreactor by
reading information from the low level sensors and control systems and from the diagnostic system.
In its envisioned implementation, the supervisory shell will be able to control the operation of the
reactor by using expert knowledge and the history of the reactor operation to determine the set
points required to meet a set of production criteria. This supervisor will observe the operation and
make decisions to change the set points, adapting to the current status of the reactor and its
inhabitants.
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In this study, the supervisory
shell monitored the acquired data to 1.3 L VOLUME
determine whether the bioreactor was pH°2
in one of three operational states, 2%;3“' ON 1 SLM
1) transition phase; 2) steady state or lﬁr
3) washout. Transition phase is a
transient state of the bioreactor that
occurs when any operational parameter
e.g., flow rates, substrate loading, or 18}
pH, has been changed. During the
transition phase, as the reactor is ap- /_A/_ EH /100
proaching a new steady state, micro-
bial activity is changing in response to
the changes in the physical-chemical
environment of the system. Steady pH
state occurs when the microorganisms al : . : . : T ' .
have achieved an approximate state of 25 S8 75 108 125 158 175 200
balanced growth in response to a HOURS
steady environment. Once steady state Figure 2. An example of the data set obtained by on-line
has been achieved the human operator  Redox (mV), pH, and oxygen (ppm) determinations.
is prompted to modify operating pa-
rameters, i.e., flow rate if desired. While steady state can be defined in a variety of ways, our
program defined steady state as a minimum of 5 reactor volumes, substrate (Fe?*) and product (Fe*)
concentrations that varied by less than 10% and biomass as determined by cell counts that varied by
less than 25%. The latest installation of the program utilized TOC values that varied less than 10%
instead of cell counts for the biomass measure. Washout condition is the operational state of the
bioreactor in which the flow rate exceeds the maximum growth rate of the microorganisms and the
cells are washed out of the reactor.

DO2 (PPM)

RESULTS AND DISCUSSION

We are developing and applying a hierarchical control system to a nonlinear mixed culture
bioprocess in a CSTR. A CSTR bioreactor is inherently stable. However, we have introduced the
dangers of instability by imposing an operating constraint that the volumetric productivity be a
maximum. This requires that the bioreactor be operated near the washout point. To operate with an
economic constraint also requires the minimum inputs of other nutrients. Data is reported here from
a run of 47 days with a reactor volume of 1.3 L, air flow of 1 L/min, an iron feed concentration of
50 or 100 mM, and a range of dilution rates from 0.132 hr' < D < 0.441 hr' which corresponds to
liquid delivery rates of 3 mls/min to 10 mls/min. The objectives were to test the lower-level control
loops, to evaluate the ability of the diagnostic level to perform some simple tasks and to identify the
limiting nutrient in order to start to construct rules by which the supervisory control system can
move the system towards the optimal operating point.

Redox and oxygen probes were particularly subject to fouling problems, thus, were cleaned
frequently. Differences in redox and oxygen values between fouled and cleaned probes was apparent
from the data (Figure 2). Cell counts, and Fe** and Fe** concentrations were determined, at a




minimum, daily and entered into the data base (Figure 3). Excursions in TOC values occurred when
the physical disturbance of the reactor resulted in the dislodging of solid material that had built up in
dead zones in the reactor (Figure 3). While there was an increase in TOC during these excursions,
there was little affect on the overall behavior of the reactor. In Figures 2 and 3, steady state was
achieved at approximately 45 hours, and at 50 hours the flow rate was decreased from 10 mls/min to
6 mls/min. This corresponded to a decrease in dilution rate (D) from 0.441 hr' to 0.265 hr'. The
decreased flow rate resulted in increased cell counts, and increased product (Fe**) concentration.

Redundant measures of process parameters will be used until the most effective and reliable
means of assessing bioreactor performance are determined. While redox values provide an estimate
the ratio of Fe(IIl) to Fe (II), they do not provide a measure of the concentration of the iron species.
Total iron values obtained by the summation of values obtained for Fe (II) and Fe (III) by off-line
quantitation agree with total iron concentrations obtained by atomic absorption spectroscopic
methods (Data not shown). Fouling or coating of the redox probe and resulted in deviations from
Redox potential of the bulk fluid. Graindorge et al..® in relatively short bioreactor runs, utilized
Redox measures as an estimate of biomass yield and biological activity. Because of errors
introduced by fouling, Redox as a measure of microbial productivity could introduce error into our
control decisions. Until a direct measure of microbial activity is developed in the context of this
program, an indirect measure of activity will be biomass as measured by organic carbon measures
and cell counting procedures. Initially, process monitoring and determination of steady state
conditions was accomplished using cell counts as an estimate of microbial activity. With the
addition of the total organic carbon (TOC) analyzer, on-line measures of organic carbon as an
estimate of microbial growth and activity were used for the determination of steady state conditions.

The experimental plan that would determine the operational limits of the bioreactor was based -
on relationships for the kinetic behavior of a CSTR (Figure 4). Conventional treatment of kinetic
data obtained from bioreactors assume
that there is a single limiting nutrient
in the liquid feed that, ultimately, con- 45
trols the growth rate of the microor- DILUTION RATE * 108
ganisms. In our initial hypothesis, 404
Fe** was the single limiting nutrient
and that there would have been suffi-

“cient CO, introduced by aeration to - 304
support the growth of the microorgan-
isms. The data from four steady-state 25
conditions examined, plotted in
Figure 5, show a pattern unlike that in
Figure 4, indicating that microbial 15
growth was not limited by Fe** or any
other liquid-phase nutrient. Since dis- 104
solved oxygen was maintained at non-
limiting values (4 -6 mg/L) throughout 97
the experiment, the most likely
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ppb which suggested that the reactor was, indeed, operating under CO, limitation. Note that cell
numbers did not rapidly approach zero as flow rate was increased (Figure 5). When the limiting
nutrient must be transferred from the gas phase, cell washout did not occur was if would have if the
limiting nutrient is dissolved in the liquid feed. Data obtained at steady state indicated that dilution
rates greater than 0.176 (4 mL/min) resulted in marginal improvement in total Fe’* yield (Figure 6).
Maximum Fe’* yield per unit biomass was observed for a dilution rate of 0.265 (6 mL/min). The
observed €O, limitation at relatively low iron concentrations (~50 mM) has implications for the
development of a control system that maximizes the iron oxidation rate. The feed must be enriched
with CO, and controlled using on-line dissolved inorganic carbon measurements so as to maintain a
reasonable non-limiting CO? concentration at reasonable cost.

SUMMARY

We have found that several lower-ievel control loops successfully performed control tasks such
as pH and temperature control, accurate delivery of liquid feeds. Upper level control programs were
successful in determining the operational state of the reactor and diagnosing equipment malfunctions.
And working towards the goal of a supervisory control system, we have identified the limiting
nutrient in order to start torconstruct rules by which this control system can move the system
towards the optimal operating point. Problems such as analytical difficulties, equipment malfunc-
tions and the complexity of the biological system which are typically encountered when running long
term continuous processes must be accounted for and incorporated into any supervisory control
program.
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ABSTRACT

This paper discusses a methodology for controlling complex dynamics and chaos in dis-
tributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where
the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to
chaos exists in a defined range of parameter values, is used as an example. Poincaré maps
are used for characterization of quasi-periodic and chaotic attractors. The dominant modes
or topos, which are inherent properties of the system, are identified by means of the Singular
Value Decomposition. Tested modal feedback control schemas based on identified dominant
spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in
the complex quasi-periodic or chaotic spatiotemporal patterns.

INTRODUCTION

The discussion of problems connected with the development of a systematic framework for
control of complex dynamics and chaos in distributed parameter systems is the subject of this
work. The control of complex dynamics has significant practical implications. Transition to
chaos via the quasi-periodic route occurs in a number of hydrodynamic and other systems.
Control of such transitions could be used to improve characteristics of process systems. The
issue of chaos control in distributed parameter systems (DPS) has been discussed in several
papers [1]. However, there do not appear to be studies that address the problem of controlling
chaos when it occurs through the quasi-periodic route in a DPS. The focus of this effort is to
explore the possibility of controlling the chaotic attractor in a distributed system to one of the
quasi-periodic attractors, namely tori from which it evolves based on an understanding of the
underlying dynamics. The distributed parameter system considered is of the reaction-diffusion
type with Brusselator kinetics. A quasi-periodic or torus doubling route to chaos is known
to exist in the selected region of parameter space [2]. In order to achieve the desired control
objective, it was found useful to combine ideas from previous work in the area of control of
chaos in lumped parameter systems (LPS) and low dimensional maps [1], general methodology
of identification and control of distributed parameter systems [3] and analysis of spatiotemporal
patterns in distributed systems [4].

*Permanent Address: Dept. of Chemical Engineering, Prague Institute of Chemical Technology, Prague, Czech
Republic
' Author to whom correspondence should be addressed
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DyYNAMICS

System description

The Brusselator reaction kinetic scheme is a standard model system used for the study of dissi-
pative structures in nonlinear chemical systems [5]. The reaction scheme involves the transfor-
mation of initial components A and B into products D and E through the reaction intermediates
XandY.

4 & ox
B+Xx = vip
9X+Y B, 3x

X & E

The case of the Brusselator reaction occurring in a membrane reactor is studied in this work. It
is assumed that the reactor remains isothermal. A possible reactor design is shown in Figure (1).
The reaction medium in the reactor is in a thin tube without radial variations in composition.
The concentrations of A and B and of the products D and F in the reactor are controlled by
a lateral semipermeable membrane between the reactor tube and the zoned chambers formed
by the tube jacket. There are 19 such zoned chambers with concentrations being measured by
sensors located at the mid-point of each zone. The only exceptions are the zones at either end
which are 1.5 times longer than the rest and have measurement sensors at the two-thirds point.
Separate membranes at the end of the reactor control the concentration of intermediates X,
Y at each end of the tube. There is no convective contribution so that the system could be
alternately viewed as a series of well mixed reaction cells coupled by diffusion. The governing
set of partial differential equations for the Brusselator kinetics in a reaction-diffusion system can
be expressed as [2, 5]:

8x Dx 8*X

5 = e tXY-(B+1X+4 | 1
Y _ DydY :

The length of the reactor L is chosen as the bifurcation parameter. The diffusion coefficients

ABD,E A,BD,E
Al Al A A
sl o s B o
XY ;Membrane Reaction Medium é —X,Y
=y L NN
5AH—HA

Figure 1: Membrane Reactor Geometry.
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Dx, Dy of X and Y are chosen as (.008 and 0.004 respectively. The dimensionless distance
coordinate z ranges from 0 to 1. Also, A and B are 2.0 and 5.45 respectively. The boundary
conditions are of the Dirichlet type:

X(t,0)=X(t,1)=X, Y(,0)=Y(,1)=Y (3)

where X and Y are the steady state concentrations in the homogeneous system. Thus X = A = 2
and ¥ = B/A = 2.725.

For purposes of computation of spatiotemporal data for dynamic analysis, the finite difference
approximation, where the spatial domain is discretized into 20 intervals of equal length, is used.
Holodniok et al [2] observed that the leading eigenvalues of the monodromy matrix, a measure
of the stability of the periodic solution, were almost identical for 20 and 40 intervals. Also, we
found the results of the simulations performed with 40, 80, 160 intervals to be consistent with
those for 20.

Poincaré maps

The nonlinear dynamics of interest can be studied by means of properly chosen Poincaré maps.
The Poincaré map for the present problem essentially represents the intersection of the trajectory
obtained by integration of equations (1) and (2) and a 37-dimensional hypersurface suitably
defined. For example, the surface could be defined by the following equation:

Xz_—_o_;;(t) = 2.0 (4)

with dX,=0.3(t)/dt > 0. The Poincaré map would then contain only those spatial profiles which
satisfy the requirement of equation (4) as denoted by solid lines in Figures (2a) and (2b). To
represent the Poincaré map in two dimensions it becomes necessary to project the map onto
chosen two phase-space coordinates i.e. concentrations of X and Y at chosen location in the
reactor. The concentrations of X and Y at z = 0.5 when the concentration of X at z = 0.3
is 2.0 and increasing (see points Q and R in Figure (2)) were used here. In such a 2D map,
a single point denotes periodic behavior. A closed orbit indicates quasi-periodic behavior (or
torus) while a double closed orbit would suggest a torus doubling.

Equations (1) and (2) were integrated using two sets of initial conditions. The first set of
initial conditions, denoted by A (or IC-A) throughout this paper, corresponds to:

X=232,Y =17forz2<05 and X =3.32, Y =2.75for z > 0.5

The second set of initial conditions, referred to as B (or IC-B) is the mirror image of the initial
condition A. The Poincaré maps that result as L is varied from 1.403 to 1.43 are presented
in Figure (3), which reveals the existence of two co-existing and mutually mirror-symmetric
spatially asymmetric attractors. The symmetry arises from the symmetry in the geometry of
the problem and the solution reached depends on the initial conditions used.

Singular Value Decomposition (SVD)

Spatiotemporal patterns can be better understood if they are decomposed into time-independent
spatial structures and their time-varying amplitudes. This orthogonal decomposition can be
accomplished by means of the Singular Value Decomposition [6]. Implementation of SVD in
this context is in principle similar to the Karhunen-Loéve expansion. The SVD analysis is
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Figure 2: Selecting spatial profiles for Poincaré maps of DPS. (a) and (b) correspond
to initial conditions A and B (cf. text). t; < 3 < &3 < t4 < t5 < tg. Equation (4) defines the
Poincaré surface.

applied to both reactants X and Y. The spatiotemporal data for reactant X typically consists of
M snapshots at N points in space which constitutes an N X M matrix X' Application of the
matrix SVD yields left and right unitary singular matrices and a diagonal singular value matrix.
The columns of the left (spatially dependent) and right (time dependent) singular vectors are
referred to as topos and chronos respectively. ‘

Figure (4) illustrates the behavior of the topos, w;(z), corresponding to the first two modes
(i = 1,2) when using initial condition A. Initial condition B yields a set of topos wj(z) which
satisfies the condition w{(z) = wy(1 — z). The (2,1 — 2) relation indicates that the symmetry
is of the same mirror-image type seen in the Poincaré maps. The topos w;(z) are inhkerent
properties of the system and were found to fluctuate very little as I was varied.

From the square of the singular values, the relative energy of each mode can be assessed.
The singular values are arranged in descending order. It was found that about 85% of the
energy is concentrated in the first mode itself and another 12% in the second mode. Also the
distribution of the energy amongst the dominant modes remained similar throughout the regime
of transition to chaos i.e. L = 1.403—1.43. This observation coupled with the robustness of
the topos lends support to the idea that in a feedback control framework, desirable performance
could be achieved by controlling the first mode alone.

MoDAL FEEDBACK CONTROL

The primary goal is to develop a feedback control framework which would facilitate control of
the chaotic attractor to any of the tori from which it evolves or vice-versa or from one torus
to another. A modal feedback control methodology that accounts for the spatial nature of the
output is schematically depicted in Figure (5). A detailed account of the different modal control
schemes used can be found in [7].

‘First, let us suppose that we wish to control the chaotic attractor to the 1-torus. Let X (z,t)
in the open loop represent chaotic behavior and X,,(z,t) be indicative of the desired quasi-
periodic behavior. Thus the set point is a dynamically varying profile. &(z,t) is the deviation
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Figure 3: Poincaré maps. The horizontal and vertical axes represent the concentration of X
and Y at the midpoint, z = 0.5. The attractors in the top left corner are obtained using initial
condition A while the ones in the bottom right correspond to initial condition B. Equation (4)
defines the Poincaré surface. ’
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Figure 4: Topos for modes 1 and 2 with L = 1.403. Initial condition A is used. The
horizontal axes denote the distance coordinate while the vertical axes represent the magnitude
of the topos.
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Figure 5: Modal feedback control scheme.

of the output profile X(z,t) from the set point X,,(z2,t):
e(z,t) = Xop(2,t) — X(2,¢) , (5)

Since the topos w;(z) were shown to be intrinsic properties of the system (i.e. consistent throug-
hout the transition regime), the modal error vector e(t) is obtained by projecting the deviation
(z,t) onto the topos.

ei(t) = /0 L (2, ywilz) dz (6)

The modal controller computes the control coefficients b;(t) corresponding to each e;(t). A
suitable form of control law could be used. For instance, with proportional control, b;(t) =
Ke(t). The control action u(z,t) is then obtained as follows:

N
u(z,t) = Y bi(t)wi(2) ' | )

1=1

Though a distributed parameter system is of infinite dimension (i.e. N = o0), in practice N could
be set to a value which ensures that the first N modes capture the desired amount (for example,
90%) of the original behavior. This information can be obtained from the singular values. It
is difficult to practically implement a control action of the type described by equation (7) that
is continuous in space. A more physically realizable technique would be having M zones of
piecewise uniform control in the interval zx < z < zy, (cf. Figure (1) for an example). The
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control action could then be expressed as:

M
u(z,t) = 3 eult)gelz) (8)

k=1

where gi(2) = H(z — zx) — H(z — zg41). H(z) refers to the Heaviside step function. ci(t) can
be obtained by using the orthogonality of gg(z), thus yielding the expression:

M N ot 1
u(z, t) = E Z K (/0 [Xop(2,t) — X (', )] wi(2') dz') (/0 wi(2)gr(Z) dz’). a(z) (9)
k=1t i=1 ; '
In the reaction-diffusion system (equations (1} and (2)) contrel is physically accomplished by
the addition or removal of reactants 4 and B as shown in Figure (1}). The exact increments
or decrements of A and B, referred to as uy and uy, are computed based on the deviations of
X (z,t) and Y (z,t) from X,,(z,t) and Y,;(z,t) respectively. Proportional feedback is used based
on the observation that earlier works dealing with the problem of control of chaos have found
such a scheme adequate for the purpose of stabilization of the strange attractor onto one of the
embedded unstable orbits. With the inclusion of feedback control the governing equations (1)
and (2) are transformed to:

10,4 Dx 8°X

= = —17--5;{+X2Y—(B'+uy+1)X+(A+ux) (10)
ay Dy 8%Y
5 = Traa - XY +(Bun)X (11)

The boundary conditions (equation (3)) remain unchanged. As in the case of dynamics, the
computations are performed using the finite difference approximation with 20 intervals of equal
length. The approach is to try several forms of modal contrel — 1 mode, 1 zone and 1 mode, 19
zones. Figure (6) illustrates the results of trying to direct the chaotic attractor to the 1 torus.
Using 19 zones expectedly enhances the performance. The same modal feedback control scheme
can also be used to control the chaotic attractor to any other torus and also any torus to the
chaotic attractor or any other torus.

CONCLUSIONS

Through properly chosen Poincaré maps, it was observed that the dynamics of the reaction-
diffusion system with Brusselator kinetics (in the parameter space of interest L = 1.403—1.43)
is characterized by the presence of two co-existing and mutually mirror-symmetric spatially
asymmetric attractors. The mirror-symmetry was initially ascertained from the use of mirror-
symmetric sets of initial conditions. This finding was also corroborated from the relationship
between the topos for the two sequences of attractors. Thus, Singular Value Decomposition
proved to be a useful tool in detecting the presence of co-existing and mutually mirror-symmetric
attractors. The consistency of the topos throughout the transition region coupled with the
distribution of energy amongst the various modes suggested their possible use in the development
of the control strategy.

Finally a modal control strategy was developed and applied to the control of chaos occurring
through the torus doubling route in the reaction-diffusion system. The key idea was to compute
the control action by projecting the deviation of the current dynamic behavior of the system
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Figure 6: Poincaré map depicting the control of the open loop chaotic attractor
(L = 1.43) to the underlying torus using (a) 1 zone, (b) 19 zones and the most
dominant mode. Equation (4) defines the Poincaré surface. K = 0.03, solid line refers to the
“set point” attractor, dots refer to the controlled attractor. :

from the desired behavior onto the dominant modes. It was possible to obtain behavior close to
any of the tori by suitably controlling the chaotic attractor and vice-versa. Although applied to
an example which demonstrated a quasi-periodic route to chaos, the control scheme is essentially
independent of the route to chaos and so could potentially be applied to instances of chaos in
distributed parameter systems occurring through other routes too.
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TURBULENCE GENERATION BY WAVES

D. Kaftori
X. S. Nan
S. Banerjee

Chemical Engineering Dept.
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Santa Barbara, CA 93106

ABSTRACT

The interaction between two-dimensional mechanically generated waves, and
a turbulent stream was investigated experimentally in a horizontal channel, using
a 3-D LDA synchronized with a surface position measuring device and a micro-
bubble tracers flow visualization with high speed video.

Results show that although the wave induced orbital motion reached all the
way to the wall, the characteristics of the turbulence wall structures and the tur-
bulence intensity close to the wall were not altered. Nor was the streaky nature
of the wall layer. On the other hand, the mean velocity profile became more uni-
form and the mean friction velocity was increased. Close to the free surface, the
turbulence intensity was substantially increased as well. Even in predominantly
laminar flows, the introduction of 2-D waves causes three dimensional turbu-
lence. The turbulence enhancement is found to be proportional to the wave
strength.

INTRODUCTION

This study is part of an ongoing research effort in our laboratory concerning turbulence at a
gas-liquid interface. Previous works, both experimental and computational using direct numeri-
cal simulations, have focused on smooth turbulent open channel flows with and without imposed
wind shear. In this work the question of turbulence in the presence of two-dimensional waves,
moving with the current, and without wind is addressed.

One of the main effects of waves on a turbulent current is to increase the turbulence intensity
close to the free surface (e.g. Kemp & Simons!). This may be most important in transport proc-
esses at the surface, particularly with sparingly soluble gases. The reason for the increased in-
tensity is not clear. Rashidi et al.2 examined this question by investigating the relationship be-
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Table 1. Wave parameters

Rey, |h H f u* A Rey, |h H f u* A
[mm] |[(mm] [[Hz] |[m/s] [[m] [mm] [[mm] |{Hz] [[m/s] ([[m]
7500 1372 |7.0 1.90 9.4e-310.39 [5000 |40.8 [6.13 |2.40 |6.1e-30.29
5000 |55.0 (8.4 1.90 14.8¢-3]0.38 5000 [41.3 [12.13 ]2.37 16.1e-30.29
5000 [40.5 |6.4 1.62 16.5e-310.46 (4400 [39.5 [5.55 |2.37 |6.0e-3]0.29
Re,=U, h/v Reynolds number. v is kinematic viscosity.

H Wave height.

u* Mean friction velocity. See below.

tween the waves and the wall structures, because the structures are considered to be responsible
for most of the turbulence production in the boundary layer. They found that the number of wall
ejections increased in wavy flows and proposed that this may be the reason for the enhanced
turbulence. However, the frequency of the bursts themselves (each containing a number of
ejections), was not changed. Since it now seems that the large scale structures are the ones re-
sponsible for turbulence production (i.e., the bursts, or funnel-shaped vortices, as they were in-
terpreted by Kaftori et al.3), rather than the internal structures (i.e., separate ejections), this
question remains unresolved. In addition, Rashidi et al. could not make measurements very
close to the wall and could not measure the variations in turbulence quantities there.

In this work the increased turbulence in wavy flow was examined. The rate of increase
throughout the flow profile was measured in an attempt to identify the causes and mechanisms
that govern it. Other turbulence characteristics, such as the velocity profile, friction velocity,
and the wall structures, were also measured and observed. While the exact causes for the en-
hanced turbulence still remain unclear, the results obtained suggest that they are not related to
the wall layer. Instead, it appears that they originate at the wavy interface. In addition, a rela-
tionship between the rate of increased intensity and the wave strength is presented.

EXPERIMENTS AND PROCEDURE
Experiments were conducted in an open water flume with waves superimposed onto the tur-
bulent stream by a mechanical wedge-shaped wave maker. A diagram of the system is shown in

P JLSSSENSUE. BRI

0 60 120 180 240 300 360
Figure 1: The experimental facility. Figure 2: Wave phase division.
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a second order Stoke's wave. Stoke's second order waves.

Figure 1. The mean water depth in the channel was typically in the range of 40-55 mm.

The channel was equipped with a 3-D laser Doppler anemometry system for data acquisition,
an ultrasound distance measuring device (Air gauge) for surface elevation measurements, and a
microbubble tracers flow visualization apparatus with high speed video. The LDA and Air
Gauge were synchronized so that each velocity data point could be related to the correct wave
phase. In addition, two wire gauges, each measuring the instantaneous water depth, were used.

- : C  Experimental data
E —~~—~ Lamb (1945)

Figure 5: Wave velocity profile under Figure 6. Funnel-shaped streamwise
the crest in the wave boundary layer, in vortices in a wavy flow. Top - plan view
experiments and according to Lamb*. from underneath. Bottom - side view.
Normalized by the velocity at the edge Microbubble tracers were generated only in
of the wave boundary layer. the lower 1/3 of the flow. Scale: width

of photo ~600 wall units.




The gauges were displaced in the streamwise direction so that the phase lag between them could
be used as a measure of the wave length A. The measured wave length was within 7% of the
theoretical length, based on linear wave theory:

(w-kU,,) = gk-tanh(kh) | (1)
where a=2nf is wave period with f the wave frequency, k=27/A is wave number, U,, is mean
velocity of the turbulent current, g is gravitational acceleration, and 4 is mean water depth.

In all, 6 experiments with waves were conducted, along with several runs with a smooth sur-
face. The wave parameters were varied between experiments and are detailed in Table 1.

In order to distinguish between the various contributions to the velocity field, each measured
velocity data - #, was decomposed into mean velocity of the turbulent stream - U, wave induced
fluctuations - u,,, and turbulence fluctuations - #’, as:

u=U+u,+u" . 2)
The average (mean) velocity was computed at each measuring point as:

v=1su | 3)
n

where 7 is the number of data samples. The wave induced velocity was calculated for each
phase of the waves by dividing the waves into 6 (or, in some experiments, 18) sections, each
representing a phase, as in Figure 2. The average wave induced velocity was then calculated for
each phase:

uwlph =

ph -U . (4)

Here u;

ph 18 a velocity data point at a given phase of the wave, and the overbar represents an
average over all waves. In determining the wave phase of each data point, the information col-
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—o— No waves
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+

y
Figure 7: Instantaneous velocity profile Figure 8: Normalized mean velocity
under wave trough. Note flow reversal profiles in smooth and wavy flows.
at the surface and close to the wall.
Scale: width of photo ~340 wall units.
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lected from the ultrasound surface elevation measurements was used. The fluctuating turbulence
velocity component was deduced from Eq. (2).

In order to qualify the type of waves in the experiments, the measured velocities and wave
forms were compared with some establish wave types. Figure 3 depicts a typical wave form
measured in an experiment together with a sinusoidal wave form and a second order Stokes
wave given by:

Hk cosh(kh)
16 sinh3(kh)

nzﬁzl—cos(kx—a)l)+

[2 +cosh(kh)]|cos[2(kx — ax)] , 5)

where x is the streamwise coordinate and ¢ is time. The first term on the right is the sine wave in
the figure. As can be seen, the waves were close to second order waves but with a somewhat
sharper crest, implying a higher order of non-linearity. The wave velocity profile was also in
agreement with that of second order Stoke's waves, as illustrated in Figure 4. Close to the wall
the wave velocity was also in agreement with Lamb's* prediction, based on linear wave theory,
as shown in Figure 5.

Wall Structures

The behavior of turbulence wall structures in wavy flow was examined and compared to
smooth flow using microbubble tracers with high speed video. These observations show that the
same structures which are seen in smooth flows appear in wavy flow as well. These funnel-
shaped vortical structures (see Kaftori et al.3), originate close to the wall and stretch in the
streamwise direction while expanding outward from the wall in a spiraling motion. In wavy flow
the structures seem to be of the same size and shape, as shown in Figure 6. This was true in
spite of the fact that the effect of the waves was apparent all the way to the wall, where the or-
bital wave induced velocity caused the flow to reverse at the wall, as shown in Figure 7.

35

Re,=5000 " u
A v
H=6.1mm. f~24Hz . w

o ©
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T
20 22 24

f )
Figure 9: Percent increase in friction Figure 10: Turbulence intensities profile
velocity as a function of wave frequency. (wave induced velocity removed).
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The streaky structure of the wall layer, typical to smooth flow, was also preserved when
waves were introduced. The streak spacing seemed to remain approximately the same (~100
wall units). It seems that the streaks became better defined, with a larger difference between the
streamwise velocity of the high- and low-speed regions. Similar observations were make by
Rashidi et al 2.

Velocity profile

The effect of surface waves on the mean velocity profile is shown in Figure 8. It appears
that the waves reduce the mean velocity in the outer part of the flow but do not affect the profile
in the wall layer. In general, the velocity profiles become more uniform and the effect is
stronger with larger waves. The deficit in mass flow rate due to the lower velocities in the fig-
ure is balanced by the flow in the crest region of the waves. The instantaneous velocity profiles
varied with wave phase. An example of the profile under a trough was given in Figure 7, where
the velocity is reversed close to wall, positive in the mid section, and is negative again close to
the free surface. The same type of instantaneous profile was recorded by Kemp & Simons!.

The mean friction velocity #*, was calculated from the average velocity profile in the vis-
cous layer (y+<5). In wavy flows the friction velocity was up to 10% higher than in smooth
flow. The increase was proportional to the wave length, and indirectly proportional to the fre-
quency, as depicted in Figure 9.

Turbulence intensities

r.m.s velocity fluctuations of a wavy flow are compared to those of smooth flow in Figure
10 with the wave induced fluctuations removed, the r.m.s. curves are of the same shape as in
smooth flow but the intensities of the three components are higher in the upper portion of the
flow profile. The increase was larger for stronger waves. The waves did not affect the r.m.s
close to the wall.

These results imply that turbulence production occurred in the upper portion of the flow as a
result of the waves. While wave induced motion can be seen throughout the flow profile, they
seem not to affect the turbulence wall structures, which are generally responsible for most of the
turbulence production, nor alter the shape or magnitude of the turbulence intensities in the wall
region. They do, however, significantly increase the intensities close to the free surface. Thus it
appears that unlike simple turbulent open channel flow, where wall shear is the primary
mechanism for turbulence production, in wavy flow there exists another production mechanism.
This turbulence source is strongest close to the wave trough and weakens toward the wall.

In order to test this hypothesis, turbulence production in laminar wavy flow was examined
using dye and particle tracers flow visualization. In these experiments dye diffusion and particle
dispersion were observed and measured in both simple laminar flow, and in laminar flow with
waves. Figure 11 is a sample of a dye diffusion experiments. In simple laminar flow there is
hardly any diffusion at all. In the wavy flow, on the other hand, there is turbulent diffusion and
the dye is dispersed immediately. The diffusion was three dimensional, with the same rate of
dispersion in the spanwise direction as in the wall normal direction. The spanwise dispersion can
only be accounted for by turbulence.
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Figure 11: Dye diffusion experiment.
Top - Simple laminar flow.
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Figure 12: Increase in r.m.s level in wavy flow compared to
smooth flow, as a function of wave strength. Lines are curve fits.
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In the particle tracers experiments, polystyrene particles (specific density ~1.05, nominal di-
ameter 275 pum) were released into the flow and were photographed using high speed video.
Their spanwise displacement was then measured in order to examine the particle spanwise dis-
persion. Results show that in wavy flow the particle spanwise dispersion rate was up to three
times higher compared to the non-wavy flow. These findings confirm that three-dimensional
turbulence is generated by the predominantly two-dimensional waves. »

As mentioned above, the rate of turbulence production due to waves increased with wave
amplitude and frequency. Figure 12 shows the increase in turbulence intensities of the three ve-
locity components as a function of wave strength, defined as the ratio of (a fluid) particle veloc-
ity to mean current velocity. The particle velocity at the mean water level was used. As can be
seen, the r.m.s level in the upper half of the flow profile increases with increasing wave strength.
In order to quantify this behavior, the r.m.s increases of all runs were compared at y/4=0.8. Re-
sults are in Figure 13. There it seems that the increase is directly proportional to wave strength.

The reason for the turbulence enhancement by the waves is still not clear. Evidently, it must
be related to a coupling between the wave induced velocity fluctuations and the turbulence
fluctuations, resulting in additional Reynolds stress-type terms in the momentum equation. In
addition, since a wave induced drift usually exists in wavy flows (Phillips), additional viscous
shear may be introduced. These points and their relative importance are currently under
investigation.

CONCLUSIONS

The introduction of 2-D waves onto a turbulent stream substantially increases the level of
turbulence in the upper portion of the flow, while having only little effect on the turbulence in
the wall layer. Even in laminar flow the introduction of waves causes the onset of turbulence.
The enhancement seems to scale with the strength of the waves, namely the ratio of wave in-
duced velocity to the mean current velocity. Since the turbulence characteristics close to the
wall, and the nature of the wall structures, seemed to be unchanged by the waves, it appears that
the enhanced turbulence is not related to increased shear at the wall or to turbulence in the wall
layer. Rather, it seems that it may originate at the wavy region. This must be investigated fur-
ther.
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NUMERICAL SIMULATION OF HIGH REYNOLDS

NUMBER BUBBLE MOTION
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ABSTRACT

This paper presents the results of numerical simulations of bubble motion. All the results
are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the
motion created by the bubble, which is axisymmetric. The main focus of the paper is on
bubbles that are of order 1mm in diameter in water. Of particular interest is the effect of
surfactant molecules on bubble motion. Results for the ”insoluble surfactant” model will be
presented. These results extend research by other investigators to finite Reynolds numbers.
The results indicate that, by assuming complete coverage of the bubble surface, one obtains
good agreement with experimental observations of bubble motion in tap water. The effect of
surfactant concentration on the separation angle is discussed.

INTRODUCTION

Bubble motion in liquids is of interest in many engineering problems. In the context of Bioreactors,
bubbles are important in mass transfer, the hydrodynamics of the reactors, and because they represent a
volume that is not available for reaction [1]. Visual inspection of fluidized bed ethanol Bioreactors indicates
that the bubbles are typically on the order of a few miilimeters in diameter {1, 2]. A characteristic of
Bioreactors is that they typically contain surface active materials in the form of biopolymers that are
generated by the microbes.

Thus, it is of interest to develop models for the effect of surfactants on bubble motion. Andrews et
al. [2] took a step in this direction. They developed a boundary layer analysis to describe the surfactant
concentration on the upper portion of bubble. Their analysis is valid up to the point of flow separation.
An interesting result is that large concentrations of surfactant can cause the point of separation to move
closer to the top of the bubble, suggesting that there may be a corresponding increase in wake volume.

The approach taken by Andrews et al. cannot provide information about the nature of the wake. Ryskin
and Leal [3-5] developed a numerical simulation technique for axisymmetric bubbles. They presented results
for bubble Reynolds numbers as large as 200 and Weber numbers as large as 20. A surprising result was
that, as they increased the Weber number for a fixed Reynolds number, flow separation from a bubble was
preceded by the formation of detached eddies.

Haberman and Morton [6], Saffman [7], and Hartunian and Sears [8] reported experimental results
for bubble motion in water and a variety of other liquids. Bubble velocities in distilled water and tap
water are virtually the same for bubbles with equivalent spherical diameters, d., smaller than about lmzmn.
Bubbles of this size are approximately spherical and, have approximately the same drag coeflicient as a
rigid sphere of the same diameter. For values of d. between 1mm and about 6mm, there are siguilicant
differences between distilled water and tap water. In distilled water, the bubble rise velocity exhibits a
local maximum at d. = 1.4mm. Bubbles of this size rise twice as fast in distilled water as in tap water
(35¢m/s compared to 17em/s). The corresponding Reynolds numbers, based on d,, are 490 and 240.

The differences between bubble motion in distilled water and tap water have been attributed to the
presence of surfactants [6-8]. The air-water interface is particularly susceptible to surfactants because of
the polarity of the water molecule. Sadhal and Johnson [9] devised a theory for the effects of surfactants
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on bubbles and drops for Stokes flow. They assumed that the adsorption-desorption kinetics was slow
and that one could neglect surface diffusion. This approximation has been referred to as the ”insoluble
surfactant” approximation. They showed that the surfactant would collect in a cap on the rear portion of
the bubble, and obtained an exact solution.

The insoluble surfactant approximation has been used by Stone and Leal [10] to study the effect of
surfactants on bubbles in two-dimensional straining flow. They studied only the Stokes flow limit.

Pan et al. [11] used the static pendant drop method to determine the kinetic rate constants for
surfactant exchange between an aqueous sublayer and an air-water interface. A key feature of their
approach is the use of high volume concentrations of surfactant. They showed theoretically that, by
using sufficiently high volume concentrations of surfactant, one could distinguish kinetics from diffusion.
The availability of such results opens the possibility of checking the conditions of the insoluble surfactant
approximation for experiments with controlled amounts of a known surfactant.

GOVERNING EQUATIONS

The numerical techniques in this study were described by Ryskin and Leal [3-5]. Therefore, this section
‘contains only a brief summary of the equations and the computational parameters.

In what follows, the equivalent spherical radius, r., the bubble rise velocity, U, the liquid density, p,
the fluid kinematic viscosity, v, the interfacial surface tension, ¥ ,and the acceleration of gravity, g, will
be used to make quantities dimensionless. The gas density is assumed to be negligible. The Reynolds
number, Re, the Weber number, W, and the Morton number, M, may be used to characterize the fluid
mechanics problem for clean interfaces:

d.U
Re=—— (1)
2 .
4
gu
The drag coefficient, Cp, is given by
' 4(d.)g
cp =3, (4)
The above quantities are related by
3., wd

Figure 1 shows a (o, ¢) plane in a cylindrical coordinate system (o,¢, ). Following Ryskin and Leal [3],
it is convenient to introduce an orthogonal, curvilinear coordinate system (£,7,4) in which the variables ¢
and 7 lie between 0 and 1. The coordinate mesh is shown in Figure 1. The surface of the bubble is given
by € = 0. The point at infinity corresponds to n = 0. The positive ¢ axis corresponds to n = 0 and the
negative x axis corresponds to 7 = 1. The coordinate mapping is determined by the covariant Laplace
equations as described by Ryskin and Leal. For the bubble in Fig. 1, Re = 200 and W = 5. Only half the
bubble is shown since the flow is axisymmetric.

The present study is limited to axisymmetric motion. Therefore, it is convenient to use the stream-
function-vorticity method. For steady motion, the governing equations, written in dimensionless [orm,

are
2 Re 8¢ dw/oc OYpdw/o, ,
L'(WU)—-{B—E 30 oy B¢ )=0 (6)
L% 4w =0, (7)

where the operator L? is defined by

L? = 3—77(F-5';7—)] ’ (8)

hehy, [.3_5.(;:92




Figure 1: Coordinate Curves for a Bubble with Re = 200, W =5

In Egs. (6-8), w is the ¢ component of the vorticity, 1 is the streamfunction, k¢ and h, are metric functions,
and f is the ratio h,/he. All quantities are dimensionless.
The pressure on the interface may be obtained by integrating the Navier-Stokes equation along the

bubble surface: 3 4 . fo
P 2 2
p= 4CD:c Up = o T (ow)dn, (9)

where the pressure has arbitrarily been chosen to be zero at n = 0. By demanding that, in steady-state,
the net force on the bubble vanishes, one may express Cp in terms of pgyn, where pgyn is the sum of the
second and third terms on the right hand side of Eq.(9).

The boundary conditions at the surface of the bubble are as follows:

Pp=0 (10)
w—2Kpug =0 (1

4
Teg = 77 (Ko + £¢) = 0. (12)

In Eqs.(10-12), £, and k¢ are the normal curvatures, u, is the n component of the liquid velocity, and 7¢¢
1s a component of the liquid stress tensor at the interface. The normal curvatures may be computed from
expressions given by Ryskin and Leal [4].

The covariant Laplace equations and the streamfunction-vorticity equations are put into a canonical
form discussed by Ryskin and Leal [4] and solved with the constant step ADI method suggested by Ryskin
and Leal. In this iterative approach, one uses an artificial time step, At, and relaxation parameters for
the vorticity boundary condition, 3, and the normal stress balance, 3.

When an insoluble surfactant is present, one must include the transport equation for the surface
concentration of surfactant, I':

V- (Tu, — 1—1—V3F) =0, (13)
where V; is the surface gradient operator and P, is the surface Peclet number. If P; >> 1, one obtains
the Sadhal-Johnson result:

up=0,0<¢ (14)

r=0,0>¢, (15)

where the angle ¢ is a cap angle in which the surfactant is concentrated. The angles ¢ and ¢ are measured
from the positive z-axis. Thus, one may specify a cap angle and then use essentially the same procedure
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as for the clean interface. The main modification is that one must impose a condition on the normal
.derivative of the streamfunction associated with the no-slip condition on the surfactant cap.

The calculations to be reported were performed for an ”ideal gas” equation of state for the surfactant.
This equation of state has the following form:

v = 70 — RTT, ' (16)

where v is the surface tension, 7o is the surface tension of the clean interface, R is the gas law constant,
T is the absolute temperature, and T is the surfactant concentration (moles/m?) on the interface. This
model is reasonable as long as the average distance between surfactant molecules remains large compared
to the molecular size. For the calculations to be reported, this condition is satisfied.

To express Eq.(16) in dimensionless form, one can use vy as the characteristic surface tension. The
dimensionless surfactant concentration is-defined by

+ RIT

' = 17)
Yo (1"

Thus, the dimensionless form of the ideal gas law is
¥ =1-T. . (18)

The total amount of adsorbed surfactant, S, is given by the integral of I over the bubble surface. Using
the axisymmetry of the problem, this integral may be reduced to the following form:

1
S= 27rrf/ Toh,dy. - (19)
0
One way of characferizing the amount of surfactant is with the dimensionless parameter S' defined as
follows: 1 SET
S = — . (20)
4nré Yo

One may also. express S’ in terms of the Marangoni number, Ma, the capillary number, C, and the
dimensionless surface area, A , as follows:

S = MaCA, (21)
where | SRT ,
w
= oo 3
C e (23)
1
A =2xr? / ahydn (24)
0
and 4
"= 25
A 4mr2 (25)

NUMERICAL SIMULATIONS

Haberman and Morton [6] measured the bubble rise velocity in tap water and filtered water as well as
a variety of other liquids. Figure 2 shows their measurements for tap water and filtered water. In filtered
water, the bubble rise velocity reached a local maximum at d, = 1.4mm. The corresponding values of
Re and W are 490 and 2.35, respectively. The program was run with 61 equally spaced grid points in
both the ¢ and 7 coordinates. The computed Morton number, M, was 2.64 - 107!, The value of M for
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Figure 2: Bubble Rise Velocities Measured by Haberman and Morton [6]

the Haberman-Morton experiments was 2.55 - 10711, The flow did not separate, which is consistent with
Hartunian and Sear’s conclusion that flow separation occurs for W > 3.2 in clean, low Morton number
Auids.

Numerous authors have suggested that the difference in bubble rise velocities between distilled water
and tap water is due to the presence of surface active materials in tap water. A goal of the present work is
to test this idea with computer simulations using the insoluble surfactant model. The program was tested
by making a series of runs for Re = 0.1 and comparing the results with the Sadhal-Johnson theory. The
results for the drag coefficient as a function of cap angle are shown in Fig. 3.
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" Figure 3: Computed Drag for Re = 0.1, W = 0.02 Compared with Sadhal and Johnson {9}

For tap water, Haberman and Morton’s experiments indicate that the rise velocity of a bubble with
d. = 1.4mm is approximately 17em/s. For such a bubble, Re = 240 and W = 0.55. A run was made
with the latter values of Re and W and ¢ = 180°. This corresponds to a bubble interface that is covered
with surfactant (although the distribution is nonuniform). The computed Morton number was 2.62-107 1.
Table 1 contains a summary of runs with different cap angles, ¢. For ¢ = 148°, the Morton number is
2.55 - 107!, Thus, the insoluble surfactant model suggests that the rising bubbles are nearly covered
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with surfactant. The value of S' is 0.0227. This may indicate that the ideal gas law is a reasonable
way of estimating the surface tension. For example, Andrews et al. [2] estimated the maximum surface

concentration of heptanoic acid to be 4.4 - 1071%m?/s. The corresponding value of S’ is 0.142. The
average distance between molecules at close packing is about 6A. Other molecules with comparable (low)
solubilities in water will likely have about the same maximum surface concentration. The maximum bulk
solubility of heptanoic acid in water at room temperature is 8mg/L.

Table 1

Computer Runs for Re = 240, W = 0.55

7

$ Ca [M-10"T 0, | A X S

0° [0.192] 0.722 1.000 | 1.070 0
16.6° | 0.192 | 0.724 1.000 | 1.070 | 0.000011
26.0° | 0.194 | 0.729 1.000 | 1.070 | 0.000054
32.1° | 0.196 | 0.736 1.000 | 1.069 | 0.000120

36.5° | 0.198 0.744 8.06° | 1.000 | 1.068 { 0.00019
60.5° | 0.221 0.832 36.8° | 1.000 | 1.058 { 0.00139
90.8° | 0.353 1.33 58.1° | 1.000 | 1.039 | 0.00555
111.9° | 0.495 1.86 64.9° | 1.000 { 1.038 | 0.0103
134.8° | 0.633 2.38 67.3° { 1.000 | 1.041 0.0179
148.4° | 0.680 2.56 68.0° | 1.000 | 1.042 | 0.0227
166.4° | 0.697 2.62 68.5° | 1.000 | 1.043 | .0.0273
180° | 0.698 2.62 68.6° | 1.000 | 1.043 | 0.0287

Figure 4 shows the dimensionless surface tension as a function of the polar angle measured from the
positive z-axis (i.e., measured from the direction of liquid motion in the bubble frame of reference). For
this figure, ¢ = 180°. The surface tension varies by only a few percent even though this variation is
sufficient to immobilize the interface. The surface tension at 8§ = 1807 is taken to be the surface tension of
pure water. This assumption is not necessary. However, in modeling tap water, it produces results that
agree well with experiment.
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Figure 4: Dimensionless Surface Tension as a Function of Polar Angle for Re = 240, W = 0.55, and
¢ = 180°

Even in distilled water, bubbles that are smaller than about 0.8mm behave like rigid spheres. Thus,
there is evidently enough surface active material to immobilize the surface of sufficiently small bubbles.
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Does this low level of surfactant have an effect on the 1.4mm bubble considered earlier? Figure 5 shows
the drag coefficient as a function of the cap angle for Re = 490, W = 2.35. One can obtain the observed
rise velocity in two ways. One way is to assume that the interface is completely clean. The other way
is to assume that the cap angle is approximately 105°. The corresponding value of S’ is 0.015, which is
considerably lower than the value for tap water (0.023), but still significant. An important consequence
of the adsorbed surfactant is that there is sizeable wake behind the bubble. The separation angle is close
to 75°. This may be consistent with the experimental observations made by Subramanian and Tien [12].
Subramanian and Tien performed visualization experiments using India ink. The experiments indicated
the presence of a sizeable wake behind bubbles that were roughly 1mm in diameter even in distilled water.
However, the ink may have acted as a surfactant. If the above inference is correct, it indicates that the
boundary layer analyses based on potential flow theory such as those of Moore [13-14] are in inappropriate
for bubbles in distilled water.

0.0-...Ll_._...I,,;LI.,..llk..)....
0° 30° 80° 90° 120° 180° 180°
¢

Figure 5: Drag Coefficient as a Function of Cap Angle for Re = 490, W = 2.35

The results for water indicate that surfactants have little effect on the rise velocities of bubbles with
W = 5. The Reynolds number of these bubbles is 1600. Calculations at such a Reynolds number would
be computationally expensive. According to Hartunian and Sears, the Reynolds number should have
little effect on the stability of the bubble for Re > 200. Therefore, a run was made for a clean bubble
with Re = 200 and W = 5. The corresponding Morton number is 4.26 - 10~3. To determine the effect
of surfactant on the wake, runs were made at smaller Reynolds numbers with different cap angles. To
simplify the physical interpretation, the bubble volume was held constant. This was done by computing
the Weber number as follows: R
— 52
W =5(355)" (1)
For each Reynolds number, the cap angle was varied to obtain the correct Morton number. The Reynolds
number for ¢ = 180° is 167. Therefore, surfactant has relatively little effect of on the motion of bubbles
of this size. However, the wake is considerably larger for contaminated interfaces. For the clean interface,
the separation angle is 57.2°, but, for complete coverage, the separation angle is 79.9°. For a rigid sphere,
the separation angle is 70.4°.

CONCLUSIONS

The Ryskin-Leal simulation technique has been used to compute axisymmetric bubble motion at higher
Reynolds numbers than previously reported. The effects of an insoluble surfactant have been included using
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the ideal gas model. Assuming complete coverage, one obtains good agreement with the observations for
a 1.4mm bubble in tap water. The computations predict the existence of a large wake behind the bubble.
The computations also reveal the possibility that the bubble may possess a large wake in distilled water.

This suggests that boundary layer treatments based on potential flow theory may be inappropriate even
for distilled water.

Computations at large Weber numbers show that the the surfactant has little effect on the bubble rise
velocity. However, the bubble wake is increased substantially.
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ABSTRACT

The “vortex strings” scale £, ~ LRe=3/1° (L-external scale, Re - Reynolds
‘number) is suggested as a grid scale for the large-eddy simulation. Various
aspects of the structure of turbulence and subgrid modeling are described in
terms of conditional averaging, Markov processes with dependent increments
and infinitely divisible distributions.

The major request from the energy, naval, aerospace and environmental engineering
communities to the theory of turbulence is to reduce the enormous number of degrees
of freedom in turbulent flows to a level manageable by computer simulations. The vast
majority of these degrees of freedom is in the small-scale motion. The study of the structure
of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the
large-eddy simulations (LES). The general strategy, developed in this work is summarized

in the Diagram.

Conditional Markov Generalization of
Averaging Modelling | intermittency Traditional LES

Models

SGS Modelling
for LES

/ ™~

Isotropic Turbulence Free-Surface Turbulence

Diagram: Structure and Modeling of Turbulence




The first block in the Diagram (“vortical scales”) is about an interface between numerics
and a model. It seems natural to choose a grid scale for LES to be of the order of the
“vortex strings” scalelll ¢, ~ LR™3/1% (L-external scale, Re = VLv~! - Reynolds number,
V - characteristic velocity, v - molecular viscosity). At this scale, the most important
(physically and numerically) nonlinear effect of vortex stretching in three-dimensional (3D)
turbulence does not produce a flux in the vorticity correlations. Thus, we expect a smooth
connection between numerics and modeling at this scale. The effective number of degrees
of freedom with such grid scale is N, ~ (L/¢,)* ~ Re®/'°. A potential reduction in the
numerical capacity is huge if we compare N, with the classical estimatel?l N ~ Re®/4, based
on the Kolmogorov internal scale £, = >4~/ (¢ - mean rate of the energy dissipation).

Next in the Diagram is a horizontal row of four blocks, representing various aspects of
the statistical structure of turbulence and' ingredients of SGS modeling. The first block
in this row refers to the conditional averaging of the Navier-Stokes equations with fixed
vorticity in a point (for 3D flow). It was analytically predicted®=® that for high Re the
effect of vortex stretching is statistically balanced with viscous dissipation on any level of
fixed vorticity w and other terms in the vorticity balance are ~ Re~!/2, This prediction was
recently confirmed by direct numerical simulations (DNS)l, which also revealed that the
conditionally averaged rates of vortex stretching and dissipation increase exponentially with
w. It was also predicted®-%! and recently confirmed by DNS[? that conditionally averaged
vorticity field £(r,w), as a function of distance r from a point with fixed vorticity w, has
a characteristic twist of vortex lines, connected with the effect of vortex stretching. It
was also argued® that local imbalance between vortex stretching and dissipation leads to
the formation and destruction of twisted vortex strings with characteristic scale £, indicated
above. Having the field £2, we can construct a relaxation schemel®, which will make vorticity
on a grid in LES to be consistent with . We plan to test such a schcme in the near future.

Let us note, that instead of vorticity we can use microcirculations (velocity circulations
over infinitely small fluid contours), which are inviscid invariants of motion. Such approach
separates the effect of vortex stretching into an additional linear equation (for fluid surface
elements) with independent initial condition®. Conditional averaging was also applied
to the free-surface turbulencel'® with the use of the fully nonlinear dynamical boundary
condition on free surface.

The second block in the same row in the Diagram refers to the Lagrangian and Eulerian
description of velocity increments in terms of Markov processes with dependent increments,
consistent with the Navier-Stokes equations!''='4. The 3D vector of velocity increments
(vi) can be presented in the form:

u; = vi(x +r) — vi(x) = u,n; + 4, n; =rir ! (1)
Here u, = u;n, is the radial (longitudinal) component of vi, @; is the transversal v, normal

to the separation distance r. In the inertial range (¢, € r < L) we have the Kolmogorov
result:

4
< Uz >= —367' (2)
which can be written in tensor form{tl:
4
< UUjUR D= —Ef(riajk + bk + mbi;) (3)

Here < > means statistical (unconditional) averaging. The Kolmogorov result (2) has
been originally obtained for decaying turbulence. The same result was derived!'®, by using
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a special functional formalism!'®'®, for statistically stationary turbulence with large-scale
random forces, supplying energy. This formalism was also used in the derivation of the
balance equation for the vorticity correlations!!] leading to the indicated above scale ¢,.
Two components of v: are physically different, even simply because of incompressibility
condition:
7]
5; < Uiy >= 0 (4)
Loosely speaking u, and #; signify correspondingly deformation along the vector r and
rotation around a vector, normal to r. Statistical preference of negative u,, emphasized
by (2), corresponds to compression of fluid element in the direction of r and (because of
incompressibility) ‘expansion in a normal direction. Since #; represents vortex, oriented
normally to r , we can interpret (2) as an inertial range manifestation of the same effect
of vortex stretching, which is analyzed by conditional averaging (see above). Probabil-
" ity density function (pdf) for the vector vi has unusual form4. Asymptotically (when
u? > < u? >) it reduces to the function of peculiar argument:
u? + @2 ] (5)
(eri)t/2

P(u,u;,r) = (erﬂ)“”/“f[

f(z) = N7 exp {-6:2"°} (6)

Here constants /N and 8 are different for the cases u, > 0 and u, < 0, which is reflected
by subscript . This asymptotic was obtained™ without Markovian assumption and cor-
responds to experimentally observed exponential behavior of pdf for w,.. The global pdf for
the vector vi is obtained[!3'4 assuming that relative velocity of fluid particles is Marko-
vian with a local relaxation and simplest forcing (diffusion in the velocity space). The
Markovian assumption is consistent with (3)-(6) and with the classical similarity. It also
gives the Lagrangian description of turbulencel!’=' which corresponds, in particular, to
the Richardson law:

< r?(t) >p~ et? (7)
Here r(t) is the distance between two fluid particles and subscript L indicates the La-
grangian ensemble of averaging. The exact relations between Lagrangian and Eulerian
descriptions?718! are used in this approach.

Preliminary LES tests of a Markov type SGS model give positive results. However,
intermittency effects, which are important physically and numerically, have to be included
into SGS modeling. This leads to the next block in the same row in the Diagram. The
intermittency is described in terms of the breakdown coefficients (bdc) for the energy
dissipation(!®'%20, The most recent progress is associated with the imbedding of self-similar
intermittency into the theory of infinitely divisible distributions?®. This gives us access to
the well developed mathematical apparatust?!l, An intermittency correction in terms of bdc
for a simple SGS model was obtained in Ref. [12]. For the comparison with the experiment
we use data sets, obtained from the big Russian wind tunnel®?, and plan to use data sets
from atmospheric boundary layer. ]

The last block in the same row in the Diagram refers to traditional SGS models {Smagorin-
skyl®], Bardina®) and their broad generalization!?%2¢],

All models are coming into a melting pot - block “SGS modeling for LES”, which serves
as a “free market” for SGS models. Here we use the test-filtering procedure (running LES
with two different resolutions) in order to determine dynamically weighing coefficients to
all models and to find optimal combinations of models for different applications. These
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applications, represented in the last row in the Diagram, range from the simplest (isotropic
turbulence) to the most complex (free-surface turbulent flows with fully nonlinear dynamical
conditions on free surface).

Each of these blocks in the Diagram is an independent and fruitful area of research. By
putting them together and focusing on LES implementation, we can see new connections
and a more general picture of the structure and modeling of turbulence is developing.
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ABSTRACT

The dispersion of smoke downstream of a line source at the wall and at y* = 30
in a turbulent boundary layer has been predicted with a non-local model of the scalar
fluxes, u¢ and v¢. The predicted plume from the wall source has been compared to
high Schmidt number experimental measurements using a combination of hot-wire
anemometry to obtain velocity component data synchronously with concentration
data obtained optically. The predicted plumes from the source at y* = 30 and at the
wall also have been compared to a low Schmidt number direct numerical simulation .
Near the source, the non-local flux models give considerably better predictions than
models which account solely for mean gragient transport. At a sufficient distance
downstream the gradient models gives reasonably good predictions.

INTRODUCTION

The prediction of thermal and mass concentration fields diffusing within turbulent shear flows
is of paramount importance in numerous applications in environmental science and engineering.
Current prediction methods are mainly confined to simple Gaussian diffusion models [1], solutions
of the Reynolds averaged equations for which the turbulent scalar flux rate must be modeled LZ—4]
and to random flight models which mimic the motion of individual tracers in turbulence through an
assumed Markov process [5-8]. Closure models for the scalar flux correlation usually Bave adopted
the gradient form in the absence of better knowledge about the physics of scalar transport, although
it has long been recognized [9-11] that gradient transport is incapable of representing the short time
dispersion near the source of contaminant plumes.

While many tests of the predictions of random flight and closure models have been made against
experimental data, until recently [12-17] such comparisons have not been in controlled settings
where accurate information about the turbulence scales and other correlations appearing in the
models are available. As a result, it has been difficult to discern what the relative strengths of
the two methodologies are, and especially whether the substantially greater computational cost of
random flight methods in comparison to closure models pays off by providing greater accuracy in
the prediction of the near field of scalar dispersal.

Past work of our research group [17] has provided a successful analysis of some important as-
pects of the physical mechanisms associated with the scalar flux in the near field of plumes. This
uses a Lagrangian technique which had heretofore been instrumental in exploring the mechanisms
of Reynolds stress and vorticity transport [18 - 20]. Among the accomplishments of this work was
a demonstration that the turbulent flux in the near field of plumes is due to meandering of the
turbulent field over the source, a physical process bearing no relationship to gradient diffusion.
It was also shown, however, that gradient transport physics does emerge at locations far enough
downstream of the source. Extensive tests of closure models versus random flight models were
made for the case of Prandtl number 0.71 in which a direct numerical simulation (DNS) of the
plume flow was used to supply an accurate solution. These tests showed the closure models to be
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generally superior to the random flight approach both in speed and accuracy, though serious errors
near the source were apparent due to the inappropriateness of the gradient model.

A new non-local turbulent transport theory has been derived as an outgrowth of the previous
formal Lagrangian analysis of transport using ensembles of backward particle paths [21]. This is
based on replacing ensemble averaging by spatial averaging over the initial locations of the fluid
particles. The probability density function (pdf) of initial particle position — which plays a critical
role in the theory — is derived heuristically and shown to be in good agreement with available
data. Applications of the approach to the scalar field in a fully developed channel flow with a
uniform source and to a spanwise line source plume, show the non-local formulation to offer some
considerable improvements over gradient transport models.

We have carried out closely coordinated experimental, numerical and modeling studies of dif-
fusion of near wall plumes. The inherent restriction of DNS to low Prandtl (or Schmidt) number
plumes in relatively simple geometries at low Reynolds numbers places a high premium on well
designed experiments to guide the development and testing of scalar transport models suitable
for realistic complex flow conditions. For this purpose we have experimentally obtained the mean
scalar concentration and concentration fluxes in plumes resulting from a spanwise line source of
scalar smoke particles originating at the wall of a turbulent boundary layer. Comparisons for high
Schmidt numbers, when combined with the Pr = 0.71 number model comparisons and evaluations
with the DNS, give a fairly complete picture of the capabilities of current models under a significant
range of shear flow conditions. Our analysis of the near source plume diffusion indicates how mod-
els need to be formulated to acquire a greater measure of physical accuracy. Implementation and
testing of one such model, using experimental data as the essential and final arbiter for determining
physical appropriateness, forms the main thrust of this paper.

EXPERIMENTAL FACILITY, INSTRUMENTATION AND METHOD

Experiments (cf.[22-23]) have been carried out in a turbulent boundary layer at R, = 725
(Rg = 1600) in which smoke was seeped into the sublayer through a downstream facing slot at a
location 7 m downstream of the boundary layer trip. The smoke, formed by smoldering incense,
was passed through steel wool to remove the tar and then through a heat exchanger to bring it to
the temperature of the flow. The smoke generation can be maintained in an equilibrium state for
up to two hours and can be reproduced from experiment to experiment. The particle sizes ranged
in diameter from 0.12—1.92 pm, and thus follow the flow quite well. Care has been taken to control
the smoke injection from the slot so as not to create a wall jet.

In oder to obtain concentration flux values, the U (streamwise, z-direction) and V' (wall normal,
y-direction) velocity components were measured with a calibrated 4-sensor hot-wire probe, which
accounted for binormal cooling of the sensors. It was positioned in a sheet of laser light, oriented
in the z — y plane, which illuminates the dispersing scalar smoke particles. In order to create this
light sheet, the beam from a 15 W copper-vapor pulsed laser was passed through a set of spherical
and cylindrical lenses to form an approximately lmm thick sheet. The illuminated smoke was
photographed on Kodak TMAX instrumentation film (ASA 400 and resolution of 400 lines/mm)
with a high speed Photonec 16 mm movie camera during the acquisition of synchronized hot-wire
data. These photographs constitute an ensemble of images with light intensities which were sub-
sequently mapped into quantitative values of scalar concentration by means of a calibration and
transformation procedure, described below. Averaging over the ensemble yielded contours of mean
concentration in the plane of illumination; the averaged products of the instantaneous velocity
fluctuations, u and v, with the instantaneous concentration fluctuation values yielded the scalar
fluxes.

The images recorded on film were digitized with a personal computer controlled image acquisi-
tion system, which consist of a Reticon 8 bit (256 grey levels), 2048 pixel line scanning camera and a
motorized film transport device. The averaged digitized image was contrast-enhanced to maximize
the range of usable grey levels. Particle sampling was carried out isokinetically at several locations
above the wall. The grey level intensities from the images were calibrated- against the measured
number density of the smoke particles, sorted by particle size with a Laser Aerosol Spectrometer,
over a matrix of locations for the same flow and particle emission conditions. The dependence of
the light intensity on particle diameter, d, was accounted for by determining an effective number
density, N.s¢, for an arbitrarily chosen particle size (from within the size range), that would scatter
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(4) which accounts for any systematic relationship between the velocity field and alterations to C
along particle paths. These changes may oceur either by diffusion or by the presence of sources in
the flow.

Equation (4) may be made the basis for a physically consistent transport model by replacing the
ensemble averages by averages over initial particle location. A detailed account of this methodology
may be found in [21]. Here, some of the principal ideas are summarized together with numerical
results. First, the theory appropriate to a uniform constant source of strength 2/R,S, is briefly
discussed; to be followed by consideration of plume flows. For the wall normal flux in a channel

flow (4) gives

T)‘é(y) = ’Ua(ﬁb - _C—a) + 'Ua(oa - Cb)- (5)
The formal Lagrangian expansion
va=v+ (Vo — Vo) + (Vo — V3), (6)

to which may be added the natural approximation

!

y—vy
Ty '

(7)

Vp N

where 3’ denotes the y coordinate of the particle at b and Ty is a Lagrangian integral time scale,
provides a basis for modeling v, in (5). For channel flow V — V, = 0 while the fluid particle
acceleration can be modeled as -

aP*
Vo—Vp = —Tzza—y , (8)
where the asterisk is meant to denote an average between 4/ and y. Similarly, the approximation
Ty (d*C”
Co—Cp = — +2 9

may be developed.
Now substituting volume averages over the initial locations of the fluid particles for the ensemble

averages in (5), and using (6 - 9) it follows that

—_— hoof 4 . ' h __ _ D *
v(Cp — Co)(y) = — /0 miy(C(y’) - Cy))p, y)dy — Tao /D (Cl) - Cw)) %y{'i (v, y) &y,
(10)

and
! 2c* P T2 25*
—_— y —y d°C , , aP Ty (d°C
- = — — dy — | — —==|— +2 11
'Ua(Ca. Cb) / R,S, dy2 p(y )y) Y dy R.S, dy2 + s ( )

where h is the channel height and p(y/,v) is the pdf for the chance that a fluid particle originating at
v/’ travels to y over a mixing time. In each of the terms in (10}, the identity C, — C, = C(y') — C(y)

is used. \
Equations (10) and (11) are useful once an explicit formula for p(y/,y) is provided. If it is
assumed that the pdf of v at any point in a flow is Gaussian, then it may be shown heuristically

that .
h z(m% (12)

€

1
/ —_
(Y, y) Worh

where [, = Vv2Ty,. This equation is exact for the case of a linear distribution of C in homogeneous

turbulence. o
Near boundaries it can be expected that the pdf of v departs from Gaussianity, so some mod-

ification to (12) is necessary near solid walls. For a fixed wall at y = 0, p(y’,y) = 0 for ¢ = 0,
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the same amount of light as the poly-sized particle cloud:

Toc ) diN; = dZ;;Neyy, (1)

where I is the average grey-level intensity at the corresponding concentration measurement location.
Thus at each node of the calibration matrix,

4\’ |
Nyr=|——1] N,
i ( deff) i (2)

When this effective number density is plotted against the average light intensity, as shown in Fig. 1,
a linear calibration relationship between these two variables is obtained. With this relationship, the
grey level intensities in each instantaneous image were converted to effective concentration values.
The value of the particle flux was determined across the vertical plane at z = 95, and this value
was used to set the release rate of the source term in the model, to be described below.

NUMERICAL SIMULATION AND MODELING

To analyze the physics of transport, ensembles of backward particle paths were obtained from a
direct numerical simulation of a line source plume developing in turbulent channel flow. The paths
were computed from a large set of previously computed and stored consecutive numerical velocity
fields. The simulation [17] has a mesh with 96 x 97 x 96 points in the streamwise, wall-normal
and spanwise directions, respectively, and a computational box of dimensions 1822 x290 x 683,
expressed in wall units. The numerical scheme consists of a pseudo-spectral method to solve the
full incompressible 3D Navier-Stokes equations. The velocity and scalars on off nodal points needed
in the path computations are obtained through tricubic interpolation {24]. The Reynolds number
of the simulation is R, = U;h/v = 145, where U; is the friction velocity and h is the channel
halfwidth. The mean velocity and Reynolds stresses for the simulation agree closely with those
found in previous studies [25]. In a further test of the code, a spatially uniform source flow was
computed and shown to agree very closely with previous simulations [12,13].

We have attempted to develop a physically accurate model of scalar transport using a La-
grangian decomposition of the scalar flux correlation, %W;c, into identifiable physical processes. This
correlation appears naturally in the averaged scalar transport equation

oC . dC du;e

_ 1 o
ot T Vigs, = "oz, T Rese’ C @ 3)

where C is the concentration field, C and c are its mean and fluctuating parts with overbars
denoting ensemble averaging, u; is the velocity fluctuation vector, U; is the mean velocity vector
and Q is a source term for the scalar. The basis for the model described below is the identity

Uiy Ca = i, & + ©3, (Cp ~ Ca) + 13, (Ca, —Ch), (4)

where the subscript a refers to the given endpoint of a large ensemble of fluid particle paths at time
t which are at the random locations b at an earlier time ¢ — 7. As discussed elsewhere in related
contexts and verified numerically {17-20], the mixing condition %;,¢, = 0 is satisfied for 7 large
enough. We define the mixing time, say 7, as the smallest interval at which %; ¢y =~ 0. 7,,, may
be thought of as the time over which events in the flow cause the correlation between u; and c to
develop. Equation (4) thus shows that for times 7 > 7,,, ;¢ is a result of the processes represented
by the last two terms.

The second term on the right-hand side of (4) represents transport arising from the displacement
of fluid particles. Tt is a formal statement of the classical argument that in the presence of a gradient
in the mean scalar field, turbulent eddying motion should lead to a net transport. In particular, the
resulting directional dependence of the scalar flux on the gradient of C' is created by fluid particles
carrying on average — without alteration — the local mean scalar field of their starting point to their
final point over a mixing time. Non-gradient sources of transport are contained in the last term in
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since fluid particles on the surface have no chance of migrating to interior points in the flow. A
convenient means of enforcing this condition is to generalize (12) via

@ -w)? W)
p(y,y) = = (e St _ ‘2<’§J%)
V2rls

(13)

e

where I3 = min{ls,y/3+/2}, a condition assuring that foh (v, y)dy’ =~ 1 for y near the boundary.
Numerical computations show that 3 slightly deviates from I5 only in the region y* < 25.

Despite the heuristic derivation of (13), its general validity is supported by comparisons with
measurements of p(y’, y) obtained in a turbulent channel flow. Fig. 2 shows predictions of p(y/',y)
at yt = 7.4 and y* = 36.6 obtained from a direct numerical simulation compared to (13). It is
clear that the latter gives a reasonable estimate of p(y',y) including an excellent prediction of the
scale of its support. The model curves do not show the effect of the boundary to the same degree
as the DNS results, suggesting that (13) does not sufficiently take into account the departure of
the pdf of v from Gaussianity near the wall. On the whole, however, (13) provides a sufficiently
accurate description to make a useful implementation of the theory.

Application of (5) and equivalent formulas for We give excellent predictions of channel flow
containing a uniform source as shown in [21]. It was found that the first term in (10) is a dominant
effect in wall normal transport and may be used by itself to most efficiently capture the important
physics for predictive schemes. Now we concentrate on an extension of the method suitable for two-
dimensional plumes. In this case, previous work [17] showed that the physics of transport along a
plume is distinctly different near and far from the source. In the former case, transport is primarily
due to the effect captured in the last term in (5), which represents fluid particles picking up the
scalar as they meander through the source. Away from the source the physics are well accounted
fcg by the first term in (10). Proceeding formally, we have that near the source the most important
effect is

! _ 0 .
1,(Co — Cp) = — / y—T—;:l—y ( ', Q(s)ds) p(x', x)dx’ (14)

where [ Q(s)ds is the amount of scalar acquired by a fluid particle arriving at a given point x after
leaving from x’. Note that for constant @, this term is zero, which is why it does not appear in
(11). An estimate of [ Q(s)ds for fluid particles traveling from x’ to x must be found if (14) is to
be evaluated. ‘Here it will be assumed that the only paths for which [ Q(s)ds # 0 are those for
which the source lies between x’ and x, i.e. x’ lies in the ‘shadow’ behind the source as viewed
from x (see Fig. 2). Thus, every fluid particle leaving from the region contained within the dashed
line in the figure and arriving at x after a mixing time is assumed to pass over the source, while no
others do so. This probabilistic model is consistent with the approximations such as’(7) and our
intuitive sense of where the particles most likely to cross the source come from.

To evaluate (14), the source region is discretized into small sections represented by the grid as
shown in Fig. 3. For each of these, such as the one which is dark shaded, it is assumed that all fluid
particles starting out in the region contained in the dashed outline will pass through this part of
the source and thus have a non-zero value of [ Q(s)ds. The amount of [ Q(s)ds can be estimated
as the local magnitude of the source in a particular area, say Q;; for the 4, jth box, times the time
it takes the fluid particle to cross it, say 7. The latter may be estimated as the characteristic
dimension of the grid spacing Az divided by the speed at which the fluid particle passes over this
area. The estimate may then be made:

Az -
s)ds = Qi X
/Q( 1= Qi X =T G =V
The width of the dashed region behind the source element is given by the small number Az, so
that after substitution of (15) into (14), it is justifiable to collapse the area integral in (14) to just

a line integral along the length of the shadow region in Fig. 3. Collecting these results together
gives

(15)
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where Q; = QijAA;, AA;j is the area of the (i,j)th source element, X;; = (z — z;)/l1,

Yy = (y— vi)/las Rij = /(2 — 25 + (y — 93g)2/h and X = Un/ly.

An equivalent analysis of the streamwise flux may be performed with similar results. The
complete non-local closure may be applied to the study of plume flows in a wide variety of circum-
stances.

RESULTS

Fig. 4 illustrates the improvement over a gradient law which is attainable from (16). Pre-
dictions of B¢ are given along the line y* = 43.5 through a plume centered at z+ = 0,3t = 30.
Equation (16) shows very good agreement with the DNS while the gradient model is subject to
extremely large errors in the vicinity of the source. These only diminish to a reasonable level by
zt = 250, after which point the gradient model appears to be a reasonable approximation. The
different roles of the two terms in (16) is shown in Fig. 5. Near the origin of the plume the dis-
placement effect is negligible and transport is entirely due to the source term. Downstream, the
situation is reversed as the displacement mechanism begins to dominate transport by z+ = 200.
These results are fully consistent with the previous evaluation of (5) using ensembles of particle
paths, [17]. It should be noted that the results from the DNS shown here have not been'sufficiently
averaged to remove some of the obvious statistical variations. This is most true of the gradient
curve in Fig. 4 which was evaluated from finite differences of the mean scalar field computed in
the DNS. -

Contours plots of C' determined from the gradient model, the DNS and experiment are shown
in Fig. 6. Clearly the gradient model does not capture the character of the DNS plume near the
source. This is shown even clearer in FFig. 7 where the values of C along the wall are plotted.
Further downstream the gradient model, the DNS and the experiment are in relatively good agree-
ment. Experimental values of the fluxes u¢ and T¢, were measured; they show the expected trend
in sign and magnitude in the buffer layer and in the lower part of the logarithmic layer.

CONCLUSION

A non-local closure for turbulent scalar flux was derived as an extension of a previous La-
grangian transport analysis. Assuming the availability of the appropriate length and time scales
of the underlying turbulent flow field, the closure was shown to be effective in capturing many
aspects of scalar transport which are erroneously predicted by gradient closures, by comparison to
experimental and DNS results.
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ANOMALOUS SCALING OF A SCALAR FIELD ADVECTED BY TURBULENCE

Robert H. Kraichnan
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ABSTRACT

Recent work leading to deduction of anomalous scaling exponents for the iner-
tial range of an advected passive field from the equations of motion is reviewed.
Implications for other turbulence problems are discussed

Understanding of the dynamics of the small scales of turbulence is essential to construction of
improved parametrization of small scales in computer modeling of turbulence. It is also an out-
standing challenge in non-equilibrium statistical mechanics. For over 50 years, thinking about the
small scales of turbulence has been dominated by the cascade ideas first presented by Kolmogorov
in 1941 and modified in 1962 to include phenomena associated with intermittency of dissipation
[1]. It has long been recognized that the small scales of turbulence are intermittent and that the
intermittency of the velocity derivatives increases with Reynolds number. An unsettled question
is whether the increase persists to infinite Reynolds number so that the scaling exponents of the
inertial-range structure functions at infinite Reynolds number differ from the total self-similarity
by Kolmogorov in 1941 (K41) [1].

In the years since 1962, a very large number of models of intermittency in the inertial and
dissipation ranges have been proposed and compared with experimental data [1]. In particular,
many fractal models of inertial range structure have been offered, some of great sophistication and
mathematical complexity. One thing conspicuously missing in almost all of this work is contact
with the equations of motion; the models are not derived from the Navier-Stokes (NS) equation.
The present paper reviews recent work in which this pattern has been broken in the case of a
particular limit of the advection of a passive scalar contaminant field by a random incompressible
velocity field. Non-trivial anomalous scaling exponents for the inertial-range structure functions of
the scalar field are deduced from the equations of motion [2,3]. The implications of the scalar-field
analysis for two other problems, Burgers and NS dynamics, are discussed qualitatively.

Successive random strainings of flow subvolumes containing a passively advected scalar field
tend to produce intermittency in the gradient of the scalar field. If there were no counteracting
mechanism, the probability distribution function of the scalar gradient would become ever more
intermittent as the number of effective independent steps of straining increases. Thus the steady-
state intermittency would increase with increase of ratio of macrolength scale to dissipation length
scale (increase of Péclet number). A corresponding argument suggests an increase of intermittency




of vorticity with Reynolds number as a result of successive strainings. The increase is compounded
by vorticity intensification as vortex tubes are stretched.

What can oppose the increase? One mechanism that can inhibit growth of intermittency
is molecular diffusivity/viscosity, which relaxes a non-Gaussian field toward Gaussian statistics.
Crudely speaking, this is because unusually strong spikes in the field are preferentially relaxed
(spread in space). The same effect can come from the action of eddy diffusivity/viscosity associ-
ated with scales smaller than those suffering the relaxation. At a given scale size in an inertial
range, the eddy diffusivity/viscosity effects are of the same order as the straining effects that act
to increase intermittency. Thus power counting, order-of-magnitude arguments, and associated
dimensional considerations, are inadequate to determine whether increase of intermittency with
decrease of scale size eventually is halted by the relaxation effects [4].

Eddy relaxation effects characterize both NS dynamics and the advection of a passive scalar field
by a stochastic velocity field. They take a degenerate form in Burgers dynamics, where nonlinearity
produces shocks that eventually relax without loss of form under the combined action of molecular
viscosity and self-advection. Burgers dynamics exhibits extreme intermittency of velocity gradients.

Turbulence may be examined in either the physical space (z space) or wavenumber (k space)
domains. There are also hybrid representations, such as by wavelets or by subfields in z space that
are band-limited in k space. There are some pitfalls in passing among different representations.
In particular, one must be wary of asserting that certain quantities live exclusively in the inertial
range.

Isotropic absolute-value structure functions for an isotropic, homogeneous velocity field u(x)

may be defined by
Sa(r) = (lu(x +r) — u(x)["), (1)

where ( ) denotes ensemble average. If the inertial-range spectrum of the velocity field is E(k)
k=33 or something near to that form, then there is a close link between description by structure
functions and band decomposition: If the statistics are not too exotic, and n is not too large, the
value of S} (r) is dominated by contributions from O(1/r) velocity-field wavenumbers. Thus there
is justification for linking “scale size” r to a band of wavenumbers k£ and speaking of “inertial-range
scales 77,

The concept of a pure inertial-range of r for structure functions is less justified when one turns
to dynamics. The equation of motion for S;(r) involves molecular dissipation in an essential way,
even when r is in the inertial range [2]. This is easily understood by taking the simplest case of
Gaussian u(x), expanding the right side of (1), and decomposing the average into sums of products
of covariances. If r is in middle of a long inertial range, the covariance {u(x + r)-u(x)) decays
negligibly from direct molecular dissipation. However, the variance (Iu(x)|2) also occurs. Its decay
rate is finite and independent of r because its spectral support includes the dissipation range of
wavenumbers. Molecular viscosity appears directly, and importantly, in the equation of motion for
S2(r) at inertial-range r. It should play a central role also in the construction of dynamical models
of the inertial-range Si(r).

Suppose that there is a power-law scaling range of r such that

Sa(r) o< 1%, (2)

where the exponents (, are independent of r. It is useful to define the terms “regular scaling”,
“anomalous scaling”, and “progressive scaling”. Scaling shall be called regular here if {,, /(,, = n/m.
This corresponds to full similarity of statistics at all 7 in the range. A more concrete description
may be given in terms of the band-limited fields. Suppose that the entire scaling range of k = 27 /r
is divided into decade bands in wavenumber. Then regular scaling implies that all moments of the
z-space velocity field in a band are independent of band location, provided that the moments are
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normalized by the variance of the band-limited velocity. Regular scaling corresponds to the K41
picture of the inertial range.

All scaling that is not regular shall be called anomalous here. If the scaling range is infinitely
long, and structure functions at macroscales r are finite, Holder inequalities require (,/n < (n/m
if n > m; as n increases, anomalous exponents can only decrease below regular values. Progressive
scaling shall denote anomalous scaling in which the exponent differences (,+1 — (» become ever
smaller as n increases.

Burgers equation

du Oou 0%u
7t =V 3)

evolves the velocity u(z,t) of an infinitely compressible fluid of viscosity . Shocks form under (3)
as fast-moving fluid overtakes slow-moving fluid. The inertial range at large Reynolds number is
asssociated with the neighborhoods of the shocks. The shocks have a characteristic sawtooth shape
which represents coherence over a wide range of wavenumbers. Dissipation is concentrated within
the shocks and thereby is highly intermittent. The structure functions Sp(7) = (Ju(z + r) — u(z)|™)
for inertial-range r have the form

Sa(r) = ugr/L, (4)

where uq is the root-mean-square (rms) velocity and L is a macroscale for velocity fluctuations.
The support of S2(r) is dominated by the shocks: r/L in (4) measures the probability that a major
shock occurs between z + r and z while ug measures the jump in velocity at a major shock.

Equation (4) is an extreme example of anomalous scaling. It is not progressive scaling. The
differences (n4+1 — ¢ degenerate to zero and so do not decrease as n increases. The strong in-
termittency of high-Reynolds-number Burgers flow arises from the shocks, which are structures
involving coherence over a wavenumber range that extends from 1/L to dissipation wavenumbers.
Nevertheless, it is easy to demonstrate that the cascade of energy toward higher wavenumbers is
local in the wavenumber space [5]. The straining across a distance r that sharpens the shocks and
maintains them in a sharp state is dominated by contributions from wavenumbers O(1/r). Spatial
coherence and dynamical locality in wavenumber do not preclude each other.

The scalings of S§(r) and S¥(r), features closely associated with existence of shocks, are given
correctly by an approximation that is quite incapable of explicit description of shocks or any coher-
ent spatial structures. This is the Lagrangian-history direct-interaction approximation (LHDIA) [5].
The LHDIA uses only limited information from Burgers equation: conservation laws and invariance
to Galilean transformations as incorporated in expressions quadratic in the interaction coefficients
of individual wavenumber-triad amplitudes. Cross terms between different wavenumber-triad coef-
ficients, which could express phase coherence in physical space, are absent. An implication of the
success of this approximation is that relatively elementary properties of the interaction coefficients
directly imply the scaling, so that it is possible to recover the latter without being able actually to
describe the structures in space. In this picture, the shock structures are regarded not as the cause
of the scaling but as a parallel manifestation of an underlying dynamics.

The equation of motion of a passive scalar field T(x,t) advected by an incompressible velocity
field u(x,t) is ’

a
(a + u(x,t)-V) T(x,t) = kV2T(x, 1), (5)
where x is molecular diffusivity. The inertial-range structure of T depends on that of u. In order
to clarify what causes what, it helps to start with a Gaussian u field rather than a solution of the
NS equation. Maximum simplification occurs when u(x,t) has a correlation time that is infinitely
short compared to any eddy circulation time. This limit yields exact expressions for the effects of
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advection on scalar-field statistics [6,7]. It can be approached in such a way that the single-particle
and two-particle eddy diffusivities resemble those of more realistic fields.

In the rapid-change limit, the exact evolution equation for the structure functions S5.(r) =
(|AT(r)|*"), where AT(r) denotes T(x + r) — T(x), can be derived as :

T (r z.(r
6539,;( ) _ rd2'1 % (rd"lﬂ(r)és—g:u) = Kdzn(r)- (6)

Here d is space dimensionality, n(r) is the two-particle eddy-diffusivity scalar defined by

o0 =3 [ (e, 0syuce, ) at, ™
with §yu(r,t) = [u(x,) — u(x +r,t)]-r/r, and
Jan(r) = 20 (AT (V2 + V2)AT()) ®

is the dissipation term anticipated in the discussion following (1). It is assumed that the velocity
field is switched on at t = 0 and that T(x,t = 0) is Gaussian [2].

The difficulties in turbulence theory usually are ascribed to the nonlinearity in stochastic quan-
tities, which poses the so-called closure problem. In the present case, the dynamical effects on
ST.(r) of the advection term in (5), which contains all the stochastic nonlinearity, are fully and
exactly described by the #(r) term in (6), so what is usually called the closure problem disappears.
However, another kind of closure problem remains: the dissipation term Jy,(r) in (6) contains
space derivatives in such a way that it cannot be expressed in a closed form that involves only the
structure functions. Closed equations can be written for the general 2n-point, single-time moment
of T', but they are much more complicated than (6) [7]. Equations (6)—(8) do form a closed set for
n=1.

Despite the lack of closure of (6)-(8), it has been possible to make some progress in deducing
the inertial-range scaling exponents from them. A key step is the introduction of the conditional
mean

H[AT(r)] = (V2 + V2)AT(®)|AT(r)) , (9)

where (-|AT(r)) denotes ensemble average conditioned on a given value AT(r). J,(r) may be

written
Jon(r) = 20 ([AT ()P TH[AT(T)]) . (10)

It can then be argued persuasively (but not yet rigorously) that there are only two forms for
H[AT(r)] that permit steady-state power-law scaling solutions of (6) in the inertial range [3].
Either H has the form r—2/2h(AT/r¢2/2), where h is a function to be determined, or else H is a
linear function of AT of the form f(r)AT(r). The former case yields regular scaling and the latter
case leads to a fully-determined expression for J,(r),

Jan(r) = WS (A(r)/ 55 (r), (11)

where A(r) = V25¥(r) — V255(0), and anomalous scaling of a precise. form:

(on = 3V40d( + (d - 2)? - H(d - (2), (12)

where 7(r) o 74", ST (7) & 7 in the inertial range and {; = 2 — ((). As n — 0, (o x n'/%.
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An independent argument involving realizability inequalities on the dissipation field V2T appears
to rule out regular scaling [3], so that, if the analysis is valid, (12) remains as the only possible
power-law scaling in the inertial range. This result was obtained under the special assumption
of very rapidly changing velocity field, but some features may be of broad applicability. Plausible
arguments can be made that the dependence of the (2, on {(7) is unchanged if the velocity field has
finite correlation times but remains Gaussian. Corrections to the (3, are expected if the velocity
field displays intermittent (anomalous) scaling.

It was noted earlier that some scaling properties of Burgers turbulence are correctly given by a
statistical approximation (LHDIA) that is incapable of describing the shocks associated with the
scaling. If (12) is correct, something analogous may be going on in the passive scalar case. The
high-order anomalous exponents certainly are strongly affected by spatial structures in which the
scalar gradient is exceptionally large. Such structures are not captured by statistical description in
terms of the SZ (r) alone, and the scalar-field analysis sketched above certainly takes no account
of specific spatial structures. The hope raised is that it may be unnecessary to do so if only scaling
exponents are sought.

The Burgers scaling discussed earlier can be obtained from a framework like that erected for
the passive scalar by adding heuristic elements associated with LHDIA. The advection term in
the equation of motion for S3 (r) cannot be written exactly as for a passive scalar with rapidly
changing velocity field. However, a very similar form is obtained by doing renormalized perturbation
- approximation based on LHDIA. The result is an equation like (6), but with an important difference:
a factor of 2n appears in the advection term on the left side because, in contrast to the scalar case
where there is only one u factor, any of the 2n factors u in <u2"8u/6m) may be regarded as the
advecting velocity.

For inertial range r, 7(r) « r in Burgers dynamics, where S§(r) o r. One way to see this
is to note that the cascade rate n(r)r=25%(r) mediated by eddy viscosity is then independent of
r. The similar fact for NS under K41 assumptions is that n(r)r=25¥(r) is independent of r with
n(r) « r4/3, §3(r) « r*/3. In both cases, V? is expressed by r~2. With 5(r) « r, the analog of (6)
gives the correct Burgers scaling 53,(7) «x 7 by balance of advective and dissipative terms, if the
dissipative term is taken in the form corresponding to (11). It is easy to see independently that
this form is exact in the shock-dominated Burgers inertial range, where dissipation is confined to
the shocks.

It is unclear to what extent similar procedures are meaningful in three-dimensional NS dynamics,
where intense vortex tubes and sheets are expected to make major contributions to high-order
structure functions in place of the shocks of Burgers dynamics. One can write a balance equation
like (6) in steady state and argue as in 3] that, if both sides scale as as powers of r, then anomalous
scaling is possible only if the conditional mean corresponding to (9) is linear so that the dissipation
term has a form like (11). '

To go further, some estimate must be made of the advective term. Here the vector character of
u, incompressibility, and pressure all make things more complicated than in the Burgers case. An
LHDIA-like perturbative evaluation can be carried out, as in the Burgers case, but this has not yet
been done. Plausibly, the Burgers and rapid-velocity-field passive scalar cases represent limits for
three-dimensional NS scaling. Burgers presents the most rapid possible growth of intermittency
with decrease of scale size; there is no disruption of coherence by eddy effects. The passive scalar,
on the other hand, appears to give the best possible opportunity for relaxation of intermittency by
eddy transport effects.

The stretching of vorticity in an incompressible three-dimensional NS field would seem much
more analogous to stretching of scalar blobs than to the formation of shocks under Burgers equation.
If so, the n!/2 behavior for the scaling exponents of a scalar field given by (12) may be a meaningful
zeroth approximation to the exponents of the NS velocity field. At the present time this is only
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speculation. However, Nelkin has shown that models incorporating such behavior can be consistent
with experimental data on NS structure functions [8]. He points out that the n'/? dependence can
be related to a class of fractal processes recently described by Novikov [9)].

In general, the determination of higher scaling exponents has proved very resistant to analytical
treatment. The shock-mediated intermittency of Burgers and the scalar advected by a rapidly-
changing velocity field are particularly friendly cases. It may be of general significance that the
deduction of scaling exponents for the passive scalar reviewed above involves conditional means .
in an essential way. Most analytical work on turbulence has been related more or less closely to
renormalized perturbation analysis. Systematic approximations for moments can be constructed
fairly straightforwardly by such analysis, but this is very much not the case for conditional means.
The present analysis suggests, therefore, that nonperturbative methods should be sought if higher
statistics are the goal.
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CONVECTION IN A NEMATIC LIQUID CRYSTAL WITH HOMEOTROPIC
ALIGNMENT AND HEATED FROM BELOW
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ABSTRACT

Experimental results for convection in a thin horizontal layer of a
homeotropically aligned nematic liquid crystal heated from below and
in a vertical magnetic field are presented. A subcritical Hopf bifur-
cation leads to the convecting state. There is quantitative agreement
between the measured and the predicted bifurcation line as a function
of magnetic field. The nonlinear state near the bifurcation is one of
spatio-temporal chaos which seems to be the result of a zig-zag insta-
bility of the straight-roll state.

INTRODUCTION

Convection in an isotropic fluid heated from below is well known as Rayleigh-Bénard
convection (RBC).l’2 However, this phenomenon is altered dramatically in the case of a ne-
matic liquid crystal (NLC). Here we discuss what happens when the NLC has homeotropic
alignment (i.e., has a director which is aligned in the vertical direction parallel to the heat
flux) and is heated from below.3*® The usual Rayleigh-Bénard destabilization due to a
thermally-induced density gradient is opposed by the stiffness of the director field which
is coupled to and distorted by any flow. It turns out that relaxation times of the director
field are much longer than thermal relaxation times. For that reason it is possible for direc-
tor fluctuations and temperature/velocity fluctuations to be out of phase as they grow in
amplitude. This situation typically leads to an oscillatory instability (also known as over-
stability), and the bifurcation at which these time-periodic perturbations acquire a positive

growth rate is known as a Hopf bifurcation.® This case is closely analogous to convection
in binary-fluid mixtures with a negative separation ratio.”® In that case, concentration
gradients oppose convection, and concentration diffusion has the slow and heat diffusion
the fast time scale. It turns out that the Hopf bifurcation in the NLC case is subcritical,®
and that the fully developed nonlinear state no longer is time periodic. Instead, the statis-
tically stationary state above the bifurcation is one of spatio-temporal chaos with a typical
time scale which is about two orders of magnitude slower than the inverse Hopf frequency.®
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However, it was possible to actually measure the Hopf frequency by looking at the growth
or decay of small perturbations which were deliberately introduced when the system was

close to the conduction state and near the bifurcation point.?

A convenient aspect of thermal convection in NLCs is that an external magnetic field
will couple to the fluid because the diamagnetic susceptibility is anisotropic. A field of
modest strength can have a dramatic effect on the phenomena which are observed. This
adds greatly to the richness of the physics accessible to the experimentalist. In the case of
homeotropic alignment to be discussed, the field is parallel to the heat current.

An interesting aspect of NLC convection is that we are dealing with a system whose
equations of motion are well known,1911 but significantly more complicated than the
Navier-Stokes equations for isotropic fluids. The usual viscosity 7 and conductivity A
are replaced by six viscosities a;,7 = 1,...,6 and two conductivities Ay and A, and the
equations for momentum and energy balance must be coupled to an equation for the direc-
tor field which contains three elastic constants k;;,7 = 1,2, 3. In spite of these complexities,
it has been possible to carry out quantitative stability analyses, and under some condi-
tions predictions in the weakly nonlinear regime have been made.!2:13:14 Thus, one may
argue that comparison of quantitative experiments on thermal convection in NLC’s with
corresponding detailed theoretical calculations provides an excellent testing ground for the
applicability of methods of stability analysis and of weakly nonlinear theory to systems
which are more complex than isotropic fluids.

From another point of view, thermal convection in NLCs provides a rich system for the
study of general problems in pattern formation. During the last two decades interest in
this nonlinear topic has seen a revival in the physics community, and a great deal has been
learned from experiments about nonlinear pattern-forming dissipative systems.1%16 The
case under consideration here leads to a spatlo-temporally complex pattern often referred
to as spatio-temporal chaos (STC).

The most common NLC for the study of Rayleigh-Bénard convection has been p-
methoxy benzylidene-p-n-butylaniline (MBBA). The reason for this apparently is historical;
MBBA was the first material for which all relevant physical properties, which are necessary
for comparison between experiment and theory, had been measured. However, a recent sur-
vey of the literature revealed that the properties of some of the cyano-biphenyls are known
nearly as well. These materials are far more stable and less toxic than MBBA, and thus
have advantages for precise experimental work. They are also relatively inexpensive, and
this is an important factor for thermal convection because comparatively large amounts

3 17 o _
(typically perhaps 30 ¢m”) are required.'’ In the present work we have used 4-n pentyl

4/—cyanobiphenyl (5CB).
THEORETICAL PREDICTIONS

As for Rayleigh-Bénard convection in an isotropic fluid, the conduction state has ro-
tational symmetry in the horizontal plane because its director is oriented vertically and
parallel to the magnetic field and the heat flow. Thus, patterns of arbitrary angular ori-
entation should form unless the boundary conditions of the experiment select a particular
direction.

The first instability should be a Hopf bifurcation, that is the disturbances which first
acquire a positive growth rate should be time-periodic.3# As the ma.gnetlc field is increased,
the threshold for convection is predicted to shift to larger values.513 This was confirmed by
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early experimental work on this system.® For sufficiently high fields the primary bifurcation

is predicted to be to a stationary state of convection.!3 There is a codimension-two point
where the two bifurcation lines meet. The situation is somewhat similar to binary-mixture

convection,!® which has been studied extensively in recent years.

The quantitative aspects of the instabilities are determined by four dimensionless pa-
rameters which are formed from combinations of the fluid properties.18 They arel? the
Prandtl number 0

PRl
the ratio between the director relaxation time and the heat diffusion time
a/2)K
F= (o2/2)ky , (2)
k33
the Rayleigh number
_ agpd3 AT

= (aa/2)ry

(3)
and the dimensionless magnetic field
h=H/Hp, @

with the Fréedericksz field

7w [k33
He) = 3\ oxa (5)

The time scale of transients and pattern dynamics is measured in terms of

ty = dz/lc" . (6)

As usual, &) is the thermal diffusivity /\" /pCp. Both h and R are easily varied in an

experiment, and may be regarded as two independent control parameters. The availability
of h in addition to R makes it possible to explore an entire line of instabilities. The
parameters F, o, and t,, are essentially fixed once a particular NLC and temperature range
have been chosen, and even between different NLCs there is not a great range at our
disposal. For 5CB at 26° we have ¢ = 272 and F = 460. The critical value R, of R and
the fluid parameters determine the critical temperature difference AT, for a sample of a
given thickness d. The realistic experimental requirement that AT, ~ a few °C dictates
that the sample thickness should be a few mm. Typical values of H F|| are near 20 Gauss.

Thus modest fields of a kGauss or so are adequate to explore the entire range of interest.

A linear stability analysis was carried out by several investigators.4’19’20’21 A very
detailed analysis of this case was presented recently by Feng, Decker, Pesch, and Kramer

(FDPK).13 These authors also provided a weakly nonlinear analysis, and we shall briefly
describe their results.

For low fields, FDPK predict that the first instability will be a subcritical Hopf bi-
furcation. The critical Rayleigh number R (H) varies typically from about 1500 at small
fields to about 3400 for A ~ 50. The details of R.(H) depend upon o and F, and have
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to be computed for each particular case. The wavevector which first becomes unstable is
predicted to vary from about 3.2 to 4.6 as the field increases from A = 0 to h ~ 50. The
Hopf frequency is expected to be between about 12 and 2 over this range. It would not
be too helpful to be more specific here since the details of all these parameters depend
upon ¢ and F. At h = h° ~ 50 (assuming typical parameter values for MBBA), the Hopf
bifurcation line meets a stationary bifurcation at a codimension-two point. At this point,
the Hopf frequency is predicted to be finite (close to 2) and there is a discontinuity of about

10% in the wavevector. The stationary bifurcation for A > h¢ initially is also predicted
to be subcritical, but for h 2 63 (for typical MBBA parameters) it is expected to become

supercritical. At h = h® ~ 63, the coefficient of the cubic term in a Ginzburg-Landau
equation vanishes and a tricritical point is predicted for the stationary bifurcation branch.

EXPERIMENTAL RESULTS

Early measurements for this system were made by Guyon, Pieranski, and Salan® (GPS).
These authors used the NLC MBBA. Their sample had a thickness d = 5 mm, yielding
Hp | = 15 Gauss. It had a circular cross section, and a diameter of 54 mm.22 At half-

height, several thermocouples were mounted in the fluid to monitor the local temperature.
A heater wire near the thermocouples also traversed the sample. It is difficult to say
whether these intrusive devices had an influence on the hydrodynamics. The temperature
stability of the water baths above and below the sample was of the order of 0.01°C. GPS
measured the onset of convection by monitoring the response of their thermocouples to
a temperature perturbation induced by a heat pulse delivered by the heater wire. If this
response grew (decayed) as a function of time, the threshold of their system had (had
not) been exceeded. They were also able to determine a characteristic frequency from
the thermocouple response during the transients which led to the convecting nonlinear

state. The results for AT, are qualitatively consistent with the theoretical results!3 for
the laterally infinite system. The magnitude of AT, at a given field was within 10 or 20
% of the theoretical value. AT, increased with H up to H ~ 580 Gauss(h ~ 33), and
then decreased again. The maximum was interpreted!3 as the predicted codimension-two
point which for the laterally infinite system is expected at At = 51, although it occurred
at a rather low field. The measurements also provided clear evidence for hysteresis at the
primary bifurcation. The measured Hopf frequency had a maximum near h = 13, whercas
the theory predicts the maximum to occur near h = 32. The frequency was generally of
the same size as the one given by the theory, but at the highest field values h ~ 33 it was
still much larger than expected for h = h®. We conclude that these experiments clearly
established a number of central features of the bifurcation. These include its subcritical
nature and the time-periodic behavior of the growing perturbations of the conduction state.
However, at the quantitative level there are substantial differences between the experiments
and the theory for the laterally infinite system.

We used a circular cell with d = 3.94 mm and r = 41.9 mm, corresponding to a ra-
dial aspect ratio I' = r/d = 10.6. The fluid was 5CB. For this system, #, = 136 s and
H F|| = 21.1 Gauss. Monodomain homeotropic samples were prepared before each exper-

imental “run”. The heat current was increased in small steps while the top temperature
was held fixed at 19°C, until convection occurred. The heat current then was decreased
again in small steps until convection ceased. At each heat-current value, the bottom-plate
temperature was measured at one-minute intervals for two hours (=~ 53t,). The tempera-
ture measurements and the heat current were used to determine the Nusselt number, which
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is given by

N=ders/
Here )\" is the conductivity of the homeotropically aligned sample, and

Aeff = —Qd/AT

is the effective conductivity and contains contributions from diffusive conduction and from
hydrodynamic flow. While the current was steady, images of the convection pattern were
acquired by the computer-interfaced CCD camera.
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Figure 1. Nusselt number measurements for h = 9.4 (H = 200 Gauss). Open (filled)
circles were obtained with increasing (decreasing) steps in AT.

Figure 1 shows N as a function of AT for H = 200 Gauss (h ~ 9.4). Surprisingly, N
decreased below one when convection started. This can be understood because the conduc-
tivity of a sample with parallel alignment, in which Q is perpendicular to 7 (A} ), is much
less than the conductivity of the homeotropic case (/\").23 The direct hydrodynamic con-

tribution to the heat flux is smaller than the decrease in the heat flux due to the deviations
of the director from parallel alignment caused by the flow. As the current decreased, the
conduction state was reached at a value of AT equal to ATs < AT, showing the predicted
and previously observed® hysteresis. For small fields (H < 250G), the conduction state
reached from the convecting state had a conductivity less than )\“, correspondingto N < 1, °

because the hydrodynamic flow experienced by the sample had introduced defects which
reduced the average conductivity below /\". At the field value of this experiment, the elimi-

nation of defects from the sample occurred on a time scale which was much longer than the
duration of the experiment. The visual appearance of the conduction state reached after
convection is interesting. It had the appearance of curdled milk, with the clusters of non-
homeotropic alignment corresponding to the curds suspended in a nearly-clear background
fluid of homeotropic alignment.

From data like those in Fig. 1, values of the critical temperature difference AT, and
of the temperature difference at the saddle node AT were determined with an uncertainty
of about 0.5 %. The corresponding Rayleigh numbers are shown in Fig. 2 as a function
of h? (solid circles: AT, open circles: AT;). The solid line in the figure is the theo-

retical prediction,!3 evaluated for the properties of 5CB at the mean temperature of the
experiment. As can be seen, the agreement with the measurements is excellent. The small
deviations at large h are probably caused by excessive variations of the fluid properties over
the temperature interval of the measurement when the temperature of the cell bottom is
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rather close to Tyy. There are as yet no predictions for Rg. It is interesting that R is only
about 10% below R.. Nonetheless, a calculation may turn out to be difficult because there
is already severe distortion of the originally homeotropic director ficld by the fluid flow, as
evidenced by the defects encountered after the conduction state is reached once more.
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Figure 2. Solid circles: Critical Rayleigh numbers for the onset of convection as a function

of h2. Open circles: Rayleigh numbers at the saddle node where convection ceased when
the heat current was lowered.

The pattern which evolves beyond the bifurcation is extremely interesting. The first
two rows of Fig. 3 show typical images of the flow field immediately above the convective
threshold for A = 9.4. By examining relatively rapid time sequences of images, it was
found that, on the time scale of the inverse of the expected Hopf frequency, the convection
rolls were steady rather than travelling or standing waves. This is not in contradiction
to the predicted Hopf bifurcation because the subcritical nature of the bifurcation leads
to a finite-amplitude state at threshold whereas the theory pertains to an infinitesimal
perturbation of the conduction state. A similar situation is encountered in binary-mixture
convection, where for a range of values of the separation ratio the convection rolls are steady
when AT = AT, even though small perturbations of the conduction state are travelling
waves. In our experiment, there unfortunately was no way to determine the frequency of
small-amplitude transients as had been done by GPS.

On a much longer time scale, the pattern evolved continuously. This is illustrated by
the images in Fig. 3, which are from a single experimental run with constant external con-
ditions. They were taken at the times indicated in each image, in units of £, = 136 s, which
had elapsed since an arbitrary origin at which the pattern already had been equilibrated
for some time. Even in runs of much longer duration (up to two weeks or 9000¢,) no steady
state was reached. The nature of the pattern did not change noticeably over the field range
5 < h < 16 covered by the experiments, although no quantitative studies as a function of
h have been carried out. It appears that the patterns are disordered both in space and in
time, providing an example of spatio-temporal chaos.

The bottom row of Fig. 3 gives the modulus of the Fourier transform. The trans-
forms were base on the central parts of the images, by using the filter function W (r) =

cos®[(n/2)(r/rg)] for r < rg and W(r) = 0 for 7 > ry. Here rg was set equal to 85%
of the sample radius. The transforms for ¢ = 449 and 1033 show that the nature of the
pattern changed dramatically with time. The rightmost image in the bottom row of Fig.
3 (labeled “Avg”) shows the square root of the time average of the square of the modu-
lus of the Fourier transform [i.e. of the structure factor S(k)]. The average involved 250
images taken over a total time period of 1123¢, (nearly two days). It is seen to contain
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contributions at all angles, consistent with the idea of a statistically stationary process of
non-periodic pattern evolution and with the expected rotational symmetry of the system.

Figure 3. Top two rows: a sequence of images from the same run at 200 Gauss (h = 9.4),
taken with constant external conditions. The time elapsed since the start of the run (in
units of ¢, = 136 s) is given in the top left corner of each image. Bottom row: Square
root of the structure factor of the central portions of two of the images shown above, and

the average of the structure factor of the central portions of 250 images spanning a time
interval of 1123¢,,.

Figure 4a shows the azimuthal average S(k) of the temporal average of the structure
factor for the run described above, i.e. of the lower right image in Fig. 3. Both the
fundamental and the second harmonic (corresponding to a roll width of half a wavelength)
are well developed, but the higher harmonics are so weak as to be unobservable on the
scale of the figure. The characteristic wavenumber of the pattern is about 3.4. This is
fairly close to the theoretically predicted wavenumber for the mode which first acquires a
positive growth rate; but since the observed state is one of finite amplitude, this agreement
is not particularly significant. Figure 4b shows the average over k of S(k) as a function
of the azimuthal angle © [the average over k was computed only in the vicinity of the
fundamental peak of S(k)]. Although there is a discernable maximum near © = 0.75, the
angular distribution is really quite uniform. Any remaining structure might well disappear
if data were averaged over longer time periods. On the other hand, it could also be indicative
of a slight asymmetry in the experimental cell.
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Figure 4. a): The azimuthally averaged structure factor S(k) as a function of the modulus
k of the wavevector. b): the radially averaged structure factor S(©) as a function of the

azimuthal angle ©.

Figure 5. A temporal succession of images during the transient leading from conduction to
convection when AT was raised slightly above AT,. The field was h = 9.4. The numbers
are the elapsed time, in units of t,, since the threshold was exceeded.

It is instructive to examine the transients which lead from the conduction to the con-
vecting state. This is done in Fig. 5. Here the number in each image gives the time, in
units of t,, which has elapsed since AT was raised slightly (1%) above AT.. At t = 32.6,
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there is still no evidence of convection; but at ¢ = 36.4, there are noticeable fluctuations in
the image which correspond to hydrodynamic flow. At ¢ = 40.3, some of these fluctuations
have grown to macroscopic amplitudes, and a front of convection is invading the quiescent
fluid (t = 43.5). This creates a state of nearly-straight parallel convection rolls (¢t = 53).
However, these straight rolls turn out to be unstable to a zig-zag instability. The zig-zag
disturbance can be seen to grow at ¢ = 68.4 and 97.4. In the end, this instability leads
to the spatially and temporally disordered pattern shown for ¢ = 163 and in Fig. 3.3.
Thus, we see that a secondary instability led to a chaotic state rather than to a new time-
independent pattern. This phenomenon most likely is analogous to the one encountered in
very early experiments on spatio-temporal chaos using liquid helium?242% where ordinary
RB convection became chaotically time dependent, probably because the skewed-varicose
instability?® was crossed (one cannot be absolutely sure about this because in the early
work there was no flow visualization).
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ABSTRACT

Work under this grant involves two main areas: (i) Mixing of
Viscous Liguids, this first area comprising aggregation, fragmentation
and dispersion, and (ii) Mixing of Powders. In order to produce a
coherent self-contained picture, we report primarily on results
obtained under (i), and within this area, mostly on computational
studies of particle aggregation in regular and chaotic flows.

Numerical simulations show that the average cluster size of
compact clusters grows algebraically, while the average cluster size of
fractal clusters grows exponentially; companion mathematical
arguments are used to describe the initial growth of average cluster
size and polydispersity. It is found that when the system is well mixed
and the capture radius independent of mass, the polydispersity is
constant for long-times and the cluster size distribution is self-similar.
Furthermore, our simulations indicate that the fractal nature of the
clusters is dependent upon the mixing.

INTRODUCTION

The overall objective of our work under this grant is to produce
fundamental knowledge of viscous mixing processes involving multiphase fluids
and particulate systems. Our goal is to generate broad-based understanding relevant
to a variety of industrial applications. The motivation for such an approach is the
belief that there is a broad common denominator underlying many of the mixing
problems shared by industry.

Current problems of interest in mixing can be found in polymer processing,
chemical reaction engineering and composites, food processing/consumer products,
and the pharmaceutical industry. Work in these areas is being carried out by both
industry and universities. However, mixing-related research in all these disciplines
has developed in nearly independent fashion. Often one sees "practical" work that
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is hard to generalize and "basic” results that are hard to apply. We believe that
there is a need to generate a more fundamental understanding of mixing since, at a
fundamental level, there are strong similarities in the basic science underlying all
these applications. :

As a step towards reaching the above goals we concentrate on two main
areas: (i) Mixing of Viscous Liquids, this area involving work in aggregation,
fragmentation and dispersion, and (ii) Mixing of Powders. Work carried out under
(ii), initially perceived as an extension of on our work in suspensions, is rapidly
becoming a distinct area involving a rather different approach, and future
extensions may be carried out outside the bounds of this grant.

MIXING OF VISCOUS LIQUIDS:
AGGREGATION, FRAGMENTATION AND DISPERSION

DISPERSION

The basic goal of work in this area is to obtain basic understanding of mixing
of immiscible fluids leading to the determination of flow conditions which result
in efficient breakup and dispersion of one mass of fluid in the bulk of another.
Related issues are the prediction of the morphological structures and drop size
distribution in complex flows. This area is relatively well developed. We are
currently investigating dispersion and coalescence processes in non-homogeneous
flows.

AGGREGATION AND FRAGMENTATION

Work in this area focuses on fundamental issues in flow-driven particle
aggregation and fragmentation and dispersion of agglomerates in complex flows.
An understanding of aggregation, the reverse of breakup, complements and
enhances our studies of breakup of immiscible fluids.

On-going research investigates flow-driven aggregation in nonhomogeneous
flows. We study, by dynamic modeling, aggregation of compact and fractal
structures in model flows typifying regular and chaotic regimes. Emphasis is placed
on two-dimensional flows but three-dimensional systems are considered as well.
The goal is to put into evidence flow effects - kinetics of aggregation, cluster size
distribution and structure of aggregates - with the long range goal of manipulating
flows to tailor the structure of clusters.

Two aggregation scenarios are considered: in (i) the clusters retain a compact
geometry - forming disks and spheres - whereas in (ii) fractal structures are formed.
The primary focus of (i) is kinetics and self-similarity of size distributions, while the
main focus of (ii) is the fractal structure of the clusters and its dependence with the
flow.

Classically, irreversible aggregation is described by Smoluchowski's
coagulation equation which can be written for a continuous distribution of cluster
sizes as
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at '2JOK(" y,y)n(x - y,Hn(y,t)dy n(x,t)jOK(x,y)n(y,t)dy, M

where n(x,t) is the concentration of clusters of mass x at time t and K(x,y) is the rate
of aggregation of clusters of masses x and y. The first term, on the right-hand side,
accounts for the formation of a cluster of size x due to aggregation of two clusters of
size x-y and y, whereas the second term represents the loss of clusters of mass x.
Typically, the analysis of aggregation can be simplified by use of the scaling ansatz [1]

n(x,t) = [s(t)]'zcb(;(x—t)—], | (2)

which reduces the number of variables from two (x and t) to one (x/s(t)). The

function @ is commonly referred to as the scaling distribution.

The scaling ansatz allows predictions of the long-time behavior of
Smoluchowski's equation. However, the scaling does not address the initial
evolution of the cluster size distribution. We have shown however, that it is
possible to develop analytical estimates of this growth.

The primary goal of our work however, is to assess the effects of flow. A
preliminary study [2], which does not explicitly address the fractal nature of the
clusters, shows that islands of regularity may cause spatial variations in the rate of
aggregation, and that aggregation in "well-mixed" chaotic systems is similar
mathematically to Brownian aggregation and can be described by Smoluchowski's
equation. The effect of chaotic mixing on the fractal nature of clusters is considered
explicitly by Danielson, Muzzio and Ottino [3]. They determined the fractal
dimension of the cluster is affected by mixing [for background on mixing and chaos,
see 4]. This differs from a study by Torres et al. [5] which predicts that the flow field
does not affect the fractal nature of the resulting clusters. The variation of fractal
dimension with mixing is due to the nature of interactions of monomers and larger
clusters in different mixing schemes. If the system is not well mixed, the large
clusters do not interact with each other, the process resembles the particle-cluster
aggregation [5]. However, if the system is well mixed, then larger clusters interact
with each other and aggregation resembles cluster-cluster [5] aggregation. Thus, the
fractal dimension of a cluster is expected to decrease with better mixing.

Computational studies were carried out in the so-called journal bearing flow.
A particularly important aspect of this flow is that it can be realized experimentally
and manipulated to produce both regular and chaotic flows [6]. Also, analytic
streamfunctions, which allow for tractable computations, can be found in Wannier
[71

Our simulations mimic fast coagulation; particles seeded in the flow are
convected passively and aggregate upon contact. Brownian motion is not
considered and hydrodynamic interactions are neglected; passive particles move as
fluid elements. The flows considered are regular, chaotic, and a combination of
both. The clusters are compact (or spherical) and fractal (a typical fractal structure
from our simulations can be seen below).
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Figure 1: Typical fractal cluster from our simulations. The fractal
dimension of this cluster is 1.54+0.001, and the radius of gyration is
40 times the particle radius.

An outline of the results obtained to date is shown in the following table:

Growth of Average Cluster Size, s(t)
Flow Compact Structure Fractal
constant capture radius, o total area or volume Structure
constant
2 dimensions | 3 dimensions |2 dimensions | 3 dimensions
Regular [ for 0=0.0025 | for a=0.0067 | for p=0.1 for9=0.1 | for p=0.1
(1+0.22t)077 | (1+0.216)07 | (1+0.0065t)14 ] (1+2.7t)0.85 | (1+0.22t)0.7
R=0.999 R=0.997 R=0.997 R=0.998 R=0.999
"Poorly” | for 0=0.0025 | for 0=0.0067 | for p=0.02 | for¢=0.1 | for p=0.02
mixed | (1+0.29t)0.62 | (1+0.44t)055 | (1+0.018t)081 | (1+25t)066 | exp(0.085t)
R=0.999 R=0.998 R=0.999 R=0.997 R=0.999
for for p=0.1 -
0=0.00067 (1+0.0098t)2> efer{B 7(')9'3)'
(1+0.025t)055 R=0.988 Re0.999
R=0.999 | =027
Chaotic | for 0:=0.0025 | for 0=0.0067 | for p=0.02 for 9=0.1 | for p=0.02
(1+0.226)1 | (1+0.21t)093 | (1+0.012t)°2 | (1+7.5t)! exp(0.21t)
R=0.995 R=0.997 R=0.999 R=0.998 R=0.986
for p=0.1 for p=0.1
(1+0.06t)6-> exp(1.38t)
R=0.999 R=0.976

Table 1: the growth rate of the average cluster size in the various
studies. Here, o, p and ¢ are the capture radius, area fraction and
volume fraction of clusters, respectively.
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In general, the average cluster size and variance of the size distribution grow
faster for fractal structures than compact structures, and the variance of the size
distribution grows faster in poorly-mixed systems. Let us now consider a
breakdown of the results: When the capture radius is constant, the average cluster
size grows as s(t) =so(1+t/t)2. The cluster size distributions are self-similar for the
well mixed case and are given by :

n(x,t) = M;s(t)2e /5O, 3)

However, the scaling ansatz does not hold for the poorly-mixed system. These
results suggest that the size distribution may to some degree be controlled by the
mixing. When the clusters are area conserving, formation of a large cluster
dominates aggregation.

Significantly different kinetics are observed if fractal structure is considered;
the average cluster size grows exponentially, as opposed to algebraically as in the
case of compact structures.

Furthermore, due to the wide range of flow in the journal bearing flow, a
distribution of fractal clusters is produced. When the area fraction of clusters is 0.02,
the median fractal dimension of the clusters is dependent on the flow, similar to
the study by Danielson et al. [3]. The median fractal dimension of clusters formed
in the well-mixed system is 1.47 while the median fractal dimension of clusters
formed in the poorly-mixed case is 1.55. Furthermore, the range of fractal
dimension is higher in the well-mixed case.

The results are different when the area fraction of clusters increases. The
median fractal dimension of the clusters is independent of the flow and is
approximately 1.47. Since the fractal dimension of the clusters is closer to the
dimension of the clusters in the well mixed system with a lower area fraction of
clusters, this suggests that as the area fraction of clusters increases, the island of
regularity gets broken up by the increasing capture radius of the clusters. Thus,
aggregation in the poorly-mixed system behaves similarly to that in the well mixed
system when aggregation occurs between the two disjoint regions of the flow. A
more complete summary of these results appear in a paper under preparation [8].

MIXING OF SOLIDS

Let us consider now a few results pertaining to mixing of solids (dry
powders). Our current understanding of solids mixing can scarcely be described as
more than primitive: we can neither qualitatively nor quantitatively analyze the
effectiveness of any given mixing mechanism in advance; we do not have a widely
accepted set of equations - as in the companion case of liquid mixing - that govern.
solids mixing, and we cannot even establish whether a given set of solids will mix
or de-mix under a given stirring regimen.

Recent work [9] has demonstrated that significant inroads can be made in this
area using rather modest resources. We have shown that slow mixing processes can
be imagined as a succession of avalanches and that processes can be divided into
geometrical and dynamical parts. The geometrical aspects of the problems can be
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cast in the language of maps. In depth aspects of dynamical aspects - leading for
example to segregation effects - can be incorporated by means of molecular dynamic
simulations. Simpler ad hoc methods capture gross aspects as well. Below we show
a comparison between a experiment (left) and a computer simulation (right).
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