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ABSTRACT

Alloys of Cr-CroNb with exceptionally high strength at 1200°C have been developed. However,
these compositions suffer from limited ductility and toughness at room temperature. Despite
improvements from processing modiﬁcatfons, as-fabricated defects still limit room temperature
mechanical behavior. In contrast, an alloy system with only a small mismatch of the
coefficients of thermal expansion of the two phases, Cr-CrpZr, showed good fabricability.
However, these alloys are weaker than Cr-CroNb compositions at high temperatures and have
poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and
sulfidation protection of these alloys. Improvements in room temperature mechanical
properties of Laves-phase-strengthened alloys will rely on further development based on
increasing the ductility of the matrix phase by impurity control and compositional
modifications.

INTRODUCTION

The objective of this work is to develop a new generation of structural materials based
on intermetallic alloys for use at high temperatures in advanced fossil energy conversion
systems. Target applications of such ultrahigh strength alloys include hot components (for
example, air heat exchangers) in advanced energy conversion systems and heat engines.
However, these materials may also find use as wear-resistant parts in coal handling systems (for
example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines.

One potential class of such alloys is that based on Cr-CroNb alloys. The intermetallic
phase, CrpNb, with a complex cubic structure (C-15)1,2 has been selected for initial
development because of its high melting point (1770°C),2-4 relatively low material density
(7.7 g/cm?2),° and excellent high-temperature strength (at 1000 to 1250°C).6.7 This

intermetallic phase, like many other Laves phases, has a wide range of compositional
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homogeneity24 suggesting the possibility of improving its mechanical and metallurgical
properties by alloying additions.

The major engineering concern with CryNb and other A,B Laves phases is their poor
fracture toughness and fracture resistance at ambient temperatures.3:6-9 The single-phase
CryNb is very hard (~800 DPH) and brittle at room temperature.? Because of this brittleness,
the development effort has concentrated on two-phase structures containing the hard
intermetallic phase Cr,Nb and the softer Cr-rich solid solution phase. Previous studies indicate
that the two-phase Cr-Cr,Nb alloys (CN) exhibited significant plastic deformation prior to
fracture under compressive tests at room temperature.5:7:% The ailoys showed excellent
compressive strength at room and elevated temperatures, with the yield strength much superior
to nickel-base superalloys and NizAl alloys at and above 1000°C. The CN alloys, however,
showed poor fracture strength in tension at ambient temperatures. Because tensile properties
were sensitive to defects, efforts aimed at reducing as-cast defects and refining the cast Cr-
CrpNb eutectic structure led to improved ductility.10 A room-temperature fracture strength of
548 MPa and an ultimate tensile strength of 388 MPa, and 23% elongation, at 1200°C were
achieved, while another CN alloy showed a fracture toughness of 7.6 MPaVm at room
temperature and 24.4 MPaVm at 1000°C.10

Current studies are focused on enhancement of fracture resistance in tension at ambient
temperatures and oxidation resistance above 1000°C. This report summarizes recent progress
on controlling microstructure and improving the mechanical and metallurgical properties and
the high-temperature corrosion behavior of Cr-Cr,Nb alloys through alloying additions,

material processing, and heat treatment.

ALLOY PREPARATION AND PROCESSING

CN alloys weighing 430 g were prepared by arc melting and d\rop casting in a copper mold
(2.5 cm diam x 7.6 cm long) preheated to 200°C. High-purity niobium, chromium, and other
metal chips were used as charge materials. The cast alloy ingots with the compositions listed in
Table 1 generally contained oxide inclusions and cast porosity ranging in size from a few to
several hundred microns. The cast alloys also exhibited a coarse eutectic structure with
interconnected Cr,Nb plates, which adversely affect mechanical properties.8 In order to
minimize the cast defects and to refine the eutectic structure, selected alloy ingots were clad
inside Mo billets and hot extruded at 1480°C at an extrusion ratio of 4:1. Most alloys were
successfully hot extruded into 1.3 cm bar stock.

The CN alloys were also prepared by a powder metallurgy (P/M) route. In this case,

elemental powders, in ratios that were chosen to yield the target alloy compositions, were mixed
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Table 1. Tensile Properties of Cr-Nb Base Alloys Fabricated by Hot Extrusion at 1480°C

Tensile

Fracture Yield
Alloy Alloy Composition Strength  Strength Elongation
No. (at. %) (MPa)  (MPa) (%)

Room Temperature

CN-80 12Nb-6Mo-1.5A1 548
CN-90 6Nb-5Mo-4X2-2X3-1.5A1 435
CN-104 . 10Nb-6Mo-4X2-0.5X3 293
CN-112 6Nb-5Mo0-2X2-1X3-1X4-1.5Al 508
CN-113 6Nb-5Mo-2X2-1X3-2X4-1.5Al 374
1200°C
CN-80 388 290 23.0
CN-90 384 302 13.4
CN-104 473 371 25.7
CN-112 440 345 30.1
CN-113 414 330 26.4

2Balance is Cr.

thoroughly in an inert environment and then placed inside molybdenum cans. The filled cans
were then degassed in a vacuum chamber and sealed by electron-beam welding. As above, they
were hot extruded at 1480°C to produce CN alloys. All the alloys were successfully hot
extruded into bar stock without difficulty.

Within the past year, a series of alloys based on Cr-CryZr were also prepared by melting and
casting. The advantage of these alloys is that they are more resistant to cast and thermally
induced cracking because, unlike the Cr-CryNb system, there is a reasonable match between the
coefficient of thermal expansion of the second phase and that of the matrix. The alloys with
the compositions listed in Table 2 were all successfully fabricated into rod stock by hot

extrusion in the same way as the Cr-CrNb alloys.

MICROSTRUCTURAL ANALYSIS

Alloying additions, heat treatment, and material processing all strongly affect the
microstructure of the CN alloys. Examination of the microstructure produced by hot extrusion
revealed micro-porosity and foreign particles in the P/M products. Energy dispersive x-ray
spectroscopic (EDS) analysis indicated that these particles were mainly oxides of aluminum or
niobium that formed during materials processing. Apparently, this contamination could not be

simply eliminated even though the alloy powders were carefully processed in an inert
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Table 2. Tensile Properties of Cr-Zr Base Alloys Fabricated by Hot Extrusion

Tensile

Fracture Yield
Alloy Alloy Composition Strength  Strength  Elongation
No. (at. %) (MPa) (MPa) (%)

Room Temperature

CN-107 Cr-127Zr 304
CN-114 Cr-8Zr 240
CN-115 Cr-8Zr-5X1 413
CN-116 Cr-8Zr-5X1-4X2 443
CN-117 Cr-87r-5X1-4X2-2X3 393 .
1200°C
CN-107
CN-114 138 108 112
CN-115 267 203 46.3
CN-116 386 281 87.7
CN-117 485 344 28.8

atmosphere. Mechanical tests indicated that the P/M CN alloys had poor fracture resistance at
room and elevated temperatures.

Figure 1 shows the optical microstructures of the ingot-processed CN-104 alloy with and
without hot extrusion at 1480°C. It, as well as the other alloys listed in Table 1, was given a
final heat treatment of 1 d at 1200°C for control of CroNb precipitation in the Cr-rich phase.
The hot extrusion was effective in breaking up the interconnected coarse CroNb phase in the
eutectic structure. In fact, it became difficult to distinguish the primary and secondary Cr,Nb
particles in the alloy after this processing step.

Figure 2 compares the optical microstructures of cast CN-114 and CN-115 fabricated
by hot extrusion at 1480°C. Both alloys are based on the Cr-CrpZr composition containing
8at. % Zr (see Table 2). Alloy CN-114 is a binary alloy, while CN-115 is a ternary alloy
containing 5 % of element X1. The comparison of the microstructures indicates that 5% of X1
is quite effective in breaking up the interconnected Cr,Zr phase into blocky particles. All the
alloys were also given a final heat treatment of 1 d at 1200°C. It is important to note that,
unlike the Cr-Cr,Nb system, no precipitation of Cr,Zr particles was found in the primary Cr-
rich patches. This is consistent with the Cr-Zr phase diagram which shows a very low solubility
of Zr in the Cr-rich solid solution phase.4

Specimens of the Cr-Nb alloy, CN-90, and the binary Cr-Zr alloy, CN-107, were
examined by transmission electron microscoﬁy and energy dispersive spectroscopy (EDS).
Both specimens were hot extruded at 1480°C and annealed for 1 d at 1200°C. The matrix of
the CN-90 alloy contained a very high density of dislocations while the Cr,Nb-based second
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phase showed fewer dislocations but some faulting (Fig. 3a). In the CN-107 alloy, (Cr-12% Zr)
both the matrix and most of the second phase showed a high density of dislocations even after
the 1 d anneal at 1200°C (Fig..3b). Chemical analyses were performed on very thin areas with
the precipitate intersecting the hole and on slightly thicker regions. The analysis of CN-90
showed that the Nb, X2, and X3 elements partitioned strongly to the Cr,Nb precipitates, while
the molybdenum level in the precipitate matched the matrix. In CN-107, the composition of
the precipitate was determined to be 68% Cr - 32% Zr, indicating the expected formation of
CraZr. Virtually no zirconium remained in solution. Table 3 summarizes the average

compositions determined by EDS.

Table 3. Chemical Analysis of CN-90 and CN-107 (in at. %)

CN-90 Al X2 X3 Cr Nb Mo
Average matrix 1 1 1 90 1 6
Average ppt 0.5 11 4 52 25 7
nominal 15 | 4 2 81.5 6 S

|| CN-107 Cr Zr’ II

[ Average matrix 99 1 If

{t Average ppt 68 32 f

{f nominal ] 88 12 il

TENSILE PROPERTIES

Button-type tensile specimens with gage dimensions 0.31 diam x 0.95 cm long were
machined by electro-discharge machining, followed by grinding and polishing with “0”
Emery paper. The tensile specimens were tested in an Instron Testing Machine at room
temperature in air and at 1200°C in vacuum. Since the tensile properties of brittle materials are
sensitive to microstructure and defects in materials, the CN alloys were tested at room
temperature for different fabrication conditions. Table 4 compares the tensile properties of
CN-90 processed in different ways. The P/M material, fabricated by hot pressing and
isothermal forging of the power compact, had the lowest fracture strength, while the material
fabricated by hot extrusion of the cast ingot showed the highest value. As mentioned
previously, the low fracture strength of the P/M material is associated with interstitial
contamination and the formation of oxide/nitride particles.

Table 1 summarizes the tensile properties of Cr-Nb base alloys fabricated by hot
extrusion of cast materials. The CN alloys showed no microscopic yielding prior to fracture,
and the two alloys CN-80 and -112 exhibited the best room-temperature fracture strength,

>500 MPa. At 1200°C, the CN alloys were very strong and ductile. Yield and ultimate tensile
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Fig. 3. TEM micrographs of (a) CN 90 and (b) CN 107 showing a high dislocation
density present after extrusion at 1480°C and an anneal for 1 d at 1200°C. The

Cr,Nb-based second phase in (a) has few dislocations while the C r,Zr second phase in
(b) has a higher location density. Baris | gm long.
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Table 4. Room-Temperature Tensile Properties of CN-90

Alloy Preparation and Fabrication y Fracture Strength (MPa)
Hot pressing and forging elemental powders at 1480°C A 140
Induction melted ingot 169
Hot extrusion of ingot at 1480°C 435

2All materials were given a final heat treatment of 1 d at 1200°C.

strengths were above 340 MPa (50 ksi) and 420 MPa (60 ksi), respectively, for both CN-104
and 112. These values are among the highest ever measured for alloys and meet the strength
goal of this alloy development program. Alloy CN-112 appeared to have the best combined
properties at room temperature and 1200°C. All the alloys except CN-90 had more than 20%
elongation at 1200°C. _

Table 2 summarizes the tensile properties of the Cr-Zr base alloys fabricated by hot
extrusion. Both binary alloys had a low fracture strength, compared to the more highly alloyed
compositions. Among all the alloys, CN-116 had the best tensile fracture strength at room
temperature. Both yield and ultimate tensile strengths increased substantially with alloying
additions, and the alloy CN-117 had the best strength at 1200°C. All the alloys are ductile at
1200°C, with tensile elongation more than 25%. Alloy CN-117 had the best combination of
strengths at room temperature and 1200°C.

HIGH-TEMPERATURE OXIDATION BEHAVIOR

It has been previously demonstrated that the addition of element X2 to Cr-CryNb alloys
improves oxidation resistance under isothermal and thermal cycling conditions.!0:11 The
beneficial influence of X2 was attributed to improvement in the oxidation resistance of the Cr-
rich regions (despite its partitioning to the CroNb phase),1! which otherwise showed preferential
susceptibility to degradation ﬁpon exposure to high-temperature air.!2 However, despite
improvements in the oxidation resistance of Cr-CroNb alloys, such materials cannot be used in
an uncoated condition in oxidizing environments at the very high temperatures where the
superior strength of the CN compositions can be exploited (>1100°C). At these temperatures,
thermally grown oxides on Cr-CrpNb alloys are not protective because chromia volatilizes at a
significant rate. Oxidation protection will therefore involve the use of coatings. In this regard,

silicide coatings applied by a pack cementation process can substantially improve the oxidation
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resistance of Cr-CrpNb alloys.19:13:.14 Such coatings can also protect these alloys against high-
temperature sulfidation. As indicated by the data in Fig. 4, which shows specimen weight gain
as a function of isothermal exposure time in a highly-reducing H,S-Hj-H,0-Ar gas mixture
(Po2 = 1022 atm, ps3 = 106), a Cr-12% Nb binary alloy was very susceptible to sulfidation,
but a Cr-8% Nb composition (CN-87) coated with a Cr-Si layer produced by pack cementation
exhibited very low weight gains. The resistance of the coated alloy was comparable to Fe3Al
alloys containing > 2% Cr, which are considered to have very good sulfidation resistance
compared to stainless steels and FeCrAl-type alloys.15

Figure 5 compares the isothermal oxidation rate of two more recent Cr-CrasN b
compositions, CN-90 (see Table 1) and CN-100 (8% Nb-6% Mo-4% X2-2% X3), with that of
CN-87, which heretofore showed the best oxidation resistance of the CN alloys.10,11
(Isothermal air oxidation at 950°C has traditionally served as the initial baseline evaluation of
oxidation resistance of the CN alloys.) All three compositions shown in Fig. 5 include the same
concentration of X2, which, as noted above, has been shown to significantly improve oxidation
resistance.10 Despite this, CN-90 showed a significantly higher oxidation rate. The reason for
this is unknown; all of the alloying elements in this alloy are present in comparable
concentrations in CN-87 and/or CN-100, which had similar rates of weight gain that were less
than that of CN-90. It is possible that the lower Nb concentration of CN-90, and the
accompanying distribution of the matrix and eutectic phases, contributes to its higher oxidation
rate as such a trend has been established previously,!2 but a definite explanation awaits
chemical and microstructural analyses of these specimens. Examination of the data in Fig. 5
and the respective compositions of CN-87, -90, and -100 indicates that iron and element X3
don't have substantial effects on macroscopic oxidation behavior at 950°C.

Alloys based on Cr-Zr will be susceptible to high-temperature oxidation as Zr forms a very
stable oxide that grows very rapidly.l6 It is therefore not surprising that the measured weight
changes during isothermal oxidation exposures of alloys CN-107 and -114 (Fig. 6) are
significantly higher than what is expected for reactions solely controlled by the growth of
Cr203 (ref. 16) and than what is measured for certain Cr-CryNb alloys (Fig. 5). Interestingly,
the addition of alloying elements substantially reduced the weight gains and oxidation rate over
those measured for the binary compositions - see the results for CN-117 in Fig. 6. There are at
least two possible reasons for the observed beneficial effect of alloying. Element X2 may
improve oxidation resistance in a similar manner to its effect in the Cr-Nb system.!l  Secondly,
as noted above, element X1 effectively breaks up the network of interconnected CryZr (Fig. 2).
As this phase is much more susceptible to oxidation than the Cr matrix, creation of a finer
distribution of CryZr may act to reduce the overall oxidation rate. Experiments specifically

designed to examine the effects of volume fraction and distribution of CraZr, in the context of
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all the possible processes by which oxide products can grow on two-phase alloys at high
temperatures,!7 can best address the validity of this hypothesis.

FUTURE WORK

The development work on the Cr-Nb system indicates that the alloy CN-112 (Cr-6Nb-5Mo-
2X2-1X3-1X4-1.5 Al at.%) is close to an optimum composition and meets the strength goal of
the project. Further studies are required to learn how to scavenge interstitials from the Cr-rich
phase in order to achieve good tensile ductility at ambient temperatures. While Cr-Zr alloys
show little as-fabricated cracking, there is a need to strengthen the Cr-rich phase by either solid-
solution hardening or second-phase precipitation. Oxidation-resistant coatings are needed for
the Cr-Zr alloys.

The Cr-rich phase has a limited ductility and fracture resistance at room temperature. In
order to significantly improve the room-temperature ductility, the Cr-rich solid solution matrix
phase must be substantially modified. Recently, ternary phase diagrams based on the Cr-Nb-X
system have been reviewed and new compositions have been identified for alloy development
based on a strategy of avoiding as-fabricated cracking and improving the ductility of the matrix

in the presence of a Laves phase, which confers the unique high-temperature strength. °

SUMMARY

Ailoys of Cr-CroNb with exceptionally high strength at 1200°C have been developed. However,
these compositions suffer from limited ductility and toughness at room temperature. Despite
improvements from processing modifications, as-fabricated defects still limit room temperature
mechanical behavior. Alloys based on Cr-CrpZr show good fabricability because there is only
a small mismatch of the coefficients of thermal expansion of the two phases. However, these
alloys are generally weaker than Cr-CroNb compositions at high temperatures and have poor
oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation
protection of this alloys. Improvements in room temperature mechanical properties of Laves-
phase-strengthened alloys will come from increasing the ductile of the matrix phase by

impurity control and compositional modifications.
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ABSTRACT

Phase stability in NbCrs-based transition-metal Laves phases is
studied in this paper, using data from binary X-Cr, Nb-X, and ternary Nb-Cr-
X phase diagrams. It was shown that when the atomic size ratios are kept
identical, the average electron concentration factor (e/a = the average number
of electrons per atom outside the closed shells of the component atoms) is the
determinate factor in controlling the phase stability of NbCrs-based
transition-metal Laves phases. The e/a ratios for different Laves phase
structures were determined as follows: with e/a < 5.76, the C15 structure is
stabilized; at an e/a range of 5.88-7.53, the C14 structure is stabilized; with
e/a > 7.65, the C15 structure was stabilized again. A further increase in the
electron concentration factor (e/a > 8) leads to the disordering of the alloy. The
electron concentration effect on the phase stability of transition-metal A;B
intermetallic compounds and Mg-based Laves phases is also reviewed and
compared with the present observations in transition-metal Laves phases.

INTRODUCTION

Laves phases are AB,-type intermetallic compounds, most of which
crystallize in one of the three topologically close-packed structures: cubic C15
~—— MgCu;, structure, hexagonal C14 — MgZn, structure and dihexagonal
C36 — MgNi, structure (1). Although Laves phases are in general stabilized
by the size-factor principles, that is, the atomic size ratio, Ra/Rg, is ideally
1.225, with a range of 1.05-1.68 usually observed, the stability of each
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crystalline structure is affected by the electron concentration factor. In fact,
the electron concentration factor becomes clearly important when the atomic
size factors are favorable. The classic work by Laves and Witte (2-3) showed
that for several quasi-binary alloy systems involving MgCu, and MgZn,, with
Increasing valence electron concentration, the three Laves types MgCus,
MgNip, and MgZn, exist in that order. For transition-metal Laves phases,
average electron concentration was successfully used to correlate the crystal
structure by Bardos, Gupta and Beck (4) .

Transition-metal Laves phases have already been in or are being
considered for many practical uses, e.g., (Hf Zr)V, as superconducting
material, Zr(Cr,Fe) 5 as hydrogen storage material, etc.. More recently, HfV.,-,
HifCr;- and NbCry-based two-phase alloys (5-9) are being developed for high-
temperature structural uses, because of their good retention of mechanical
properties at elevated temperatures. However, their low ductility and brittle
fracture characteristics at room temperature are the main concerns for
engineering use of these materials.

One attractive way to improve the deformability of complex Laves
phases is to control their crystalline structure in the way that stress-assisted
phase transformation and/or mechanical twinning can be introduced during
plastic deformation (10-11). Thus, it is of uttermost importance to know the
factors governing the phase stability in transition-metal Laves phases.

In this study, a number of binary and ternary phase diagrams were
surveyed, and the phase stability criteria in the NbCrs-based Laves phase
systems X-Cr, Nb-X, and Nb-Cr-X were evaluated. An electron concentration
factor (e/a) was proposed to control the C14/C36/C15 phase stability in
NbCr,-based transition-metal Laves alloys.

LAVES PHASE IN BINARY X-Cr AND Nb-X SYSTEMS

Since Laves phases are size compounds, we should choose the X
elements in the X-Cr systems with an atomic radius close to Nb and X in the
Nb-X systems with an atomic radius close to Cr. In this scheme, we can easily
separate the e/a factor with the atomic size factor in controlling the phase
stability. According to this scheme, the X elements selected in the X-Cr
system are Ti, Ta, and Nb, and X selected in the Nb-X system are Cr, Mn, Fe,
Co, Ni, and Cu. The selection of atom size is based on the consideration of
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Goldschmidt radius with 12 coordination numbers (CN) (12). With a
minimum disturbance of the atomic size factor, the electron concentration
factor, e/a, should become a dominant one in controlling the phase stability of
the binary Laves phases. Here, the e/a ratio is defined as the average number
of electrons per atom outside the closed shells of the component atoms.
According to this definition, the e/a ratio of a transition element is the
number of electrons (s + d electrons) outside its inert gas shells.

Table 1. Atomic Size, Electron Concentration Factor (e/a) of
Alloying Element, and Existing Binary Laves Phase

Element Goldschmidt Radii (A)* ela’ XCro/NbX,

Nb 1.47 5 NbCr,
Ti 1.45 4 TiCr,
Ta 1.46 5 TaCry
Cr 1.28 6 NbCr,
Mn 1.31 7 NbMns_
Fe 1.27 8 NbFe,
Co 1.26 9 NbCo,
Ni 1.24 10 None
Cu 1.28 11 None

* Data from Reference 12. ,
* The unit of e/a is number of electrons per atom in this paper.

Table 1 lists the Goldschmidt radii (CN=12) and e/a ratios of all the
alloy components, together with the existing Laves phases observed in the
binary X-Cr and Nb-X systems. It is interesting to note that Ti and Ta have
the atomic radii close to Nb, thus they are postulated to substitute Nb in the
NbCr, Laves phase. Mn, Fe, Co, Ni and Cu atoms with their atom size close
to Cr occupy the Cr positions in the NbCr, Laves phase. From the binary X-Cr
and Nb-X phase diagrams (13), we can check if the XCr, or NbX, Laves phase
exists in the X-Cr and Nb-X systems, as indicated in Table 1. Also, the
mutual solubility, or the homogeneity range of XCr, or NbX, Laves phase can
be read from the binary phase diagrams. Mutual solubility is defined as the
difference between the maximum and minimum atomic percents of A in AB,
phase. Corresponding to the homogeneity ranges, we can simply calculate the
e/a ranges for different binary Laves phases, using the e/a ratios for various
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transition elements listed in Table 1. The binary Laves phase, Ra/Rg ratio,
homogeneity range (%A range), e/a range, and corresponding Laves phase
structure are tabulated in Table 2. The Laves structure indicated here is the
one stabilized at low temperatures if more than one Laves structure occurring
in a binary system. Note that no Laves phases were observed in the Nb-Ni
and Nb-Cu binary systems, and that the calculation of phase parameters was
based on the imaginary “NbNiy” and “NbCuy’phases.

Table 2. Atomic Size Ratio (Ra/Rp), Homogeneity Range
(%A Range), Corresponding e/a Range and Laves Phase
Structures in XCr, and NbX; Alloy Systems

Laves Phase Ra/Rg %A Range e/a Range Structure

TiCr, 1.133 35-37 5.26-5.3 Ci15
TaCre 1.141 33-36 5.64-5.67 Cis
NbCr, 1.148 30-39 5.61-5.7 Ci5
NbMn, 1.122 25.5-40 6.2-6.49 Ci4
NbFe, 1.157 27-38 6.86-7.19 Ci4
NbCo, 1.167 27-33.3 7.67-7.92 C15
“NbNiy,” 1.185 33.3 8.34 None
“NbCuy” 1.148 33.3 9.0 None

LAVES PHASE IN Nb-Cr-X TERNARY SYSTEMS

As postulated in the previous section, Ti and Ta occupy the Nb
sublattice in NbCr; Laves phase. From the Nb-Cr-Ta and Nb-Cr-Ti ternary
phase diagrams (14), Ti or Ta substitutes for Nb from 0% to 100% without
changing the C15 structure of NbCr,. This further confirms our above
postulation. For Mn, Fe, Co, Ni, and Cu, they are postulated to substitute for
Cr in the NbCr; phase. There has no Nb-Cr-Mn ternary phase diagram
reported so far, and the Nb-Cr-Cu ternary phase diagrams are incomplete,
with the reported data mainly concentrated at the copper-rich corner. On the
other hand, the Nb-Cr-Co, Nb-Cr-Fe and Nb-Cr-Ni phase diagrams have been
reported in literature (14-15). From these phase diagrams, certain common
trends are found: Fe, Co and Ni have certain solubility in the NbCr, phase
without changing the C15 structure. However, above a certain critical amount
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of Co, Ni, or Fe added to NbCr,, a phase modification from C15 to C14 is
observed. The C14 phase is stable over a wide range of X content. For the Nb-

Cr-Co system, a further increase in the Co content results in the reappearance
of the C15 structure (15).

Table 3. Homogeneity Range (%X) and Corresponding e/a Range
of C15/C14 Structures in Ternary Nb-Cr-X Systems

X C15 Cil4 C15
%X ela %X ela %X ela

Ti 0-33.3  5.33-5.67 -- - = -
Ta 0-33.3 5.67 -- = - =
Fe 0-4 5.67-5.75  9-66.7 5.85-6.69 - -
Co 0-3 5.67-5.76 8-62 5.91-7.53 66-68  7.65-7.72
Ni 0-2.5 5.67-5.77 5-52 5.87-8.05 -- --

The stability range of C14/C15 phases in the Nb-Cr-X ternary systems
at 1000°C are summarized in Table 3, together with the corresponding e/a
values. It should be noted that the solubility of Fe, Co, and Ni in NbCrs with
the C15 structure decreases in the order of Fe, Co, and Ni. However, the e/a
ratios corresponding to the change of the NbCry C15 to C14 structure are
almost identical for different systems, implying that an average electron
concentration may play a key role in determining the C15/C14 phase
stability. Note that the maximum e/a ratio for the C15 structure is about
5.76 and the minimum e/a ratio to stabilize the C14 structure is about 5.88.

GENERAL DISCUSSIONS

Laves phases are size compounds, therefore, the size difference
between A and B atoms is predominant in stabilizing the Laves phase. Since
we purposely choose some alloying elements with roughly the same atomic
size with either Cr or Nb (see Tables 1 and 2), the size difference between A
and B is similar in the AB, Laves phases we studied. This approach
simplifies our analysis, since we can separate the other factors from the size
factor in stabilizing different Laves phase structures. Also, we only choose
transition metal to form Laves phase, which makes it ideal to study the e/a
effect on the Laves phase stability. In transition metals, filling d-band is
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important to affect the phase stability. In Laves and Witte’s studies (2-3),
Mg-based ternary systems were selected, and a valence electron concentration
rule was found to control the occurrence of various Laves structures, with C15
stabilized at low e/a values, C14 stabilized at high e/a values, and C86 in
between. In their study, both non-transition and transition metals are
involved in forming some Laves phases, making it difficult to analyze the
valence electron concentration in the alloys, since for transition elements, the
valence electron number is not a constant value, varying in different systems.

In the present evaluation, all the elements chosen to form Laves phases
are transition metals. Instead of using valence electron concentration,
average electron concentration is chosen for correlation purposes. This
concept of average electron concentration has been successfully used to obtain
a good correlation between the e/a value and the phase stability in a number
of transition metal alloy systems (4, 16-21). If we combine the data in Tables
2 and 3, we can clearly demonstrate the e/a effect on the phase stability
(C14/C15) in NbCrg-based Laves alloys, see Fig.1.

At e/a values lower than 5.76, the C15 structure was stabilized at low
temperatures for both binary and ternary Laves alloys. Increasing e/a to 5.88,
the C14 structure was stabilized. Over the e/a range of 5.88-7.53, the C14
structure is more stable than the C15 structure. This trend is similar to that
observed in the Mg-based Laves phases (2-3), where C15—C36—C14 phase
modification was observed with increasing the e/a value. However, for the Mg-
based Laves phases, this should be considered as a tendency, as it is
impossible to classify the compounds in terms of their e/a ratio. In NbCr,-
based ternary Laves phases, the e/a ratio for C15/C14 phase boundaries is
very precise, with C15 existing at e/a < 5.76, and C14 occurring at e/a > 5.88.
This may be associated with the fact, as discussed before, that here all the
components of the ternary NbCrs-based Laves phases are transition metals.
Also, the C36 phase exists between C15 and C14 ranges, with a certain range
of homogeneity for the Mg-based Laves alloys. However, no existence of the
C36 phase was indicated in the reported phase diagrams of binary and -
ternary NbCrp-based systems, probably due to the difficulty in separating
C36 from C14. Both C36 and C14 structures are hexagonal close-packed
structures, and many of their X-ray diffraction lines overlap. Considering that
C36 may exist between C15 and C14 structures (C36 is a transition structure
between C14 and C15, in terms of stacking sequence), it is postulated that in
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NbCr; based Laves phases C36 may exist in the e/a regime of 5.76-5.88,
probably around 5.7-5.9 due to the possible error in the reported data. In fact,
a C36 phase was detected in a recent study of the transition metal Nb-Cr-Fe
system (11). Even though it is difficult to calculate the exact e/a value for the
C36 Laves phase since that system is basically a Nb solid solution plus
Laves phase two-phase alloy, it does indicate that it is possible to stabilize
the C36 structure at certain e/a ratios.

| =
|- > |a—|
- Il l
TaCro [l |

5.5
Ci15
—_—p

6.5 715! ' 8.5
ela ]

C14 C15 I No Laves Phase
- | | 4—> | <

Fig. 1 Effect of electron concentration (e/a) on phase stability
in NbCrs-based binary and ternary systems

The atomic size difference has no effect on the e/a correlation with the
phase stability in both binary and ternary systems. Actually, the solubility of
Fe, Co and Ni in NbCr; has different values, yet the same critical e/a value is
yielded. These observations may result from the fact that the atomic size
difference (Ra/Rg) is kept similar in our investigation. However, the size
difference may affect the mutual solubility, or homogeneity range of AB,
Laves phase, as shown in Fig. 2. No good correlation between the Rs/Rg ratio
with the mutual solubility can be inferred from Fig. 2.

The effect of the average electron concentration on phase stability has
been shown in many transition-metal A;B intermetallic compound systems,
usually with a very good correlation obtained (16-18). For example, Liu found
that the stacking character of the (Fe, Co, Ni);V ordered alloys can be altered
systematically by controlling the efa ratio of the alloys (16). Similar to our
observation in Laves phase, as e/a increases, the stacking character changes
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from purely cubic to purely hexagonal. However, the critical e/a ratios for
stabilizing the face-centered cubic (f.c.c.) structure (< 7.7 5) and hexagonal
close-packed (h.c.p.) structure (> 8.54) in A3B compounds are different from
those for stabilizing the NbCry-based transition-metal Laves phase cubic C15
structure (< 5.76) and hexagonal C14 structure (> 5.88). The C15/C14

15

Solubility
o

Mutual

0 1 1 1 1 1 1 1 1 1 L 1 1 1 | [ 1 1 [ | [ 1 1 1

1.12 1.13 1.14 1.15 1.16 1.17
Atomic Size Ratio (Ra /Rg )

Fig. 2 Effect of Ra/Rg ratio on the mutual solubility of Binary Laves phases

transition in Laves phase systems is sharper than the f.c.c./h.c.p. transition in
ordered A3B compounds. Also, unlike Laves phase alloys, different ordered
mixtures of cubic and hexagonal layers are obtained between the cubic and
hexagonal structures for the A;B ordered alloys. All the results indicate that
the average electron concentration factor has a determinate effect on the
phase stability of transition metal intermetallic compounds. The reasons
leading to such correlation is not clear now; however, the phase transition in
transition metals is known to be related to the filling of an appropriate
Brillouin zone.

From Figure 1, we can also see that for the Nb-Cr-Co system, when the
e/a ratio increases further to 7.65, the C15 structure was stabilized again over
the C14 structure. This structure modification of C14 to C15 with a further
increase in the e/a ratio has been observed in a number of transition-metal
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Laves phases (22). It is a rule, rather than an exception. In ternary Nb-Cr-
Mn and Nb-Cr-Fe systems, we can not observe such C14 to C15 transition,
since we cannot get e/a ratio higher than 7.6 in these systems. No NbCus,
(with e/a = 10) and NbNi, (with e/a = 9.5) Laves phases exist in Cu-Nb and
Ni-Nb binary systems, a fact consistent with the observation by Bardos et al.
(4) that at e/a > 8, a disordered structure is stabilized over the Laves phase in
transition metal systems. Also in agreement with Bardos et al., the
maximum e/a ratio for the Laves phases in Nb-Cr-Ni sysf:em is around 8.
However, no C14—C15 transition was reported at e/a ratio > 7.65, possibly
due to the fact that many ternary phase diagrams containing Laves phases
are inaccurate with regard to the identification of C14/C36/C15 structures.

If the electron concentration e/a correlation with the phase stability is a
rule operating in the NbCr; based transition-metal alloy systems, it will be
possible to modify C15 to C14 and also C14 to C15 by increasingly adding Cu
into NbCr, to substitute Cr, i.e., by changing the e/a ratio in the alloy.
Systematic work in the direction is being undertaken in our laboratory.

CONCLUSIONS

Binary X-Cr and Nb-X, and ternary Nb-Cr-X phase diagrams were
surveyed, and some interesting phase stability features were identified in
these transition metal systems. The average electron concentration factor
(e/a) has been shown to be a determinate factor in controlling the phase
stability of NbCry-based transition-metal Laves alloys. With e/a < 5.76, the
C15 structure is stabilized; at an e/a range of 5.88-7.53, the C14 structure is
stabilized; with e/a > 7.65, the C15 structure is stabilized again. A further
increase in electron concentration (e/a > 8) leads to the disordering of the
alloy. It is postulated that at 5.88 > e/a > 5.76 the C36 structure may be
stabilized. The physical background leading to such e/a correlation with the
transition-metal Laves phase stability needs to be further studied.
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WORKSHOP ON MATERIALS RESEARCH AND DEVELOPMENT NEEDS FOR
THE SUCCESSFUL DEPLOYMENT OF ADVANCED POWER GENERATION
TECHNOLOGIES

WEDNESDAY, MAY 15, 1996

Last year’s v;forkshop identified several material needs for pressurized fluidized bed combustion (PFBC),
integrated coal gasification combined cycle (IGCC), and indirectly fired cycles. This year’s workshop will
focus on resolution of some of those issues through the definition or redefinition of projects under way.

8:00 am. KEYNOTE ADDRESS: Dr. John Stringer, Executive Scientist,
Electric Power Research Institute,
Palo Alto, California

8:30 am. PLENARY SESSION
9:00 am. SESSION A. WORKSHOP ON CERAMIC COMPOSITE INTERFACE COATINGS.

Rapporteurs: R. G. Smith, 3M Company
R. E. Tressler, Pennsylvania State University
S. Sambasivan, BIRL

Moderator: D. P. Stinton, ORNL

Ceramic composites are critical to high-temperature components for fossil energy systems both as hot-gas
filters for IGCC and PFBC systems and as structural components, such as heat exchangers, for the
indirectly fired cycles, externally fired combined cycle (EFCC), and Combustion 2000 systems. The
development of ceramic composites with oxidation resistant interface coatings is extremely important to
NASA, the Air Force, and DOE programs. Applications of these composites will be summarized during
the workshop and different approaches for oxidation resistant interface coatings will be discussed.

9:00 a.m. SESSION B. WORKSHOP ON HIGH-TEMPERATURE MATERIALS BASED ON
LAVES PHASES.

Rapporteurs: K. S. Kumar, Brown University

J. H. Perepezko, University of Wisconsin

D. J. Thoma, Los Alamos National Laboratory
Moderator: C. T. Liu, ORNL

The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy are jointly

sponsoring this review of critical issues related to alloy development of new high-temperature structural
materials based on Laves phases. Laves phase materials, such as the high-temperature Cr-Nb alloys, are
of interest because, characteristically, they are high-melting intermetallics that are extremely hard and
strong, although brittle. These metallic, rather than ceramic, materials could provide high strengths up to
2300°F for systems such as the IGCC, PFBC, EFCC, and Combustion 2000.
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SESSION III - WORKSHOP (Continued)

SESSION C. WORKSHOP ON ALLOYS FOR VERY HIGH-TEMPERATURE
APPLICATIONS. .

Rapporteurs: N. Birks, University of Pittsburgh
T. B. Gibbons, ABB Combustion Engineering
Q. J. Mabbutt, British Gas

Moderator: I. G. Wright, ORNL

Systems capable of operating at higher efficiencies, such as the low-emission boiler system (LEBS),
require materials with higher temperature capabilities, in particular, higher creep strength and
environmental resistance. A range of alloys developed from the best of the currently used wrought
ferritic and austenitic alloys have improved high-temperature capabilities, and oxide dispersion-
strengthened alloys are targeted for extremely high-temperature applications. This workshop will
examine the temperature capabilities of these alloys compared to current alloys and to the needs of
advanced systems to identify their appropriate applications, information and actions required or under
way to qualify them for such use, and their limitations.

LUNCH
SESSIONS A & B (Continued)

SESSION D. WORKSHOP ON MATERIALS ISSUES ASSOCIATED WITH LOW
NOy COMBUSTION CONDITIONS IN FOSSIL FUEL-FIRED
BOILERS.

Rapporteurs: J. L. Blough, Foster Wheeler

J. N. DuPont, LeHigh University

S. Kung, Babcock & Wilcox

T. B. Gibbons , ABB Combustion Engineering
Moderator: 1. G. Wright, ORNL

Some cases of severe corrosion of the furnace wall tubes are being experienced in utility boilers fitted with

modern, low-NO, burners. It has been anticipated for some time that reducing conditions created as part
of the low-NO, combustion process might result in sulfidation attack, but initial experience with such-
burners did not reveal such problems. The intent of this workshop is twofold: first, to better define the

situation in terms of the form and rate of attack and to examine what is known about its root causes, and
second, to review the potential for using corrosion-resistant materials as part of the solution. In particular,

if the corrosion is due to sulfidizing conditions, the application of an iron aluminide as an overlay coating

may prove a viable option.

WRAP-UP SESSION
Workshop attendees will gather for summaries of deliberations from Sessions A through D.
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P. F. Tortorelli, Oak Ridge National
Laboratory

BREAK

Evaluation of the Intrinsic and Extrinsic
Fracture Behavior of Iron Aluminides,
B. S. Kang, West Virginia University

The Mechanical Reliability of Alumina
Scales and Coatings, K. B. Alexander,
Oak Ridge National Laboratory

Electro-Spark Deposition Technology,
R. N. Johnson, Pacific Northwest
Laboratory
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Investigation of Austenitic Alloys for
Advanced Heat Recovery and Hot-Gas
Cleanup Systems, R. W. Swindeman,
Oak Ridge National Laboratory

Microstructural Stability of Base Metal and
Weld Metal in 310TaN, C. D. Lundin,
University of Tennessee

Fireside Corrosion Testing of Candidate
Superheater Tube Alloys, Coatings, and
Claddings - Phase II, J. L. Blough, Foster
‘Wheeler Development Corporation

BREAK

Pack Cementation Coatings for Alloys,
R. A. Rapp, Ohio State University

Ultrahigh  Temperature Intermetallic
Alloys, P. F. Tortorelli, Oak Ridge National

Laboratory

Study of Fatigue and Fracture Behavior of
Cr,Nb-Based Alloys and Intermetallic
Materials, P. Liaw, University of Tennessee
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