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ELEVENTH SYMPOSIUM ON ENERGY ENGINEERING SCIENCES
Solid Mechanics and Processing: Analysis, Measurement and Characterization

FOREWORD

The Eleventh Symposium on Energy Engineering Sciences was held on May 3-5, 1993,
at the Argonne National Laboratory, Argonne, I11inois. These proceedings include
the program, 1ist of participants, and the papers that were presented during the
eight technical sessions held at this meeting.

This was eleventh annual symposium sponsored by the Engineering Research Program
of the Office of Basic Energy Sciences of the U. S. Department of Energy. As the
title indicates, the central theme of this year's meeting was solid mechanics and
processing emphasizing modeling and experiments. Each year a group of selected
researchers in the DOE/BES Engineering Research Program are invited to present
their research findings in such an open forum. By organizing around a central
theme, principal investigators, their associates, and other interested parties
are able to engage in discussions and share thoughts on subjects of common
interests. This format has been used in the Engineering Research Program instead
of annual contractors' meetings and has been extremely successful since its
inception in 1983.

This symposium was organized into eight technical sessions: surfaces and
interfaces; thermophysical properties and processes; inelastic behavior;
nondestructive characterization; multiphase flow and thermal processes; optical
and other measurement systems; stochastic processes; and large systems and
control.

It is appropriate to restate here the goals and mission of the Engineering
Research Program. The DOE Office of Basic Energy Sciences, of which Engineering
Research is a component program, is responsible for the long-term mission-
oriented research in the Department. It has the prime responsibility for
establishing the basic scientific foundation upon which the Nation's future
energy options will have to be identified, developed, and built; it is committed
to the generation of new knowledge necessary for the solution of present and
future problems of energy exploration, production, conversion, and utilization,
consistent with respect for the environment.

Consistent with the DOE/BES mission, the Engineering Research Program is charged
with the identification, initiation, and management of fundamental research on
broad, generic topics addressing energy-related engineering problems. Its stated
goals are: 1) to improve and extend the body of knowledge underlying current
engineering practice so as to create new options for enhancing energy savings and
production, for prolonging useful 1life of energy related structures and
equipments, and for developing advanced manufacturing technologies and materials
processing with emphasis on reducing costs with improved industrial production
and performance quality; and 2) to expand the store of fundamental concepts for
solving anticipated and unforeseen engineering problems in the energy
technologies.
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To achieve these goals, the Engineering Research Program supports about 125
research projects covering a wide spectrum of topics that cut across traditional
engineering disciplines with a focus on the following three areas: 1) mechanical
sciences; 2) control systems and instrumentation; and 3) engineering data and
analysis. The Eleventh Symposium on Energy Engineering Sciences covered the
review of approximately one-third of the total activities sponsored by the
DOE/BES Engineering Research Program.

The Eleventh Symposium was held under the joint sponsorship of the DOE 0ffice of
Basic Energy Sciences and Argonne National Laboratory. The success of the
meeting was directly attributable to the active participation of the researchers
involved in the program. Several of the participants also served as session
chairpersons. Local arrangements for the Symposium were ably handled by Ms.
Jacquie Habenicht of the Conference Services 0ffice of ANL. Ms. Mary Hale of the
Technical Information Services Department assembled these proceedings and
attended to their publication. I am grateful to all those who contributed to the
success of the program, particularly to the participants who instilled an
atmosphere of intellectual inquiry and excitement. Interactions with such a
group made this Symposium a stimulating and thoroughly rewarding experience.

Subhendu K. Datta, ER-15
Division of Engineering

and Geosciences
0ffice of Basic Energy Sciences
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CRYOTRIBOLOGICAL APPLICATIONS IN SUPERCONDUCTING MAGNETS

P.C. Michael and Y. Iwasa
Francis Bitter National Magnet Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139

E. Rabinowicz
Department of Mechanical Engineering
Massachusetts Institute of Technology, Cambridge, MA 02139

ABSTRACT

We have previously advocated the development of materials selection guidelines for high-performance
superconducting magnets on the basis of steady-state sliding stability. Theoretical and experimental
evidence suggests that inherently stable friction materials may be physically impossible at cryogenic
temperatures. We propose an alternate strategy for improving low-temperature sliding stability
within the framework of available material behaviors.

INTRODUCTION

The crucial role friction plays in the operation of high-performance superconducting magnets has
been recognized for the past 15 to 20 years. Compact, high-current-density, high-performance super-
conducting magnets are used in such applications as laboratory research magnets, nuclear magnetic
resonance (NMR) spectroscopy, magnetic resonance imaging (MRI), and magnetically levitated (ma-
glev) vehicles. Unlike motors, superconducting electromagnets have no intentionally moving parts;
the extent of motion that occurs within the magnets is extremely limited except when the magnet
is being charged.

The superconducting state is finite; it is bounded by a phase surface consisting of magnetic field,
current, and temperature. Of the three, the temperature is neither completely controllable nor pre-
dictable. The heat capacity of a superconducting winding at 4.2 K, its usual operating temperature
is ~1/4000 of its room temperature value, hence only a small amount of frictional energy can quench
the winding, that is, to drive it into its nonsuperconducting state. High-performance magnets are
designed without internal cooling to reduce their overall size and weight, consequently, if a resistive
zone does form, it will grow rapidly under the influence of its own ohmic heating, further increasing
the magnet temperature. It then becomes necessary to discharge the current and allow the magnet
to return to its operating temperature before any further attempts can be made to use it.

A principal source of thermal perturbation in high performance magnets in frictional heating, dis-
sipated either because of relative motion between the entire magnet and its support structure, or
because of relative motion between adjacent conductors in the winding. Over the past 15 years con-
siderable effort has been devoted to determining the extent and general location of these motions,[! 3]
and developing a variety of cryotribological methods for minimizing their consequences.[>~]

Much of our research has concentrated on the premise that thermal stability in high-performance
magnets can be best achieved by selecting construction materials on the basis of their steady-state
sliding stability.l”—10 In absolutely stable sliding pairs, those which possess a positive friction-velocity




characteristic, motion occurs in a smooth, gradual manner resulting in the low-power dissipation
of frictional energy. By contrast, unstable pairs are those for which sliding occurs as a series of
irregular ‘stick-slips’; an extreme example of this instability occurs for materials whose static friction
coefficient is substantially larger than the subsequent kinetic value. Because the speed fluctuates
rapidly during stick-slip, frictional dissipation occurs as a series of high-intensity heat pulses. Hence,
stable motion is sought as a desirable condition for minimizing quench-inducing conductor motions.

ADHESION FRICTION THEORY

The contact between engineering surfaces is concentrated into discrete locations where the asperities,
or high points, on each surface touch. The normal stresses at these asperity contacts are quite high,
often comparable with the flow strength of the softer surface. For engineering materials the flow
strength is typically equated with the indentation hardness. However, for highly elastic materials
or materials with marked time-dependent properties it is not unusual for alternate measures of the
material’s flow strength to be used, those which more accurately reflect the asperities’ deformation
behavior. The asperity contact diameter for most materials typically ranges from 10 to 100 pm.[11]

The molecular contact between the sliding surfaces within the asperity junctions produces strong
intermolecular forces, binding the surfaces together. The strength of the adhesive junctions depends
on factor like the chemical compatability and cleanliness of the surfaces, and the time available for
the for the junctions to grow to full strength. The adhesive friction force, F, is represented as the
product of the junction shear stress, s, times the total real area of contact, A: F = sA.

VELOCITY-DEPENDENT FRICTIONAL EFFECTS

Velocity-dependent frictional effects have been observed in several materials. These materials include
low melting point metals like lead, tin and indium,[**'% boundary lubricants like waxes, soaps
and fatty acids,!'"13] and elastomeric polymers.[1415] These materials typically demonstrate small
but finite friction coeflicient value at very low speeds; the friction coefficients then increase with
sliding speed and eventually pass through peak values. The magnitude of the friction peak and
corresponding sliding speed depend on the sliding material and test conditions. As the temperature
decreases, the speed corresponding to the peak friction coefficient shifts progressively to lower and
lower values.[3:14:15]

According to Ludema, these velocity-dependent frictional effects result because of competition be-
tween area and strain-rate-dependent-shear-stress effects.['5] Figure 1 presents Ludema’s model for
the viscoelastic friction peak commonly observed in elastomeric polymers. Because elastomers pos-
sess elastic limits typically extending to 100% strain, the contact area is evaluated in terms of the
time-dependent creep modulus, while the junction shear stress is related to the rubber’s strain-rate-
dependent rupture strength. The large elastic modulii observed at high speeds and low temperatures
prevent excessive junction growth, thus maintaining relatively low friction values. At low speeds or
high temperatures, the strain-rate-dependent junction shear stress drops markedly, resulting in simi-
larly low friction values. The peak friction value results during the transition from small-contact-area,
high-shear-stress contact conditions to large-contact-area, low-shear-stress values.

FRICTION-VELOCITY-TEMPERATURE EXPERIMENTS

We have performed friction-velocity measurements at temperatures of 4.2, 77, and 293 K. The sliding
tests were performed on the rotational pin-on-disk friction apparatus described previously.[378] The
normal force during these tests was typically 7.5N while the sliding speed ranged 10~"~10"! m/s.
Over the past few years these measurements have emphasized materials, such as silicone rubber,
lead, tin, and indium, and boundary lubricants like soaps and fatty acids, which are known to possess
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Fig. 1 Schematic representation of velocity-dependent
elastomeric friction model. (Figure from [15].)

favorable room-temperature friction-velocity characteristics. Two main reasons for examining these
materials were to determine their cryogenics-temperature sliding behaviors, and perhaps more im-
portantly to investigate the fundamental mechanisms of low-temperature frictional stabilization.

A second component of this investigation was the concurrent evaluation of the sliding materials’
low temperature mechanical behaviors. These behaviors were determined principally by means of
time- and temperature-dependent hardness measurements.[®1¢] Hardness measurements are favored
for this determination because of their close similarity to the.normal contact conditions that prevail
at'the asperity junctions.[!1]

Figure 2 show our velocity-dependent friction coefficients for an indium disk slid against AISI 316
stainless steel pins at temperatures of 4.2, 77, and 293 K. The friction-velocity-temperature results
correspond closely to the behavior proposed by Ludema’s friction model. At room temperature the
competition between junction growth and interfacial shear creep produces a peak friction value of
~6 at a sliding speed of ~10~*m/s. Negative friction-velocity characteristics prevail near 77K; the
friction coefficient value decreases from 1.2 at 10~" m/s to 0.5 at 10~'m/s. At 4.2K the friction
coefficient appears virtually independent of velocity and equal in value to 0.5. Similar results have
been observed in comparable temperature ranges for several other low-melting-point metals including
copper, lead, tin, and mercury.[3:12:17:18]

The friction traces from Fig. 2 were compared with the time- and temperature-dependent hardness
data previously obtained by Mulhearn and Tabor.[*®) Their measurements were performed at several
test temperatures between 77 and 493K at indentation times ranging 10~3~10%s. Three distinct
regions of material behavior were observed. At temperatures below approximately 20% of the melting
point, ~0.2T,,, constant hardness values were obtained. In the temperature range 0.2~0.6T;, the
hardness decreased rapidly for low contact times but eventually approached asymptotic limits. Above
~0.6T,;, the hardness values can be fitted to a thermally activated creep equation, with an activation
energy for the process approximately equal to the metal’s self-diffusion activation energy.[w]
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Fig. 2 Friction coefficient vs sliding speed for an indium disk slid against AISI316
stainless steel at 4.2, 77, and 293 K. The normal force was 7.5 N.

Our empirical evidencel>!¢! and Ludema’s friction modell*®! both indicate that positive friction-
velocity behavior is observed only in materials whose shear stress increases with strain rate. The
positive correlation between stress and strain rate is typically observed only at temperatures above
0.3~0.6 of the material’s melting temperature, in the viscoelastic region for glassy materials and
the creep regime for crystalline materials.’ At liquid helium temperatures, the usual operating
temperature for superconducting magnets, all other materials are substantially below their viscous
creep ranges. Thus, we conclude that it is not possible to use absolute steady-state sliding stability
as a means for ensuring superconducting magnet thermal stability.

FORCE-BASED MOTION CONTROL

We have recently developed an alternate approach for improving the thermal stability of high-
performance solenoidal superconducting electromagnets. That is, to encourage incipient motions to
occur as early during the magnet charging cycle as possible rather than relying on the construction
materials’ intrinsic sliding stability to minimize frictional heating.!®} At the start of operation, a
superconducting winding is far from its critical surface, hence it can tolerate substantially greater
transient thermal disturbances without reverting to the resistive state than are possible as the magnet
nears its rated operating point.
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Fig. 3 Variation in the axial/radial conductor force ratios during tight wound coil energization.

The geometry of solenoidal windings makes them especially well suited to the force-based motion
control approach.l8] The electromagnetic forces in a simple solenoid are self-constraining. As the
magnet is energized the electromagnetic forces tend to expand it radially and compress it axially.
However, because it is not possible to wind a perfectly defect free winding, the small axial gaps
that are initially present between adjacent conductors allow sufficient space for conductor motions
to occur. Conductor-motion-induced quenches are usually caused by the axial displacement of
short conductor lengths near the ends of a windings innermost layers, where the ratio of its axial
electromagnetic body forces to radial contact forces are often greatest.[5:2 Motion is generally
assumed to occur when the ratio of these forces exceeds the conductor’s static friction coefficient.

A series of small test magnets were built to examine the effect that the axial-radial force ratio has
on the coils’ quench characteristics. The coils were constructed with 0.9x1.3 mm Formvar-insulated
mutltifilamentary copper-composite niobium titanium superconducting wires wound on a 76.2mm
inner diameter, 126.2mm long AISI 316 stainless steel coil form. The radial forces in the coils
were controlled in part by externally reinforcing the windings with 0.25x2.5mm beryllium-copper
ribbon. The axial and radial quench initiation locations were determined using the combined acoustic
emissions/voltage technique.[!+3:¢]

The axial electromagnetic body forces at the ends of each of the coil’s six layers were calculated from
field maps of the magnetic field during various stages of the energization sequence.[ The radial in-
terconductor forces were determined using standard 2-dimensional plane-stress approximations.[22]
This force distribution was calculated by superposing the effects of the conductor tension during
winding, differential thermal contraction between the winding components, and the radial electro-
magnetic body force. The magnitude anql distribution of these radial forces were varied from coil to
coil using the programmed winding tension approach advocated by Bobrov and Williams.[?2]

Figure 3 shows the predicted axial-radial force ratios vs peak magnetic induction for a test coil
constructed following the conventional approach, using an extremely high conductor tension to
“frictionally pin” the conductors in their as-wound locations. The winding tensions for this magnet
consisted of 100 MPa in each conductor layer and 120 MPa in the two beryllium copper overbanding
layers. No wire motions were initially anticipated for this coil because its maximum force ratio of
~0.1 is less than accepted value of 0.26 for the conductors static friction coefficient.[]
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Fig. 4 Quench and training behavior for tight wound coil.

Figure 4 shows the quench characteristic for this tightly wound coil during its first ten training
cycles. Its vertical axial presents the peak induction in the winding at quench, B,,, divided by the
conductor’s critical point induction, B.. The plotting symbols indicate that all of the quenches
initiated in innermost layer, layer 1, as the results of transient conductor motions. The first quench
occurred at ~0.77B.. Following this, the coil trained slowly and saturated at a degraded performance
of about 0.92B, after about 6 charging sequences. A recent study has demonstrated that because of
statistical fluctuations in thickness along the conductor length it is impossible to exactly predict the
ratio of forces acting on any given segment.(?®] Given the typical range of dimensional tolerances, the
forces needed for frictional immobilization becomes increasingly impractical for large-bore high-field
magnets. In fact, high-winding tensions frequently postpone wire motions until late in the magnet’s
charging sequence where it is much more sensitive to transient thermal perturbations.
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Fig. 5 Variation in the axial/radial conductor force ratios during loose wound coil energization.
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Fig. 6 Quench and training behavior for loose wound coil.

Figure 5 presents the axial-radial force ratios vs peak induction for a coil designed to encourage
impeding wire motions to as early in the charging sequence as possible. Each wire motion eliminates
some of the interconductor spaces, hence, these motions eventually become self-limiting as the entire
winding is compressed into a single structural entity. The conductor force ratios in Fig. 5 all pass
above the conductor’s static friction coefficient while the peak induction in the winding is below 2 T.
The winding tensions for this coil consisted of 21 MPa in layer 1, 38 MPa in layer 2, 32 MPa in layers
3, 4 and 5, 49 MPa in layer 6, and no overbanding layers.

Figure 6 shows quench and training characteristics for this loosely-wound coil. All of the motion-
induced quenches in this winding occurred near the top of the outermost layer. The first quench
occurred at ~0.68B.. However, by the second quench it achieved the same performance level as
the tightly-wound coil and then reached its full critical surface limit by its fifth charging cycle.
Critical surface quenches typically occur only in the winding’s innermost layer where its magnetic
induction is greatest. Because of the quench initiation location, and our understanding of the coil’s
construction technique, we attribute the early training quenches to a poorly designed lead wire
termination method. Steps are presently being taken to relieve this deficiency in the coil’s design
hefore continuing the investigation.

CONCLUSIONS

To advance our understanding of cryogenic-temperature sliding stability, and thereby to improve the
reliability of superconducting magnets, we have initiated an experimental and theoretical program
to exarnine the fundamental mechanisms of frictional stability. The attainment of absolutely stable,
positive friction-velocity characteristics at cryogenic temperatures appears improbable because of the
lack of thermally-activated steady-state shear creep. We are presently investigating a force-based
approach to magnet design that promotes quench-causing conductor microslips to occur early in the
magnet’s charging cycle where their consequences are relatively benign.
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ONE-COMPONENT SURFACE WAVES IN ANISOTROPIC LINEAR ELASTIC MEDIA
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ABSTRACT

We consider the possibility that a single partial wave (an inhomogeneous plane
wave) can serve as a free surface (Rayleigh) wave in an anisotropic linear elastic half-
space. The conditions required for the existence of such a wave are derived froma
study of the fundamental eigenvalue problem set by A.N. Stroh forsteady plane
disturbances in anisotropic solids. We show by direct computation that such one-com-
ponent waves are necessarily supersonic; since isotropic solids do not admit super-
sonic surface wave solutions, these one-component waves are pure anisotropic effects.
A stable solid of triclinic symmetry yielding one-component surface waves is con-
structed and discussed. In the limit as the supersonic surface wave speed approaches
that of a subsequent transonic state, the one-component surface wave becomes an ex-
ceptional homogeneous plane wave.

INTRODUCTION

In general a free surface (Rayleigh) wave in an anisotropic linear elastic half-space is constructed
from three partial waves which are inhomogeneous plane waves whose amplitudes decay exponentially with
distance normal to the traction-free half-space boundary. It is well-known |1,2] that elastic surface waves
polarized in a plane of material symmetry (reflection symmetry) consist of only two such partial waves.
Thus it is prudent to inquire as to the possible existence of a one-component free surface wave. i.e.. a single
inhomogeneous plane wave which leaves a half-space boundary traction-free. Such a wave. if indeed it can
exist. is the inhomogencous planc wave analogue of the homogencous plane waves called exceptional
waves (or surface-skimming bulk waves) which play a prominent role in the theory of subsonic surface
waves. Although the theory of subsonic surface waves is now reasonably established, the development of
the theory has been relatively recent, and the Stroh formalism on which it is based has not been widely
digested in either mechanics or mathematical circles. Nevertheless, space limitations preclude our
presentation here of either the mathematical preliminaries on which the theory is based or more than a
cursory reference to the Stroh formalism beyond what is absolutely necessary for the one-component surface
wave problem. Therefore, we must assume the reader is at least familiar with the work presented in |3.4].

We consider a stable anisotropic linear elastic half-space (positive definite elastic stiffness Cijkl ).
The unit inner normal to the half-space boundary is n, and m is a unit vector in the half-space boundary (and
thus normal to n) along the direction of propagation of the free surface wave in the boundary. The plane
defined by m and n is referred to as the reference plane. The candidate for a small amplitude surface wave
solution is a displacement field given by the inhomogeneous plane wave

ul=A,exp[ik(m-x+ pun'x-vt)]. (1

The above displacement field is a solution to the equations of motion for any wave number k if the
polarization A and the complex constant pg are chosen to satisfy the fundamental eigenvalue problem set by




A. N. Stroh, which we present in the next section. The surface wave speed v must be selected to ensure that
the above displacement can exist in the half-space with no tractions acting on the half-space boundary,
which requires that the three-vector L in Stroh's eigenvalue problem must vanish. In order for (1) to

actually represent a surface wave in the half-space nex = 0, the imaginary part of the constant pg must be
positive.

When L vanishes, the polarization vector A of the (presumed) one-component Rayleigh wave is a
solution to the six-dimensional eigenvalue problem

Al [A
N = . 2

o] -*fo] @
IN] is a 6 x 6 real matrix whose form we shall give shortly. From the identity [4]

(m+pn)*L+pv'Aen=0, (3)
where p is the half-space mass density, we conclude that Aen =0, i.e., the one-component surface wave is
polarized in the half-space boundary. Furthermore, since p must be complex (for a decaying wave), A must
be complex with linearly independent real and imaginary parts. If this were not the case the two six-vectors
[A O] and |[A* 0] corresponding to the eigenvalues p and p* would be linearly dependent, which is not

possible if p is complex (p = p*, its complex conjugate). Thus, both the real and imaginary parts of A are
orthogonal to n.

ANALYSIS OF THE STROH EIGENVALUE PROBLEM
In order to analyze the Stroh eigenvalue problem associated with the one-component surface wave,
we adopt the notation
(ab)jk = aj Cij}q by = (ba)kj (4)

where we have assumed the full symmetries of the elastic stiffnesses. The 6 x 6 matrix [N]| has the block
form

N, N,
}. (3

[N]- [N, N

The 3 x 3 matrices N1, N2, and N3 are real; N2 and N3 are symmetric, and -N2 is positive definite.
The actual forms of these three matrices are

N1 = - (nn)-! (nm); N2= -(nn)'l ; N3 = -(mn) (nn)'l (nm) + (mm) - pvgl (6)
where v is the (supposed) Rayleigh wave speed.

From the eigenvalue problem (2) we find that

N1A=pA and N3A=0. (N
Now N3 is real and A is complex with linearly independent real and imaginary parts, so that both the real
and imaginary parts of A are null vectors of N3. Since both the real and imaginary parts of A are also

normal to n, any vector in the m-t plane (where t = m x n) is a null vector of N3. In particular,

N3m=0 and N3t=0. (8)
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As N3 is real and symmetric, its third eigenvector must be n, as can be verified directly in the following
manner. We first note that for any three vectors a, b, and ¢, the symmetry associated with the elastic
stiffness tensor components is such that

(ab)c=(ac)b and cf (ab) = al (cb). (9)

Using (9) and the definition of N3 in (6) it is a simple matter to show that
Nn=-pv’n (10

so that in an m-n-t basis the matrix N3 has (at the one-component Rayleigh wave speed) the form

2

0
0). (rn
0

oéo

0
[N,]=]0
0

We now proceed to examine the 3 x 3 block matrix N1. Post-multiplying Nj by n yields
N,n =-(nn)" (nm)n = —(nn)" (un)m = -m, (12)

where we have used (91). Thus, we have that

m'Nn=-1
T " (13)
n'Non=t'N,n=0.
In addition, from N;A = pA,
n'N,A=pn'A =p(n-A)=0, (14)

since A is orthogonal tom. Thus n"'Nl is orthogonal to A (and hence to both its linearly independent real
and imaginary parts) which is possible if and only if

n'N, =m". (15)
Post-multiplying (15) by n reveals that y = 0 by virtue of (13). Thus, in addition to (13) we find that
n'Nm=n"N,t=0. (16)

Finally, we have deduced that if a one-component surface wave exists, the block N1 expressed in an m-n-t
basis has the form

NII -1 Nl.x
[N,]= 0O 0 01} (1N
Ny, 0 N

Hence, at the one-component surface wave speed, v, the matrix.N - pI, where 1 is the 6 X 6 unit matrix. has

the form (relative to an m-n-t basis)

11




N,-p -l N:
0 -p 0 (nn)™"
(Nop]=| N 0 NerP . (18)
0 0 0 N,,-p 0 N,,
0 -pv? 0 -1 -p 0
0 0 0 N,; 0 N;;-p

The Stroh eigenvalues pg (o = 1, 2, ...6) are the six values of p for which the determinant of [N - pIl
vanishes. Using Laplace's method for expanding the determinant, the six Stroh eigenvalues are found from

[{Nu “’p}{Nn - P}" NmN;‘]z[Pz ‘PVZ(““);;] =0. (19)

The 6 roots are

p = =Jpv (nm)., 20)

and

1 3 .
P='2_{(Nn +N33)iJ(N||—N33) +4N|3N3|}~ twice. (21

The repeated roots represented by (21) reveal that if a one-component surface wave exists, it must be
associated with degeneracy in the Stroh eigenvalue problem. We return to the issue of the type of
degeneracy , i.e., semisimple or non-semisimple degeneracy, later. The more important feature of the one-
component surface wave problem is the result given by (20). Since the block matrix N2 is negative definite,
the matrix (nn)-! is positive definite [Note that (nn) is the acoustical tensor corresponding to the direction n,
which is necessarily positive definite for a stable elastic medium; actually, the weaker requirement of strong
ellipticity associated with Cjjk] is all that is needed to ensure the positive-definiteness of the acoustical
tensor associated with any crystallographic direction.] Clearly, equation (19) reveals that two of the Stroh
eigenvalues (at the one-component Rayleigh wave speed v) must be real, since the mass density, speed, and
the element (nn)~! are real and positive. Since the existence of real Stroh eigenvalues corresponds to the
supersonic regime., we have deduced that

A one-component surface wave is possible only in the supersonic regime.

We also note that if we are to have a true one-component surface wave representing a displacement
whose amplitude decays exponentially with distance from the half-space boundary , the repeated
eigenvalues given in (21) must be complex, which requires that

(N” - Nss)z +4N;N;, <0. (22)

We have now shown that it is possible for a one-component free surface wave to exist in an anisotropic
linear elastic half-space, provided certain conditions are met. It remains only to construct a medium with
stable elastic stiffnesses which are capable of admitting these conditions to actually be met. We mention
that a necessary, but not a sufficient, condition that (22) be satisfied is that the product Nj3 N 3] < 0,i.e.,
the pair (N13 , N3 1) must be oppositely signed.

Before showing that a stable crystal can be constructed so as to yield a one-component surface wave,
it is in order to mention what happens in the event that (a) the inequality in (22) is reversed, or (b) the
inequality in (22) becomes an equality. If the inequality in (22) is reversed, the doubly repeated roots given
by (21) are real, so that all six Stroh eigenvalues are real; the two values of p in (21) now correspond to two
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exceptional limiting waves (two homogeneous plane waves leaving the half-space boundary traction-free)
associated with a subsequent Type 4 transonic state. If the inequality in (22) becomes an equality, all four
values of p given by (21) are real and identical, corresponding to a subsequent transonic state of either Type
2 for Type El (a so-called zero curvature transonic state); there are two limiting exceptional waves
associated with each of these subsequent transonic states. Such exceptional transonic states (with two
exceptional limiting waves) are not possible as first transonic states [4].

In a certain sense one can think of these exceptional subsequent transonic states as arising from
the one-component surface waves in the following fashion. When the inequality in (22) is satisfied, the one-
component surface wave is of the form (1) with

i (p) = =i (N, - N;) — 4NN, , (23)

The + (-) sign in (23) goes with a one-component surface wave of the form (1) decaying exponentially with
depth normal to the interface in the half-space nex > 0 (nex <0). If we now imagine varying the elastic
stiffnesses of the medium continuously so as to maintain a one-component surface wave while the left side
of the inequality (22) continuously increases through negative values toward zero (this can actually be done
as pointed out by Barnett and Chadwick [5]), we reach a set of stiffnesses for which the radical in (23)
vanishes and Im (p) = 0. The two one-component surface waves (one inhomogeneous plane wave in each
of the "upper" and "lower" half-spaces) have degenerated into two homogeneous plane waves. These
homogeneous plane waves are exceptional (they leave the have space boundary traction-free), since each
has inherited that property from the one-component surface waves giving rise to them. These two
exceptional waves are associated with either a Type 2 or Type E1 subsequent transonic state as explained in
(5], depending on whether the Stroh eigenvalue of multiplicity four belongs to one slowness sheet (Type El)
or to two slowness sheets making tangential contact (Type 2).

If the stiffnesses are now continuously varied so that the inequality in (22) undergoes a reversal, the
roots given by (21) now form two pairs of real roots. One of the roots in each pair corresponds to an
exceptional limiting wave belonging to a Type 4 transonic state, i.e., the exceptional limiting waves
associated with the Type 2 or Type E1 states mentioned in the last paragraph remain exceptional, but these
exceptional waves now belong to two different points on either one or two of the three slowness sheets.

DEGENERACY OF THE ONE-COMPONENT SURFACE WAVE PROBLEM

. Clearly, the one-component surface wave exists only when the Stroh eigenvalue problem is
degenerate; two of the Stroh eigenvalues are of multiplicity two. It is interesting to inquire as to the type of
degeneracy occuring. Let us consider the eigenvalue p with positive imaginary part given by (21). If the
degeneracy is semisimple, one eigenvector associated with p is found from equation (2), and a second
linearly independent eigenvector is by solving the eigenvalue problem

[N][:] = pm- (24)

If the degeneracy is non-semisimple, a second linearly independent eigenvector must be a generalized
eigenvector found from

el

It was originally believed [5] that a one-component surface wave was always associated with non-
semisimple degeneracy, and, in a certain sense, this is correct. Wang and Gundersen [6], however, have
actually examined the consequence of having the second eigenvector be an ordinary eigenvector defined by
(24). The analysis is straightforward and reveals that.a second ordinary eigenvector can be found if and
only if a certain constraint is obeyed. Usually, non-semisimple degeneracy prevails, and the second
eigenvector is a generalized eigenvector. Chadwick {7] had unknowingly found a one-component surface
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wave which corresponds to semisimple degeneracy, a fact he uncovered after Wang and Gundersen's
analysis led Chadwick to re-examine his earlier study.

Wang and Gundersen's analysis of the second eigenvector as an ordinary eigenvector actually leads
to a surface wave which can be regarded as the analogue of a "circularly polarized homogeneous plane
wave". From (2) and (24), corresponding to the eigenvalue p of muitiplicity 2 are two ordinary eigenvectors
satisfying

[N] [::] =p [:] and [N] [ij= p {ij i (26)

Clearly, any linear combination of the two eigenvectors is an eigenvector, and there is precisely one such
combination that produces

L =Ej L1 +E2L2=0, ' 27

which is the condition for a traction-free boundary. This linear combination cannet be used as a
normalized eigenvector according to the usual Stroh scheme for semisimple degeneracy, namely,

2AL=1 (28)
When non-semisimple degeneracy applies, then the ordinary eigenvector satisfies
2AL=0, (29)

and this eigenvector can be used in the normalization scheme appropriate for non-semisimple degeneracy.
Thus, it seems more reasonable to reserve the term "one-component free surface wave" for the case in which
the associated Stroh eigenvector can participate as a normalized eigenvector. This definition would
preclude semisimple degeneracy, whose associated surface wave would only qualify as a "two-component
surface wave with perhaps less exotic appeal.

A MEDIUM ADMITTING A ONE-COMPONENT SURFACE WAVE

Barnett and Chadwick [5] have constructed a one-parameter family of media of triclinic symmetry
which admits one-component surface waves and the exceptional subsequent transonic states discussed
above. Here we present a single numerical example which the reader may use to verify that indeed a stable
linear elastic solid admitting a one- component surface actually is a possibility. The elastic stiffness matrix
given by

25 0 -5 35 0 0
0 136 78 0 124 -4
—2/5 -If8 977480 -18/5 -3/{32 -l

el - 335 0  -185 72/5 0 0 co
0 /24 =332 0 379 -I3
0 4 -1 0 -y3 323

can be shown to be stable (Mathematica was used to compute its six eigenvalues, all of which are positive).
Furthermore, the eigenvectors of Cljkk were computed to be distinct from those of ank so that invoking a
theorem and algonthm due to Cowin and Mehrabadi [8], the stiffness matrix given in (30) is associated thh

a stable medium of triclinic symmetry. [C] in (30) is referred to an m-n-t basis and corresponds to T=0in
I5].
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In addition to the one-component surface wave existing in the supersonic regime, if the mass density
of the medium is taken as unity, there is a subsonic Rayleigh wave with speed v = 0.5668 and a "limiting
speed" marking the transition from "subsonic” to "supersonic” at v = 0.5977. The one-component surface
wave travels at a speed v = 0.6124.

SUMMARY

We have derived the conditions under which one-component surface waves exist, and we have
shown that such waves are necessarily supersonic. Hence, they are only possible in anisotropic linear elastic
solids, since isotropy precludes the existence of supersonic Rayleigh waves. If the eigenvector
corresponding to the one-component surface wave is required to be normalizable in the sense of Stroh. then
such waves are always associated with non-semisimple degeneracy of the Stroh eigenvalue problem. The
elastic stiffnesses of a triclinic solid admitting such a wave have been constructed.
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STRESS-INDUCED ROUGHENING INSTABILITIES ALONG
SURFACES OF PIEZOELECTRIC MATERIALS

Nelly Yung Chien and Huajian Gao
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ABSTRACT

The possibility of using electric field to stabilize surfaces of piezoelectric solids against stress-
induced morphological roughening is explored in this paper. Two types of idealized boundary
conditions are considered: 1) a traction free and electrically insulated surface and 2) a traction free
and electrically conducting surface. A perturbation solution for the energy variation associated with
surface roughening suggests that the electric field can be used to suppress the roughening instability
to various degrees. A completely stable state is possible in the insulating case, and kinetically more
stable states can be attained in the conducting case. The stabilization has importance in reducing
concentration of stress and electric fields due to microscopic surface roughness which might trigger
failure processes involving dislocation, cracks and dielectric breakdown.

INTRODUCTION

This paper is concerned with a class of stress-induced instabilities which causes material surfaces to
roughen under diffusional mass transport. These instabilities occur, for example, in heteroepitaxial thin films
where the elastic strain energy due to lattice misfit provides a thermodynamic driving force for the onset of the
island-like surface morphology, also known as the Stranski-Krastonov pattern (e.g., [1]), during film growth
or annealing. The conclusion that the strain energy tends to destabilize an initially flat surface and thus
to promote the development of surface roughness has been reached by studying linearized kinetic equations
along a slightly wavy surface [2] [3] and by showing that the strain energy is always reduced when an initially
flat surface is slightly perturbed in an arbitrary manner [4]. Gao [5] [4] also studied the stress concentration
along a slightly undulating surface of a stressed isotropic or anisotropic solid and found that even a slightly
undulating surface can generate significant stress concentration causing deformation and fracture. It appears
that a thorough investigation of the surface roughening instability and the resulting stress concentration is
of importance for understanding the nucleation of misfit dislocations in heteroepitaxial thin films [6] [7] and
general flaw initiation at material surfaces exposed to environmental corrosions. The significance of microscopic
surface roughness is further elucidated by the recent work of Chiu and Gao (8] who adopted a cycloid surface
to model periodic rough surfaces. Chiu and Gao found that the cusped cycloid surface generates a crack-like
stress singularity within a thin surface layer. Under uniform tension this singularity shows identical strength
(i.e. stress intensity factor) as a row of periodic parallel cracks. Even though a rough surface with cusps may
not have been perceived to be as dangerous as a periodically cracked body, application of fracture mechanics
predicts that the two structures should fail at the same stress level.

The essence of the surface roughening instability leading to formation of stress singularities lies in the
competition between elastic energy and surface energy in a stressed material system. The elastic energy can
be most efficiently released by formation of localized defects such as cusps, cracks and dislocations. However,
such strain relaxation must occur at the cost of creating additional free surfaces, thus increasing the surface
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energy of the system. One may show that the elastic energy will dominate over surface energy at relatively
long wavelengths (However, at long wavelengths, the gravitational energy may also interfere in the instability
process; see [4]). A question that arises is whether other forms of energy such as those of electromagnetic origin
can sometimes be utilized to interfere in the instability process so as to control the development of defects.
As a first study in that direction, we explore in this paper the possibility of using electric field as a control
parameter to minimize or even stabilize the stress-induced surface instabilities in piezoelectric materials.

The subject here is of physical significance. Piezoelectric materials have been widely used as electrome-
chanical transducer, such as ultrasonic generators, filters, sensors, and actuators. Thin films technology plays
an important role in many industrial processes and in the fabrication of solid state components. Recent de-
velopments involving piezoelectric thin films include applications such as force-sensing resistors [9], built-in
vibration sensors [10], molecular sensing devices [11], and surface acoustic waves (SAW) generators [12]. As
piezoelectric thin films may be subjected to very large stresses generated by strain sources such as thermal
mismatch and lattice mismatch. Stress concentration effects due to an undulating surface may trigger pro-
cesses involving nucleation of dislocations and cracks. Electric field concentrations might also occur causing
dielectric breakdown. Thus, it is of interest to investigate the possibility of controlling surface instabilities with
an applied electric field. To achieve our objectives, a perturbation analysis developed in Gao [4] for anisotropic
elastic solids is extended to the piezoelectric case. The perturbation solution of energy variations is then used
to examine the effects of mechanical and electric loading on the instability wavelength.

CONDUCTING AND INSULATED SURFACES OF A
STRESSED PIEZOELECTRIC MEDIUM

Details concerning the theory of piezoelectricity can be found, for example, in [13] and [14]. The consti-
tutive equations of a piezoelectric medium is usually expressed as

Ti;; = CikiSu— erijEx
D; = eipSu+eik;, 1

where Cjjx are the stiffness constants measured at a constant electric field, ex;; the piezoelectric stress con-
stants, ¢;; the dielectric constants measured at constant strains, S;; the mechanical strains, T;; the mechanical
stresses, D; the electrical displacements, and E; the electric field derivable from an electric potential ¢ by
E; = —¢,;. For linear, quasi-static piezoelectricity in absence of body forces and free charges, these quantities
satisfy the equilibrium equations T;; = 0 (mechanical) and D;; = 0 (electrical). Two types of idealized bound-
ary conditions along the free surface are of importance: 1) a traction free and electrically insulated surface and
2) a traction free and electrically conducting surface. Fig. 1 shows these two boundary value problems. The
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Figure 1: Surfaces of a Piezoelectric Medium with (a) Insulating Boundary Conditions and (b) Conducting
Boundary Conditions.

electrically insulating boundary condition corresponds to an adjoining medium with zero dielectric constant
and having no free charges residing on the piezoelectric surface. Even though it is not physical to have a
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medium with zero dielectric constant, it has been argued in [15] {16] [17] that this condition is approximately
attained if the piezoelectric medium has much higher dielectric constant and stronger piezoelectric coupling
than the adjoining medium such as air. The electrically conducting boundary condition corresponds to an
adjoining medium having much higher electric conductivity. Following Lothe and Barnett [15], we attach a
superscript ® to quantities relating to the insulating case and a superscript F to quantities relating to the
conducting case.

In view of thin film applications, we consider a piezoelectric medium subjected to fixed misfit strains
S11 and Szz. To illustrate some typical results, 3% biaxial misfit strain is assumed to exist in the absence
of an externally applied electric field. For an insulated surface, we examine the effects of an additional
applied electric field EF; in the longitudinal direction. For a conducting surface, we consider an externally
applied electric field E, in the transverse direction. Before surface instabilities occur, both the stress field
and the electric field quantities are constants, so that the equilibrium equations are automatically satisfied;
the unperturbed solutions can be readily deduced from the constitutive equations using appropriate boundary
conditions.

THE STABILITY ANALYSIS AND A CRITICAL WAVELENGTH

We now investigate whether the surfaces in Fig. 1 are energetically stable, i.e. whether infinitesimal
deviations from flatness will be magnified by some kinetic processes such as mass diffusion along the surface.
The stability analysis requires the solution to a first order perturbation problem depicted in Fig. 2 where
an infinitesimal cosine wave perturbation with amplitude A and wavelength ) is assumed along an otherwise
perfectly flat surface. This problem can be solved following a perturbation method used by Gao [4]. For

(@ (Tynj=0, Din; =0)
® (Tyn;=0, ¢=0)

2A

Figure 2: A Cosine Wave Surface with (a) Insulating Boundary Conditions (b) Conducting Boundary Condi-
tions; n; is the Surface Normal.

conciseness, the details of the mathematical derivations are neglected here. Essentially, the undulating cosine
surface problem is converted into a reference flat surface subjected to a distribution of effective surface tractions.
The perturbation problem is then solved using a Stroh-like formalism [18] {15] [19] [20] for piezoelectric elasticity
problems. The most important result for the stability analysis is the energy change as an initially flat surface
(Fig. 1) evolves into the cosine wave surface (Fig. 2). The total energy change (internal energy plus surface
energy) per wavelength is found to be

AEy =

72yA?  tTRe[Y]to
A 2

The first term on the right hand side represents the change in the surface energy where 4 denotes the surface
energy density constant and the second term is the change in internal energy. Superscript T implies vector
transpose, to is 2 4 X 1 loading vector, and Y is a 4 X 4 constant matrix usually referred to as the surface
admittance tensor for a piezoelectric medium [15] [19].

The energy expression in Eq. (2) is formally identical to that derived by Gao [4] for the anisotropic
elastic case. The reader may be referred to [4] for some helpful insights and discussions. In the piezoelectric
case, both the loading vector to and the admittance tensor Y take different meanings. In the anisotropic
elastic case, to is 2 3 X 1 vector and Y is 2 3 x 3 matrix. The presence of piezoelectric coupling is exhibited
as an added fourth dimension in these quantities.

74+ 0 [(4/N)Y] . (2)
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The loading vector to depends on the electrical boundary condition. In the insulating case to takes the

form
tg = (Tlh 0,T13, DI)T (3)

where Ti; and Ti3 denote the mechanical stresses and D; is the electric displacement in the z; direction
induced by an applied electric field. In the conducting case, the loading vector becomes

t5 = (T11,0, T3, —E2)T . (4)

where E, is the electric field in the z, direction. Note that a conducting surface necessarily implies that E;
and Ej3 vanish.

The admittance matrix Y also has a strong dependence on the electrical boundary condition. Lothe and
Barnett [15] [19] showed that the calculation of Y can be reduced to an eight-dimensional eigenvalue problem
involving the material stiffness Cj;x, piezoelectric coefficients eg;; and dielectric constants ;. In the insulating
case, Y is more explicitly written as Y2, while in the conducting case Y. The properties of Y?® and YF
have been investigated extensively by Lothe and Barnett [15] [19]. In particular, it was shown that both v?
and YF are Hermitian matrices with symmetric real parts and anti-symmetric imaginary parts, and have real
eigenvalues; Y? has three positive and one negative eigenvalues, while all four eigenvalues of YF are positive.

The question of whether a perfectly flat piezoeleétric surface is stable amounts to whether the total
energy change AE,, in going from an initially flat to a slightly undulating surface is positive. In other words,
AE;: > 0 implies that the flat surface is stable in that any perturbation would tend to increase the energy
in the system. On the other hand, if AE,,; is negative for at least one perturbation wavelength, then a wavy
surface is preferred energetically because the energy can be further lowered by roughening. Following Eq. (2),
a critical wavelength exists so that the stability condition can be stated as A < A, where

2y

Aer = —prm———
7 tF Re[Yl]to

©)

DISCUSSIONS

Having established the stability condition for a stressed piezoelectric surface, i.e. A < Aoy, We investigate
whether it is possible to suppress surface instabilities by using the electric field as a control parameter. Two
types of stabilization can occur leading to a completely stabilized surface or a kinetically more stable surface.
The first pertains to applying an external electric field to the system such that AFE;,; > 0 where any pertur-
bation would increase the total energy of the system. This corresponds mathematically to Acr being negative.
For the second type of stabilization, a kinetically more stable surface can be achieved by applying an electric
field to the system with a net effect of increasing A.,. Here, the stressed surface is not truly stable but matter
has to diffuse a longer distance in the roughening process, and hence requires a longer period of time. In both
cases, what we hope to achieve reduces mathematically to minimizing the product of t& Re[Y]to. Since the
properties of Y for the insulating problem is different from Y* for the conducting problem, we will discuss
these two cases separately.

To stabilize an insulated piezoelectric surface, we try to minimize the following;:
tT Re[Y]to = y3(T11)? + 2y% T Tis + 25T D + ys(T1s)? + 2y, T1a D1 + y&a(D1)? (6)

where y;; representing the real part of ¥;;.

There exist three mechanisms for stabilization in an insulating problem. The first arises from the negative
nature of y3,. It has been shown by Lothe and Barnett [15] that, for stable materials, the upper 3 x 3 block
of the Y? is positive definite, while Y3 is negative definite. If we increase the external electric loading Ey, an
increase in electric displacement D; will occur in all piezoelectric materials. With a negative y3, in Eq. (6),
and using Eq. (5), we see that any increase in D; will enlarge Ac- creating a kinetically more stable state.
Furthermore, if D is increased beyond a critical value, Ac, will become negative corresponding to AE: > 0,
and a totally stabilized surface can be realized. This y3, stabilizing effect exists for all piezoelectric insulated
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surface. As a demonstration, we consider a zinc oxide surface under a 3% biaxial misfit strain. The orientation
in this example is such that the six-fold rotational axis of symmetry of the crystal coincides with the z2 axis
in our problem. For plotting convenience, we normalized the critical wavelength with respect to its value in
the absence of an electric field. This normalized critical wavelength :\c., is plotted as a function of E; in Fig.
3. From this example, we see that an electric field of the order of gigavolts is needed to completely stabilize
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Figure 3: Normalized Xer vs. E; in Gigavolts for Zinc Oxide in an Insulating Problem

an insulated zinc oxide surface with a 3% misfit strain.

The second mechanism for stabilization can be termed the bulk stress reduction effect where an increase
in E; may lead to a decrease in the bulk stress Ty;. This effect occurs in materials where piezoelectric coupling
exists between the Ty; stress and the electric field E;. Lithium Niobate and Lithium Tantalate, belonging
to crystal class Trigonal 3m, are examples of such materials. In addition to the Y2 stabilization effect, an
insulated surface with this specific coupling behavior can also be stabilized by a reduction of the bulk stress.
It must be noted that this stabilizing effect only occurs within a range, if the electric field is increased beyond
this range, it might destabilizes the system by overshooting. As this behavior also applies to a conducting
problem, additional details and an example on this effect will be presented shortly.

The third mechanism for stabilization occurs in materials, such as quartz of the Trigonal 32 class, where
piezoelectric coupling exists between the shear stress Ti3 and the electric field E;. This stabilization effect
stems from the cross terms such as 2y$;7T3;T13 and 2y2,T13D; in Eq. (6). As it is possible to have a negative
shear stress Ty3 induced by E; and a negative y3y, the net effect might decrease the product tT Re[Y]to and
allowing the surface to attain a kinetically more stable state. We call this the shear stress coupling effect. Since
the Y& effect is always present in the isolating case, it is not possible to isolate an example where the shear
stress coupling effect alone accounts for stabilization. Thus, an example on this mechanism is not included in
this paper.

In general, all three stabilizing mechanisms can be present simultaneously. For the materials we have
considered, the Y3 stabilization effect is a much more dominant effect than the bulk stress reduction and the
shear stress coupling effect. As the Y3 effect can completely stabilize an insulated piezoelectric surface, the
effects of bulk stress reduction and shear stress coupling are relatively unimportant in the insulating case.
However, this is not true in the conducting case.

For conducting surfaces, the product that we try to minimize for stabilization is
tT Re[Y]to = y53 (T11)? + 2y5TuTis — 2y5, T B2 + y5(T1s)? — 2v5,Tis Bz + yig(E2)* - (7

In this case, the 4 x 4 YF matrix has been shown by Lothe and Barnett [15] to be positive definite. Thus,
unlike the insulating case where the surface can be stabilized by the Y2 effect, stabilization of a traction free
and conducting piezoelectric surface can only be achieved by bulk stress reduction or by shear stress coupling.
These two mechanisms do not completely stabilize a conducting surface, only leading to a kinetically more
stable state.

To demonstrate the effects of bulk stress reduction in a conducting problem, we consider the example of
zinc oxide under a 3% misfit strain. The orientation of the crystal here is identical to that in the insulating
example. The result for the normalized critical wavelength A, is plotted in Fig. 4. The bulk stress reduction
effect is the only stabilization mechanism present in this example, and we found that an applied electric field
of one gigavolts in the z2 direction causes a 25% increase in A.r. In several other cases that we have studied.
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Figure 4: Normalized ), vs. E; in Gigavolts for Zinc Oxide in a Conducting Problem

the percentage increase in A, is less than 10%. This seems to suggest that the bulk stress reduction effect is
not particularly effective in controlling instabilities in conducting piezoelectric surfaces. However, in materials
exhibiting quadratic effects such as electrostriction and magnetostriction, an increase in electric or magnetic
field might lead to a significant reduction in the bulk stress. These effects should be investigated as they might
provide better alternatives for stabilization of stressed surfaces.

The shear stress coupling cross terms in Eq. (7) for a conducting surface are identical to that for an
insulated surface in Eq. (6). Therefore, as discussed in the insulating case, shear stress coupling effect is also
a feasible mechanism, mathematically, for controlling instabilities in a conducting surface. However, we are
unable to find a physical example to illustrate this effect. For the materials we have considered, a non-zero
shear stress T}3 either has no effect on stabilization or it leads to instabilities.

Both stabilizing mechanisms for a conducting surface depends on piezoelectric coupling between T34, T3
and Ej,, thus stabilization is impossible for materials in an orientation where such coupling effect is absent. In
fact, an applied EF5 in these cases will only destabilize the system.

Based on the above discussions, it seems possible, at least mathematically, to control the surface stability
of a piezoelectric solid by varying an applied electric field in both the insulating and the conducting case.
However, we must also address the difficulty in applying these electrical loading physically. With a conducting
piezoelectric surface, it might be possible to apply E; by imposing an electric potential on the surface. Since
zq is the thickness direction, typically small on a thin film, a small potential difference might generate a large
electric field. A possible setup of this is to grow an insulated thin film on a capacitor plate. Applying E; to
an insulated surface is an obviously more difficult task, it might be done by setting the surface transverse to
a set of parallel capacitor plates.

Also, as an applied electric field of the order of gigavolts is needed to stabilize surface instabilities in thin
film applications, we must also investigate other possible adverse effects on the piezoelectric medium caused
by an electric field of such magnitude.

CONCLUSIONS

In this paper, we have extended the morphological stability analysis for anisotropic materials by Gao [4]
to address surface roughening in piezoelectric medium. In contrast to the analysis for an anisotropic medium,
where Gao concluded that the surface is always unstable under sufficiently large bulk stress, we found that
the electric field can be used as a control parameter to stabilize a stressed piezoelectric surface. Two sets of
boundary conditions were considered: A traction free and insulated surface and a traction free and conducting
surface.

The stability condition is obtained from analyzing the total energy change associated with roughening
of a flat surface. To completely stabilize a stressed flat surface, we try to apply an electric field such that
AFEy: > 0in Eq. (2). In this case, any perturbation of the flat surface would result in an overall increase of
energy for the system. The stability condition can also be expressed in terms of a critical wavelength A < A,.
If we can increase this critical wavelength ). by applying an electric field, a kinetically more stable state can
be achieved.
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Three types of stabilizing mechanisms are possible. The first is referred to as the Y} effect and it i»
applicable only to an insulated surface. This effect arises from the non-positive definiteness of the admittance
matrix for an insulating problem. With a large enough electric field in the z; direction, this Y% effect can
completely stabilize a flat insulated surface. For a conducting surface, a stabilizing mechanism is the bulk
stress reduction effect. This effect stems from the piezoelectric coupling of the T3; stress and the electric field
component E;. By applying an optimal E;, we can attain a kinetically most stable state for a conducting
surface via bulk stress reduction. The third stabilizing mechanism is the shear stress coupling effect and it
arises from a coupling between the shear stress Ti3 and electric components E; or E;. Mathematically this
effect can be present in both the insulating and conducting cases. However, the influence of this effect in the
insulating case is minimal compared to the Y2 stabilization. Furthermore, in the conducting case, a physical
example cannot be found where shear stress coupling stabilizes the surface.

As stress and electric field concentrations associated with an undulating surface might lead to mechanical
failures, the stabilization of stressed piezoelectric surfaces should be an important concern. In the insulating
case, we have shown that a possible mechanism exists, at least mathematically, for complete stabilization of
a stressed surface. For a conducting surface, even though a completely stable surface is not attainable by
the stabilizing mechanisms presented here; we have shown that it is possible, for some materials, to achieve a
kinetically more stable state.

Due to the length restriction imposed on this paper, many of the necessary mathematical theories and
details relating to the derivation of our results are not presented here. They will be reported in another paper
in the near future.
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Abstract

Here we study the effect of capillarity on a microscopic problem related to foam flow in porous
media: the transport of a bubble or drop through a constricted capillarity tube. The aim is to
study the snap off process which occurs during the formation of a foam in a porous media. We
illustrate the dynamics of the bubble for different initial data and for several different sets of the
physical parameters.

Introduction

The behavior of a single phase fluid as it flows in a porous medium is governed by the properties
of the fluid and the geometry of the porous material. For a two-phase flow in a porous material, we
have the additional dependence on the interaction of the two fluids. In particular, the surface tension
between the two phases can have a major influence on the microscopic (pore size) dynamics of the
mixture. Hence the macroscopic behavior of the two-phase flow must depend on the microscopic
dynamics of the two fluids. One important type of two-phase flow in a porous material is foam
flow. This is because of its applications to enhanced oil recovery and hazardous waste management.
Our aim here it to study a microscopic problem which occurs in foam flow. In particular here
we will study numerically the generation process of a foam. The dominate mechanism for this is
called ‘snap-off’. This is related to the instability of a gas bubble as it moves through a constriction
in the porous material. As the bubble moves through the constriction an instability is initiated
which results in the bubble splitting into two (or more) parts. The result of many of these divisions
occurring is a foam.

In order to study the basic phenomena of the generation of a foam, we will consider flow in a
capillary tube. This geometry has been used by many others in the study of flow in porous media.
We will first consider the problem of a pressure driven bubble in a capillary tube. There have been
many investigations of this problem. In particular, Bretherton [1] consider the steady motion of a
semi-infinite bubble in a tube. By using lubrication theory, he was able to show that the speed U
of the bubble exceeds the average speed of the fluid by the amount UW where W is proportional to
the Capillary number to the 2/3 power. There was considerable work to follow this up. For example
Park and Homsy [2] used a matched asymptotic analysis to justify Bretherton’s result and later
Schwartz et al. [3] compared the predictions of Bretherton’s theory with experiment and found an
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under prediction of the film thickness for long bubbles but good agreement for bubbles of length
less than 20 tube radii. Also Reinelt and Saffman [4] computed the exact shape and speed of a
steadly moving semi-infinite bubble in a capillary tube numerically. Later Martinez and Udell 5]
computed the steady motion of a bubble of finite size in a pressure driven flow in a capillary tube.

Our primary concern will be with the transient motion of a bubble or drop (both words will
be used here) through a constriction in the capillary tube. There has also been some recent works
in this direction. For example, Pozrikidis [6] has studied the transient motion of a period array of
bubbles in a straight capillary tube. This work was primarily directed to determining the steady
motion although some unsteady cases were considered. The periodicity had a big effect unless the
bubbles were widely spaced. In the case of a constricted capillary tube, Gauglitz and Radke (7] used
a lubrication model to study the dynamics of a semi-infinite bubble. In particular they did observe
snap-off and found that the snap-off times compared well to experiment when the initial data was
taken from an experiment. On the other hand, their lubrication model was not asymptotic in its
treatment of the curvature term. In particular, since the pinching instability for flow of a thin film
in a capillary is primarily due to the effect of the curvature, a careful treatment of the equations
of motion is important to an understanding of the dynamics of the bubble. Our aim is to study
the dynamics of a bubble of finite length as it passes through a constriction (Tsai [8] and Tsai and
Miksis [9]). This will be done numerically using a boundary-integral method.

Formulation

Consider the pressure driven motion of 2 bubble or drop in a axisymmetric capillary tube (see
Fig. 1). Letting (r, 2) be cylindrical coordinates with the z-axis along the centerline of the tube.
Suppose that the suspending fluid of viscosity g flows at a constant flux Q and that the velocity
profile far upstream and downstream is given by a steady Poiseuille profile. Inside of the tube
suppose that there is a drop of fluid of viscosity Ay of undeformed volume 4ma®/3. Here a is called
the effective radius of the drop. The problem is to determine the dynamics of the drop as it moves
within the capillary tube given an initial shape. For straight-sided tubes steady state shapes can be
expected for certain values of the parameters. For tubes with a constriction, steady shapes can only
‘be expected downstream of the constriction. Denote the region containing the suspending fluid by
Q; and the region containing the drop by €.

r=h(2)

r "
L z Q, 2R
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We assume that the motion of the fluid is governed by the Stokes equations. Hence in the fluid
region £;, the equations of motion

V. {;i = Oa (1)

V-¥: =0, (2)

where ¥; is the velocity vector and X; is the stress tensor for the fluid,
Y= —pl+ X [V‘l_f, + (V’b‘,)t] . (3)

Here p; is the pressure, A; = 1 and A, = A. The superscript ¢ in (3) means transpose. The boundary
conditions along the tube surface, r = h(z), —co0 < z < co is no-slip,

61 = 0. (4)
Along the unknown interface, I, between the two fluids we have the continuity of velocity,
61 = 62, (5)

the stress condition
(V- )i, (6)

and the kinematic condition

(7

Here, }7(1', z,t) is the position vector of the interface I'. In addition we have the upstream and
downstream conditions that the velocity profile becomes parabolic,

7 = 2(1 —1?)Z. (8)

The variables in (1)-(8) are dimensionless with the tube radius R at infinity as the unit of length,
Q/mR? as the unit of velocity, p@Q/m R® as the unit of pressure (and stress) and 7R3/Q as the unit
of time. We have also introduced the Capillary number Ca = uQ/nyR? where 7 is the surface
tension. In addition ' is the unit vector parallel to the z-axis and @ is a unit vector normal to T’
pointing into the drop. Finally we would like to define the dimensionless effective radius of the
drop as 7. = a/R, our results will be presented as a function of this parameter and the Capillary
number.

Numerical Method

In order to solve the moving boundary problem (1)-(8) with a given set of initial data we will
us a boundary integral method (see e.g., Rallison and Acrivos [10] and Pozrikidis [11]). The idea
here is to reformulate (1)-(8) as an integral equation along the surface of the drop and the tube
walls. Solve this integral equation for the velocities along I' and then use the kinematic condition
(7) to advance the moving boundary I'. Following Rallison and Acrivos [10] we can reformulate
(1)-(8) as the integral equation over the moving boundary T and the fixed boundary I, which is
determined by the size of the computational domain. In particular, if the computational domain
is given by K; < z £ K, then Iy, includes that portion of the tube wall for these values of z plus
the cross sections of the tube at z = K; and z = K;. We will assume that the velocity profiles at
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z = K;,i = 1,2 is given by (8). Following Rallison and Acrivos [10] we find that along the boundary
T' or T, the following integral equation holds,

k0a(d) - = [ 2D (@) A@IE - ) TDT) Q

ar Jo, |27 P

= -n [ LD @G - 5 - @)

dr Jr |Z-F

1 T T—-v ,. -

= ek [lf—il ST R

11 7 -y ,. = (7 . V(7

_ é;Ez'/r [I it 5—17‘[3($_’7)'n] (V - 7)dT(F).
Here 7 represents the unit outward normal along the boundary of €, pointing out of the region, )
is the fluid velocity vector and T =%, -7. Also k =1+ ) if the position vector Z is along I’ while
k =1 if # is along T',. In addition the tensor C depends on the smoothness of the boundary, e.g.,
for a smooth boundary point C = —31I (see e.g., Pozrikidis [11]).

An outline of the numerical method to advance the interface a time step At goes as follows.
First select the number of mesh points along the boundaries of the wall I', and the interface T'.
Assume that the initial shape of the drop is given. Compute the total arc length of the drop. Spline
fit the radius and axial coordinates along the interface in terms of arc length and redistribute the
mesh points along the interface with equal arc length. Solve the integral equations (9) to obtain
the velocities along the interface T'. Use the kinematic condition (7) to update the interface. This
equation is integrated by using a 2nd order Runge-Kutta scheme. Hence this involves first updating
the interface by a time step At/2. Then this information is required to update the interface to the
time step At. Therefore we again need to fit a cubic spline to the interface, redistribute the points,
and solve the integral equation for the updated interface. Then this updated interface is used in the
Runge-Kutta scheme to get the final prediction at the time step At. The above is then repeated
to advance to 2At and beyond. The calculations were all done on an IBM RS6000 workstation
and the results presented here are graphically accurate. The scheme appears to be second order
accurate. This was illustrated by computational checks. In addition the volume of the droplet was
‘computed as we advanced in time as a check on the accuracy of the scheme.

Computational Results

Our aim here is to illustrate some of the types of behavior that can happen to a bubble as it is
flowing within a capillary tube. We will begin with some examples of a straight-walled tube and
then introduce the constriction. In Fig. 2 an initially spherical bubble of r. = 0.9 and A = 0.1 was
placed in the flow inside of a straight-walled capillary tube. In Fig. 2a we set Ca = 0.1 and we
see that the bubble approachs a steady state shape which is elongated compared to the initial data
(Note the difference in the vertical and horizontal scales). In Fig. 2b we set Ca = 1.0. In this case
the bubble elongates with the back of the bubble increasing towards the front (a re-entrant cavity)
as a function of time. Hence we see that the effect of the Capillary number is to change the shape
of the bubble significantly.

The effect of the initial data is illustrated in Fig. 3 for a bubble with r. = 0.7667 and A = 0.1
The initial data here is an ellipsoid as illustrated. In Fig. 3a we set the flux @ = 0, hence Ca =0. A
slightly different scaling of the variables was necessary in order to do this. We see that the pinching
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instability of a long bubble is observed. In Fig. 3b we set Ca = 0.1 with the same initial data
as Fig. 3a. The pinching instability is still observed here but the bubble now moves downstream.
Hence a snap-off can occur because of the initial data, so the results of any study of this instability
will be very dependent on the initial data. In a random porous material one would think that any
initial data is possible, so all of the observed phenomena should be possible.

Now consider the case of a constricted capillary. Suppose we replace the straight-walled part of
the capillary, i.e., (z) =1, in the section —L < z < L by the formula

h(z) =1—g[1.0 + cos(mz/L)]. (10)

This is the same perturbation in capillary tube shape as used by Gauglitz and Radke [7]. It implies
that the length of the constriction is 2L and the gap radius is 1 —2g. In Fig. 4 we set L = land
g =20.3, A = 0.1 and 7, = 0.9. The initial data is plotted in the figures. In Fig. 4a we set Ca = 0.1.
We see that the bubble is squeezed through the constriction and it approachs the same steady shape
downstream of the constriction as in Fig. 2a. In Fig. 4b we set Ca = 0.5. We see that as the
bubble passes under the constriction, the back of the bubble advances toward the front as in the
straight tube case of Fig.2b with a larger Capillary number. In a straight tube, a re-entrant cavity
is not expected in this case (see Martinez and Udell [5]). The reason for this re-entrant cavity is
the presence of the constriction and downstream it will disappear. Hence the constriction enhances
this deformation and can possibility introduce an instability. Although, not illustrated we should
note that for all other variables being constant, we find that the bubble motion slows down as A is
increased.

A more interesting case is for a bigger bubble. In Fig. 5 we set Ca = 0.1, A = 0.1 and r = 1.77.
The initial bubble is placed upstream of the constriction, g = 0.3 and L = 9.0. We see that as the
bubble passed through the constriction, a perturbation develops along the interface, downstream
of the constriction. As time marches on, the perturbation moves along with the bubble front and
does not appear to grow in size after an initial growth period. Finally we find that the perturbation
disappears and the bubble passes through the constriction.

In Fig. 6 we set Ca = 0.005, A = 0.1, 7. = 1.77, ¢ = 0.3 and L = 9.0. For the initial data we
took a bubble profile from Fig. 5, i.e., not spherical, which was almost entering the constriction.
We see that downstream of the constriction the perturbation to the profile as noted in Fig. 5 is
not observed. Hence decreasing the Capillary number does not enhance the instability. This is
not surprising since the growth of disturbances along the bubble interface should be proportional
to Ca~2. Therefore if a disturbance is growing, it will take longer to grow. We also note that
upstream of the constriction a disturbance along the interface is growing. This is due to the initial
data having a thicker initial film along the wall than would otherwise be there for this value of Ca,
if we had used the same initial data as used in Fig. 5.

In Fig. 7 we set Ca = 0.1, A = 0.1, 7. = 1.23, ¢ = 0.3 and L = 9.0. The initial data is the
same as in Fig. 6 but with the back truncated in order to decrease the volume. Hence this is a
problem similar to Fig. 5 except the bubble has a smaller volume. Here we again find that there is
a perturbation of the interface downstream of the constriction. The dynamics is similar to that of
Fig. 5. Extrapolating from the experimental curves of Gauglitz and Radke [12] (this value of Ca is
not on their figure), we can expect this bubble to snap-off. This was not observed here. A larger
bubble or other values of the parameters may lead to snap-off for this initial data. Calculations are
now being done to try and verify this remark. Here we have shown that different initial data can
lead to snap-off.
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ABSTRACT

Coherent nonlinear interactions between linearly stable, long wavelength modes and modes that are near
the peak of the growth rate are observed in experiments. These "side-band” interactions are suggested as
the mechanism for initiation of long wavelength modes that are otherwise predicted to be stable from linear
stability theory. Quadratic interaction theory is used to provide insight into when long wavelength modes
will appear and how their frequency will be selected. The present work differs from previous side band
analyses in that a low frequency mode is retained as a dominant mode (consistent with observations).
Because of its relevance to continued growth of long wavelength disturbances and possibly slug formation
and owing to its importance in modeling flow regime transitions, a discussion of the validity of the one-
dimensional macroscopic equations and the boundary-layer equations as models of long wavelength
disturbances for the two-layer stability problem is given in the context of laminar flow of a fluid over a
solid wavy surface.

INTRODUCTION

Formation of slugs in gas-liquid flows is a much-studied problem which is as yet unresolved. The
Taitel-Dukler [17] flow regime model predicts slugs for situations where system is unstable to a slightly
modified Kelvin-Helmholtz instability. While the implications are that slugs form from long wavelength
waves (consistent with earlier work by Kordyban and Ranov, [12] and Wallis and Dobson,[18]) the K-H
model implicitly suggests that slugs form from relatively short waves as can be seen in figure 1. Also
shown in figure 1 is the linear stability for the same situation predicted from the linearized Navier-Stokes
equations, clearly the K-H model does not realistically describe two-layer instability. Lin and Hanratty
[13] use integral momentum equations expected to describe the long wave region and find some agreement
with data. However, it will be shown below that if their "macroscopic” or 1-dimensional equations are
used to predict instability, they do not correctly capture the behavior of important destabilizing and
stabilizing terms in the region of o somewhat greater than 0. Consequently, the linear stability calculation
is in error and agreement with data must therefore be considered fortuitous. This problem not
withstanding, recent works by Brauner and Maron [2],[3], Crowley et al.[6] and Barnea [1] continue to
use 1-D equations as the basis for prediction of the transition between stratified and slug flow. Hanratty et
al. [9] demonstrate that several mechanisms are responsible for slug formation; growth of long wave
disturbances is reaffirmed as one of the mechanisms. Consequently, any linear or nonlinear instability
theory starting with stratified flow can, at best, be considered only a sufficient condition for the ob-
servance of slugs. Recent measurements by Fan and Hanratty [7] demonstrate the existence of period-
doubling in a horizontal pipe at conditions somewhat less severe than where slugs are observed. They
suggest that this is a possible (nonlinear) origin of a long wavelength mode which could grow into a slug.
Jurman et al. [11] note that a low frequency mode (i.e. much lower than a subharmonic) can be generated
by nonlinear interactions of side-band modes of the fundamental. This is another mechanism that can gen-
erate a long wavelength mode which could evolve into a slug.

This paper examines several issues pertinent to the generation and spatial evolution of disturbances
that are much longer in wavelength than the depth of the liquid or gas phases. The motivation is slug gen-
eration when it occurs by the growth of waves from a stratified layer. For the channel flow we are
examining, roll waves serve as a good model for many of the properties of slugs and so these will be
considered. First the existence of a low frequency peak which is coherent in phase with the fundamental
peak (and therefore likely to be generated nonlinearly), is demonstrated. Second, the validity of the
boundary-layer equations and the 1-D macroscopic equations as models for linear and nonlinear wave be-
havior is examined by looking at analytical solutions to single phase flow over a solid wavy
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surface. It is shown that the 1-D equations cannot be expected to work for most situations, but that the
boundary-layer equations can be quite useful. Finally, the nonlinear generation of the low frequency mode
is discussed with considerations to conditions that are too severe to be described rigorously.

OBSERVANCE OF LONG WAVELENGTH DISTURBANCES

Figure 2a shows data from Jurman et al. [11] fora sheared layer close to neutral stability, note that
a small low frequency peak is present in the power spectrum. The bispectra (fig. 2b), show contours at
f1=10-12 and f,=1 Hz suggesting that the low mode is coherent with modes around the peak. It is seen
that both the strength of the interaction and the magnitude of this peak grow with distance. For this case,
the long wavelength mode will not have any effect on the overall regime stability, even at very long
distances, because the layer thickness is very small. Figure 3a shows new data for an air-water flow
where the liguid Reynolds number is high enough for roll waves to form (given a high enough gas Re) but
at Reg close to neutral stability, along with the linear stability prediction of a two-layer laminar flow. The
unfortunate discrepancy between the peak in the spectra and the fastest growing peak is due to a slight
hydraulic gradient which exists at these low shear conditions; the error is not due to nonlinear effects. The
important feature of the data is that the low frequency peak is coherent in phase with the fundamental as
can be seen by the contour lines in the bicoherence spectra in figures 3b and 3c at f1= 14, f=<1. Note
that this peak is predicted to be stable from linear stability analysis and should not grow nor be phase
coherent with the fundamental if only linear effects are important.

Figures 2 and 3 show low frequency modes that are clearly the result of nonlinear interactions be-
tween modes near the peak and a particular low frequency mode. These data are particularly intriguing be-
cause we have shown previously (Bruno and McCready, [4]), that roll waves emanate from continuous
growth of a low frequency mode. Figure 4a shows data at a fixed location for three more severe condi-
tions before roll waves where observed (i.e. either a longer distance or higher Reg would be needed).
Note that a low frequency peak is again present for two of the cases. From the linear stability prediction,
figure 4 b(again using a 2-layer laminar flow), it is seen that all wavelengths are linearly unstable and the
only peak is around 15-20 Hz. This suggests the question: What causes a low frequency peak to dominate
and how is its frequency selected ?? Our previous arguments (Bruno and McCready, [4]) using two ap-
proximate linear theories that we spliced together are not consistent with the complete linear behavior
shown in figure 4b.

It is certainly possible that this mode is initially excited by interactions with peak waves, similar to
figures 2 and 3, and it gets larger because of the gas flow. If this is the case, the analysis used to describe
the conditions close to neutral stability should provide insight into the roll wave formation problem. A
second scenario is that nonlinear effects in the gas flow cause this mode to dominate. While there is no
evidence to support this scenario, it should be given consideration in future studies.

COMPARISON OF DIFFERENT APPROXIMATE LINEAR STABILITY PROCEDURES USING
FLOW OF A SINGLE PHASE FLUID OVER A WAVY SURFACE

To describe the formation of slugs starting with weakly nonlinear waves, a complete understanding
of the behavior of the gas flow over long waves of increasing wave slope is needed. As a starting point
for this work which will include weakly-nonlinear analysis (e.g. like Hooper and Grimshaw [10]) and nu-
merical solution of the strongly nonlinear problem, we provide some analytical predictions from linear the-
ories of the pressure and shear variations over waves.

None of the standard procedures for predicting slugs in gas-liquid flows use the Orr-Sommerfeld
equation as a basis so it is worthwhile to determine the extent of their applicability. Because the linear
stability problems for the simplified equations are still algebraically complex and difficult to compare, we
examine the case of a single phase flow over a sinuous wavy surface centered around y=0. The different
apggoximations are used to predict the components of the pressure and shear stress over the solid wavy
surface.

Consider a rectangular channel with a sinuous wall centered around y=0. The wave number is a@.=
2 7 h/A, where h is the channel height and A is the wavelength, the amplitude is assumed to be such that
the wave slope is much less than 1. If the Navier-Stokes equations are linearized, the average pressure
driven flow will be parabolic and the equation for the disturbance stream function, ¢(y) is just the Orr-
Sommerfeld equation with no wave velocity,
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In this equation R is defined using the average velocity and the channel height, and U(y) is parabolic pres-
sure driven flow velocity. The no slip boundary conditions are applied at the wave surface using domain
perturbation. An exact analytical solution to eq. 1 is not available but because our only interest is the long
wavelength region, we can generate a useful asymptotic solution for ¢(y) is powers of a. as,

0@ = do(y) + & 1)+ 022 () + ... . )

When this is done and powers up to o3 are kept, the perturbation shear stress, 7 , defined as
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It is interesting to note that as a--> 0, the largest pressure term is out of phase with the wave height and
the largest shear stress term is in phase with the wave height.

If the Reynolds number is sufficiently large a useful approximate solution can be obtained by a
boundary-layer simplification of 1. The resulting equation cannot be solved analytically, but it does yield
to a series solution around y=0. If a sufficiently large number of terms are kept in the series, the results
are .
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All of the (R o))" terms match exactly, however none of the other terms are generated. Thus, if o< 0.1,
and R >10, the solutions are effectively identical. There is an upper limit on aR, probably about O(10).

A final approximate solution is to use the macroscopic equations used by Lin and Hanratty [13]
which for this calculation are identical to the 1-D equations used by Crowley et al. [6] and Brauner and
Maron [2],[3]. Only one term can be obtained for the pressure and shear stress. Because the y-direction
is integrated out of the problem, these equations cannot provide a prediction for the disturbance shear
stress. HAowever, the pressure perturbation is

p _361 6
=== _2, 8
P Ra I ®
no higher terms can be produced. The first term is exact and the second term is not too bad, but without
the inclusion of any more terms, and no perturbation shear stress, this model is not likely to provide a real-

istic prediction of the stability of a two-layer flow and therefore slug formation !!
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THEORETICAL BASIS FOR LOW FREQUENCY MODES

While it is not known apriori why the dominant observed modes are f=5 and the fundamental, we begin
our analysis by assuming this to be the case. Our goal is to determine the conditions under which the low
mode is predicted to be present. The behavior of a weakly sheared liquid layer close to neutral stability is
expected to be well-described by the weakly-nonlinear, weakly-viscous theory of Jurman et al. [11] if the
arameter o. R is sufficiently large. For the data of fig. 3, & R is 760 for fundamental and about 5 for the
mode. For these conditions, the delta mode is a high enough wavenumber that the "low mode" wave
equation recently-derived by Renardy and Renardy [14] will probably not be valid. Previous work on side
band stability (Cheng and Chang, [5]) is also not expected to describe this problem because of the omis-
sion of the low frequency mode. Starting with the spatial quadratic equations for 1 = d, 26, 1-5,1 1+3 and
2 modes (only terms which will contribute to final equations are shown),

Us9A8  sagAs  +(usAtA"Ls+Pruas A'ALG + P A5 Az ©a)
U2s an =h25 A2 +Q5.25 A A (9b)
Ul-Si%}(i =M Als +PLIs A5 AL 9¢)
U2l ShAL 4 (Puar AlsA%+QuiAsALS Pyt AT A od)
U1+ aA}: =M+5 Ales + Qo145 A1AS ©e)
R Y ST PPNV ©D

where Uj is the group velocity of mode 1, Aj is the complex amplitude assumed to be a function only of x,
the flow direction, A; is the complex (temporal growth rate), the P's and Q's are the interaction coefficients
for a weakly viscous sheared layer given by Jurman et al. [11] and * denotes complex conjugate. Eq's (1)
can be easily integrated numerically (as can a very large set), but this will not be done here. To uncover
the nature of the interactions that lead to the low frequency mode, we will proceed analytically using center
manifold theory (Guckenheimer and Holmes, [8]). Because the 2 8 mode is not observed experimentally
and has a negative growth rate, thus it will be projected away. The 2 mode, which is the overtone of the
fundamental is confined to small amplitudes and has a very negative growth rate and therefore it will also
be projected away. It is harder to justify projecting the 1+3 and the 1 - 8 modes. These have positive
growth rates unless 8 is rather large and while they are not seen as distinct from the main peak, could be
contained in it. These will be projected away in this analysis to allow for some conclusions regarding the
behavior of the § mode. The consequences of this perhaps unjustifiable projection will be discussed be-
low. The two projected equations are

US'aanﬁ — 25 Ag- Pi+55 Qs5+41 Us Us A1 A Ass
-AsU1Us+1+A5+1U1U5 - A1 UsUs+1

-A*5U1Us.1+A5-1U1Us - A1UsUs-1 A25Us - 2A5U25

P1+s1 Qss+1 Us Uy
-AsU1Us+1+A5+1U1Us - M UsUs+1
Py1-5 UsU P
_ Q51 P11 UsUa YA1 Ag A% + 21Q12
-A*$U1Us.1+A5-1U1U5 - AUsUs-1 A2U1 - 201U

UI%A_XL=}\-1A1'(

A1A*1 A1 (10b)

These are already in the "double-Hopf" normal form (G&H [8]) as can be seen if they are written in polar
form,

drs 3 2
Tx = MHsTs+ 21175 +a12 15101 (11a)
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-da—rxl= W1 11+ a1 r52r1 +agpr3 ‘ (11b)

where rs and rg are the real amplitudes of 6 and 1 modes. The coefficients aj; are the real parts of the cor-
responding coefficients from eqs 10, and yj = Real(A/U}). These are substantially simpler than eqs 10
because the phase angles and amplitudes are decoupled to this order. Egs. 11 can be transformed to re-
duce the number of coefficients into the form

drg

& =Hsts+ T +brgn? (12a)
d Iy _ 2 3
F-ulrl"'crsrl'*drl . (12b)

A table of values for b,c and d are given below. Note that d is always <0, therefore the fundamental is su-
percritical. However, the 8 mode is subcritical.

Table 1

Coefficients for Equations (12) for different values of &

8 (1/m) i 1o b c d
1 -.0043 .000944 .000918 25227 -1
2 -.00515 .000944 00131 4934 -1
3 -.00594 .000944 100288 1617 -1
4 -.00670 .000944 00167 646.6 -1
5 -.00734 .000944 100169 310.9 -1
6 -.00796 .000944 .004 166.0 -1
8 -.00899 .000944 .00262 59.9 -1
11 -.0103 .000944 00197 18.4 -1
DISCUSSION

Results of the integration of egs. (12) for several different values of § are shown in figure 5. It is
seen that the 8 mode always grows with distance even though it is linearly stable. It is interesting that the
rate of growth varies depending upon the value of 8. Consequently, one contribution to the value of § is
probably determined by its initial growth rate. This criterion does not work exactly for the case of fig. 3,
where the value of 8= 2/m corresponds to .1 Hz, would not be quite the one with the largest predicted
initial growth.

Two other issues are important here. First is the effect of initial conditions. We have reported
previously (Sangalli et al., [16]) that the fundamental wave number is selected to some extent by the noise
present at the initial gas-liquid contact point, although the effect is likely to cause a distribution of values
around the preferred value. Therefore, the value of 8 must also be influenced in this way. Secondly, re-
call that we have assigned values for the 1+ 8 and 1-8 modes as O(r12). In the real system this may not be
true and the amplitudes of the 1+ 8 and 1-8 modes may also be important. If we consider the case that
these modes have amplitudes of order ry then it will, of course, not be possible to use center manifold the-
ory to transform away these modes. However, if this is the case, a second kind of approximation is
tempting. We could recognize that Aj.§ and Aj4+5= A1 . This would give terms like A A*; in the delta
equation. When the two quadratic equations are transformed into the normal form (12), the same rg r;2
term appears with a similar coefficient. Consequently, the assumption about the magnitudes of the side-
band modes may not be too crucial.

Finally, if it is necessary to do analysis for more severe conditions, such as fig. 4, it may be

reasonable to assume that the same type of qualitative picture exists. However, it will be necessary to use
egs (12) as a model with coefficients determined (perhaps) by experiment.
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FUNDAMENTAL ASPECTS OF BRITTLE DAMAGE PROCESSES -
DISCRETE SYSTEMS
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ABSTRACT

The analysis of cooperative brittle processes are performed on simple discrete models admitting
closed form solutions. A connection between the damage and fracture mechanics is derived and
utilized to illustrate the relation between two theories. The performed analyses suggest that the
stress concentrations (direct interaction between defects) represent a second order effect during the
hardening part of the response in the case of disordered solids.

INTRODUCTION

The evolution of damage in disordered microstructures is obviously not a simple, deterministic
process admitting careless application of conventional continuum models formulated originally for the
considerations of ductile phenomena. In general, crack growth will commence when the available elastic
energy release rate exceeds the material toughness at the crack tip. Hence, the damage evolution
(defined here as formation of new internal surfaces in the material through the process of cracking)
depends on the coincidence of local stress concentrations (hot spots) and regions of inferior toughness
(weak links) of the microstructure. Fracture toughness is a random function of coordinates and its scatter
depends on the material itself, previous history and defects attributable to manufacturing processes. The
energy release rate for the observed crack is an integrated quantity which depends on the adjacent
microdefects and microstructure. In the case of many microcracks estimates of their individual growth
are quantified by the change in a continuum measure of damage representing expectations of the growth
of the entire ensemble of microcracks. In order to be useful this measure must be physically identifiable
and measurable in tests.

PARALLEL BAR MODEL

Analytical modeling of processes involving evolution of damage is fraught by pitfalls and open to
ambiguity. For the most part the depth of these pitfalls is proportional to the inherent complexities of the
cumbersome mathematical structure of non-deterministic models which claim both rigor and generality.
A bevy of different continuum damage models, often pretentious and seldom rigorous [1], is a testimony
to this state of affairs.

As a result of the inherent complexity of the problem and the contradicting requirements of rigor and
simplicity the analytical representation of the damage and its evolution is not unique. To clarify some of
the fundamental aspects of the physics of the deformation process dominated by the cooperative action
of microdefects it is advisable to reduce the mathematical complexities by concentrating on simplified
analytical models. Simplification in modeling is typically achieved through discretization of a solid.
Simulations of brittle deformation processes in disordered media are often performed on discretized
networks consisting of nodes interconnected by links. The mechanical properties of the links can be
quite general incorporating complex, time dependent stiffnesses and rupture criteria.
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The parallel bar system is the simplest computational artifice which is typically employed when both
the specimen and the load diffusion pattern are essentially unidirectional. This rather simple and
attractive artifice was extensively and successfully applied in the past to the studies of both ductile [2,3]
and brittle [4,5] phenomena. For certain geometries and materials the selection of the parallel bar model
is fully justified by the structure of the material itself. Cables containing many parallel strands or fibers
and polymeric matrices reinforced by strong continuous fibers are the two most obvious examples. In
other cases the microstructure of a material and the failure mode render the parallel bar model a viable
alternative. The distribution of the external force to individual links may be democratic (each link shares
equally in carrying the external loads) or follow a local load sharing rule. The democratic (loose bundle)
parallel bar models entirely ignore the stress concentrations (spatial correlations). Thus, by assuming
that the failure is controlled exclusively by the distribution of weak links this model belongs to the group
of the "infinite disorder” models.

Consider first the simplest approximation [4,5] of a perfectly brittle solid by a loose bundle parallel
bar system assuming that:

-"all extant links share equally in carrying the external tensile load F regardless of their position

within the system, .

- all N links have identical stiffness £ = K/N and elongation u,

- all links remain linearly elastic until rupture, and

- the rupture strength f, of links is a random variable defined by a prescribed probability density

distribution p(f;).
These assumptions eliminate from considerations all spatial interactions. The exact position of each
particular link is assumed to have no effect on the macro-response. Consequently, the macro-response
(measured by the system displacement ) depends only on the fraction of ruptured bars (n/N) and not on
their location. The above listed assumptions eliminate the size effect since the response depends only on
the fraction of the ruptured bars. The absence of the length parameter renders the theory local.

Application of a loose bundle parallel bar system implicitly assumes that the damage evolution and
ultimately the failure is attributable primarily to the existence of the regions of inferior toughness within
the material. Local stress concentrations are assumed to have a second order effect on the structural
response. In view of the assumptions listed above the parallel bar model is the discrete version of the
popular self consistent model. Thus, the loose bundle parallel bar model is an infinite disorder system.
Link forces are equal and the failure occurs solely as a result of the microstructural disorder, i.e. the
rupture strength distribution p(fy).

During the deformation of the system subjected to a quasi-statically incremented external tensile
load F the tensile forces in individual links f; (i = 1 to N) keep increasing. When the force f; in the i-th
link exceeds its strength f,; link ruptures and releases its force. The released force is distributed quasi-
statically and equally (democratically) to all extant links. The sequential rupture of individual links
slowly degrades the stiffness and the load bearing capability of the system. On the system scale rupture
of individual links can be measured as a gradually decrease of the effective stiffness.

The equilibrium of the system requires that

N
F=Y f; =Ku(1--1’:7)=1<i4(1—o) (1)

i=1

where n is the number of ruptured links at a given magnitude of the externally applied tensile force F.
On the micro-scale number of ruptured links 7 suffices to define the recorded history. The fraction of

ruptured links

=
D_N )

is a physically appealing measure of the recorded history (i.e. the accumulated damage) on the macro-
scale. In absence of plastic strains, parameter D defines the state of the material and quantifies the level
of degradation of the material stiffness and, perhaps, even the residual load bearing capability.
Deformation of the system is defined by two kinematic variables: # and D. The loose bundle parallel bar
model makes no distinction between the case when all n ruptured links are adjacent to each other from
the case when they are dispersed. Model provides no information regarding the maximum defect size.
This is consistent with the statement that the considered model belongs to the class of traditional
effective continua models. Failures caused by the critical size of the largest defect (Griffith's instability)
or localization cannot be predicted by this class of models.
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For a very large number of links N a given property can be treated as being equal to its expectation.
The equilibrium equation (1) can be then rewritten in the form of an integral

foa
F=ku{1v | p(f,>df,}=K<1—D>u 3)
ku

where finax is the strength of the strongest link. The bracketed term in (3) represents the number of the
load carrying links. The expression for the damage parameter D is from above

ku
D= [p(f,)df, = prob.(f, < ku)= P(ku) @)
fon

Statistically, the damage parameter can be interpreted as the cumulative probability function P(ku) of the
given rupture strength probability density function p(fy). In (4) fmin is the rupture strength of the weakest
link. Expression (4) represents the damage evolution law, i.e. the constitutive relation relating the rates
at which the damage and elongation increase. The incremental form of (4) is

dD = p(ku)kdu = p(u)du. S

Therefore, once the distribution of rupture strengths p(f;) on the microscale is known, the damage
evolution law can be derived in contrast to being a priori and arbitrarily postulated.

Thermodvynamic Considerations: The energy E used to rupture the links is equal to the difference
between the mechanical work W of the externally applied tensile force F on the displacement # and the

energy of elastic deformation U that would be released in the course of subsequent unloading, i.e.
T 1
E=W-U=|Fdu——Fu 6
{ > ©)

Numerically the energy E is equal to the area contained within the loading (ascending) and unloading
(descending) segments of the force-displacement curve.

Consider the Helmholtz free energy of the system @ =@u,D,T). Restricting considerations to
isothermal processes, the rate of change of the free energy of the system, loaded by a monotonically
increasing tensile force F, can be written using the first law of thermodynamics in the form suggested in

(6]
d=Fu-TA @)

where A 2 0 is the irreversible entropy production rate.

The free energy is selected to be equal to zero in the initial, unruptured and unloaded state (D=0,
F=0). The free energy of a state defined by some load F>0 and damage D>0 is then equal to the work
done in transforming the body from its initial to current state along an imagined reversible and
isothermal path. Thermodynamic analysis of the quasi-static growth of Griffith cracks in a loaded state
in which at least some of the links are ruptured (D>0), can be considered [6] as consisting of an
imagined sequence of two steps. In the first step, n=DN links are ruptured quasi-statically pulling
against the cohesive forces bonding together two adjacent layers of atoms. In the second step, the extant
links are elastically stretched until the requested state of deformation # has been reached. The work
associated with the described sequence of two steps is

7’
d=Fi-TA  where  E,=24 [7,p(y,)dy, 0
Yo
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Thus, Ey is the energy of free surfaces created by rupturing n links, while % is the link dependent
specific surface energy. In (7.b) A denotes the initial unruptured cross sectional area of the system. The
linear elastic fracture mechanics suggests that the surface energy is a quadratic function of the force in
the link at its rupture. Assuming that a fraction A4 of the energy is used for new internal surfaces the
expression (7.b) can be manipulated into the following form [5]

Ey=

4kA Zp(fy)dfr ®

where A, is the surface area of ruptured links. Since ku = f,, the fracture (surface) energy density is

_A 2
= kA’fr &)

Assume uniform distribution of link rupture strengths p(fy) = Af -I where Af = fipax - finin. The
damage-displacement relationship is from (4)

ku fmin

The expression for the entropy production rate can be finally derived [5] using the equilibrium
equation in the following form

TA= (%Kuz —2A7,)D 1)

Equation (11), in conjunction with the second law of thermodynamics (requirement of the non-negative
entropy production rate A 20 ), leads to the inequality

(T-R)D=0 (12)
where the thermodynamic forces driving and resisting the damage evolution are

' oau 1.,
[=——==K, d R=2A 13
o 2" o Tr (13)
Inequality (12) is a discrete analogue of the Griffith's condition as generalized by Rice [7].

According to (12) the condition I'— R 2 0 must be satisfied for the damage to grow D >0 Conversely,
healing may take place only if the resistive force exceeds the force driving link rupture. Inequality (12)

places a restriction A4 >/ on the energy partition parameter. If the entire energy used in the deformation
process is transformed into the surface energy it follows that A=1 and I'=R..

j Y. D A ] Affinities. The rate of energy used in the course of
the sequential link rupturing process (or damage evolution) is from (6)

T JUY. dU
E=W-U= (F——a;)u—-éED D (14)

Since F = oU/du , as shown in [5]

I‘dD=-;-Ku2dD=-;-ku2dn (15)
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The smallest increment of damage dD is associated with the rupture of a single additional link (dn = 1).

Thus, the product I'dD is the elastic energy of link (ku2/2) released when a single link ruptures.
The suggested definition (4) of the damage variable is not unique. A different damage variable may
be defined relating its rate of change to the current number of the unruptured links (N-n)

. R N

D, = h that D,=In 16
" N-n shen T " (N - n) (16)

In analogy with the strain measure commonly used in the theory of plasticity, damage variable (16)

can be referred to as a logarithmic measure of the damage. Since 0 <n <N, it follows that 0 S Dp< oo,

In contrast, previously introduced damage variable D=n/N is defined in the interval 0<D < 1. Two
measures of damage D and Dy, are related as

D, =-In(1-D) and D=1-exp(—Dp,) an

The relation between the two damage rates, Langrangian and Eulerian damage parameters and their
expressions in terms of the initial and current cross-sectional areas are derived in [5].

The Damage Resistance Curve. The stability of the damage growth can be investigated considering
the energy balance. An alternative method for the examination and interpretation of the stability of
damage growth takes advantage of the damage resistance curve, in analogy to the well known resistance
(R --curve) of fracture mechanics. Consider first the potential energy in a force controlled test defined by
expression

2 2
F + 8F, D3

21-D) 3K (18)

I (F,D)= 7 (F,D)+ Ey(D)=—

where mAF.D) represents the sum of the elastic strain energy and the load potential, while Ey(D) is the
surface energy (8). The energy release rate associated with the damage growth is

on f F2
G(F,D)=-— = 19
oD  2(1-D)’K (12
The thermodynamic force resisting the damage increase is
dE 2 n2
R(D)=—L= 8FmD” 20
daD K

For a given value of the force F , the accumulated damage is obtained from the equilibrium
requirement

G(F,D)=R(D) , (21)

The corresponding state is one of stable damage growth if, for a given force level, the rate of damage
resistance force exceeds the rate at which the energy is released, i.e.

9 R
oD D

The stability condition (22) requires that the slope of the R curve is greater than the slope of G curve at
the point of their intersection. If the inequality (22) is not satisfied the growth of damage is unstable. In
analogy with the fracture mechanics, R curve (20) can be referred to as the damage resistance curve. For
the considered model the damage resistance curve can be determined analytically if the rupture strength

(22)
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distribution is known. The shape of the R and G curves depends on the selected damage variable.
Adroit selection of damage variable leads to R and G curves similar in shape to those encountered in
fracture mechanics. Using the Weibull distribution of link rupture strengths the expression for the energy
release rate G and the damage resistance force R

2 2 7
ons F and R(D)=d—E"-=F—"‘(ae)%(1nl—1—)/a @3

G(F,D)=——L=
ED)y=-2p5 2(1-D%)K dD ~ 2K -D

As the shape parametera: becomes larger the Weibull distribution (tending in the limit to the Dirac delta
function) becomes increasingly more typical of the brittle response (ordered solids). The corresponding
R curve coincidentally tends to the Heaviside function approaching the Griffith's criterion for
homogeneous, perfectly brittle solids.

Tangent Stiffness _and System Compliance. If all of the energy used in the rupturing process is
transformed into the surface energy, the complementary workW of the externally applied force F is

F %
w*(F)=J'u(F)dF=W;;,—qum 1—f——3(1-f—) (24)
0

F, 3\' F,

where W;, is the complementary work at maximum force Fy,. The tangent compliance of the system
can be derived as the second derivative of the complementary work with respect to the force

2yt v
1 dw_u,,,(1 F) 25)

At the apex F = F,, of the force-displacement curve the compliance is infinite and the tangent
stiffness vanishes. At this point a continuous change in the microstructure (gradual removal of links)
results in a qualitative change in the macro response defined as a loss of the ability to sustain further
increases in the load. The stiffness of the specimen can be also be considered a transport property. The
threshold value defining the critical state at which the transport property disappears is in physics
classified as the phase transition. Since the complementary (or Gibbs') free energy (24) is convex in
force F, and since the compliance is the second derivative of the complementary energy, the failure of a
parallel bar model in force controlled conditions is a paradigm of a second order phase transition. This
phase transition is interpreted as a transition in the connectedness. In a load controlled test at the critical
point, or percolation threshold, the remaining links will fail in a rapid succession (avalanche or cascade
mode) in response to a minute increase in the force F beyond Fp, . Physically, the system undergoes a
transition from a connected to a disconnected state.

The above sketched discussion of the loose bundle parallel bar model provides a very good
illustration of some of the essential aspects the physics of damage processes. However, the simplicity is
lost in an attempt to generalize the model by including the effect of stress concentrations. It is interesting
that the estimates of the critical state rendered by the hierarchical parallel bar model [7] are in very good
agreement with the predictions of the above discussed loose bundle parallel bar model [8]. This provides
a first but insufficient indication that the stress concentrations (direct interaction of defects) might not
always be significant in the ascending part of the response.

LATTICES

Lattices represent not only a more realistic discretization but also a provide a very natural method of
estimates of the stress concentrations. A truly comprehensive study of rupture in triangular central-force
lattices, consisting of links with identical stiffness and randomly distributed rupture strengths, was
recently completed by Hansen, et al. [9]. At each end the lattice was supplied by a rigid member
ensuring identical displacement of all end nodes. Periodicity conditions were enforced in lateral
direction to eliminate the end effects. Quenched disorder was introduced assuming uniform distribution
of link rupture strengths p(fy) = const. (modeling the initial damage by links of zero strength). On such a
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lattice Hansen, et al. [9] performed repeated computations for a large number of different physical
realizations of the same statistics. The only difference between individual simulations consisted of
different spatial distribution of links strengths. To ascertain the effect of the lattice size Hansen, et al. [9]
considered four different lattice sizes defined by the number of rows in the lattice A.

Computations were performed using conventional truss analyses. Forces in links were computed for
every increment of the externally imposed displacement. Whenever the force in a link exceeded its
rupture strength fr, the link was removed and its force redistributed to extant links in accordance with the
equilibrium and compatibility conditions. Since the lattice geometry was periodic, and analysis
deterministic, the disorder is attributable solely to the non-deterministic distribution of the initial damage
and rupture strengths (quenched disorder).

The macro-variables defining the kinematics of the considered dissipative process are the
displacement « of the lattice (change of the distance separating the rigid members) and an appropriately
defined damage variable D (2). On the micro-scale the history is recorded by the number of broken links
n. Since n, or D, are the only history recording variables, all macro-variables and transport properties
(such as the effective lattice stiffness) must be defined as a function of D or as some other appropriate
function the number of removed links n. To determine the statistics of the process the results of
computations are averaged over the entire ensemble of physical realizations selecting the number 2 of
ruptured links as the control variable.

TABLE 1: Number n,,, density n,,/N of ruptured bonds, displacement u,,
forceF ), and damage D,, at the apex of the force-displacement curve.

A 4 8 16 24
nm 9 25 85 173
(26) (86) (168)
D =nmiN 0.280 0.195 0.166 0.155
Um 1.09 1.83 3.08 4.17
(1.91) (3.00) (4.13)
Fm 0.54 0.92 1.54 2.09
(0.94) (1.56) (2.15)
Om 0.5 0.5 0.5 0.5
(0.500) (0.521) (0.487) (0.495)

The same lattice was analyzed using the self consistent model in [10]. The analytical results of these
analyses are arranged in the Table 1 while the results of the numerical simulations reported in [9] are
added in parentheses. The remarkable accuracy with which the self consistent method fits the numerical
simulations provides a strong indication that the lattice response during the hardening phase of the
deformation process (i.e. along the ascending part of the force-displacement curve) depends entirely on
the volume averages of the disorder. The exact details of the spatial distribution of ruptured links has a
second order effect on the response. The parallel bar model with democratic load sharing rule
completely ignores the role and the influence of the stress concentrations on the connectivity threshold.
This is a reasonable assumption for the damage tolerant materials, i.e. for deformation processes
characterized by the presence of a large number of small crack-like defects. In the case of ordered
materials, having a narrow band-width of rupture strengths, the failure occurs by unstable propagation of
a single defect at negligible levels of distributed damage. In these cases the stress concentration becomes
a dominant effect requiring introduction of a load sharing rule.

The choice of the damage parameter for the parallel bar model is not unique. The damage is fully
described by the number of ruptured links n which can be, in principle, selected as the damage
parameter. The number of ruptured links can be related to the number of original links D = (n/N) ,
number of surviving links (n/(N-n)), etc.. All of these measures are equally valid and a selection of the
"best" or "most appropriate” damage parameter is largely a matter of taste. This is not so in the case of
lattices. According to the computations in Hansen, et al. [9] both the total number of ruptured bonds 7,y
and the density of the ruptured bonds (7,,/N) at the apex strongly depend on the specimen size. As such
neither of them is a viable candidate for the internal variable. However, the magnitude of the damage
variable @, (defining the reduction of the secant modulus X(w) = K(1-)) at the apex depends only on
the selected distribution of rupture strengths (microstructure). In lattices it becomes necessary to make
distinction between the density of ruptured bonds D = (n/N) and the parameter . Both of these
parameters, as expected, depend on the microstructure (selected distribution of the link rupture strengths
p(fr)). However, only the parameter @, or more accurately the magnitude of the secant modulus K(w), is
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invariant of the lattice size. Since the effective secant modulus K(w) is readily measurable this
conclusion is potentially very important in selection of the internal variable quantifying the damage.

SUMMARY AND CONCLUSIONS

Analyses of damage processes using simple discretized models provides valuable insights into the
essential features of the problem. The most important conclusion relates to the selection of the effective
secant stiffness as a size independent internal variable (order parameter) which is not only measurable
but depends only on the distribution of rupture strengths in the microstructure. Secondly, identification
of the rupture in load controlled tests as a phase transition suggests that the threshold itself and all
scaling laws are robust with respect to the higher statistical moments of the microstructural disorder.
Consequently, the effective continua (mean-field) models should provide reasonably good predictions of
the macro response during the entire hardening segment of the load-displacement curve.
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ABSTRACT

Fluidization is investigated as an energy efficient method of removing fines in a
machine in which comminution and material transport are integrated features of the design.
Two different conditions are explored. In the first, small mono-disperse particles are
steadily fluidized within a randomly arranged fixed bed of bigger particles. The results
show that the fluidization conditions can be predicted by means of an extension of the
general correlations proposed by Richardson and Zaki, and intended for fluidization of
mono-disperse particles in confined beds. In the second, a uniformly mixed binary bed of
glass spheres is impulsively fluidized. The transient bed behavior is found to be more
complex than what can be projected from our understanding of the steady state. The initial
upward motion of the packed bed forms an upward moving void which is essential for
segregation to occur. These experimental findings can be directly used to integrate an
efficient separation process into new crushing machines. Information on the optimization of
the machine working conditions can be extracted from the obtained results.

INTRODUCTION

Comminution processes find extensive applications in many different fields: mining
engineering, powder technology, and the pharmaceutical industry. There is great potential
for energy improvement in these areas, as present comminution processes are highly
inefficient [1]. The program of which this is a part, addresses the design of a crushing
device in an attempt to improve the efficiency of the entire process. Particle fracture and
material transport are integrated features of the machine, the final goal being a periodic
removal of the fine particles created by the crushing action, while new coarse material is
introduced into the system. The necessary size dependent segregation is obtained through
the fluidization of the particle bed. In an attempt to simplify the complexity of the problem
and gain basic insight of the dominant phenomena, two simple cases are considered. At
first, steady fluidization is studied to explore the interactions of coarse and fines in a
fluidized system. Then impulsive fluidization is investigated to understand the mechanisms
responsible for particie segregation.

Although the results can be directly related to a jaw-crusher-like machine operating on a
vertical wet bed, the fundamental nature of this research provides useful information and
insight into other particulate processes.
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STEADY FLUIDIZATION OF FINE PARTICLES IN A FIXED BED OF
COARSE PARTICLES

Spherical fine particles are steadily fluidized within a fixed vertical bed of spherical
coarse particles. Particle diameters are 0.15, 0.2, 0.3 and 0.4 mm for the fine particles, and
2, 3 and 4 mm for the coarse particles. Fines and coarse particles are confined in a test
section with rectangular cross section (10 X 40 mm). The working fluid is water at ambient
temperature and pressure. The coarse particles are packed to a volume concentration of
55%. This is slightly smaller than the random loose packing of 57% [2], and can be
attributed to the presence of the lateral walls which cause the coarse particles to pack less
efficiently.

As the liquid mass flow rate is gradually increased up to a constant value, the fine
particles steadily expand to a concentration value corresponding to the imposed fluid
velocity. The fluid velocity is always kept lower than the incipient fluidization velocity for
the coarse particles, which act as a fixed porous medium. The degree of agitation of the fine
suspension becomes greater at high mass flow rates, but the interface with the clear liquid
above always appears sharp.

The issue of the mobility of the fine particles is fundamental in these experiments.
Cumberland and Crawford [3] showed that, when mono-size spheres are arranged in a
lattice configuration, there is a certain diameter ratio for a small sphere which can just pass
through the pore space. Such a diameter ratio (small/large) is termed the "critical ratio of
entrance”. For the tightest systematic packing, where coarse particles are arranged in a
triangular layer structure, the theoretical ratio of entrance is 0.1548. Soppe [4] indicated
that particles with diameter ratios up to 0.15 can percolate through the sediments of a
random loose packed bed. To ensure a free movement of the fine particles in the pore space
of the coarse bed we observe that a size ratio smaller than 0.1 is required. For diameter
ratios bigger than 0.1, the fine particle do not freely percolate, but agglomerate in clusters
preventing a homogeneous and continuous fluidization.

The results obtained when the fines are fluidized within the bed of coarse particles are
presented in the same manner as used by Richardson and Zaki [5] for fluidization of a
single species. The authors found that the logarithm of the liquid superficial velocity J;
scales linearly with the logarithm of the liquid volume fraction, according to the form:

log j, =nlog(1—v)+logU, (b

where n is the slope of the curve and logU; is the intercept on the y-axis corresponding
to a value of v equal to zero (infinite bed expansion). Combining these results and some
dimensional analysis considerations, they correlated the coefficient n in terms of the
Reynolds number Re., based on the settling velocity U. of a particle in an infinite
stationary liquid and on the particle diameter, and the ratio between the particle diameter d,
and the pipe diameter D. For 1<Re..<200, range of interest for the particles of the present
study, the correlation proposed by Richardson and Zaki is:

n=(4.45+ 18% JRe. . @
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Richardson and Zaki also compared the values of Uj with those for the terminal velocity
U.., and they arrived at the following empirical correlation:

logU., = logU; +%, €)]

which encompasses wall effects. The difference between U.. and Uj is attributed to the
velocity gradient created near the wall. This effect becomes important when the size of the
particles is comparable to the dimensions of the pipe.

This same framework is now extended to the fluidization conditions within the fixed
coarse bed. Fig. 1 shows some of the experimental data, obtained when 0.2 and 0.4 mm
particles are fluidized alone and
within a bed of coarse particles (3
and 4 mm). For the data in the
presence of the coarse bed, the 2
liquid superficial velocity and the
fine particle concentration v are
defined with respect to the
interstitial space of the coarse
medium.

In this representation also the
data obtained with the coarse
medium fall along straight lines,
so that an expression of the type
of eq. 1 is a natural choice to
correlate  the  results. " _
Nevertheless, the slope and the y- 03 025 02 015 01 005 0
intercept of these lines are
significantly dependent on the Log(i-v)
size of the fine and the coarse Fig. 1: fluidization of bi-disperse bed. Experimental
particles. Namely, the y-intercept ociits
decreases and the slope of the
lines increases, as the particle size
ratio (d/d¢) increases. Figs. 2 and 3 show the ratios of the Uj values and of the n
parameters over the corresponding values obtained for fine particles fluidized alone (U..
and ng), as a function of the particle size ratio (d/d.).

In comparing fluidization with and without coarse medium, the principal difference is in
the geometry of the fluidized region owing to the presence of the coarse bed. It is therefore
proposed that the fluidization parameters U; and n can be computed with an effective
lengthscale that represents the size of the passages formed by the coarse particle bed and its
meanderous character. The simplest and most natural choice is the hydraulic diameter
derived from the volume and the wetted surface of the coarse pore region. This diameter
can be easily related to the coarse concentration v, and to the coarse particle diameter d. in
the following way:

Log(J ): (J is in mm/s)

n
!

___4xCoarsePoreVolume  2(1-v,)d,
WetSurfaceofCoarseMedium 3v, )

[

Q)]

When this effective diameter is used, eq. 3 is capable of predicting the values of the
correlating parameter Uj, and the related results are plotted with a continuous line in fig. 2.
For eq. 2, the introduction of the diameter defined in eq. 4 captures the trend of the
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" & Fluidized fines and-
coarse, particles raining down
- 3 §

Fig. 4: image sequence of a binary bed impulsively fluidized in a rectangular test section. The fine particles
are 0.2 mm black coated glass spheres. The coarse particles are 4 mm transparent glass spheres. Frames are
spaced by 1/6th of a second. The distance between the white scale markers on the left of each frame is 10
mm. The imposed superficial liquid velocity is 10 mm/s. The bed at first is lifted and the bottom layers of
coarse particles start to rain down. An upward moving coarse particle free region is formed. In this region
the fines are fluidized. When the binary bed reaches a critical thickness, in this case approximately three
coarse particle diameters, an instability occurs, and the fines break through the plug. In the final condition
the fines are fluidized on top of the cleared coarse bed.
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experimental data, but does not match the values. The same expression is then maintained,
but one of the experimental coefficients is modified according to our measurements. The
following correlation is proposed:

n=(4.45+>5. 74%) Re ', ©))

This correlation is plotted in fig. 3. The discussed results represent an extension of the
general correlations for vertical straight walled fluidized beds. Despite the complex
distribution of the flow across the porous medium, the introduction of the hydraulic
diameter for the coarse bed is sufficient to predict the fluidization conditions.

L —t———t—— . 3 MU EE—

Richardson & Zaki corrected with
effective porous medium diameter
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05 T Richardson & Zaki corrected with
effective porous medium diameter
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03 } 4 0 } }

0 004 0.08 0.12 0 004 0.08 012

fines coarse fines coane

Fig. 3: steady fluidization of bi-disperse

Fig. 2: steady fluidization of bi-disperse bed. n correlating parameter.

bed. Ui correlating parameter.

IMPULSIVE FLUIDIZATION OF BI-DISPERSE PARTICULATE BEDS

The unsteady nature of these tests adds a level of complexity to the steady case
discussed in the previous section. The phenomena observed under impulsive fluidization
show features that are significantly different and unexpected on the basis of the
understanding of the steady behavior.

The experiments are performed with a uniformly mixed bed of coarse and fine particles.
Fines of 0.2 mm with coarse particles of 2, 3 and 4 mm are used. The particles are placed
in a rectangular test section, and the fines fill the void of the coarse medium. From rest, an
upward liquid flow rate is suddenly increased to a constant value by means of a positive
displacement device. Image analysis tools are chosen to extract species concentration and
velocity measurements.

Fig. 4 is a sequence of video images spaced by 1/6th of a second which clearly show
the details of the events. The fine particles are dark and the coarse are transparent. Upon
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injection of the working fluid, the mixture of fines and coarse starts to be dragged upward
as a plug and little separation occurs. The lower layers of this plug precipitate due to the
fact that the liquid velocity is always smaller than the coarse particle fluidization velocity.
The upward motion of the plug is followed by a wave-like progression of a region where
segregation occurs between the heavy settling particles and the light particles kept in
suspension. The formation of this void is essential for segregation to occur. The net result
is the accumulation of a cleared coarse bed at the bottom of the test section while the plug is
still being dragged upward. When the depletion of the plug is such that only a few layers of
coarse are left, the process reveals the sudden nature of the final separation with the fines
breaking through in an apparently unstable manner. In the final conditions the fines are
fluidized on top of the coarse bed which is sitting at the bottom of the test section.

Measurements of fine concentration left in the coarse bed after the segregation process
show that removal is directly related to the liquid flow rate. Fig. 5 shows the removal
fraction (volume of fines segregated per initial volume of fines in the bed) as a function of
the liquid superficial velocity J]. For values of J] close to the falling terminal velocity of the
fines the final separation is almost complete. It is proposed that in these conditions the fine
particles released at the lower interface of the plug are kept fully suspended while the coarse
are settling. If the liquid velocity is lower than the particle terminal velocity, the fines
partially settle and a fraction of them is trapped and entrained again in the coarse layers
accumulating at the bottom.
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Fig. 5: final removal fraction of fine
particles as a result of impulsive
fluidization of bi-disperse system.

Fig. 6: bed height-segregation time
relationship for impulsive fluidization .

In relation to the design of a crushing machine it is desired to achieve a high and fast
removal of fines from the coarse bed. The effect of increasing liquid flow rate on the time
required to obtain segregation is also considered in our experiments. It is found that the
segregation time is essentially proportional to the initial height ho of the bed. In fig. 6 it is
shown that the ratio between the initial bed height and the time required to segregation is
constant with J]. This behavior is explained observing that higher liquid flow rates have the

53




only effect of raising the plug at a proportionally higher speed. For this reason the depletion
velocity relative to the upward moving plug depends on the characteristics of the settling
particles and the relative velocity with the fluid, but not on the liquid flow rate as measured
in a fixed reference system. In a reference frame traveling with the plug the wave motion
associated with the erosion of the bed is seen to progress at a constant speed.

The net result is that high liquid flow rates do enhance particle segregation, but do not
significantly alter the speed of the process. For elevated mass flow rates the final
segregation occurs with a higher rise of the particle plug. This could be a problem when
design considerations require to confine the bed inside the machine.

The final optimization of the machine parameters and working conditions will have to
combine these and more specific observations in a unified framework of material transport
and fracture analysis.

CONCLUSIONS

Fluidization of binary particle systems is considered in steady and unsteady conditions.

When fine particles are fluidized within a fixed coarse bed, it is shown that the results
can be predicted by means of an extension of the general correlations (2) and (3) proposed
by Richardson and Zaki, and developed for mono-disperse particles fluidized in vertical
pipes. The extension of such general relationships is obtained with the correction of one of
the empirical coefficients proposed by Richardson and Zaki, and the introduction of the
hydraulic diameter for the pipe. This diameter represents an effective size of the passages
formed by the coarse particle bed and can be related to the coarse bed concentration and
coarse particle diameter (eq. 4).

In the unsteady conditions, when the bed of fine and coarse particles is impulsively
fluidized, it is shown that complete segregation between the two species can be achieved,
provided that the liquid velocity is higher than the terminal velocity of the small particles.
For lower liquid velocity values, segregation is still obtained but with a partial removal of
fine particles. The velocity of the segregation process is independent of the height of the
bed or the liquid flow rate.

While these measurements were conducted in simplified conditions, the fundamental
nature of the results is of direst interest to a number of particulate processes and machinery.
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LIST OF SYMBOLS

pipe diameter or the equivalent pipe diameter defined in (4)

D:
d: fluidized particle diameter
de: coarse particle diameter
ho: initial bed height
I liquid superficial velocity or liquid gross section velocity
n: experimental coefficient defined in (2)
Re..: Reynolds number based on particle diameter and settling velocity
ter: time required to obtain final segregation
Uj: antilog of the logJ; intercept axis at v=0
Ue: terminal or settling velocity of a single particle in an infinite liquid
v: fluidized particle volume concentration
ve: coarse particle volume concentration
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EFFECT OF CARRIER GAS PRESSURE ON CONDENSATION IN A SUPERSONIC NOZZLE
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ABSTRACT

We performed supersonic nozzle experiments with a fixed water or ethanol vapor
pressure and varying amounts of nitrogen to test the hypothesis that carrier gas
pressure affects the onset of condensation. Such an effect might occur if non-
isothermal nucleation were important under conditions of excess carrier gas in the
atmospheric pressure range, as has been suggested by Ford and Clement. Although we
observed a small increase in the condensation onset temperature as the stagnation
pressure was reduced from 3 to 0.5 atm, we cannot attrigute these changes to any
non-isothermal effects. To theoretically simulate the observed behavior, we
performed calculations of nucleation and droplet growth in the nozzle that took into
account the change in nozzle shape with carrier gas pressure due to boundary layer
effects and the ﬁeat capacity of the flowing gas. We neglected energy transfer
limitations in calculating tge nucleation rates. The trend of the calculated
results matched that of the experimental results very well. Thus, heat capacity and
boundary layer effects are sufficient to explain the experimental onset behavior
without invoking energy transfer limited nucleation. Beyond the onset location, the
calculations overpredicted the rate of water condensation. Thus, inefficient
cooling of larger, growing droplets may be influencing droplet growth rates. Our
conclusions about the rate of nucleation are consistent with those obtained recently
using an expansion cloud chamber, but are at odds with results from thermal
diffusion cloud chamber measurements.

1. INTRODUCTION

The condensation of rapidly cooled vapor mixtures has been under investigation
for over 50 years, and a considerable body of information has been amassed. [1,2]}
One of the most important concerns is to understand how and why the observed onset
of condensation varies with different experimental conditions. The onset of
condensation is the point in the expanding flow where the density, pressure, and
temperature deviate significantly from the isentropic values. Aside from the
enormously difficult theoretical task of predicting the onset of condensation from
well-founded physical principles, there remain perplexing differences in onset
conditions measured by different investigators that are too large to be accounted
for by experimental errors. While some of these differences can surely be explained
in terms of the non-equilibrium conditions developed in extremely rapid molecular
beam and free jet expansions compared to the much gentler expansions found in Laval
nozzles and shock tubes, many experimental results found with these latter devices
also show unexplained differences in the onset temperature of condensation.
Examples can be readily cited for the condensation of water [3], argon [4], and
nitrogen [5].

Our recent experiments explore the effect of carrier gas pressure on the onset
of condensation in the atmospheric pressure range. This factor has not been
systematically varied before, but it can qualitatively account for a shift in onset
temperature with carrier gas pressure. In principle, larger nucleation and growth
rates (and higher onset temperatures) are achievable at higher carrier gas pressures
because "hot" clusters can be more rapidly thermalized than at low pressures. The
latent heat of condensation significantly raises the internal energy of a cluster
formed by monomer addition. Until this excess energy is removed via gas-cluster
collisions, the cluster is prone to decay by re-emitting a monomer. Barschdorff [3]
previously observed a change in onset temperature due to this effect for high mass
fractions of condensible vapor. Recently, Ford and Clement [6] suggested that a
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similar effect on nucleation rates might be observable under conditions of excess
carrier gas at about 1 atm. The experimental evidence on this subject is confusing.
In diffusion cloud chamber experiments, Katz et al. found a decrease in nucleation
rate of four to five orders of magnitude with increases of carrier gas pressure from
100 to 2000 Torr [7]. An opposite, but smaller, trend was observed in flow
diffusion chamber experiments by Anisimov and Vershinin [8,9]. Recently, Wagener,
Strey, and Viisanen, [10] using an expansion cloud chamber, reported no intrimsic
effect of carrier gas pressure on the nucleation process.

The goal of our current work [11] is to determine if a reduction in carrier
gas pressure delays condensation onset to a lower temperature in the nozzle which
would be caused by strong non-isothermal nucleation effects. In our experiments, we
have not observed a significant variation in the onset of condensation (with a fixed
low initial concentration of water or ethanol vapor) accompanying a decrease in the
carrier gas pressure. Thus, our results provide evidence that non-isothermal
nucleation effects are unimportant for excess carrier gas in the atmospheric
pressure range even at the high nucleation rates found in nozzles.

2. EXPERIMENTAL APPARATUS AND DATA ANALYSIS

Our experiments are done with an intermittent, low Mach number, supersonic
Laval nozzle that is equipped to do spatially-resolved light scattering and Mach-
Zender interferometry ?12,13]. The two-dimensional nozzle, with a 0.5 x 1.7 cm?
throat, is defined by two carefully machined aluminum blocks enclosed between two
parallel pyrex glass walls. The 7.27 cm long supersonic portion consists of
straight, diverging walls with an exit-to-throat area ratio of 1.36 that yields a
maximum Mach number of 1.72 for a perfect diatomic gas. During steady supersonic
flow periods of several hundred milliseconds, one-dimensional temperature and
pressure gradients are established in the nozzle. Typical cooling rates are about
0.6 K/us. Temperatures between 225 and 260 K are achieved in the condensation zone
downstream of the nozzle throat. Condensible vapor is controllably mixed with the
nitrogen carrier gas in a pressurized saturator and fed directly into a large supply
plenum. The interferometry data yield a relative density profile in the nozzle.
Pressure measurements made in the supply
plenum and through a pressure tap at the x=0 100
cm point in the nozzle fix the absolute value
of the density ratio. The deviation from
isentropic flow caused by latent heat
release, when sufficient{y large, can be
detected with the interferometer by comparing
density ratio profiles obtained under
conditions of dry flow to those obtained with 10
condensation. The temperature profile of the
expanding/condensing flow is obtained by
.integrating the diabatic gasdynamics
equations using the measured dry and wet
density profiles as input data, following a
procedure similar to that of Wegener and
Pouring [14].

1 1 ] i 1 1 1 ] L]

Pv(Torr)

3. EXPERIMENTAL RESULTS and DISCUSSION

Experiments at constant stagnation
pressure with varying condensible vapor
pressure confirm that our supersonic nozzle
results are consistent with those of other
workers generated using a variety of
experimental techniques. The results for
ethanol are shown in Figure 1, where they are
compared with those of Wegener, Clumpner, and 001L_1 L1 i
Wu [15] and those of Dawson et al. [16] Of 200 220 240
greater interest are the results unique to
the current work, i.e., the results of
experiments in which the initial pressure of Figure 1. Onset of Ethanol
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the condensible species was constant but the Condensation. A, present work;
pressure of the carrier gas was varied M, Vegener et al. (Ref. 15).
significantly. Figure 2 shows raw wet and — , Dawson et al. (Ref. 16).

dry gas density data measured at total
stagnation pressures of 0.5 and 3 atm. One
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Figure 2. Measured Density Ratios in the Supersonic Expansion of 17.2 Torr Water

Vapor at Two Different Carrier Gas Pressures

difficulty in working at low pressure is the poorer quality of the interferograms
produced. Despite -.this it is clear that the location at which the dry and wet
curves deviate is not significantly different.

Temperature profiles obtained by integrating the diabatic gasdynamics
equations are shown in Figure 3. The vertical displacement of the results is due to
the increase in the boundary layer thickness at the nozzle walls with a six-fold
decrease in pressure. In effect the nozzle shape changes slightly, giving rise to a
gentler expansion at low pressure. In the low pressure case, we also note the
stronger departure of the wet temperature profile from the isentrope as well as the
higher peak temperature. These are consequences of the reduced heat cagacity of the
lower pressure gas, since condensation adds roughly the same amount of heat to each
flowing gas stream. TFor the experimental results of Figures 2 and 3, onset occurred
between x=1 and 1.5 cm.

Figure 4 shows the experimental onset temperatures versus total stagnation
pressure. Theoretical onset temperatures are also plotted. These were calculated
using classical isothermal nucleation theory, with the integral method of
Oswatitsch [1] and the measured effective area ratios at each pressure as explained
in Section 4. Changing the nucleation rate by a factor of ten in the modeling
results in a 3 K shift in the onset temperature. Thus large changes (>100X) in the
experimental nucleation rate due to changes in carrier gas pressure should be
readily observed. Based on the results of Figure 4 we conclude that the small
variation in onset temperature is readily explained by classical isothermal
nucleation theory and the fluid mechanics of the nozzle flow. Thus, strong non-
isothermal nucleation effects are not apparent in our results despite onset
pressures that are generally subatmospheric (0.2 to 1 atm). Our recent experimental
resultsafor using ethanol as the condensible species show the same trend as in
Figure 4.

4. THEORETICAL MODELING OF CONDENSATION

To gain more insight, theoretical calculations of condensation in the nozzle
were performed. Two types of models were used: a discrete-sectional (DS) model and
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sponding to the Measured Density
Profiles in Figure 2.

an integral steady state (ISS) model first used by Oswatitsch [l1]. _These models
simulate the nucleation and growth of particles containing up to 107 molecules (40
to 60 nm radius) and include the effects of heat addition to the flow through the
diabatic gasdynamics equations [2]. Both models are based on the classical kinetic
model of cluster formation which considers cluster size to change only by monomer
condensation and evaporation [17]. The simpler ISS method uses the steady state
‘nucleation rate J to compute the number density AN of new particles formed at each
point x in the expansion from the conservation law, AN = (J/u)Ax; u is the local
flow velocity. With an appropriate droplet growth law the condensate mass fraction
can be calculated versus x, and from this the change in flow properties can be
obtained by integrating the diabatic flow equations. This approach has been used
extensively for simulating condensation in nozzles [2]. 1In these calculations, the
classical isothermal steady state rate expression, J.;, was used for J. Following
conventional practice, a multiplicative adjustment factor I' was used to bring the
calculated and measured values of the onset temperature into agreement. Thus J is
expressed as J=I'J.;. In general, T varies with experimental conditions, but for a
given expansion it is a temperature independent constant.

The DS model solves a coupled set of kinetics equations for the rate of
change, R;, in the number density of clusters with i monomers (i-mers), N;. The
rate of change due to monomer addition and subtraction is Ry=I;_;-I;, where I;=8;N;N,-
E;4)Ny4;. Here B; is the rate coefficient for adding a monomer to an i-mer, and E; is
the evaporation rate of an i-mer. Standard forms from classical nucleation
theory [17] are used for B; and E;. The spatial evolution of the cluster densities
is governed by steady-state conservation relations that superimpose the effects of
the expansion with the above rate processes: d(¥N;/p)/dx=R;/(up); p is the flow
density. This coupled set of first order non-linear rate equations is solved
subject to monomer comnservation. To keep the problem computationally tractable,
only the first 1000 cluster sizes were treated discretely. All of the larger sizes
were treated using a binning procedure in which each successive decade was
subdivided into n bins, with the bins in each decade ten times larger than the bins
in the preceding decade. The principal aim of this exercise was accuracy, not
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efficiency. By working in number space and realizing that the cluster size
distribution varies linearly over modest increases in cluster size, this approach

ields essentially exact results. The results shown here were obtained using 900
gins per decade. The equations were solved using a simple, hybrid implicit
predictor-corrector scheme with a fixed step size chosen to give stable results.
Given the measured area ratio profile for our nozzle, the local flow temperature,
density, and pressure were continuously adjusted by solving the gasdynamics
equations for diabatic flow, thereby accounting for heat addition to the flow from
condensation.

In Figure 5a the size distributions computed from the DS model show how the
droplet distribution evolves from a broad, monotonically decaying function of size
at condensation onset into a broad, roughly log-normal distrigution of growing
droplets accompanied by a molecular vapor consisting mainly of monomers, dimers, and
very small i-mers as condensation nears completion. Figure 5b displays the same DS
results as a function of particle radius and compares them with ISS model results.
The ISS method produces results very close to those of the DS model provided that
both the steady state nucleation rate expression and droplet growth law used are
consistent with the forms of B, and E; used in the DS model. The ISS model results
in Figure 5b. were obtained using the quasi-steady isothermal droplet growth law
including evaporation, and droplet growth was started precisely at the critical
size. The two particle size distributions at onset, x=-0.2, are in good agreement,
with the exact DS results giving a slightly broader distribution. Onset is the
point in the nozzle where the e%fects of condensation are first evident. These
theoretical results indicate that at onset most of the condensed mass is already
present in very large particles and that substantial droplet growth has already
occurred. The latter observations contrast with the conventional view, developed
for low temperature ethanol condensation, that at onset most of the condensed mass
exists as a cloud of tiny (0.5 nm) near-critical nuclei with droplet growth
contributing substantially only after the peak nucleation zone [15].
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Figure 5. Calculated Water Cluster Size Distribution

60



As opposed to the above water results, ethanol condensation calculations for
the conditions used by Wegener et al. [15] yield results supporting the picture of
decoupled nucleation and growth. These results are shown in Figure 6a. The size
distribution at onset is very sharp, critically-sized particles dominate, and most
of the mass lies in the smallest sizes. It should be noted this behavior is a
consequence of the exceedingly high nucleation rates achieved in the experiemnts of
Wegener et al., [15]. In calculations simulating our ethanol condensation
experiments, we observe a transition from this decoupled behavior to a regime in
which nucleation and droplet growth are equally important as for the case of water
condensation, Figure 6a also shows the very broad ethanol size distribution
computed for one set of our conditions. Figure 6b compares cumulative mass
distribution curves illustrating this transition. The sharpest distribution
corresponds to the conditions of Wegener et al.; the other two curves span the
temperature range covered by our experiments. We conclude that the magnitude of
nucleation rate achievable under different conditions has an major effect on the

relative importance of nucleation and droplet growth at onset.
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DEVELOPMENT OF A DUAL-SINKER DENSIMETER
FOR HIGH-ACCURACY FLUID P-V-T MEASUREMENTS!

Mark O. McLinden and Nolan V. Frederick?
Thermophysics Division
National Institute of Standards and Technology
Boulder, Colorado 80303, USA

ABSTRACT

A dual-sinker densimeter to very accurately measure the pressure-volume-temperature
(P-V-T) properties of fluids over a temperature range of 80 K to 520 K and at pressures up to
35 MPa is in the final stages of development at NIST. The density of a fluid is determined by
measuring the difference in the buoyancy forces experienced by two sinkers of identical mass,
surface area, and surface material, but very different volumes. The buoyancy forces on the sinkers
are transmitted to a semi-microbalance by means of a magnetic suspension coupling. This paper
reviews the principle of the measurement and describes the overall design of the system.

INTRODUCTION

The pressure-volume-temperature (P-V-T) properties of fluids are the key thermophysical property data
needed for the development of accurate equations of state required to predict the efficiency of working fluids,
to assure equity in the domestic and international trade of chemicals, fuels, and related fluids, and to enable
accurate design and efficient control of chemical process equipment. The Thermophysics Division of NIST
has extensive experience and capabilities in P-V-T measurements. The existing capabilitics need to be
upgraded to respond to the increased accuracy demands of custody transfer and model development
applications. The need for accurate, but rapidly determined, properties of alternatives to the CFC refrigerants
and of other new working fluids dictates a highly automated apparatus.

In view of these needs, we are developing a new apparatus which will complement the existing PVT
apparatus, cover wide ranges of temperature, pressure, and density, and, most importantly, extend our
accuracy capabilities by nearly an order of magnitude. The wide temperature and pressure capabilities of the
new apparatus will be of particular value for the alternative refrigerants, fluids for which low temperature, and
also high pressure, data are scarce.

MEASUREMENT PRINCIPLE

The apparatus we are developing is a relatively new type of device for measuring fluid P-V-T properties,
termed a dual-sinker densimeter, which has been pioneered by Kleinrahm and Wagner [1]. In this device, two
sinkers of identical mass, surface area, and surface material, but very different volumes, are weighed
separately with an analytical balance while immersed in a fluid of unknown density. The difference in
buoyancy forces on the two sinkers yields the fluid density p:

=W_, (1)

IContribution of the National Institute of Standards and Technology, not subject to copyright.
2Rocky Mountain Electron Video, Inc., Boulder, Colorado.
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where AF is the difference in the net force on the sinkers, g is the local acceleration of gravity, AV is the
difference in sinker volumes, and Am is the difference in the masses of the two sinkers (this quantity will be
small, but it would be very difficult to fabricate two sinkers of absolutely identical mass). By means of
internal electronics and calibration weights, the balance converts the quantity (F/g) to a reading directly in
grams, so the local acceleration of gravity need not be known. The sinkers are suspended from the balance via
a magnetic suspension coupling which isolates the balance from the high pressure measuring cell. The main
advantage of the dual-sinker method is that surface tension effects on the suspension wire, adsorption onto the
surface of the sinkers, and other effects which reduce the accuracy of most buoyancy techniques cancel.
Because of this cancelling effect, this method is particularly well suited for measurements at saturation. A
further advantage of the method is that the measurement yields the fluid density directly, without the need for
calibration fluids. The uncertainties in the measured density are expected to vary from 0.01% for liquids (p =
1 g/cm3) to approximately 0.1% for low density vapors (p = 0.01 g/cm3). These accuracies should be
routinely achievable over wide ranges of temperature and pressure. The apparatus is most suited for single-
phase and saturation measurements on pure components, but will also be suitable for single-phase
measurements on mixtures.

The new apparatus is modeled after the Kleinrahm and Wagner device in a very general way, but
incorporates a number of changes to yield what we expect will become the new state of the art for wide-range
P-V-T measurements. This apparatus will operate at temperatures from 520 K down to 80 K (and as low as
30 K with liquid neon cooling) with pressures up to 35 MPa. The control of the apparatus and the
measurement process will be entirely automatic; only the fluid handling operations, such as charging the cell,
will be done manually.

EXPERIMENTAL APPARATUS

Overall Layout

The apparatus consists of the following key components:

e the two sinkers which together with a semi-microbalance and a mechanism to pick up each sinker
constitute the density measuring system,

e apressure vessel which contains the fluid of interest,

e amagnetic suspension coupling which transmits the net force on the sinkers from the pressure vessel
to the balance,

e pressure and temperature measuring instruments,

e athermostat system incorporating liquid nitrogen cooling and electrical heating,

e a personal computer which controls the entire system and records the measurement data, and
e auxiliary systems such as fluid charging and vent manifolds and a vacuum system.

The overall layout of the first five of these components is shown in Figure 1. The assembly depicted in
this figure is supported on a sturdy aluminum frame which incorporates vibration isolation. An instrument
rack, the vacuum system, and a Dewar of liquid nitrogen for the cooling system are adjacent to the main
instrument.

Sinkers and Sinker Changing Mechanism

Two well-characterized sinkers constitute the heart of the density measuring system. The prime
requirement is that the sinkers be of very different densities. The low density sinker must, of course, be more
dense than the densest fluid that will be measured (otherwise it would become a float). These densities must,
furthermore, be well known over the full temperature range of interest. The volumes of the sinkers at room
temperature can be determined to a few tens of parts per million (0.001 %) by weighing in water [2]. The
sinker volumes (or densities) at other temperatures are computed from the thermal expansivity of the material.

Our design employs a low density sinker of single-crystal silicon. The density of silicon (p =
2.33 g/cm3 at 20 °C) is nearly optimal; it is higher than almost ail of the fluids of interest (e.g. many of the
refrigerants have liquid densities from 1.0 to 1.8 g/cm?3), and only a few fluids (e.g. xenon, bromine) have
higher densities. The density and thermal expansion coefficient of single-crystal silicon are known extremely
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well [3,4], and since single crystals of ultra-high purity are readily available, the literature values for density
and thermal expansion coefficient can be applied to our specimen with negligible loss of accuracy. The silicon
sinker is essentially a right circular cylinder; this shape gives close to the minimum surface area-to-volume
ratio. The sinker has a diameter of 31.70 mm and an overall height of 33.56 mm. Its nominal mass is 60 g.
A small (1.9 mm high by 22.9 mm diameter) protrusion on the bottom of the cylinder serves to center the
sinker when it is lowered onto its support pedestal.

The high density sinker is tantalum. Tantalum is a dense metal (p = 16.6 g/cm3 at 20 °C) and is very
corrosion resistant. Some of the precious metals, such as platinum and gold, have higher densities but are
very soft and present fabrication difficulties, and while they are very corrosion resistant they can catalyze the
decomposition of some fluids. In any event, the density of tantalum is high enough to give a large volume
difference between the sinkers; there would be little added benefit in using a higher density material. To
satisfy the requirement of equal surface areas, the tantalum sinker is in the shape of a ring with an inner
diameter of 40.94 mm, outer diameter of 44.20 mm and height of 16.63 mm; its nominal mass is also 60 g.
Placing the ring concentric with the silicon sinker achieves at least two benefits: (1) both sinkers are at the
same height in the cell, minimizing the effects of any vertical density gradients that might be present in the
fluid, and (2) a novel mechanism for picking up and weighing the cylinder and ring is possible, as described
below. The volume of the tantalum sinker at room temperature will be determined by hydrostatic weighing.
For metals, the coefficient of thermal expansion depends on the heat treatment, exact alloy composition, etc.
Fortunately, since the tantalum sinker has a much smaller volume than the silicon sinker, the thermal
expansion coefficient of tantalum does not need to be known as accurately as for silicon.

Both sinkers will be coated with the same material to minimize surface adsorption effects. By having the
same surface area and surface material for both sinkers, fluid should adsorb equally on the two sinkers,
cancelling the effect. We are currently investigating both tantalum and silicon coatings.

To pick up and weigh each sinker, a novel sinker changing mechanism has been developed. The sinkers
are picked up by a “cage” consisting of two stainless steel rings connected by three stainless steel posts; the
bottom ring contains three small “feet” which can pivot to pick up one sinker or the other. The mechanism and
weighing sequence is depicted in a cross-sectional view in Figure 2. In the “reset” position, both sinkers rest
on a pedestal. The cage is at its lowest position with the feet pivoted inward by a ledge machined into the
bottom of the pressure vessel. The cage is raised (by the magnetic suspension coupling, described below) to
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Figure 2. Detail of the sinker changing mechanism showing the four steps in a weighing sequence.
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pick up the silicon sinker. As the cage is raised, the feet “pass through” a set of spring “fingers” arranged
radially in a rosette pattern. (This finger rosette was produced by photo-etching stainless steel shim stock.)
The spring fingers are quite flexible in the upward direction, and the cage feet pass through easily. After the
cylinder is weighed, it is lowered back down onto its pedestal; tapered ledges on the pedestal serve to center it.
As the cage is Jowered further, the feet contact the spring fingers, and the feet pivot outward. This motion is
guaranteed by three factors: (1) the feet pivot easily on highly polished axles, (2) the fingers are somewhat
more resistant to downward bending than to upward bending, and (3) the center of gravity of a foot lies above
the axle with the result that the feet have two stable positions. The process of pivoting the feet, with the feet
shown in several intermediate positions, is depicted in the third panel of Figure 2. The cage is again raised,
but this time the feet are facing outward and the tantalum ring is picked up for weighing. The cycle is
completed when the cage is lowered to the reset position.

Magnetic Suspension Coupling

The magnetic suspension coupling transmits the gravity and buoyancy forces on the sinkers to the
balance. The central elements of the coupling are two samarium-cobalt magnets, one on each side of a
nonmagnetic pressure separating wall. The top magnet and a small control electromagnet (termed the
“weighing coil”) are hung from the balance, see Figure 1. The bottom magnet (from which the sinkers hang)
is held in stable suspension with respect to the top magnet by means of a feedback control circuit making fine
adjustments in the control electromagnet current. All the lifting force during sinker weighings comes from the
mutual attraction of the two permanent magnets. Currents in the control electromagnet are very small (< 1 HA)
and are entirely for control, permitting the use of extremely fine wires as electrical leads to the weighing coil.

A larger electromagnet, not hung from the balance, is used to lift the lower magnet into the range of the
weighing coil. This large “lifting coil” is able to lift the cage and sinkers over a fairly large range of vertical
positions and makes possible the sinker changing mechanism described above. During ginker weighings,
control is switched to the weighing coil, and the current in the lifting electromagnet is zero. A further
advantage of a separate lifting coil is that the large (up to 8 A) currents necessary to lift the sinkers from the
reset position do not heat the weighing coil. This avoids the destabilizing effect of convection currents rising
off a warm weighing coil.

The coupling is located approximately 375 mm above the sinkers. The connection between the bottom
magnet of the coupling and the cage consists of several elements. A stainless steel rod 0.76 mm in diameter
and 200 mm long rigidly connects the magnet and a ferrite core which moves within the coil of a linear
variable differential transformer (LVDT) which provides position information to the feedback circuit. (The
ferrite is encased in a short length of thin-walled stainless steel tubing to avoid any possible incompatibilities
with the test fluids.) Another length of 0.76 mm diameter stainless steel rod connects the ferrite to a length of
fine stainless steel wire at the top of the cage. This fine wire penetrates the liquid-vapor interface when
making measurements on saturated-liquid samples; it is very fine (0.10 mm diameter) to minimize surface
tension effects. (Wetting of the suspension wire is not necessarily a repeatable phenomenon, and, thus, it is
desirable to minimize the absolute effect in addition to the cancelling effect of the two-sinker measuring
principle.)

This considerable separation between the coupling and the sinkers is necessary for both the accuracy of
the measurement and practical reasons. The ferrite core in the position-sensing coil and the (slightly magnetic)
stainless steel pressure vessel must be located away from the magnetic coupling so as not to affect the
weighings. It is also desirable to locate the coupling above the main vacuum enclosure to permit easier access.
These benefits come at a cost: achieving the precise vertical alignment of the balance, coupling, sinkers, etc.,
which is critical for the accuracy of the weighings and the operation of the sinker changing mechanism, is a
painstaking process. To maintain alignment, all critical elements of the apparatus are attached directly or
indirectly to a massive stainless steel plate (381 mm diameter by 18.3 mm thick) attached to a sturdy aluminum
frame.

The final element of the magnetic suspension coupling is the pressure-isolating wall. This isolates the
balance from the test fluid (which may be at high pressure and/or extremes of temperature). This pressure-
isolating wall is a small pressure vessel connected to the main pressure vessel by a length of 9.5 mm O.D.
stainless steel tubing. The pressure-isolating wall is located between the two magnets of the magnetic
suspension coupling and must, therefore, be made of an absolutely nonmagnetic material. After testing
numerous “nonmagnetic” materials, including aluminum, stainless steel, copper, and titanium, we have
fabricated this vessel of a beryllium-copper alloy.

67




Pressure Vessel and Thermostat

The pressure vessel comprising the measuring cell is of a fairly conventional design and is constructed of
type 316L stainless steel. The pedestal for the sinkers is in the bottom “lid” of the pressure vessel. The lid is
sealed by a copper gasket. A copper sleeve, shrink-fitted to the outside of the stainless steel vessel, serves to
reduce temperature gradients to a few millikelvins (thousandths of a kelvin). Four separate openings in the top
of the pressure vessel, machined to mate with commercial coned-and-threaded-type high pressure tube fittings,
provide access for the suspension wire and fluid filling capillary as well as two spare openings. An opening
in the bottom of the vessel will connect with a future “reference cell” described below; it also allows a cleaning
solvent to be easily circulated through the vessel.

The primary element of the thermostat system consists of an isothermal shield which surrounds the
pressure vessel. The entire assembly will be in vacuum for thermal insulation. The isothermal shield is
constructed of copper and is maintained 1 K cooler than the measuring cell by a combination of electrical
heating and liquid nitrogen flowing through cooling channels machined into the top plate of the shield. Heat
conduction from ambient to the measuring cell is minimized by thermally anchoring all electrical leads, filling
capillaries, etc. to the isothermal shield. The small (approximately 20 mW) heat leak from the cell to the
shield is offset by electric heat to control the cell temperature to a few millikelvins. A separate liquid nitrogen
cooling channel is machined into the top of the pressure vessel; this cooling circuit will be used only for quick
cooling between runs and will not be used during actual measurements.

The small pressure vessel which is part of the magnetic suspension coupling will not be cooled because
of practical difficulties. It will be maintained at room temperature or about 1 K above the main cell
temperature, whichever is higher. A positive temperature gradient between the main cell and coupling is
desirable to prevent convection and/or condensation. This temperature gradient is confined to a short length of
the tube connecting the main cell and coupling. An upper heating collar is maintained at the temperature of the
coupling. A lower collar is maintained at the temperature of the main cell by a combination of electrical heating
and copper conduction straps connected to the isothermal shield. It is important to note that in the region of
this temperature gradient, the connection between the magnetic coupling and the cage consists of a thin
stainless steel rod of uniform diameter. The movement of an object of varying cross section in a temperature
(and, thus, density) gradient would affect the buoyancy forces detected by the balance and cause errors in the
measured fluid density. For this reason, the position sensing coil, with its ferrite core, is located in an
isothermal region maintained at the cell temperature.

A future feature of the apparatus will be a “reference cell” connected to the main measuring cell. For
vapor-phase measurements near saturation, the pressure in the measuring cell will be set by the vapor pressure
of a small volume of liquid in the reference cell. By independently controlling the temperature of the reference
cell, saturated vapor conditions can be closely approached in the measuring cell without gross condensation of
fluid onto the sinkers. The effects of the significant surface adsorption which is often unavoidable at
conditions very close to saturated vapor are minimized by the equal surface area and surface material of the
sinkers.

Instrumentation

The first two elements of the density-measuring system, the sinkers and magnetic suspension coupling,
are described above. The other major element consists of a semi-microbalance with a resolution of 10 g and
a stated accuracy of 30 pug over a weighing range of 205 g. An additional feature of this balance which makes
it well suited to this apparatus is an automatic calibration mode which can be triggered by a signal from the
control computer.

The primary temperature measuring element is a reference-quality, 25 2 capsule-type platinum resistance
thermometer inserted into the copper sleeve of the measuring cell. The resistance of the thermometer is
measured in a 4-wire resistance circuit by a dedicated precision voltmeter. Two calibrated standard resistors
(10 Q and 100 ) are also measured by the voltmeter. Other temperatures that must be known accurately
(such as the temperature of the isothermal shield) are measured relative to the standard PRT by five-junction
copper-constantan thermopiles. Two additional thermopiles measure the temperature differences between the
top and bottom of the measuring cell and the top and bottom of the isothermal shield; these temperature
differences are used to check for approach to equilibrium conditions upon a change in the temperature set
point. Several inexpensive 100 Q PRTs are used to monitor additional temperatures in the system. The
thermopiles and 100 © PRTs are measured with a nanovolt-level scanner connected to a nanovoltmeter .
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Pressures are measured by three vibrating-quartz-crystal pressure transducers having ranges of
0-0.20 MPa, 0-2.8 MPa, and 0-41 MPa. The full range of pressures can be measured within the optimum
range of at least one of the transducers. The pressure transducers are located approximately 375 mm above the
measuring cell resulting in a fluid head that can be significant under some conditions. To permit accurate
correction for this effect, most of the capillary connecting the measuring cell with the transducers is maintained
at either ambient temperature or the cell temperature. The temperature gradient between the cell and ambient
temperatures is restricted to a horizontal section of the capillary inside the vacuum enclosure; this section does
not contribute to the fluid head effect and thus the density gradients resulting from the temperature gradient in
this section do not affect the accuracy of the fluid head correction.

The entire system is controlled and all data is collected by a microcomputer. The balance and pressure
transducers are read over RS-232 (serial) ports. The interface for the magnetic suspension coupling control
circuit is a combination analog/digital /O board installed in the computer. The remainder of the
instrumentation is controlled over an IEEE-488 bus.

Auxiliary Systems

The densimeter also requires several auxiliary systems. A vacuum system consisting of a mechanical
roughing pump and high vacuum diffusion pump maintains the insulating vacuum within the thermostat as
well as allowing evacuation of the measuring cell. A valve manifold allows charging of test fluids into the
measuring cell, connection of one or more of the pressure transducers to the cell, and discharge of samples to
the building vent system. A hydraulically actuated, diaphragm-type compressor is connected to the manifold
to compress liquid samples up to the maximum working pressure of 35 MPa. The heaters on the isothermal
shield, measuring cell, etc. are supplied by 2, 4-channel DC power supplies controlled over the IEEE-488
bus. Finally, a 160 L Dewar of liquid nitrogen supplies the cooling system.

CONCLUDING REMARKS

The apparatus is nearly complete. The various critical elements have been tested individually and are
now being integrated and tested as a complete system. The final apparatus may differ slightly from the
description given here.
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