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ABSTRACT

Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual.
resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations
of electromagnetic fields are reported. These results lead to various extensions of the critical
state model for superconducting hysteresis.

I. INTRODUCTION

It is well-known that type-II superconductors exhibit magnetic hysteresis which is caused by the
pinning of the motion of flux filaments. The critical state (Bean) model has been proposed to treat the
magnetic hysteresis of hard superconductors [1]-[2]. This model is based on the assumption of ideal (sharp)
resistive transition which is described by step-wise E vs. J relation. This assumption leads to the nonlinear
diffusion equation which admits simple analytical solutions for 1-D flux configurations. It has been
gradually realized that the critical state model has some intrinsic limitations. First, this model leads to
the explicit analytical results only for 1-D flux distributions and linear polarizations of external magnetic
fields. Second, the critical state model does not account for gradual resistive transitions exhibited by
actual superconductors. There are many publications in which extensive efforts are made to further
generalize the critical state model. The intent of this paper is to summarize the recent contributions
[3]-[7] of the author to this area.

II. NONLINEAR DIFFUSION IN SUPERCONDUCTORS WITH IDEAL RESISTIVE TRANSITIONS

Ideal resistive transitions are described by nonlinear Ohm’s law illustrated by Figure 1. According
to this law, any electric field, however, small, will induce full (critical) current density j. to flow.

Consider a superconducting cylinder of arbitrary cross-section (Figure 2a) subject to uniform field
B.(t) whose direction does not change with time. As the time varying flux enters the superconductor, it
induces screening (shielding) currents of density %j.. The distribution of these superconducting screening
(shielding) currents is such that they create the magnetic field which at any instant of time completely
compensates for the change in the external field § B, (t) in the region interior to superconducting currents.

It is clear that 0.B.(t) changes its sign as B.(t) goes through its extremum values. This results in a
reversal in the direction (polarity) of superconducting screening currents values. By using this fact, the
essence of the critical state model can be summarized as follows.
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Each reversal in the external magnetic field results in the formation of a surface layer of supercon-
ducting screening currents. This layer extends inward with time until another reversal (extremum) value
of the external field is reached. At this point, the inward progress of the previous superconducting current
layer is terminated and a new inward extending current layer is formed. The previously induced layers of
persisting superconducting currents stay still and they represent past history of the temporal variations
of the external field. This past history leaves its mark upon future distributions of superconducting

currents.
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Figure 1. Nonlinear Ohm’s law.
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Figure 2. Superconducting cylinder subject to external field.

Thus, it can be concluded that at any instant of time there exist several (many) layers of persisting
superconducting currents (see Figure 2b). These persisting currents have opposite polarities (directions)
in adjacent layers. The interior boundaries S} and Sj of all the layers (except the last one) remain still
and they are uniquely determined by the past extremum values of Be(t). The last induced current layer
extends inward as the external field changes in time monotonically.

The magnetic moment, M, of the superconductor is related to the distribution of the superconducting
screening currents as follows:

i1 = [ [ i@, | 8)
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where the integration is performed over the superconductor cross-section.

In general, this magnetic moment has z- and y-components. According to (1), these components are
given by the expressions:

1.0 = [ [vitwas, w0 =- [ [ ziwds. @

1t is apparent from the previous discussion that the instantaneous values of M_(t) and M,(t) depend
not only on the current instantaneous value of the external field B, (t) but on the past extremum values of
Be(t) as well. This is because the overall distribution of persisting superconducting currents, j, depends
on the past extrema of B.(t). Thus, it can be concluded that the relationships Mz(t) vs. B.(t) (and
My (t) vs. B.(t)) exhibit discrete memories which are characteristic and intrinsic to rate independent
hysteresis.

It is clear from the above description of the critical state model that a newly induced and inward
extending layer of superconducting currents will wipe out (replace) some already existing layers of per-
sisting superconducting currents if they correspond to the previous extremum values of B,(t) which are
exceeded by a new extremum value. In this way, the effect of those previous extremum values of B,(t)
on the overall future current distributions will be completely eliminated. According to (2), the effect of
those past extremum values of the external magnetic field on the magnetic moment will be eliminated
as well. This is the “wiping out” property of the superconducting hysteresis as described by the critical
state model.

Next, we proceed to the discussion of the “congruency” property. Consider two distinct variations of
the external field, BY (t) and BY (t). Suppose that these two external fields have different past histories
and, consequently, different sequences of local past extrema. However, starting from some instant of
time they vary back-and-forth between the same reversal values. It is apparent from the description
of the critical state model and expressions (2) that these two identical back-and-forth variations of the
external field will result in the formation of two minor loops for hysteretic relation Mz (t) vs. Be(t) (or
My(t) vs. B.(t)). It is also apparent from the same description of the critical state model that these two
back-and-forth variations of the external field will affect in the identical way the same surface layers of a
superconductor. Unaffected layers of the persistent superconducting currents will be different for Bgl)(t)
and B® (t) because of their different past histories. However, according to (2), these unaffected layers
of persistent currents result in constant in time (“background”) components of the magnetic moment.
Consequently, it can be concluded that the same incremental variations of B") (t) and B® (t) will result
in equal increments of M, (and M,). This is tantamount to the congruency of the corresponding minor
loops.

The experimental testing of the “congruency” and “wiping out” properties has been recently under-
taken [8] and it has been found that these properties are in good compliance with experimental data for
tested superconductors.

It has been established [9],[10] that the “wiping out” property and the “congruency” property con-
stitute the necessary and sufficient conditions for the representation of actual hysteresis nonlinearities by
the Preisach model. Thus, the description of the superconducting hysteresis by the critical state model
is equivalent to the description of the same hysteresis by the Preisach model, which is defined as follows:

—M(@) = / f (2, B) o Be (£)dexdB, 3)
a>p

where: M(t) can be z- or y-component of the magnetic moment, negative sign in (3) accounts for
diamagnetic nature of superconductor, 4,8 are elementary hysteresis operators which are represented




by reétangular loops with & and S as the “up” and “down” switching values, respectively; the function
(e, B) is not specified in advance and should be determined from matching first-order transition curves
(10]. ’

The question can be asked “What is to be gained from the above result?” The answer is as follows.
There is no readily available analytical machinery for the calculation of the interior boundaries of su-
perconducting current layers for specimens of arbitrary shapes. For this reason, the critical state model
does not lead to the mathematically explicit results. The application of the Preisach model allows one
to circumvent these difficulties by using some experimental data. Namely, for any superconducting spec-
imen, the “first-order transition” curves can be measured and used for the identification of the Preisach
model [10] for the given specimen. By using these curves, complete prediction of hysteretic behavior of
the specimen can be given at least at the same level of accuracy and physical legitimacy as in the case of
the critical state model. In particular, cyclic and “ramp” losses can be explicitly expressed in terms of
the first-order transition curves [10].

III. NONLINEAR DIFFUSION IN SUPERCONDUTORS WITH GRADUAL RESISTIVE
TRANSITIONS (LINEAR POLARIZATION)

Actual resistive transitions of superconductors are gradual and they are usually described by the

“power law” )
E= (]/k)nr (n > 1), (4)

where E is an electric field, j is a current density, and k is the parameter which coordinates the dimensions
of both sides of the last equation.

The exponent “n” is a measure of the sharpness of the resistive transition and it may vary in
the range 7-1000. At first, the power law was regarded only as a reasonable empirical description of
the resistive transition. However, recently there has been a considerable research effort focused on the
theoretical justification of power law (4). In this paper, power law (4) is used as a constitutive equation
for superconductors.

It is easy to show that this constitutive relation leads to the following nonlinear diffusion equation
for the current density:

o2Jn o0J
T2 = Hok™ =0 (5)
We shall first consider the solution of this equation for the following boundary and initial conditions:
J(O,t)=ct?, (t20,p>0), (6)
J(z,0)=0 (z>0). (7

By using the dimensionality analysis, the self-similar solution to the initial-boundary value problem (5)-
(7) can be found. For n > 7, this self-similar solution can be written (with sufficiently high accuracy) as
follows {3]:

=z y1/(n-1) . m
J(Z,t) = {Ctp (l—ﬁ') , if z<dt™, (8)
0, if z > dt™,
where
d = \/(nc*)/[pokmm(n — 1)]. ©

The close examination of self-similar solution (8) leads to the following conclusion: in spite of the
wide range of variation of boundary conditions (6) (see Figure 3), the profile of electric current density
J(z,t) remains approximately the same. For typical values of n, this profile is very close to a rectangular
one. This suggests that the actual profile of electric current density will be close to a rectangular one
for any monotonically increasing boundary conditions Jo(¢) = J(0,t). Thus, we arrive at the following
generalization of the critical state model.
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Figure 3. Boundary conditions (6) for various p.

Current density J(z,t) has a rectangular profile with the height equal to the instantaneous value Jo(t)
of electric current density on the boundary of superconductor (see Figure /). Magnetic field H(z,t) has
a linear profile with a slope determined by instantaneous value of Jo(t). |
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Figure 4. Generalization of the critical state model.

To better appreciate the above generalization, we remind that in the critical state model the current
has a rectangular profile of constant (in time) height, while the magnetic field has a linear profile with
constant (in time) slope.

For zero front zo(t) of the current (or magnetic field) profile, we have:
Ho(2)
Jo(t)

To find Jo(t) in terms of Hy(t), we multiply (2) by z and integrate from 0 to zo(¢) with respect to z and
from 0 to ¢ with respect to t. After simple transformations, we arrive at the following expression:

(10)

20 (t) =

zo(t) t
k™ / 2J(z,8)dz = / Jp(r)dr. (11)
0 0
By using the rectangular profile approximation for J(z,t), we obtain
kK" t
Ll w00 = | B (12)
0




By substituting expression (10) into (12), we find

n 2
tuk” 4 [“Ji((g] = 73(0)- (13)

By integrating equation (13), we can find the expression for Jo(t) in terms of Ho (t), which, after substi-
tution into (10), leads to the following formula for zo(t) in terms of the boundary values of the magnetic
field Ho(2):

1 [2(n+l) (14)

1/(n+1)
20 (t) = HO (t) Lo kn ]

t
/ Hg"(r)d'r
0

1t is instructive to point out that nonlinear diffusion in superconductors with gradual resistive tran-
sitions may exhibit a peculiar (anomalous) mode which does not exist in superconductors with ideal
resistive transitions. This is a “standing” mode. In the case of this mode, the electromagnetic field on
a superconductor boundary increases with time, while the region occupied by the electromagnetic field
does not expand.

The “standing” mede is the exact solution of the nonlinear diffusion equation (5) which corresponds
to the following initial and boundary conditions:

1

(n=D)pok™(z0—2)2 | *-T

J(z,0) = { [ et ] , f0<z< 2, (15)
0, if z > 2,

_ ‘ nz2 n—1
Jo(®) = J(0,8) = [28: +i))7‘:2’:2 _°t)] yt > to. (16)

The standing mode solution itself is given by the expression [6]:

1

(n=Duok™ (20—2)%] 7T

J(z, t) = { [ n2(n—‘if:)n(t?—t‘; ] ? if0 Sz< 2, (17)
0, if z > 2,

. This solution is illustrated by Figure 5.
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Figure 5. “Standing” mode.

The origin of the “standing” mode can be elucidated on physical grounds as follows. Under the
boundary condition (16), the electromagnetic energy entering the superconducting material at any in-
stant of time is just enough to affect the almost uniform increase in electric current density in the region
(0 < z < 2p) already occupied by the field, but insufficient to affect the further diffusion of the field into
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the material. Mathematically, it is clear that the origin of the “standing” mode is closely related to the
fact that in the case of nonlinear diffusion equation (5) one deals with “finite support” solutions, that
is with the solutions which have finite zero front. In the case of linear diffusion, the zero front is always
infinite.

IV. NONLINEAR DIFFUSION IN SUPERCONDUCTORS WITH GRADUAL RESISTIVE
TRANSITIONS (NONLINEAR POLARIZATIONS)

Most of the literature on the critical state model is concerned with scalar superconducting hystere-
sis. This is because the study of vector hysteresis requires the investigation of nonlinear diffusion of
electromagnetic fields into superconductors for the case when these fields are not linearly polarized. This
is a very difficult analytical problem that requires the solution of coupled nonlinear partial differential
(diffusion) equations. It turns out that this problem can be attacked as follows. First, we consider
the case of circular polarization of electromagnetic fields. In this case, the exact analytical solutions
of coupled nonlinear diffusion equations can be found due to the high degree of symmetry associated
with this polarization. Then the case of arbitrary polarization is treated as perturbation of the circular
polarization.

To start the discussion, consider a plane circularly polarized electromagnetic wave penetratmg su-
perconducting half-space z > 0. This implies the following boundary conditions.

E.(0,t) = E,, cos(wt +7),
Ey(0,t) = Ep sin(wt + 1), (18)

Ez(00,t) = Ey(o0,t) = 0. (19)

The distribution of electric field E in half-space z > 0 is governed by the coupled nonlinear diffusion
equations:

0%E,

2 #oa[g( EZ + E2)E,], (20)
8%E 0

622y = #05[0( EZ + E7)Ey], (21)

where according to (4)
o (, [E2 + E2) = o(E) = kEY™1. (22)

It turns out that exact (periodic in time) analytical solution to the boundary value problem (18)-(22)
can be found [4]. This solution has the following form:

Ey(z,t) = En(1—- —0) o cos[wt + 8(2) + 11, (23)
Ey(z,t) = En(1 - —0) * sinfwt + 8(2) + 7, (24)
where z < z9 and
o 2n(n +1)(3n +1)2
TV Voo =1)
m = kE", (25)
0(z) = o"'In(1 — z/2), (26)




2n 2n(n +1)
! — u_‘/ .
“=n-1v ¢ N-1 @7)

For z > zp, the electric field is equal to zero.

The remarkable property of the above solution is the fact that the circular polarization is preserved
everywhere within the superconducting medium. As a result, there are no higher order time harmonics
of the electromagnetic field anywhere within the medium despite its nonlinear properties. This fact can
be easily understood on the physical grounds if we take into account the rotational symmetry of the
boundary value problem (18)-(22).

Next, we consider the nonlinear diffusion of the electromagnetic field for the case when the electric
field on the boundary is specified as follows:

E.(0,t) = Ep[cos(wt + ) + efz(2)],
Ey(0,t) = Ep[sin(wt +7) + efy(t)], (28)
where ¢ is some small parameter, while f.(t) and f,(t) are given periodic functions of time. It is apparent

that this case can be construed as a perturbation of the circular polarization. We shall look for the
periodic solution in the form:

E.(2,t) = EX(2,t) + eez(2, 1),
Ey(z,t) = Eg (2,t) + eeyl(z,t). (29)

By using the machinery of perturbation technique, it can be shown [5] that E2 and Eg coincide with the
“circular polarization” solution (23)-(27), while e; and e, satisfy the following equations:

d%e;(z,t) z.2071/14+n
822 —yoam(l—%) 52[( 2n

1 2 cosfwt + 20(:)]Jealart) (30)

l1—-n
2n

+

+ sin[2wt + 26(2)]ey(2, t)] )

po(1 - :—0)2% [1 — " sin[2wt + 20(2)]es(2, ) (31)
1

2n
1+n n
+( S — = cosfaut + 20(2)]) ey(2,2)] -
Equations (30) and (31) are coupled linear partial differential equations of parabolic type with a variable
in time and space coefficients. To find the periodic solutions of these equations, we introduce new complex
valued state variables:

o(z,t) = ez(z,t) +iey(2,t),
¢(Zat) = ez(z’t) -iey(z1t)1 (32)

and the following Fourier series expansions for them:

QD(Z,t)= Z ¢2k+1(z)ei(2k+1)wt’ (33)
k=—c0
e 3
PY(z,t)= D oy (2)elGETIVL ‘ (34)
k=—o0
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Here, it is tacitly assumed that f;(¢) and f,(t) (and with them ¢(z,t) and 9¥(z,t)) are functions of
half-wave symmetry.

By using (32), (33), and (34) in (30) and (31), the following equations for @or4+1 and ¥or4q can be
derived [5]:
zy2d? Por41
(1 zo) dz?

= ixor41 [@p2r41 — (1 — %)iza”dizk—l] ) (35)

z 2 Prfo—1 _
(1 - ;;) dz2
)—i2a"

= ixo—1[ath2r—1 + (1 - % P2k41] (36)
(k=0,+1,%2,..),

where

1+n 1-n
a=1—0— Xetrr=(2k+Dwpoom——. (37)

Thus, the problem of integration of partial differential equations (30)-(31) is reduced to the solution of
infinite set of ordinary differential equations with respect to Fourier coefficients ¢or+1 and ¥or—31. The
remarkable property of these simultaneous equations is that they are only coupled by pairs. It allows
one to solve each pair of these coupled equations separately. After war41 and tsr—1 are found, we can
compute ¢(z,t) and 9(z,t), and then e, (z,t) and ey(z,t).

A solution of coupled equations (35)-(36) can be found in the form:
P2r41(2) = Agpgr (1 - ;—O)ﬁ,
z —ionl?
Yor—1 = Bor—1(1 — %)ﬁ 2 (38)

and details of calculations of 8, Aoy and Bar_j are given in [5].

It is easy to show [5] that in the important case of elliptical polarization, when
fz(t) =coswt, fy(t) = sinwt, (39)

only the first (k = 1) pair of equations (35)-(36) must be solved. This means that only first and third
harmonics are not equal to zero.
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ABSTRACT

This paper reviews several coupled theoretical and experimental investigations of the effect
of microstructure on momentum transport in concentrated suspensions. An expression to
predict the apparent suspension viscosity of mixtures of rods and spheres is developed and
verified with falling-ball viscometry experiments. The effects of suspension-scale slip (rel-
ative to the bulk continuum) are studied with a sensitive spinning-ball rheometer, and the
results are explained with a novel theoretical method. The first noninvasive, nuclear mag-
netic resonance imaging measurements of the evolution of velocity and concentration pro-
files in pressure-driven éntrance flows of initially well mixed suspensions in a circular
conduit are described, as well as more complex two-dimensional flows with recirculation,
e.g. flow in a journal bearing. These data in nonhomogeneous flows and complementary
three-dimensional video imaging of individual tracer particles in homogeneous flows are
providing much needed information on the effects of flow on particle interactions and ef-
fective rheological properties at the macroscale.

INTRODUCTION

Many industrial processes include the transport of suspensions of solid particles in liquids, such as coal
and other solid feedstock slurries. Oil, gas, and geothermal energy production rely on the transport of sus-
pensions such as muds, cements, proppant, and gravel slurries in the drilling and completion of a well. Sus-
pensions are also found in high-energy-consumption industrial processes such as found in pulp and paper
manufacturing. The complex rheological response of suspensions often limit the efficiency of the design of
such processes, causing loss of productivity, increased cost, and increased energy consumption. Because of
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the importance of particulate two-phase flows in the applications described above, the study of suspension
rheology remains an important technical research topic for the Department of Energy.

This overview of our recent research supported by the Department of Energy, Office of Basic Energy
Sciences, will focus on flow of suspensions of relatively large particles in which colloidal and inertial ef-
fects are negligibly small. There is growing evidence that even in this restricted range of flows, the rheology
of a suspension with a nondilute particle concentration cannot be characterized by a material function. In-
stead, the microstructure of the suspension determines the overall macroscopic properties, and the flow his-
tory of the suspension determines aspects of the microstructure. Advances in the ability to predict the
rheological response of concentrated suspensions depend on answering three broad questions: 1) How does
the microstructure of a suspension affect the rheological properties? 2) How do boundaries, such as walls,
affect the microstructure and properties? 3) How does the macroscopically imposed flow field affect the mi-
crostructure of a suspension? Aspects of these questions are being addressed in our work.

In the following section we will explore the first question by discussing the use of falling-ball rheometry
as a means to circumvent the shear-induced changes in microstructure that can be encountered when using
conventional rotational devices to measure suspension viscosity. We will discuss falling-ball rheometry
used to determine the apparent viscosity of a suspension of particles of two shapes. In the third section we
will discuss experimental and theoretical aspects of spinning-ball theometry in otherwise quiescent suspen-
sions and show that this can provide a sensitive measure of slip at the surface of a particle.

The fourth section of this paper focuses on efforts to develop capability to predict the evolution of con-
‘centration and velocity profiles of an initially well mixed suspension as it demixes when subjected to non-
homogeneous shear flows. If the local concentration is known, one can then use the falling-ball information
to determine the local viscosity in a flow field. Global behavior can then be determined by incorporating a
spatially varying viscosity field into the usual balance equations. We will illustrate the existence of flow-
induced microstructural changes with data on the time evolution of concentration and velocity profiles in
suspensions undergoing flow in pipes and between counter-rotating eccentric cylinders (journal bearings).
When the suspended particles are small in comparison to the characteristic dimensions of the flow appara-
tus, steady-state concentration and velocity profiles are in good agreement with predictioins of the shear-
induced migration model [1,2]. However, another avenue to modeling particle migration is to use a kinetic
theory approach, which has been applied successfully in granular flows [3,4]. In this theory the intensity of
the velocity fluctuations, caused by particle interactions, is characterized by a ‘granular temperature’ anal-
ogous to the temperature in classical kinetic theories and governed by a balance of fluctuation energy. Under
some situations this approach leads to the same balance equations as with the first model, but with a hydro-
dynamic diffusion that can be determined in homogeneous flow fields. We will describe experiments where
we use particle tracking techniques, originally developed in falling-ball studies, to determine the granular
temperature of various suspensions undergoing homogeneous flow between parallel moving belts.

FALLING-BALL RHEOMETRY IN COMPLEX SUSPENSIONS

In previous work, we have shown that falling-ball theometry is an excellent tool to probe the rheological
properties of a suspension without significantly changing the properties through the very act of measuring
them. Unlike conventional viscometers, which employ flow fields that tend to influence the microstructure
of the suspension, falling-ball rheometry can be used to determine the macroscopic viscosity of a suspension
with little effect on the microstructure [5]. This is especially useful for suspensions of particles with aspect
ratio greater than one, whose alignment is especially sensitive to the flow field. We have recently begun to
use falling-ball rheometry to study suspensions of particles with a mix of shapes.

Most investigations on the rheology of concentrated suspensions have focused on monodisperse sus-
pensions of either spherical or rodlike particles. In practice, most suspensions contain particles that are poly-
disperse both in size and shape. Only a limited number of studies have been devoted to the problem of size
polydispersity in suspensions of spherical particles, and even less is known about the behavior of suspen-
sions composed of particles of different shapes.
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Farris [6] develop a model for the viscosity of suspensions of spheres with multimodal diameter distri-
butions. In his model, for each fraction of a given particle size, the smaller particles in suspension have the
same effect as a homogeneous fluid with Newtonian viscosity similar to the viscosity of a suspension made
up only of the fraction of smaller spheres. In other words, the smaller suspended particles do not interact
with the larger particles and are ‘sensed’ by the larger particles as part of the continuous suspending fluid.
We will apply these concepts to develop an equation for the relative viscosity of a suspension composed of
a mixture of rodlike and spherical particles. If the rods are large enough relative to the spheres, we may con-
sider the spherical particles as part of the homogeneous suspending continuum. Let us define an apparent
sphere volume fraction V /(Vy+V) = /(19 ) , where Vis volume and the subscrlpts
s, 0, and r stand for the spheres, ﬂllld ang rods respectxvely I{’ we assume the viscosity of a suspension
composed of spheres and rods is the same as the viscosity of a suspension of rods suspended in a Newtonian
homogeneous flu1d of viscosity identical to the viscosity of an-equivalent suspension of spheres with a vol-
ume fraction ¢ s» We may write (after Farris):

Heer(07) = Rrel, spheres(q)*s)l"'rel, rods(®r)  » (M

where the relative viscosity of a suspension is the viscosity of the suspension normalized by the viscosity
of the suspending contindum. Several expressions are available for the relative viscosity of suspensions of
spheres (e.g. those listed by Graham et al. [7]). Here we adopt the following empirical relation [8], which
has agreed well with previous falling-ball measurements:

@) = 1+2.5(6) +10.05(6)° + 000273 16-69) @

urel, spheres
For the viscosity of a suspension of randomly oriented rods, we have the following empirical relation for
rods with aspect ratio of 20 [5]:

p’rel, rods(q)): l + 28-50¢ . q) < 0.125 (3a)

= 1+204003  ¢$>0.125 (3b)

The relative viscosity of a mixed suspension may now be calculated for any combination of rods (of aspect
ratio 20) and spheres by the set of equations (1)-(3).

The falling-ball experimental apparatus, materials, and methodology have been described in detail pre-
viously [5,9]. The suspensions were composed of mixtures of poly(methyl methacrylate) particles in a New-
tonian liquid. The particles were mixtures of spheres, with diameters of 3.175 mm, and aspect-ratio-20 rods,
with length of 31.65 mm. The rod-sphere mixtures were suspended in a liquid solution with three primary
ingredients (50wt% alkylaryl polyether alcohol, 35wt% polyalkylene glycol, and 15wt% tetrabromoet-
hane). The weight fractions of the ingredients were adjusted so that the density and the refractive index of
the fluid would match those of the particles. Three different suspensions were prepared with total solids vol-
ume fraction ¢ of 0.35 (volume fraction of rods ¢,=0.05 and of spheres ¢,=0.30), 0.40 (¢,=0.10 and
$s=0.30), and 0.45 (¢,=0.05 and ¢=0.40) respectively. The falling balls were either chrome-plated steel,
monel, or tungsten-carbide ball bearings with diameters between 6.35 mm and 15.88 mm.

The trajectories of the falling balls were recorded on a high-speed digitizing video system. An average
velocity for an individual experiment was determined by measuring the elapsed time for a ball to settle a
known distance on the screen. The results of up to 40 individual experiments with a falling ball of one nom-
inal size (not necessarily of one material) were averaged to determine a reproducible effective viscosity of
the suspension. Two or three sizes of falling balls were used for each suspension and the results showed no
significant effect of the relative sizes of the falling ball and the suspended particles over the size ranges list-
ed above. The average apparent relative viscosity for each suspension was obtained by averaging the entire
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set of experimental results (up to 120 individual experiments).

These results are shown in Figure 1 along with the values predicted by equations (1)-(3). The solid and
dotted lines represent the relative viscosity for a suspension of randomly oriented rods of aspect ratio a,=20
[eq. 3a and 3b] and for a suspension of spheres [eq. 2], respectively. The broken lines represent the calcu-
lated viscosity for mixed rod-sphere suspensions with the indicated fraction of rods (5%, 10%, and 15%)
based on the predictions of eq. 1 combined with egs. 2 and 3. The agreement between the falling-ball ex-
perimental points and the calculated lines is very good.
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Figure 1. Falling-ball viscosities of mixtures of suspended rods and spheres.
SLIP STUDIES
Spinning-Ball Experiments

In the falling-ball experiments described in the section above, the drag on the ball appeared to be that
found in a Newtonian liquid with no slip at the ball boundaries. instead of measuring the mean velocity of
a falling ball, we could instead measure the mean torque on a spinning ball. This geometry is more sensitive
to slip at the ball boundary. Whereas the force F on a ball moving slowly through an unbounded Newtonian
liquid without slip can be described as F=67 ajv (where L is the viscosity of the liquid and a and v are the
radius and velocity of the ball, respectively), the force with perfect slip is 47 ajv. In contrast, the torque T
on a ball spinning slowly in a Newtonian liquid is described by Kirchoff’s law, 8 & ApQ. (where Q is the
angular velocity of the ball); however, the torque on a ball with perfect slip at the boundaries is zero [10].

Kunesh and coworkers studied the torque on balls spinning in single-phase Newtonian liquids, verified
the formula above, and quantified the effects of the free surface [11]. We have completed similar experi-
ments to measure the torque on balls spinning in otherwise quiescent suspensions. We measured the torque
. on three sizes of balls (0.32, 1.27, and 2.54 cm in diameter) spinning in various suspensions. Suspension
with solids volume fractions of 0.25, 0.40, and 0.50 were studied. Three sizes of suspended spheres (0.07,
0.32, and 0.64 cm in diameter) were used in the suspending oil described earlier. The suspensions were well
mixed prior to the start of an experiment.

Typical traces of the torque on a 1.27 cm-diameter ball in terms of the relative viscosity (the measured
spinning-ball viscosity normalized by capillary viscosity measurements of the suspending liquid) in the sus-
pending liquid and in a suspension with ¢=0.5 is shown in Figure 2. The suspending liquid measurements
agree well with capillary measurements and show no Variation with time (number of revolutions). On the
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Figure 2. Spinning-ball viscosities (relative to capillary measurement of the suspending liquid
viscosity) for the suspending liquid (O ) and for a suspension with $=0.50 (® ).

other hand, the suspension measurements show a distinct fall off in the measured viscosity with increasing
numbers of revolution. This is expected, as this nonhomogeneous flow induces particle migration (which
will be discussed in the following section). The short-time behavior (an average torque for the first four rev-
olutions) is taken as an indication of any apparent slip at the ball’s surface in the still homogeneous suspen-
sion. The effects of the relative sizes of the spinning ball and the suspended spheres are shown in Fig. 3.
Here, all data are taken in suspensions with $=0.5; however, the suspended-sphere size varies as well as the
spinning-ball size. As the suspended spheres become small compared to the spinning ball, the spinning-ball
viscosity increases. The torque experienced (initially) on a 2.54-cm-diameter ball spinning ina suspension
of 0.07-cm-diameter particles is correspondent to the viscosity measured with falling-ball rheometry. Con-
versely, when the spinning ball and the suspended spheres are comparable in diameter, the presence of sig-
nificant ‘Kirchoff-law slip’ is observed.

20 :
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Figure 3. The effect of the relative sizes of the spinning ball and the suspended spheres on the
initial apparent viscosity measured assuming Kirchoff’s law. The data point to the far right is
close to the value predicted by falling-ball studies [23] and conventional rheometry [8].

Theoretical Developments

Einstein’s [12] classical analysis of the rheology of a dilute suspension related the increased viscosity
of the suspension to the additional dissipation occurring within a ‘suspension cell’ owing to the perturbing
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presence of a freely suspended sphere in an otherwise uniform shear field. However, scalar dissipation ar-
guments are viable only in cases where the suspension behaves macroscopically as a homogeneous isotropic
fluid. In particular, these methods are inapplicable in circumstances where the suspension-scale stress/
strain-rate relationship is anisotropic. Batchelor [13] and Brenner [14] developed a general theory from
which the stress/strain-rate relation may be obtained. Their methods are based on averaging over a ‘suspen-
sion cell’ the interstitial-scale stress and velocity gradient tensors. Higher-order terms in the relative viscos-
ity/suspended-particle concentration expansion have-been obtained by Batchelor & Green [15,16], based on
an ‘ensemble average’ approach. Each of the above methods is essentially local in nature; that is, effects of
bounding walls as well as spatial nonhomogeneities in the ambient velocity gradient are neglected. When
the ensemble-average approach is applied, and the existence of walls ignored, nonconvergent integrals
arise, which require ad hoc renormalization methods to overcome.

Recently, a new method has been developed for rheologically homogenizing a dilute suspension com-
posed of freely suspended spherical particle dispersed in a Newtonian fluid [17]. The method is global in
nature; that is, wall effects and spatial dependence of both the ambient flow and the particle number density
are encountered, enabling known classical results for the suspension viscosity to be obtained without the
need for renormalization. ‘

When the ambient flow is singular (as for example in the case of a small sedimenting or rotating ball
comparable in diameter to the suspended spheres) it is possible to use this technique to estimate the velocity
‘at points far from the singularity. In a recent paper, it is shown that even far from the singularity (relative to
the freely suspended sphere radius), the suspension does not behave like a homogeneous medium [17]. Spe-
cifically, due to interparticle hydrodynamic interactions, the average extra-torque exerted on a ball rotating
at a given angular velocity (and, conversely, the average reduction in angular velocity experienced by a
sphere on which a given torque is exerted), are not related by the Kirchoff’s law linear factor 8n Ay, instead
a suspension-scale ‘slip’ occurs at the surface of the spinning ball in agreement with the experimental work
discussed above. Furthermore, the extra-torque felt by a ball held at constant angular velocity in a suspen-
sion and the reduction in angular velocity felt by the same ball held at constant torque do not correspond
directly. In fact, when the ratio of the spinning-ball diameter to the suspended-sphere diameter is roughly
one, the dimensionless extra-torque is almost 25 per cent larger than the comparable reduction in angular
velocity. This phenomenon cannot occur in a homogeneous medium for which the constitutive stress/rate-
of-strain relationship is an intrinsic material property of the system.

In the case of a sedimenting ball, the ‘apparent viscosity’ obtained experimentally by the supposed ap-
plicability of Stokes law agrees with the viscosity of the suspension measured by standard viscometric
methods if the ball is the same size or larger than the suspended spheres [9]. However, if the ball is some-
what smaller, the reduction in sedimentation velocity is less, apparently because of a ‘slip at the surface of
the sedimenting ball [18]. Recent theoretical results show this as well for dilute suspensions [19]. It is in-
teresting to note that the appearance of ‘slip’ occurs over a smaller range of the ratio of the tracer (in this
case, falling) ball to the suspended particles than in the rotating ball case. Furthermore, the theory predicts
that if the falling ball is yet smaller relative to the suspended spheres than those studied experimentally, the
reduction in sedimentation velocity then becomes significantly higher. This contrasting behavior arises
from the difference in the respective probability density functions for the cases of sedimenting and rotating
spheres. For the case of a rotating sphere, the probability density function P(xy/sg) is constant (where xg is
the location of the center of a suspended sphere and s corresponds to the domain inside a sedimenting or
rotating sphere) and independent of the relative sizes of the rotating and suspended spheres. In contrast, in
the case of a sedimenting sphere, it exhibits large gradients near sy for very small sedimenting spheres, ren-
dering the near-field contribution dominant. Since the settling velocity decreases significantly when the set-
tling and freely suspended spheres nearly touch, the reduction in sedimentation velocity increases
proportionally. In other words, whereas the rotating sphere has only one ‘interaction’ mechanism (namely
that the overall effect of hydrodynamic interactions decays monotonically with decreasing ratio of the ro-
tating-to-suspended sphere diameter since the domain in which the effect of the suspended sphere is sensible
shrinks), the settling sphere has two competing mechanisms. The first is similar to that of the rotating
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sphere. The second is the increase of probability density function in the vicinity of the singularity with de-
creasing ratio of the rotating-to-suspended sphere diameter, which makes the near-field contribution dom-
inant in spite of the fact that the domain in which this effect is significant shrinks.

EFFECTS OF FLOW ON THE MICROSTRUCTURE OF SUSPENSIONS
Pressure-Driven Pipe Flow

Flow-induced migration of suspended particles is thought to occur whenever particle interactions are
more frequent in one part of a flow field than in another, as could occur in the presence of spatially varying
shear rate, concentration, or viscosity fields. The spatial distribution of suspended particles present in con-
centrated suspensions is difficult to measure because most suspensions are opaque even at relatively low
particle concentrations. However, under the auspices of the Department of Energy, Office of Basic Energy
Sciences, noninvasive techniques based on nuclear magnetic resonance (NMR) imaging have been devel-
oped by Fukushima and coworkers to study both concentration and velocity profiles in multiphase flows
[20,21]. We have employed these NMR imaging techniques to study the flow-induced migration of particles
in suspension when subjected to a variety of flow fields.

One of our more recent studies involved low-particle-Reynolds-number pressure-driven flow in a cir-
cular conduit of suspensions ranging in solids volume fraction ¢ of 0.1 to 0.45. Measurements were made
using 3.175-mm-diameter particles in a 50.4-mm-diameter tube (a/R = 0.0625) and 675-mm-diameter par-
ticles in a 25.4-mm-diameter tube (a/R = 0.0266). The primary data obtained from these experiments were
NMR images of the concentration (¢) and velocity (v) fields at various locations downstream of an in-line
mixer.

During flow development, significant migration to the axis of the tube and ‘plug-like’ velocity profiles
were observed at all solids volume fractions. Full flow development occurred sooner than predicted by ex-
isting scaling arguments. Evidence suggests that, at higher concentrations (>30%), evolution of the ¢ and
v profiles occur on different length scalses. Two flow rates were tested (9.89 mm/s and 197.7 mm/s). The
development of the ¢ and v profiles were independent of flow rate.

Example steady-state profiles are shown in Figure 4. At the lower ratio of a/R the ¢ profile achieves a
cusp at the center of the flow. The higher a/R (0.0625) is significantly above the ratio suggested by Seshardi
& Sutera [22] and Mondy et al. [23] to be the upper limit of continuum behavior. Particle size effects man-
ifest themselves as somewhat more blunted concentration profiles at larger a/R. The depletion in ¢ apparent
near the wall would result in a ‘layer’ of lower viscosity and a reduction in the pressure drop required to
flow the suspension, which is also consistent with the findings of Mondy et al. [23]

Piston-Driven Pipe Flow

In contrast to pressure-driven pipe flow, piston-driven pipe flow is not unidirectional. At the surface of
the moving piston the velocity profile is necessarily uniform, yet downstream the velocity profile becomes
parabolic for a Newtonian liquid. In order for this to occur, continuity requires that liquid near the pipe walls
be swept into the center of the pipe. We find that this complex flow leads to particle migration in both the
radial and axial directions.

Recently, we have studied the flow of a concentrated suspension in a 38 cm long by 5 cm diameter pipe
equipped with a driving piston at one end and a freely moving piston at the other. This geometry results in
a closed system ideal for an NMR imaging study of a two-dimensional flow. Two suspensions were imaged,
one of 0.07-cm-diameter spheres and one of 0.32-cm-diameter spheres, both at an overall solids volume
fraction of 0.50. Figure 5A shows an image of the suspension of smaller spheres in the region near the driv-
ing piston after the piston has traveled approximately 5 pipe diameters. A region of high liquid content has
formed near the pipe walls and has been swept to the pipe axis along the piston face. Figure 5B shows the
radially averaged solids volume fraction, in the suspension of larger spheres, along the axis of the pipe from
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Figure 4. Steady-state v and ¢ profiles for a/R = 0.0625 at ¢ = 0.20 as measured with NMR (symbols)
and predicted values (lines) from the improved shear-induced migration model.

the driving piston to the freely moving one. The particles ‘lead” the fluid and concentrate at the far end of
the flow (farthest from the driving piston).
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Figure 5. A. NMR image near the driving piston. Dark areas represent regions of higher
liquid fraction. B. Radially averaged solids volume fraction along the axis of the pipe from
the driving piston to the freely moving one.
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Numerical Modeling and Constitutive Equation Development

The NMR data discussed above has been compared with the results of a constitutive model developed
by Phillips et al. [2] after Leighton & Acrivos [1]. This constitutive model consists of both a Newtonian
constitutive equation, in which the viscosity depends on the local particle volume fraction, and a diffusive
equation that accounts for shear-induced particle migration. Two adjustable parameters arise in the diffusive
equation, which describe the relative strength of the mechanisms for particle migration. These two rate pa-
rameters can be evaluated empirically with experimental measurements of velocity and concentration pro-
files in a wide-gap Couette apparatus. We have recently determined these parameters as functions of ¢.

One criticism of this model was its prediction of a cusp-shaped concentration profile in pressure-driven
pipe flow. However, the recent NMR experiments have shown that such concentration profiles can occur,
as shown in Figure 4, which is of one of the more blunted obtained. The original Phillips formulation [2]
has been modified so that the shear rate is averaged over the size of a particle. This results in different fully
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developed profiles for different particle sizes, in agreement with the data. Examples of the predictions and
the close agreement with data can be seen in Figure 4. However, the original formulation and the new model
both overpredict the entrance length in comparison to the data.

The second criticism was the inherently one-dimensional treatment of the particle migration (it is de-
pendent on gradients in a scalar shear-rate). Although this could still be an impediment to generalizing the
model to complex flows, we have found that this simple model can often predict the very complex behavior
of suspensions. The constitutive expression previously described by Phillips et al. [2] has been expanded to
two-dimensional flows by describing the flow in terms of the strain rate tensor D and the migration in terms
of gradients in the generalized shear rate Y = (2 tr D?) 12, The equation set was then solved numerically
and the predictions compared to NMR imaging data. NMR imaging has also been used to study the flow of
concentrated suspensions in the gap between a rotating inner cylinder placed eccentrically within an outer
fixed cylinder (a journal bearing). We reported earlier [24] that this model, when coupled with a finite vol-
ume solver, failed to capture the qualitative nature of this two-dimensional flow. Specifically, at certain val-
ues of the eccentricity a very slow recirculation occurs and concentrated suspensions evolve a concentration
profile with the maximum concentration of solids occurring, not at the outer wall, but inside the gap. The
earlier numerical results always predicted a monotonic increase in solids volume fraction from the rotating
inner cylinder to the outer wall, and no recirculation zone was predicted. However, recently we have used
a finite element technique with more success. Figure 6 shows the development of a spatially varying solids
volume fraction as the number of turns of the inner cylinder increases. The predicted profiles are remarkably
similar to the NMR images. In addition, the calculations do indeed predict a recirculation zone.

Figure 6. NMR image of liquid volume fraction contours (left) and predicted contours of liquid
volume fraction and streamlines (right) for a suspension undergoing flow in a cylindrical journal
bearing after 1000 turns.

The finite element model was also used to predict the behavior of concentrated suspensions undergoing
piston-driven flow. Figure 7 shows the predicted spatially varying concentration obtained under the same
conditions as the experiments described in the previous subsection. The contour plot is remarkably similar
to the NMR results shown in Figure 5.

Microrheological Observations
Despite some successes with the above model, we feel that other avenues should continue to be explored

to ensure that the particle migration phenomena is adequately understood and appropriately generalized to
multiple dimensions. One such avenue recently suggested is to use a kinetic theory approach, which has
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been applied successfully in granular flows [3,4]. In this theory the intensity of the velocity fluctuations,
caused by particle interactions, is characterized by a “granular temperature” analogous to the temperature
in classical kinetic theories and governed by a balance of fluctuation energy. This approach emphasizes the
importance of measuring not only average behavior of suspensions but the details of the fluctuations about
those averages. Under some situations this approach leads to the same balance equations as with the first
model, but with a hydrodynamic diffusion that can be determined in homogeneous flow fields.

Figure 7. Predicted concentration contours in piston-driven flow using a finite element code.

Currently, we are using particle tracking techniques, originally developed in falling-ball studies, to de-
termine the granular temperature of various suspensions undergoing homogeneous flow between parallel
moving belts. The suspensions consist of poly(methyl methacrylate) 0.635-cm-diameter spheres neutrally
buoyant in the oil mixture described earlier. The suspended spheres are primarily transparent, with the same
index of refraction as the suspending liquid. A few opaque tracer spheres, otherwise identical to the others,
are added to the suspension. .

To date, 100 detailed three-dimensional trajectories of the tracer spheres in a suspension with ¢=0.20
undergoing flow at two different shear rates have been recorded. Figure 8A shows one such trajectory (in
only two of the three directions), where the y-direction is parallel to the belt and in the direction of motion
and the x-direction is in the direction of the overall velocity gradient. The origin is at the center of the device.
Figure 8B shows the velocity fluctuations in the x-direction for an ensemble of 50 particles at a shear rate
of 3.34 sec’!. From our preliminary measurements, it appears that the velocity fluctuations are more or less
isotropic. The granular temperature in each direction is definedas T = {u'- u’)  , where u'is the velocity
fluctuation of a particle about its local mean velocity and the angled brackets c{énote ensemble averaging
over all the particles. Preliminary results for T, (in the x-direction) at two shear rates are shown in Figure 8C.

Currently we are instrumenting the homogeneous flow apparatus with piezoelectric pressure sensors
that will allow the measurement of the frequency of particle-wall interactions, as well as the additional pres-
sure due to the presence of the particles. These are pieces of information critical to the evaluation of gran-
ular-flow based suspension rheology models.

CONCLUSIONS

We have performed a variety of experimental, theoretical, and numerical studies to elucidate the linkage
between the microstructure and the macroscopically observed responses of suspensions of particles in lig-
uids. NMR imaging studies and visual observations have confirmed that a suspension’s microstructure can
change dramatically during flow. Falling-ball viscometers, on the other hand, can be used (under certain
circumstances) to determine an apparent viscosity of a homogeneous suspension, without significantly af-
~ fecting the microstructure during the measurement. Quiescent suspensions can also be used to examine ef-
fects of boundaries. We have described one such measurement: the torque on a rotating ball in otherwise
quiescent suspensions. Recent theoretical results have also shed light on experimental results indicating
Stokes law and Kirchoff’s law could be presumed to hold only under limited circumstances.

Information obtained with quiescent suspensions can be combined with information about the evolving
microstructure in a flow to predict the spatial variations in viscosity and the global behavior. We have had
successes in modeling multidimensional flows with an approach that describes shear-induced particle mi-
gration with a diffusive equation. However, further studies of the details of particle interactions are needed
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Figure 8. A. The trajectory of a tracer sphere in a suspension with $=0.20 undergoing uniform shear.
B. Velocity fluctuations of 50 particles in this flow. C. Resultant granular temperatures at two shear
rates. .

before definitive predictive capabilities can be developed. Measurement of the detailed fluctuations of the
velocity of particles in suspension undergoing flow is an example of one such study.
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ABSTRACT

The mechanism underlying shear-induced particle diffusion in concentrated
suspensions is clarified. Examples are then presented where this diffusion process plays
a crucial role in determining the manner by which such suspensions flow under laminar
conditions.

INTRODUCTION

During the past ten years, it has been widely recognized that concentrated suspensions of
non-colloidal particles undergoing shear give rise to a number of curious and important
phenomena which play a vital role in governing the rheology of such systems. Examples
include the resuspension of a settled bed of heavy particles even under conditions of
varnishingly small inertial forces, and the migration of neutrally buoyant particles across
streamlines from regions of high shear to low thereby creating a non-uniform concentration
profile with a highly concentrated center plug in a suspension flowing in a tube. All these
effects are due to the existence of shear-induced particle diffusion at vanishingly small particle
Reynolds numbers [1].

At first glance, it might appear that such a diffusive process which leads to particle
migrations across streamlines would run counter to the well-known reversibility property of
the creeping flow equations. Thus, one might argue that if, for example, migration were to
occur in a given direction where the flow is, say, from left to right, reversing the flow direction
should also reverse the sense of this migration. This argument, however, applies only to
systems consisting of a finite (relatively small) number of particles in the absence of non-




hydrodynamic effects. In contrast, a space filling suspension having an effectively infinite
number of particles behaves in a fundamentally different way.

The reason is as follows: When dealing with a finite number of particles, their velocities U;
can, in principle, be determined exactly via the solution of the creeping flow equations, given
their positions r; as well as the imposed flow field. Thus, the evolution of their configuration is
governed by the Smoluchovski equation, shown in the figure, which is entirely deterministic in
the sense that, given the position of all the spheres at some instant of time, the configuration at
later, or even earlier, times can be computed exactly via the solution of this equation.

When the number of particles is infinite, however, the straightforward determination of U
fails because the sum of the weak contributions to U; from the infinitely many distant particles
at “infinity” diverges owing to the slow algebraic decay of any velocity disturbance in Stokes
flow. Thus, one replaces these distant particles by an effective medium containing a random
distribution of particles of given concentration whose hydrodynamic influence is felt only via
their contribution to the effective viscosity of this effective medium. In other words, in
calculating the velocity of a given particle, say the black particle in the figure, one supposes
_that this particle is surrounded, as before, by a finite number of (white) particles but that, in
addition, the whole set is immersed into an effective fluid extending to infinity. The evolution
of the configuration then proceeds in a deterministic fashion via the solution of the’
Smolucovski equation with the particle velocities U; calculated in the manner discussed above,
but only for small times, i.e. only as long as the marked particle is surrounded by its original
neighbors. For later times, however, the marked particles is surrounded by new neighbors
which were originally located within the effective medium and whose original position was
unspecified. Thus, the motion of the marked particle acquires a random component which
means that its location can no longer be determined exactly but can only be represented via a
probability density function p(ryt) given by the solution of the Fokker-Planck equation also
shown in the figure. In addition, when the bulk properties of the suspension, such as the bulk
" shear rate or the particle concentration, vary over distances which are much larger than the
particle radius a, one can obtain the evolution equation for the particle concentration ¢, simply
by replacing p by ¢ in the Fokker-Planck equation referred to above.

The quantity D(r) is the particle tracer diffusivity, while V(r) is the mean velocity of a
representative particle. The latter consists of two parts: the bulk velocity U(r) of the
suspension viewed as an effective medium, and a “drift” particle velocity V'(r) relative to
U(r). This drift velocity vanishes of course for neutrally buoyant particles in a simple shear
flow when the concentration ¢ and the shear rate y are constant because, under these
conditions, there exists no preferential direction for particles to migrate across the streamlines
of the bulk flow. In the presence of a macroscopic concentration gradient, however, a given
particle will be displaced by its neighbors more frequently on one side than on the other and,
hence, will tend to “drift” towards the region of lower concentration. A similar drift will occur
in the presence of a gradient in the shear rate or in the shear stress.
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As will be seen presently, the existence of such a drift velocity is primarily responsible for
the various phenomena referred to above which arise when concentrated suspensions are
subjected to shear.

EXPERIMENTAL MEASUREMENTS

In principle, the particle tracer diffusivity D(r), which, from scaling arguments, is
proportional to the product of the local shear rate times the square of the particle radius,
should be easy to measure by following the motion of an individual tagged particle in a
suspension of uniform concentration and shear and then computing its mean square
displacement. This was the technique originally used [2] which has since been modified and
rendered more accurate [3,4]. The particle tracer diffusivity can also be computed via the so-
called “Stokesian dynamics” calculations [5]. Finally, analytic expressions for the transverse
components of D(r) for smooth equi-sized spheres along and normal to the plane of shear in a
simple shear flow were recently derived [6] using the computed trajectories of triads of
interacting particles.

In contrast to D(r), which can be measured directly, the drift velocity V'(r) has, to-date,
been determined only indirectly, specifically by matching experimental results to model
equations. For example, in the presence of a macroscopic concentration gradient, say d¢/dy, in
a simple shear flow along x, the component of V" the y-direction is proportional to d¢/dy, with
the constant of proportionality being minus the so-called gradient diffusivity, which also scales
as the produce of the local shear rate and the square of the particle radius. The component of
this gradient diffusivity normal to the plane of shear was then determined from the observed
long-term decrease in the effective suspension viscosity as measured in a Couette device, by
fitting the data using the solution of a one-dimensional unsteady-state diffusion equation with
the gradient diffusivity being an adjustable parameter [7]. Similarly, the component of the
gradient diffusivity along the plane of shear, as well as the diffusivity which enters into the
expression relating V" to the gradient in the shear rate, were determined from the observed
short-term increase in the effective suspension viscosity when the Couette device was activated
after loading the sample [7].

Thus, reliable values for all of these diffusivities, as functions ¢, currently exist for
monodisperse suspensions of solid spheres which can be used for modeling purposes.

COMPARISONS OF MODELING CALCULATIONS WITH EXPERIMENTS
We summarize below a few of the many cases in which model calculations using no
adjustable parameters have been successfully compared quantitatively with experimental

observations.

1. Thirty years ago, Karnis, Goldsmith and Mason [8] measured, at the end of a long circular
tube, the particle velocities in flowing suspensions of monodisperse neutrally buoyant solid

138




spheres and reported that the profile was blunted at the center rather than parabolic as in
pure viscous fluids. Moreover, for fixed tube dimensions, the bluntness was found to
increase with an increase in ¢ and with the particle radius a. This is consistent with the
premise that particles diffused from regions of high shear, i.e. the wall, to the centerline and
the fact that the diffusivity is a monotonically increasing function of ¢ and is proportional
to a* [7]. Indeed, model calculations [9] were found to be in very good agreement with the
experimental results referred to above [8].

2. When a settled suspension of heavy particles with a clear fluid layer above it is placedina
Couette device which is then turned on, the bed expands and the suspension is observed to
flow [10, 11]. The height to which the suspension rises can then be calculated via the
solution of model equations and excellent agreement is found between the results, as
predicted from the model calculations, and the experimental measurements [11]. A similar
agreement exists under transient conditions [8, 12].

3. When heavy particles in a suspension sediment under gravity in a settler having inclined
walls, the dense concentrated sediment that overlays the upward facing wall is able to flow
freely only because the upward shear-induced particle flux due to gradients in the particle
concentration and in the shear stress balance the downward gravitational flux. The
theoretically determined particle velocity profile within this sediment layer as well as the
local sediment layer thickness were found to be in excellent agreement with experimental
measurements [13]. .

4. The model equations developed to-date apply only to monodisperse suspensions under
conditions where the shear flow is laminar and either uni- or quasi-unidirectional. An
attempt was recently made to extend the applicability of these equations to fully three-
dimensional flows by simply replacing the local shear rate y by the second invariant of the
deformation tensor [14]. Although this is, admittedly, a very crude step, the resulting
theoretical predictions [14] for the concentration and particle velocity profiles in a tube
were quantitatively consistent with experimental results reported earlier [15].

The above are but a few examples of suspension flows where shear-induced particle
diffusion manifests itself in a crucial way.
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ABSTRACT

Two topics in combustion fluid mechanics are discussed. The first
is a theory of the outward propagating spherical flame in the regime of
well-developed hydrodynamic instability. In a qualitative agreement
with experimental observations it is shown that the flame assumes
a fractal-like wrinkled structure resulting in the overall burning rate
acceleration. In contrast to hydrodynamically unstable flames, the
expanding flame subject exclusively to the effect of diffusive instability
does not indicate any disposition toward acceleration.

The second topic concerns the dynamics of diffusively unstable
flames subjected to radiative heat losses. At high enough heat losses
the flame breaks up into separate self-propagating cap-like flamelets
while a significant portion of the fuel remains unconsumed.

INTRODUCTION

A spherical flame spreading out from an ignition source is one of the most basic
configurations of premixed combustion. While such flames are quite feasible in the
laboratory, under certain conditions a nominally spherical flame becomes unstable and
displays an irregular pattern of wrinkles. As is now well established, there are two
principal mechanisms for the intrinsic flame instability: (i) thermal expansion of the
burnt gas and (ii) high mobility of the deficient reactant (e.g. [1]). The first, the so-called
hydrodynamic or Darrieus-Landau mode of instability, is an invariable feature of any
exothermic premixed gas flame. On the other hand, the occurrence of the second, the
diffusive mode of instability, clearly depends on the composition of the mixture.

The outward propagating spherical flame in the regime of well-developed
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hydrodynamic instability assumes a multiple-scale pebbly structure. To observe such a
configuration the aspect ratio of the system should be rather large. For conventional
hydrocarbon-air mixtures under normal pressure this would require the flame to be
of several meters in diameter. In relatively small-scale systems the hydrodynamically
unstable flames are either completely smooth or exhibit a few wide-spaced ridges that
are well maintained even under the deformation and extension of the flame. Unlike the
former, the diffusive mode of instability manifests itself in the emergence of the small-
scale irregularly recombining cellular structure and therefore relatively easily produced
under normal laboratory conditions.

In recent years new aspects of hydrodynamic and diffusive instabilities have been
revealed. It was observed that in the regime of well-developed hydrodynamic instability,
the average radius, R, of the large-scale wrinkled flame moving into an initially quiescent
homogeneous premixture grows as R ~ t3/2 [2). This striking effect implies, that the
wrinkled sphere surface area grows as R /3, i.e. faster than -Rz, that may well be regarded
as the self-fractalization of the flame interface with 7/3 being its fractal dimension. The
first-principle description of the phenomenon is one of the topics of the present progress
report. Another novel effect concerns the diffusive instability of near-limit low-Lewis-
number flames. It was observed that in mixtures of very weak reactivity the point ignition
leads to an outward propagating cellular flame with rapidly separating cells resulting in
the flame self-fragmentation [3]. In some circumstances the fragments close up upon
themselves to form stationary spherical structures called the flame-balls. An equilibrium
theory of the flame-balls was proposed in [4]. The present report deals with the dynamics
of their formation.

SELF-FRACTALIZATION OF HYDRODYNAMICALLY UNSTABLE FLAMES

To describe an outward propagating hydrodynamically unstable flame the following
weakly nonlinear evolution equation was employed [5],

O _ ﬂ(a_R)z _Dn®@R U
ot o \00/ — | 06> 2R
where 0 < 8 < 27 and I{R}, R are defined as

I{R} + Us (1)

1 oo 2r B _ 1 27
{R} = — ;n fo cos [n(6 — %) R(6%,8)d6", R= - /0 R(6,)d6 .
Here 7 = R(6,t) is the interface of the outward propagating flame; U ~ speed of a planar
flame relative to the burned gas; D,, — Markstein diffusivity; D, — thermal diffusivity
of the mixture; o = 28(Le~! — 1) - Zeldovich number; Le — Lewis number; v — thermal

expansion coefficient (y < 1).
In the limit of weak thermal expansion (v < 1), Eq. (1) is an exact asymptotics
provided R, 8,t are appropriately scaled.

143




To ensure the well-posedness of the associated initial value problem, Eq. (1) should
provide dissipation of the short-wavelength disturbances. Hence, D, should be positive,
that pertains to high-Lewis-number premixtures. The numerical simulation of Eq. (1)
yields the following picture of the flame evolution. At the beginning of the process
the expanding interface exhibits one or two folds and the flame evolves in a self-similar
manner. Somewhat later, almost instantaneously, a considerable portion of the interface
acquires a nearly periodic cellular structure. As the flame sphere grows the quasi-periodic
corrugations gradually stretch while the interface becomes less regular. The sufficiently
enlarged cells eventually also acquire a fine structure and so on. The whole process, thus,
assumes the character of a cascade, quite in line with the general concept of the fractal
curve (Fig. 1a). The most interesting feature of the system, however, is that the average
speed, R, does not stabilize but rather enjoys a noticeable amplification. As one can see
from Figure 1b the R;(t) dependence is not incompatible with the experimental R; ~ t1/2
power law. Moreover, the fractal analysis of the numerical solution [5] (via the standard
box counting procedure) yields the fractal dimension D; =~ 4/3 which is quite consistent
with Dy = D; + 1 = 7/3 suggested by the experimental data [2].

Eq. (1) also transpires to be accessible to analytical explorations. Similar to Burgers’
equation it admits an infinite number of exact solutions of the form [6,7],

2N
R=1Ust +2DnU;1 Y In [sin 1(M6 — Z,,(t))] 2)

n=1

where M is an integer and time-dependent Z,’s are poles of R(0,t) in the complex plane,
appearing in conjugate pairs. Their dynamics is governed by the system of ODE’s

dZ, ');ZM' 2D Z (Zn -
ctg -

Zm\ i MU,
dt b

oF sign(ImZ,) . (3)

L

For a pole solution the number of flame cusps never exceeds A N. Moreover, R, — Uy
as t — oo. Yet, direct numerical simulations of the original Eq. (1) show that the
flame does accelerate and the number of cusps constantly grows as the flame expands.
Comparing the flame dynamics governed by Eq. (1) with the exact pole solutions, the
following picture of the flame self-fractalization has been revealed [7]. The flame dynamics
evolves through successive instabilities and births of poles where the flame closely follows
a 2N pole solution before approaching a 2N +2 pole solution. The process keeps repeating
itself as the time increases.
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If Markstein’s diffusivity, D.,., is negative, which occurs in low-Lewis-number
premixtures, the earlier mentioned diffusive mechanism of instability enters the play In
this case dissipation of small-scale disturbances is provided by the new term ~ -R Roggg
which should be added to the r.h.s. of Eq. (1). In relatively small-scale flames the
diffusive instability may dominate over the hydrodynamic one whose impact on the overall
flame dynamics may be disregarded. The pertinent evolution equatlon for the outward
propagating wrinkled flame reads,

R _ Uy (6R>2 Dm 0°R  4Duplun 8*R

Bt ot \06) T g oer  RH o6t +Us )

Here £;;, = Dy, /Uy is the thermal width of the flame. Similar to the hydrodynamic
case the diffusive instability leads to the flame wrinkling which in turn results in the
enhancement of the effective flame speed, R;. However, in contrast to the situation with
hydrodynamic instability, here R; rather rapidly comes to saturation. Thus, the well-
developed wrinkled flame does not accelerate. Such an outcome is apparently due to
the fact that in the diffusive case the wrinkling occurs not as a multiple-scale cascade
but rather as a generation of fixed-size cells, whose width is entirely controlled by the
small perturbations maximum growth rate. In sufficiently large-scale systems the diffusive
instability will clearly interact with the hydrodynamic one which may result in the flame
acceleration similar to that occuring for Eq. (1) with positive Dy,

SELF-FRAGMENTATION OF DIFFUSIVELY UNSTABLE FLAMES

The morphology of the flame fragmentation clearly cannot be described within the
weakly non-linear model such as Eq. (1), and requires a more general coordinate-free
approach. The systematic derivation of the pertinent reduced equation is a difficult
problem still awaiting a solution. Yet, it appears that near the planar flame quenching
point certain aspects of such a model may be captured through the following semi-
phenomenological reasoning. Near the quenching point the dispersion relations of
the diffusive and hydrodynamic instabilities are known to be formally identical. The
hydrodynamic problem allows for a rather well founded coordinate-free reduced equation
[8]. Hence, by the appropriate redefining of the parameters one may try to apply this
equation to the near-limit diffusively unstable flames as well, where it reads [9],

n- % =—-U; +Du KK + %’)'efoq (1 + l _(I‘—Sllds) . (5)
TJs
Here r and s are the points on the flame interface, n is the normal directed to the
burned gas at the point r, K = —V - n is the flame curvature, U, = Ui/ \/e is the flame
speed at the quenching point: 7esf = y/4a/a +6. For the hydrodynamically unstable
flame Uy, 7ess, Dir should be replaced by Uj,<v, Dm, respectively. While the thermal
expansion parameter v never exceeds unity, its counterpart v.rs may come rather close
to 2 provided a = 38(Le™! — 1) is large enough. This is easily achieved for low-Lewis-
number premmtures Numerical simulations of Eq. (4) show that at yers < 1 it produces
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a wrinkled flame similar to that of Eq. (1) (Fig. 1la). However, at 7e55 > 1 the flame
evolution occurs as a fingering instability that may well be regarded as the incipient stage
of the flame self-fragmentation (Fig. 2).

100

50

=50

-100

Figure 2. Numerical simulation of Eq. (5) for a near-limit diffusively unstable flame at
Yesf = 1.5. Shown are flame configurations at three consecutive instants of time [9].
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Apart from exploring the reduced equation (5) we also undertook a direct numerical
simulation of the pertinent reaction-diffusion system based on a finite rate Arrhenius
kinetics [10]. Figure 3 shows some of the results obtained. The emerging cap-like flamelets
appear as localized solitary waves spreading through the reactive premixture and leaving
most of it unconsumed. At strong enough heat losses this combustion mode also becomes

unfeasible resulting in a total suppression of the flame.

@ o ()

):3

Figure 3. Reaction rate (), temperature (T'), and deficient reactant concentration (C')
distributions in low-Lewis-number premixed flames. (a) — moderately nonadiabatic case,
(b) — strongly nonadiabatic case [10].
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ONE-DIMENSIONAL TURBULENCE
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ABSTRACT

One-Dimensional Turbulence is a new turbulence modeling strategy involving an un-
steady simulation implemented in one spatial dimension. In one dimension, fine scale
viscous and molecular-diffusive processes can be resolved affordably in simulations at
high turbulence intensity. The mechanistic distinction between advective and molecu-
lar processes is thereby preserved, in contrast to turbulence models presently employed.
A stochastic process consisting of mapping ‘events’ applied to a one-dimensional velocity
profile represents turbulent advection. The local event rate for given eddy size is pro-
portional to the velocity difference across the eddy. These properties cause an imposed
shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbu-
lent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive
scalars introduced into these flows, are reproduced.

INTRODUCTION

Many aspects of turbulent flow, and of physical and chemical processes within turbulent flow,
can be captured only in a fully resolved, unsteady simulation. To address these aspects by a more
economical method than direct numerical simulation (DNS), one possible strategy is to use a model
with reduced spatial dimensionality. Several two-dimensional (2D) formulations have been employed
for this purpose, such as 2D Navier-Stokes simulations, discrete-vortex methods, and simulations
involving synthetic 2D velocity fields. Further reductions in computational cost can be achieved by
adopting a 1D formulation.

1D turbulence models are often used to represent turbulent transport, in particular, vertical
transport in geophysical flows. These models are neither fully resolved nor, in most cases, unsteady.
They typically incorporate the average effect of fine-scale unsteady processes by means of empirical
parametrizations.

Here, a new approach [1] involving fully resolved, unsteady simulation on a 1D domain is
outlined. The approach, denoted ‘One-Dimensional Turbulence’ (ODT), is intended to extend the
scope of computationally accessible turbulent flow phenomena.

MODEL FORMULATION

The foundation of the model is the recognition that the key mechanisms of flow modification by
a turbulent eddy, compressional strain and rotational folding, can be represented in one dimension.




This observation motivated the formulation of the linear-eddy model (LEM) (2], a turbulent mixing
model that is the antecedent of ODT.

ODT is formulated as follows. Specializing to boundary-layer type flows for clarity, the com-
putational domain y represents the transverse coordinate. The fluid state is represented by the
transverse profile of streamwise velocity u(y,t), the kinematic viscosity v, any advected scalar
profiles 6(y, t), and their corresponding molecular transport coefficients. The formulation encom-
passes spatial development parametrized by (y, z), where z is the streamwise coordinate, as well as
temporal development Earametrized by (y,t). For present purposes, consider the latter.

Viscous evolution is implemented deterministically, governed by equations of conventional form.
This implementation is mechanistically literal because the viscous scales are fully resolved in the
computation. Advection by a single turbulent eddy is represented by the triplet map, an instanta-
neous transformation of a segment of the computational domain. The mapping rule is illustrated
in Fig. 1. The straining and folding properties of this map mimic the corresponding attributes of
turbulent eddies [2]. The affected segment is denoted [yo, 3o + ], where yo and the segment size [
are randomly selected. The space-time-size sequence of mappings is a stochastic process governed
by the rate distribution '

Mo%0.0) = gy @

Here, 7 is the eddy time scale l
7(; 90,t) = AAn @)

where Au is some measure of the velocity difference across [yo, yo + I]. Here, Au is taken to be the
difference of velocities averaged over the intervals [yo,yo + /2] and [yo + 1/2, yo + 1], respectively.
Other reasonable definitions are possible. In most cases, computed results are found to be insensitive
to the precise definition.

y
A

“triplet map"

Figure 1. Application of the triplet map to a designated interval of the transverse profile
of streamwise velocity. The map replaces the profile in the segment by three copies, each
compressed by a factor of three, with the middle copy inverted.
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Equations (1) and (2) provide a simple, dimensionally consistent prescription of the ensemble
of mappings, without introducing extrinsic quantities. A is the only free parameter in the present
formulation. Work in progress involves generalization of Eq. (2) to account for buoyancy effects in
density-stratified flows.

Scalar fields 8(y, t) can be introduced. They are subject to molecular transport, implemented
deterministically in a conventional manner, and to advection by mappings.

- RELATION TO 3D FLOW

Operationally, ODT is a numerical method for generating realizations of a class of stochastic
initial-boundary-value problems on a 1D domain. The initial and boundary conditions can be
chosen to represent homogeneous turbulence, free shear flow, or wall-bounded flow. A variety of
such flows have been simulated, and results have been compared to measurements.

Representative cases are discussed shortly. First, the interpretation of ODT in the context of
3D flow is considered. '

For spatially developing flow, viscous evolution is represented by the usual boundary-layer
equations. In the absence of the mapping process, the model reproduces the well known laminar
solutions for the planar boundary layer, shear layer, jet, etc. These solutions are deterministic, so
all simulated realizations of a given flow are identical, and no fluctuations are predicted.

The stochastic mapping process introduces fluctuations that can be characterized statistically
using the methods generally applied to an ensemble of measured or computer-simulated flow real-
izations. Single-point velocity and scalar statistics of any order can be extracted, and multipoint
statistics such as spectra and spatial correlations can be obtained. Lagrangian, fractal, and wavelet
analyses are applicable.

In particular, the Reynolds stress component {u'v’) can be obtained although motions along
the computational domain are governed by a sequence of maps rather than a velocity field v(y). To
see this, consider the interpretation of (8’v'), where 6 is any fluid property and #' is the residual
after subtraction of the ensemble mean value at a given y location. Then (6'v') is the flux of
induced by velocity fluctuations v’ at that location. In ODT, this flux is determined by monitoring
mapping-induced transfers of 8 across any y level of interest. This definition is applicable not only
to the Reynolds stress (6 = u) but also to fluxes of density, temperature, chemical composition, etc.

An important aspect of the relation between ODT and 3D flow is energy transfer. The mapping
process is measure-preserving. In the spatially discrete numerical implementation, the triplet map
is a permutation of the cells of the 1D domain. Spatial profiles of fluid properties, including the
streamwise velocity u, are rearranged accordingly. Therefore any spatially integrated function of ,
in particular the (normalized) kinetic energy u? integrated over the 1D domain, is invariant under
mappings. :

In 3D flow, the velocity component u associated with a fluid element can change by two
mechanisms, pressure effects and viscous effécts. Viscous effects are represented within ODT, but
pressure effects, which transfer kinetic energy among velocity components, are not. Therefore the
quantity u? in ODT is more closely analogous, from an energetic viewpoint, to the total kinetic
energy of 3D flow than to the 3D quantity u2. Accordingly, the budget of the production, transport
and dissipation of u? determined from ODT simulations is compared to measured budgets of kinetic
energy.

These formal correspondences between ODT and 3D flow do not explain why the former should
reproduce behaviors of the latter. The explanation is that ODT is formulated so as to reproduce
properties of Navier-Stokes turbulence that are mandated by dimensional relations.

152




There are two types of dimensionally mandated properties. Microstructural properties are
flow independent at high Reynolds number (Re). Salient microstructural properties are the k~5/3
wavenumber scaling of the inertial range energy spectrum and the Re®* scaling of the high-
wavenumber viscous cutoff of the inertial range. Macrostructural properties characterize the overall
evolution of flow structure subject to initial and boundary conditions and conservation laws. Salient
examples are the self-similar decay of homogeneous turbulence, the self-similar growth of free shear
flows, and the log-law regime of wall-bounded flows.

Dimensionally mandated scaling is a facet of self-similarity. The evolution of a self-similar pro-
cess is governed by the length and time scales describing the state of the system at a given instant,
rather than extrinsic length and time scales. The governing length and time scales, in conjunc-
tion with the boundary conditions and conservation laws, determine a unique set of dimensionally
consistent scaling laws governing the evolution of the process. (If the similarity is ‘incomplete’ [3],
initial conditions may also influence the scaling.)

The rate distribution specified by Egs. (1) and (2) generates eddies of a given size at a rate
governed by flow fluctuations on that length scale. The eddies in turn wrinkle the u profile, thereby
creating fluctuations that sustain the mapping process. This feedback process may be viewed as a
form of turbulence closure. In this instance, the closure involves a postulated two-way coupling be-
‘tween a velocity profile and a stochastic process rather than the usual closure involving a postulated
relation among terms in a formal expansion of the Navier-Stokes equation.

The time scale specified by Eq. (2) is the ODT analog of the eddy turnover time. Though
mappings are instantaneous, they introduce finite-time effects through their imprints on the velocity
field and the influence of these imprints on the time scales governing subsequent events. These
finite-time effects have two significant consequences.

First, the subsequent evolution is governed by intrinsic length and time scales, leading to self-
similarity and thus to dimensionally mandated scalings. As noted, the mapping process conserves
spatially integrated quantities, so the applicable conservation laws are those governing viscous
evolution. The viscous equations are of conventional form, conserving momentum (momentum
flux) in temporally (spatially) developing flow. Therefore the conservation laws determining the
dimensionally consistent scalings are the same as in 3D flows.

Second, the finite-time effects induce an eddy cascade. The triplet map steepens velocity
gradients and reduces the length scale of velocity fluctuations (see Fig. 1). Mild gradients over
large length scales induce mappings that generate steeper gradients over over shorter length scales.
The resulting time-scale shortening increases the frequency of subsequent smaller-scale mappings.
This self-acceleration process is the ODT turbulent cascade. Because this cascade is driven by
intrinsic length and time scales, and because u? is conserved, the dimensionally mandated scalings
are the same as in the inertial range of 3D turbulent flow.

These considerations explain the performance of ODT with regard to self-similar evolution.
The model can also capture transient behaviors, as illustrated shortly. This is because transients
are generated by changes in boundary conditions or external inputs-that are represented within
the model. The length and time scales of flow response to these changes are governed by the eddy
distribution within the flow at the epoch of the change (assuming, for this discussion, a sudden
change). Provided that the fluctuation spectrum of the ODT u profile is a faithful rendering of the
3D spectrum, the length and time scales of the ODT transient response will emulate the 3D flow
response.

It is thus plausible, though by no means guaranteed, that ODT can capture transient as
well as self-similar evolution. The model is limited, of course, to flows whose symmetries (in
the ensemble average) admit a low-dimensional characterization. Also, the model cannot capture
pressure-dominated effects such as flow separation.
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The attributes of ODT are analogous in many respects to those of mixing-length and related
models. An important distinction is that dimensionally consistent relations between eddy length
and time scales have heretofore been applied to the mean flow, or in more advanced models, to low-
order fluctuations. In ODT, the self-consistent closure implicit in Egs. (1) and (2) is applied at the
level of the individual turbulent eddy. This approach yields a wide scope of predictive capability,
including high-order fluctuations and multi-point statistics as well as mean properties.

In subsequent sections, applications to a wall-bounded flow and a free shear flow are discussed.
For these and other flows involving a turbulent inner flow and a constant-velocity outer flow, the
model formulation is supplemented by an ‘eddy exclusion’ rule. Any mapping that is more than
half contained within the outer flow is disallowed. This prevents rare events much larger than the
turbulent zone width. These events violate the scaling pr1nc1ple that the largest eddy size should
be of the order of the turbulent zone width.

PLANAR BOUNDARY LAYER

The spatially developing boundary layer above a planar wall is simulated by setting the initial
u profile equal to a constant value and imposing the no-slip boundary condition © = 0 at y = 0. The
eddy rate, Eq. (1), is identically zero initially. However, the eddy rate distribution immediately
becomes nonnull owing to velocity differences induced by the viscous evolution. The eddy time
scale is much longer than the time scale for viscous dissipation of mapping-induced perturbations
of the velocity profile during an initial transient period. The early development is therefore viscous-
dominated. As the profile spreads, equality of these time scales is achieved in some y range owing
to viscous growth of the layer, allowing a turbulent cascade to develop. The subsequent coexistence
of a viscous-dominated wall layer and a nearly inviscid outer flow is evident in simulated flow
realizations.

The qualitative picture is consistent with 3D evolution, though the early development lacks the
laminar instability mechanisms that govern the transition to turbulence in the 3D boundary layer.
Quantitative comparisons are meaningful only in the fully developed turbulent boundary layer.

The free parameter A in ODT is assigned the value 0.23 to obtain the best fit to the measured
dependence of the friction coefficient on streamwise distance. The functional form of this depen-
dence, and all other quantities of interest, are then determined from the simulations with no further
empirical input. )

Quantitatively accurate predictions of boundary-layer width and the shape factor as a function
of streamwise distance are obtained. ODT exhibits log layers that collapse in wall-scaled coor-
dinates, with a Von Kdrmdan constant of 0.25, versus the measured value 0.41. Velocity-defect
scaling of the outer flow is obtained. Second and third order fluctuation statistics statistics have
been examined, namely the streamwise velocity variance and skewness, the Reynolds stress, and
the turbulent kinetic energy budget. Qualifative features are in good overall conformance with
measurements, and reasonable quantitative agreement is obtained.

PLANAR JET

The planar jet is simulated by assigning a top-hat initial u profile. The similarity scalings of
this flow are reproduced, and transverse profiles of mean and fluctuation properties through third
order are in reasonable agreement with measurements. A is assigned the value 0.14 to match the
measured spreading rate.

To illustrate transient relaxation within ODT, model predictions are compared to measure-
ments of passive scalar mixing downstream of pairs of coaxial, coplanar ring sources in a turbulent
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round air jet [4]. Rings of six different radii were employed in the experiment, the largest radius
being 0.71 times the half-width at half-maximum of the mean velocity profile in the plane of the
rings. Labelling the rings in order of increasing radius, their radii were chosen in the proportion
1: % :2:3: % : 4. In successive runs, the rings were heated individually or in pairs, and the
data were combined so that the two rings of a pair could be interpreted as sources of two distinct
passive scalar species. The concentration covariance of these two species as a function of radial
offset r and distance downstream of the source plane was deduced from the measurements. Here,
only centerline results are considered.

Using ODT, the planar-jet analog of this mixing process is simulated. (The round jet can
also be simulated using ODT, but this is not implemented for reasons discussed elsewhere [1].) It
is reasonable to simulate the round-jet mixing process using a planar-jet simulation, despite the
differences between the similarity scalings of these flows, provided that the streamwise development
is parametrized by the normalized convective time [4] ¢/ = f:ﬁns dz (u'2)2/2 /(Inusm). Here, Iy, and
Uy, are the jet half-width and the mean centerline velocity.

Spanwise line sources of a passive scalar (Pr = 0.7) are placed at a streamwise location Z;ing
within the self-preserving region of the simulated flow. (In the experiment, the sources were placed
upstream of the self-preserving region, potentially complicating the interpretation of the results.)
The transverse offsets of the line sources, scaled by the jet width, are set equal to the scaled radial
offsets in the experiment.

Figure 2 shows measured and computed profiles of the segregation parameter «, defined as
the scalar covariance divided by the product of scalar means. Measurements are plotted with the
convective time scale stretched by a factor of two relative to the ODT convective time scale. The
plot indicates that functional dependences are well predicted by ODT, but the simulated mixing
process evolves roughly half as fast as indicated by the measurements.

1.5 J
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¢
!
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0.5

centerline «

0.0

-0.5
0.0 0.5 1.0 1.5 2.0 2.5

t/T (model); 2t/T (measurement)

Figure 2. Centerline evolution of the segregation parameter ¢ versus normalized convective
time t/7. Curves: planar-jet computations. Symbols: round-jet measurements [4]. Plotted
data is keyed to the scaled radii r/rmi, of the pair of ring sources, where r is the ring

radius and 7p;y, is the radius of the smallest ring: ——, open circle, 7/Tmin = (1, -g—), ------ )
open square, 7/Tmin = (1,3); —-—, filled circle, 7/rmin = (%,4); ————— , filled square,
7/Tmin = (2,4).
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The implication of this discrepancy is that the predicted relationship between small-scale mo-
tions governing mixing within the jet and large-scale motions governing jet entrainment differs from
the relationship found in 3D turbulence. Put another way, if A had been assigned so as to match
the observed mixing rate, then the computed overall spreading rate of the jet would have been too
fast. This may be attributed a deficiency of either the simulated microstructure or the simulated
large-scale entrainment. The latter is suspect because it is sensitive to the eddy exclusion rule,
which somewhat arbitrarily disallows eddies more than half contained in the outer flow. This rule
can be (but has not yet been) generalized to include an adjustable parameter that allows large scale
and small scale evolution to be reconciled.

The comparison of measured and computed results yields insight concerning the significance
of a set of measurements for which no detailed explanation had previously been offered. One could
not a priori rule out sensitivity of the measured results to organized large-scale motions, to near-
field effects owing to the proximity of the scalar sources to the potential core of the jet, or to
other possible influences. The simplicity of ODT, together with the data comparisons, suggests the
following explanation of the observations. It is inferred [1] that the observations reflect a transition
from near-field radial transport dominance to far-field axial transport dominance, in conjunction
with known transient properties of three-stream turbulent mixing.

DISCUSSION

One-dimensional turbulence as formulated here is intended to identify the range of turbulence
phenomena that can be captured with a minimal representation of the interplay between advective
and viscous processes in turbulent flow. The essential elements of such a representation are identi-
fied as a mechanistically literal numerical implementation of viscous evolution (requiring, at a mini-
mum, one spatial coordinate), a stochastic advection process incorporating the essential ingredients
of vortical motion (compressive strain and rotational folding), and a simple dimensionally-based
prescription of the ensemble of such motions. To incorporate these elements in a 1D formulation,
the triplet map (Fig. 1) is adopted as a 1D representation of an individual turbulent eddy and
Egs. (1) and (2) are used to determine the eddy rate distribution as a function of the instanta-
neous streamwise velocity profile. Diverse phenomena are reproduced by integrating these elements
into a numerical simulation in which the initial and boundary conditions corresponding to various
turbulent flow configurations can be imposed.

This modeling approach has features in common with various other turbulence models. For
example, the analogy between the dimensional principles embodied in ODT and those underpinning
mixing-length models has been noted.

In another context, ODT may be viewed as the real-space analog of shell models [5] and
other mode-coupling models formulated in Fourier spaces of reduced dimensionality. In"ODT, the
mapping events are the ‘modes’ and the streamwise velocity profile is the field that couples them.

The discreteness of the events is reminiscent of the discrete-vortex method, a 2D model that
can also be rendered in 1D, though with limited applicability [6]. In ODT, however, the events are
discrete in time as well as space. This formulation reflects the ephemeral nature of turbulent eddies,
in contrast to vortical structures that are relatively persistent at the largest (energy-containing)
and smallest (viscosity-dominated) length scales.

The nonlocality of fluid motion implicit in the mapping process is reminiscient of nonlocal
transport models [7]. Those models describe the evolution of mean quantities rather than individual
flow realizations. The relation between those models and averages of ODT flow realizations will be
investigated in future work.




Mathematically, ODT is somewhat analogous to a deterministic sequence of 1D maps in which
the structure of each map is a function of the profile to which it is applied [8]. In ODT, it is the
statistical ensemble of maps, rather than map structure, that evolves.

These analogies, though suggestive, do not reflect the key features of the modeling approach.
The key features are the representation of eddy creation by shear that is externally imposed and
amplified by previous eddies, and the mechanistically literal implementation of molecular (viscous
and diffusive) effects by maintaining full spatial resolution. By capturing the interplay of shear,
vortical motion, and viscosity, the model emulates the mechanisms underlying a variety of turbulent
flow phenomena.
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COUPLED PARTICLE DISPERSION BY THREE-DIMENSIONAL VORTEX
STRUCTURES :

T.R. Troutt, J.N. Chung and C.T. Crowe

School of Mechanical and Materials Engineering
Washington State University

' ABSTRACT

The primary objective of this research program is to obtain understanding
concerning the role of three-dimensional vortex structures in the dispersion of
particles and droplets in free shear flows. This research program builds on
previous studies which focused on the nature of particle dispersion in large scale
quasi two-dimensional vortex structures. This investigation employs time
dependent experimental and numerical techniques to provide information
concerning the particulate dispersion produced by three dimensional vortex
structures in free shear layers. The free shear flows investigated include modified
plane mixing layers, and modified plane wakes. The modifications to these flows
involve slight perturbations to the initiation boundary conditions such that three-
dimensional vortex structures are rapidly generated by the experimental and
numerical flow fields. Recent results support the importance of these vortex
structures in the particle dispersion process.

INTRODUCTION

During the past twenty years considerable research efforts have been directed towards
investigating the important deterministic flow structures present in free shear flows. Initially this
work concentrated on the large scale vortex structures that were primarily dependent on the
geometry of the mean flow velocity gradient. For flows in which the mean velocity field is two-
dimensional, such as mixing layers, wakes and axisymmetric jets, the large scale structures are
typically quasi two-dimensional with instantaneous vorticity approximately aligned, in the time
average vorticity direction. Large scale flow structures of this type have been documented
extensively in the literature. (Ho and Huerre 1984, Browand and Troutt 1980, 1985). Although




these large scale structures are extremely important in the global development of free shear flows ‘
they do not provide a complete description of the mixing processes associated with these flows.

Significant research attention concerning free shear flows has focused recently on the
nature of a deterministic three dimensional vortex structure which apparently co-exists with the
large scale structures. The presence of this three dimensional structure in plane mixing layers was
initially documented through experimental flow visualization studies by Breidenthal (1981), and
Bernal and Roshko (1986). Later visualization studies by Jimenez et al. (1985) and Lasheras et
al. (1986, 1988) examined more closely the origin and evolution of the three dimensional vortical
structures. The three difnensional structures are typically aligned over much of their length in the
streamwise direction. The structures are also typically referred to as braids or ribs or simply
streamwise vortices. Extensive hot-wire measurements by Huang and Ho (1990) have confirmed
the concentrated vortical nature of these three dimensional structures and their sensitivity to initial
conditions. The measurements also demonstrated that the spanwise wavelength of the streamwise
structure scales with the spacing of the large scale structures. The ratio of these two scales was
found to be approximately 2/3 after initial pairing interactions were completed.

Numerical simulations of three dimensional vortex structures have been performed by
Ashurst and Meiburg (1988) for a spatially developing plane mixing layer. A review concerning
the fundamentals of three dimensional discrete vortex simulations is available by Leonard (1985).
Metcalfe et al. (1987) employed spectral techniques to simulate the dynamics of three dimensional
perturbations in a temporally developing mixing layer. This work involved a pseudo-spectral type
approach where finite difference techniques were applied for computing non-linear terms in the
governing equations. Pseudo-spectral simulations of the temporally developing plane mixing layer
by Rogers and Moser (1992) investigated in more detail the complex three dimensional
interactions between of the streamwise rib vortices. Later pseudo-spectral simulations by Moser
and Rogers (1993) followed the three dimensional evolution of the plane mixing layer vortex
structures through three pairing interactions and up to the onset of transition to turbulent flow.
The role of these three dimensional vortex structures in the two-phase particle dispersion process
in free shear flows is a subject that has received little attention in the past, mainly because of it
complexity (Crowe, Chung, Troutt 1993).

The primary objective of this research program is to obtain understanding concerning the
importance of three dimensional vortex structures in the dispersion of particles and droplets in
free shear flows. The free shear flows investigated include modified plane mixing layers, and
modified plane wakes. The modifications to these flows involve slight perturbations to the
initiation boundary conditions such that three dimensional vortex structures will be rapidly
generated by the experimental and numerical flow fields. The particulate dispersion process
associated with these structures is then focused upon using advanced experimental and numerical
techniques.

RESEARCH PROGRAM

This overall research program is being pursued using both experimental and numerical
approaches. Recent experimental work has concentrated on characterizing and quantifying the
three dimensional streamwise vortex structures in plane wakes using phase-averaged hot-wire
anemometry techniques. The flow experiments have been carried out in a low turbulence shear
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flow wind tunnel with test facility crosssection dimensions of 60cm by 45cm. A computer
controlled system for probe positioning, active shear flow forcing and data acquisition has been
developed expressly for these measurements.

The numerical techniques for simulating the free shear flow and the particle dispersion
process have proceeded along two avenues. One approach has employed a time dependent three
dimensional spectral technique based on the work of Metcalfe ef al. (1987). This approach has
been employed to generate three dimensional vortex structures in a temporally developing mixing
layer. Initial three dimensional simulations have also been performed involving one-way coupled
particle dispersion using this technique.

In addition to the one-way coupled three dimensional simulations, extensive numerical
studies involving two-way coupling effects in two-dimensional wakes have also been performed.
These simulations have involved two dimensional discrete vortex techniques to evaluate mass,
momentum and energy transfer effects between the particulate and gas phases. Previous
simulation results emphasized momentum coupling effects. The present efforts focus primarily on
mass and energy coupling effects.

THREE-DIMENSIONAL NUMERICAL RESULTS

Numerical simulations of a temporally developing three dimensional mixing layer at
Re=500 based on initial instability wavelength have been recently computed. The simulation is
initiated from a hyperbolic tangent velocity profile with two dimensional fundamental and
subharmonic perturbations. In addition an isotropic random phase three dimensional energy
spectrum is initially specified. Figure 1 displays the time development of spanwise vortex
structures from the three dimensional simulation. The spanwise vortex structure development for
the three dimensional simulation is very similar to that observed previously from two-dimensional
numerical results.

The development and persistence of three dimensional stream-wise vortex structures is
displayed in Figure 2. The general character of these rib like structures is in agreement with
previous experimental and numerical findings concerning these flow structures.  Three
dimensional particle concentration contours produced by the simulated flow are shown in Figure 3

for various Stokes number particles. Considerable order is apparent in the dispersion pattern at
St=1.0.

TWO-WAY COUPLING RESULTS

Recent analytical and numerical efforts have focused on the effects of two-way mass and
energy coupling produced by vaporizing liquid droplets in a heated gas flow. The analysis begins
from the compressible flow continuity equation

where S, is a mass source per unit volume produced by droplet vaporization or condensation.
With the assumptions of low Mach number and constant droplet temperature the continuity
equation can be rewritten as
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The right side of the continuity equation represents the coupling effect of the droplet on
the gas flow. The first term represents the mass source from the droplet to the gas and the second
term the heat transfer source.

The velocity field in the mass and energy two-way coupling model can be decomposed
into three parts: the field corresponding to the base potential flow, the flow velocity induced by
the vortices in the field, and the flow velocity produced by the effects of mass and energy
coupling. The base flow is simulated with a two-dimensional discrete vortex technique.

The effect of droplet mass and energy coupling on the gas flow can best be evaluated
through the use of coupling parameters. The mass coupling parameter can be written as

I =—="
pU, /L
where U, and ¢ are characteristic flow velocity and length scales.
The energy coupling parameter can be written as

.
* pc,TUo/ ¢
Figure 4 shows the results of two-way mass and energy'coupling effects for a wake downstream
of a bluff body. The results indicate that the development of vortices downstream of the body
may be altered somewhat due to the two-way coupling effects.

Three Dimensional Experimental Results

Experimental results concerning the three-dimensional nature of the vortex structures in a
(Re=~1200 based on momentum thickness) plane wake flow have recently been acquired and
analyzed. Examples of the experimental data from a cross stream section of a perturbed wake
flow at a selected downstream position are shown in Figure 5. The vorticity contours illuminate
the alternating sign character and the organized nature of the streamwise vortices in this flow.
Eventually experimental results similar to these will be directly compared to simulation results.

Summary

Numerical and experimental investigations concerning three dimensional flow and particle
dispersion processes are presently underway. Numerical and experimental results have confirmed
the presence of the alternating sign patterns and concentrated vorticity levels associated with
these flow phenomena. Initial simulation results demonstrate that three dimensional vortices can
have a substantial effect on the particle dispersion patterns at intermediate Stokes numbers.

Extensive numerical simulations of two-way mass and energy coupling effects between
vaporizing droplets in gas flows indicate that the initial vortex formation and development may be
somewhat delayed. However changes in the overall character of the wake flow are not substantial
over the range of parameters presently investigated.
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ABSTRACT

An overview of our recent experiments, in which we generate high Reynolds
number homogeneous grid turbulence, is provided. We show that in a small wind
tunnel we are able to achieve Reynolds numbers that are sufficiently high (Ry ~
800, Ry ~ 36,000) such that many of the aspects of turbulence that hitherto
have only been observed in large scale anisotropic shear flows, are obtained. In
particular we study the evolution of the spectrum with Reynolds number, the
Kolmogorov constant and the internal intermittency, showing the way they tend
to their high Reynolds number asymptotes. Thus we link previous low Reynolds
number laboratory experiments with large scale environmental measurements.

INTRODUCTION

A detailed understanding of turbulence is required in order to predict mixing and com-
bustion rates, drag, pollutant transport and many other aspects of fluid motion that are of
concern in industry and the environment. For over fifty years the Kolmogorov (1941) sim-
ilarity theory has provided the basis for the scaling of experimental data as well as for the
modelling and simulation of turbulent flows. No other phenomenology has such generality
or simplicity. Although there are delicate issues concerning some of its predictions, it does
have good experimental confirmation for flows at high Reynolds numbers, suggesting that
the scaling is approximately correct, at least for variance quantities such as the turbulence
energy and the dissipation rate.

The Kolmogorov spectrum is used widely in engineering simulations and models, both in
homogeneous and inhomogeneous flows. For example, Large Eddy Simulation (LES) is based
on the ability to model the small scales ¢ la Kolmogorov [1]. Yet engineering flows often
occur at moderate Reynolds numbers where the Kolimogorov assumptions may not hold. Here
the form of the spectrum is different. Remarkably, there has been no systematic study of
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how the turbulence spectrum evolves as a function of Reynolds number. Indeed the question -

of what is high Reynolds number turbulence has not been properly addressed although it
is known that by about Ry ~ 400 the spectrum shows an appreciable inertial range, close
to the —5/3 slope predicted by Kolmogorov [2]. Here, R, is the Taylor Reynolds number
defined in the usual way, as ((u2))2)\/v where u is the fluctuating longitudinal velocity, A
is the Taylor microscale (A = ((u?)/{(8u/0x)?))'/?) and v is the kinematic viscosity.

The Kolmogorov inertial range scaling assumes that the turbulence is locally isotropic.
Tt has been most studied in flows that are anisotropic at the large scales due to mean shear
or buoyancy, or some other effects. The recent boundary layer experiments of Saddoughi
and Veeravalli [3] show that local isotropy does indeed occur as the shear stress co-spectrum
(affecting the large scales) begins to diminish. However, for lower Reynolds number shear
flows (for Ry less than 300 or 400), the co-spectrum (due to the shear) extends to the dis-
sipation range, providing almost no locally isotropic turbulence. (e.g., figure 21 of reference
3). Thus while the experiments with shear indicate at what R there becomes an appreciable
region of local isotropy in the wave number spectrum, they do not address whether lower
R,, experiments would be consistent with Kolmogorov scaling if the anisotropic effects of the
large scales were absent, since the effects of shear dominate all of the spectrum for the lower
R,. This issue can only be addressed if the turbulence is isotropic at all scales, including
those in the energy containing range.

Unfortunately, grid turbulence, the only type of turbulence that is free of large scale
anisotropy that can be generated in the laboratory, has been limited to low Reynolds numbers
(R, < 150) since the grid generates very low turbulence intensities (less than 3%). However,
over the past three years following Makita [4], we have developed and built active turbulence
generator grids that produce high intensity turbulence with large integral scales. We recently
have achieved an R, of nearly 800, around 3 times the highest R, that can be obtained using
direct numerical simulations. The active grid turbulence has the essential ingredients of very
high R, atmospheric flows but without their complicating effects of large scale spatial and
temporal inhomogeneity.

Briefly, Makita’s grid works as follows: Triangular shaped wings are placed on each mesh
of the grid (figure 1). A pulse generator rotates the grid bars (and hence the wings) and at

the same time the motor is fed by a random pulse which reverses the rotation of the grid -

har. Thus the wing, always in rotational motion, reverses its direction randomly, providing a
flapping motion. Each bar is separately controlled, providing random flapping between bars.
For our experiment the mesh length was 5 cm and the mean speed was varied from 3 to 14
m/s. The rotation speed of the bars was around 2H z and was slightly varied with wind speed.
The velocity variance decay was similar to that of conventional grids. The experiments were
carried out in our 40 x 40 cm? x 5m wind tunnel [5]. Velocity and temperature fluctuations
were measured using conventional hot wiré anemometry. )

Here we will provide an overview of our recent experiments. Further results can be found
in Mydlarski and Warhaft[6,7].
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Figure 1: A sketch of the active grid.

THE SPECTRA

Figure 2(a) shows u and v spectra for 50 < Ry < 473 obtained with the active grid.!
Our results show a significant scaling range close to —5/3. Figure 2(b) shows a compilation
of results from Saddoughi and Veeravalli (1994) taken in a number of different flows, both
in the laboratory and in the atmosphere. Although their results are mainly for shear flows,
they show a very strong resemblence to our homogeneous measurements. Both the sets of
results (figures 2(a) and (b)) have provided strong support for Kolmogorov scalings.

A more stringent test for Kolmogorov scaling is to display the data in compensated form.
Figure 3(a) shows the Fi; spectra from our experiments multiplied by =2/ 3kf 8. The inertial
range should be horizontal on such a plot. The 4 representative compensated spectra are
for Ry = 99,199,373 and 448. While there is a trend towards becoming horizontal with Ry,
there is still a significant slope at the highest Reynolds number. The dashed lines show the
accepted value of the Kolmogorov constant. It falls approximately midway between the low
and high ends of the scaling range. '

The spectra of figure 3(a) show, then, that while there clearly is a scaling region, its slope
is not —5/3 even for the highest Ry. It appears that the spectra are not yet self similar. In
order to describe them, we use a modified similarity form:

F11(k1) = 01*62/3k1_5/3(k177)5/3—n1 (1)

Foo(ky) = Cone?/? kf5/3(km)5/3‘”2 )

Wery recently we have achieved an Ry of 780 using a larger active grid. The trends in the new data are
consistent with the lower Ry deseribed here.
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Figure 2: (a) The longitudinal (u) and transverse (v) power spectra for Ry varying from 50 .

(open triangles) to 473 (open circles) in the present experiment. (b) A compilation of shear
flow u spectra [3]. Here the R, variation is from 23 to 3,200.

where n; and ny are the slopes of the scaling region for the u and v spectra respectively
and C;, and Ch,. ate now Kolmogorov variables: both C, and n are functions of Ry (and
as Ry — oo,n1,m9 — 5/3 and C, — C (the traditional Kolmogorov constant)). In figure
3(b) we have plotted Cy. = Fi1(k)e~ 3k ™ ~5/% vs. kyn for the four spectra of figure 3(a).
The value of n,, which varied from 1.40(Ry = 99) to 1.58(Ry = 448) was determined by
trial and error such that the scaling region would be horizontal. Note that C). decreases as
R, increases but even for the high R, case its value is approximately 0.7, well above the
accepted high Reynolds number estimate of approximately 0.5.

Figure 4 is a summary of the best fit scaling exponent, n;, for all the u spectra we
measured over the range 50 < R, < 473. These results show that below Ry ~ 100 the
spectra have a scaling region in the range 1.3 to 1.4. The relatively large uncertainty is due
to the small width of the scaling region. There is then a relatively well defined transition
region extending from Ry ~ 100 to Ry ~ 200 where the scaling exponent steepens to a value
of about 1.52. Beyond R, ~ 200 the slope tends to increase very slightly. Our maximum
slope was 1.58 at R, ~ 473. We emphasize the high degree of reproductability of the high
Reynolds number experiments (R > 250). The experimental scatter was 3-0.01.
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Figure 3: Compensated u spectra for Ry = 99,199, 373 and 448. (a) Fy;(ki)e=% 3k‘;’/ =0
(b) Fi1(k1)e ®BEpig=3 = Cy,. The horizontal dashed, line in (a) is 0.5, the accepted
value for C; (equation 1) for high Reynolds number turbulence. Each of the curves in (a)
has been successively shifted by 0.2 with respect to the lower one. The Reynolds number
increases from the bottom curve upwards in (a) and from the upper curve downwards in (b).

We have fitted a —2/3.power law curve to figure 4. Defining p; = 5/3 — n, we find
D= 5.25R;2/ 3. This suggests that a 5 /3 scaling region will not occur until Ry ~ 104, a very
high Reynolds number indeed. Figure 5 shows a plot of Ci. as a function of p. (The values
of C, were determined from all of the measured spectra in the same manner as for the four
spectra in figure 2(b).) The best fit line to Ci4 is

Ci. = 0.51 + 2.39p;. (3)

Thus, when py = 0(ny = 5/3),C1. = C; = 0.51. The generally accepted value of the three-
dimensional Kolmogorov constant C is 1.5 [4] and the one- and three-dimensional constants
are related by C) = 18C/55. Thus C, = 0.49. Our extrapolated value of 0.51 is remarkably
consistent with this value. We emphasize that equation 3 is a best fit.
In a similar way, we determined C,, the Kolmogorov variable for the transverse velocity,
v. The ratio of the Kolmogorov constants Cy/C; must be 4/3 if n; = ng = 5/3. In order to
determine the best fit line for Cs, we have used the value Co = 4/3 x 0.51 for p» = 0. The
best line fit is
Cos = 0.68 + 3.07pa. (4)

INTERNAL INTERMITTENCY

While approximately Gaussian at the large scales, turbulence at the small scales is
strongly intermittent and non-Gaussian. If the Reynolds number is high enough, the in-
termittent structure should be observable not only in the dissipation range, but also in the
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Figure 4: The slope of the u spectrum Figure 5: Cy, and C,. (equations 1 and 2)
as a function of R, for the various active plotted as a function of p = 5/3 — n where n
grid experiments. is the slope of the respective spectrum. Open
circles, Ci; closed circles, Cs,. For Cis, the line
is that of best fit. For Cs,, the best fit line has
been forced through Cp.(p =0) x 4/3 at p=0.

inertial subrange. Kolmogorov [2] hypothesised that for high Ry, the energy dissipation rate
averaged over a radius 7, &, (where 7 is within the inertial subrange) is related to Au(r) by -
the relation

Au(r) = V(re, ) (5)

where V is a stochastic variable independent of r and &,. Thus the quantities Au(r) and
e, must be statistically dependent. In figure 6(a) and (b) we have plotted (reel!)/® and
(ro€21)1/2 conditioned on Au(r,). Here ell(= 150U ~*((9u/0t)?)) and e2l(= (7.50U~2((dv/dt)?))
are (one-dimensional surrogates for the total dissipation) determined over a record of length
T, from which we also obtained Au(r,) from velocity difference between the start and end
of the record. ,For high R, figures 6(a) and (b) show both &} and 2! are statistically
dependent on Awu(r,) : the curves have a pronounced V' shape indicating that higher dis-
sipation (averaged over r,) is associated with larger velocity differences. For low R,, the
conditional statistics are considerably flatter, showing only a weak dependence on Au(r,).
This is particularly so for the £2! case (figure 26(b)). Notice the asymmetry in those curves
for low R,. .
Recently it was pointed out [8,9] that a statistical dependence between Awu(r) and re;?
must occur, even if the Kolmogorov revised similarity hypothesis, KRHS, does not hold. A
correlation will occur between e2* and Au(r) on purely kinematic grounds. For a given Au(r),
there exists a minimum possible value of the dissipation ' which corresponds to a linear
variation in u over the distance r (€} |min = 15v(Au(r)/r)?). On the other hand, the existence
of a statistical dependence between €2! and Au(r) suggests a dynamical contribution. For
our high R, experiments (figure 6(a) and (b)) both e!* and €' conditioned on Au(r) show
statistical dependence on Awu(r), giving strong support for KRHS. Thus the combination
of our high and low Reynolds number cases and the conditional statistics of both el! and
2! on Au(r) enable us to separate the kinematical from the dynamical contributions to the
statistical dependence: at low R, the dependence appears to be kinematical while at high
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Figure 6: The expectation of €}! conditioned on Au(r,) and 2! conditioned on Au(r,). (a)
[((raett) 3| Au(re)))/ (raleri )/ (b) [{(rae?t)/®|Au(ra))]/ (rale?;)) /2. For both (a) and (b)

the symbols are : A, Ry = 473R;+, Ry = 275R; X, Ry = 2075;0R, = 995;<, Ry, = 100
(conventional grid, M = 10.2 cm), O, Ry = 50 (conventional grid, M = 2.54cm).

R, a significant dynamical effect is observed.
Finally, we have determined the intermittency exponent (I{62) from the autocorrelation

of € [2]:

pes(T) = <8($)§§:)+ 7')) ox 7. (6)
Our estimates of i are plotted as a function of Ry in figure 7. Below Ry ~ 100,41 ~ 0.
There is then a steep rise to a value of around 0.11 at Ry = 450. Measurements in very high
Reynolds number flows show  is approximately constant, with a value of approximately 0.2
[2]). Evidently, we are not yet at a sufficiently high R, to attain this value. This is consistent
with the spectra (figure 3) which are still evolving.

CONCLUDING COMMENTS

We have implemented a powerful new, cheap, experimental method of studying homoge-
neous turbulence at Reynolds numbers that are sufficiently high so that many of the issues
raised in contemporary turbulence theory may be studied. We have found that the R, must
be well above 200 before fully developed internal intermittency first appears. We note that
Direct Numerical Simulations tend to be in the range Ry ~ 200 and it is unlikely that they
will achieve R in the 500 to 800 range in the near future. We are presently using the active
grid to study scalar mixing and dispersion, as well as further elucidating the issues raised
here.
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