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ABSTRACT

The classical problem of effective elastic properties of cracked solids is critically reviewed. The
predictions of the existing schemes are directly checked by computer experiments on a large number of
sample arrays of interacting cracks. The main finding is that the approximation of non-interacting cracks (the
simplest one) actually remains accurate at high crack densities and strong interactions. The underlying
reason is that the competing interaction effects of shielding and amplification cancel each other (provided the
mutual positions of cracks are random).

INTRODUCTION

This paper is a brief summary of the work presented in detail in [1,2].

The theory of effective elastic properties of cracked solids predicts degradation of stiffness, development
of anisotropy, changes in wavespeeds caused by microcracking. Therefore, it is of obvious interest for solid
mechanics, materials science, geophysics; it also constitutes a theoretical basis of various NDE techniques.

Most of the approaches to this problem have roots in the effective media theories of physics. For
example, the approximation of effective matrix (a self-consistent scheme, in terminology of the mechanics of
solids with inhomogeneities), in which a representative inhomogeneity is placed into the effective matrix,
was first used in the problems of electrostatics in the XIX-th century. The method of effective field, and its
simplest version - Mori-Tanaka's method - in which a representative inhomogeneity is embedded into the
effective stress field, was first developed in 1940's - 1950's in connection with wave propagation problems.

At the same time, cracks constitute a distinctly special kind of inhomogeneities: they occupy no volume;
stress fields generated by them are quite complex and have strong orientational dependence. As a result,
cracked solids have many special features: the choice of crack density parameter is non-trivial; the effective
properties are, generally, anisotropic; the approximation of non-interacting cracks has a wider than expected
range of applicability. Many of the approximate methods, used in the mechanics of general two phase
materials, degenerate and cannot be applied to a cracked solid. For example, bounds for the effective
moduli, as a rule, cannot be established; Mori-Tanaka's method yields predictions coinciding with the
approximation of non-interacting cracks.

Several approximate schemes for cracked solids have been suggested in literature. Their predictions are
substantially different. A researcher or an engineer, trying to use the theory, may be confused by the choice
of several models, yielding different results.

The present work attempts to introduce some clarity into this problem. We briefly review the simplest
approach to the problem - the approximation of non-interacting cracks (developed as early as 1960, by
Bristow{3]). We then present the results of extensive computer experiments, in which the problem was
directly solved for a large number of sample arrays of cracks. The main finding is that the approximation of
non-interacting cracks (the simplest one) actually remains accurate at high crack densities and strong
interactions. The underlying reason is that the competing interaction effects of shielding and amplification
cancel each other (provided the mutual positions of cracks are random).
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THE APPROXIMATION OF NON-INTERACTING CRACKS

This simplest approximation, known since 1960, is briefly reviewed here.

In the assumption of non-interacting cracks (in the isotropic matrix material) the effective moduli can be
found exactly, for an arbitrary crack orientation statistics, in both 2-D and 3-D. It is the simplest (and the
only non-controversial) approximation to the problem,; at the same time, it has a wider than expected range
of applicability (see the results presented below). It is often called the approximation of small crack density
(in fact, the two names are usually used as synonyms). We refrain, however, from using this term, since
these two assumptions are generally not equivalent [1,2].

In the approximation of non-interacting cracks, each crack is regarded as an isolated one: it is embedded
into the externally applied stress field ¢ and does not experience any influence of other cracks. Then the
average crack opening displacement of each crack (COD) <b> for each crack is expressed, in a simple way,

in terms of n-c where n is a unit normal to the crack. Mutual positions of cracks do not matter in this
approximation, hence averaging over a crack array is reduced to summation over orientations. Since the

change in compliance AM due to cracks is a sum of the isolated cracks' contributions, the compliance is
linear in crack density parameter. Elastic stiffnesses, obtained by inversion of compliances, will, of course,

be non-linear functions of the crack density, of the form (1 + Cp)~L. Linearization of this form corresponds
to the assumption of small crack density. If, however, this form is left as it is, then, as seen below, the
results remain accurate at high crack densities.

The problem of effective elastic moduli in the approximation of non-interacting cracks was first solved,
for randomly oriented cracks, in both 2-D and 3-D, by Bristow (1960).

Since averaging is reduced simply to integration over orientations, such calculations are easily repeated
for an arbitrary (non-random) orientational distribution. Such calculations were done by a number of
authors, see [1,2] for a review. For the arbitrary orientational distribution of cracks, the results can be
written, in the most general form, in terms of the crack density tensor o (introduced by Vakulenko and
Kachanov,1971, Kachanov,1972, and, in the corrected and most general form, by Kachanov,1980; see
reviews [1,2] for references):

o= 1%: 3 102 pint (rectilinear cracks of lengths 2F A isthe representative area) )]

The use of the crack density tensor yields, in a unified way, results for any orientational distribution of
cracks, without averaging over orientations. It also establishes the symmetry of the effective properties:

since o is a symmetric second rank tensor and it enters the elastic potential through a simultaneous invariant
with the stress tensor, the effective properties are always orthotropic (rectangular symmetry), with the axes

of orthotropy coinciding with the principal axes of o.. Moreover, the orthotropy is of a special, simplified
type [1,2]. This fact is exact in 2-D and approximate (with good accuracy) in 3-D.

In the simplest cases of randomly oriented cracks (isotropic effective properties) and parallel cracks
(transversely isotropic effective properties) the results, for a 2-D solid, are as follows.

E = Ey(1+np)l; v=v,(1+7np)! (random orientations) )

E; =Eq(1+2rp)l; G=G,[1+(2nG, /Eo) pI!  (parallel cracks) 3

where E;, G and v, denote the moduli of the matrix without cracks (Young's modulus, shear modulus and

Poisson’s ratio, respectively), and p is the conventional scalar crack density parameter introduced by
Bristow [3]:

p=L T2 @
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Note that p is the linear invariant of the crack density tensor .
In the 3-D case, the analysis is similar; a complicating factor is that the orthotropy of the effective
properties holds only approximately, although with good accuracy [1,2].

The fact of orthotropy allows one to establish a "natural" coordinate system - principal axes of o - in
which the matrix of elastic moduli has its simplest form (orthotropic in 2-D and approximately orthotropic in
3-D).

The effect of dimensionality should be mentioned: comparison of the stiffness reduction due to cracks
in2-D and and 3-D shows that, at the same crack density, the reduction is substantially weaker in 3-D.

ANALYSIS OF CRACK INTERACTIONS

Solutions for deterministic arrays of arbitrary geometry, in both 2-D and 3-D, can be produced, by
relatively simple means and with good accuracy, using the method of analysis of crack interactions
developed by Kachanov in 1985, 1987 (see [1,2] for details). This method is briefly outlined below in the
2-D version

The problem of a linear elastic solid with N cracks subjected to stress ¢ at infinity is equivalent to the

problem with crack faces loaded by tractions ni-c (i =1,....N) and stresses vanishing at infinity. The latter
problem can be represented as a superposition of N sub-problems, each containing only one crack, but

loaded by unknown tractions, comprising, in addition to the - induced traction, extra tractions accounting
for interactions (to be found). Thus, traction t! in the i-th sub-problem is a sum of the ¢ -induced traction né
-0 and tractions induced by the other cracks in the remaining sub-problems along the line i

tigh = ni-[o+ § olgh] =t © 4 ati¢h (5)
=1

where ! is a current point on i and o/ is the j-th crack-generated stress.

The key simplifying assumption of our method is that o/ is taken as generated by a uniform average
traction <t/>, yet unknown; the impact on the i-th crack of traction non-uniformities ¥/ - <¢> along the j-th
crack is neglected. Decomposing the average <t/> into a sum of normal and tangential averages, <p/> and
<t/>, we have

tieh =nbo + i -3 [<p> of @) + <¥> of &) ©)
#i
where an and c!.t are the "standard" stress fields, generated (in an infinite solid) by a single j-th crack loaded

by uniform tractions of unit intensity, normal and shear, correspondingly. These fields (expressed in
elementary functions) are available in fracture mechanics literature.

The unknown quantities in (6) are the average tractions <t/> on cracks. They are found by averaging (6)
along the i-th crack line and thus interrelating them by a system of N vectorial (2N scalar) linear algebraic
equations

N
<ti>=nio+ 2, (AL <t/> (7
j=1
where &' is Kronecker's delta and the (tensorial) transmission A - factors characterize transmission of the
average tractions from one crack onto another (AUD-<#/> is the average traction induced on a line #in a

continuous material by the j-th crack loaded by a uniform traction <t/>). The A - factors are expressed in
terms of line integrals of elementary functions and are easily calculated.
Solving (7) for average tractions, one obtains:
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N N
<th> = Y QUot> = XQUni: o ®)
j=1 j=1
where QU = (25% I — AUD)"1, The case of non-interacting cracks is recovered by assuming AU)= &7 I; then
ti=n'q.
Finding the average displacement discontinuity <b®> as approximately proportional to the average

traction <t’> (Kachanov, 1987, see [1,2] for details) we obtain an explicit expression for the effective
compliancet ensor:

N I
M=M+ Qu/AE) 3, 102Q{" nin/ ] ©)
ij=1

where MP is the compliance of the material without cracks and subscript braces denote all the appropriate
symmetrizations (with respect to p¢>g, res, and pgesrs for M, ). It incorporates information not only on
the crack orientations and sizes, but, also, on their mutual positions (all these factors are reflected in A 's,

and, thus, in Q's).

The method yields results for any given arrangements of cracks. Such results constitute direct computer
experiments on sample arrays and can be used to verify various approximate schemes. The method is
accurate up to quite close spacings between cracks so that the results are accurate up to high crack densities
(as confirmed by smallness of corrections provided by the alternating technique).

COMPUTER EXPERIMENTS

Sample 2-D crack arrays contained 25 cracks and were generated with the help of random number
generator, as realizations of certain crack statistics.
Two orientation statistics were assumed: randomly oriented cracks and parallel cracks; for each of them,

six crack densities were assumed: p = 0.10; 0.15; 0.20; 0.25; 0.30 and 0.35 (in 2-D, the densities of 0.25-
0.35 can be considered as quite high).

Fifteen sample arrays were considered for each density.

Locations of cracks within the representative area were random, i.e. positions of crack centers were
uncorrelated. For parallel cracks, generation of such arrays was straightforward. For randomly oriented
cracks, crack intersections had to be avoided; this was achieved by generating cracks successively and
discarding the newly generated one if it intersects the already existing cracks and generating it again.
Although such procedure, strictly speaking, violates the condition that crack centers are uncorrelated, we
assume that it does not create errors of a systematic sign.

The sample arrays usually contained several cracks with spacings between them much smaller than the
crack sizes. To ensure the accuracy of the results at such small spacings, the method outlined above was
supplemented by the alternating technique (stress “feedbacks"), until the three digits accuracy for the
effective moduli was reached. It actually produced only an insignificant correction (smaller than 3-4%) of
the method's results, confirming the accuracy of the method.In order to limit the number of iterations in the
alternating technique, the spacings between cracks were not allowed to be overly small. Namely, in the case
of randomly oriented cracks, they were not smaller than 0.02 of the crack length; in the case of parallel
cracks, they were not smaller than 0.15 of the crack length for those crack pairs that had a significant
"overlap", and not smaller than 0.02 of the crack length otherwise.

In the case of randomly oriented cracks, each array was examined for isotropy: the effective Young's
modulus was calculated in two perpendicular directions and only those arrays were kept for which the
difference between these two moduli was smaller than 2%; the Young's modulus was then taken as the
average over these two values. (Note that preferential orientations causing up to 5-7% variation of E with
direction are usually not discernible by a "naked eye").
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Fig.1 shows some of the generated arrays.
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FIG.1. Two of the crack arrays examined (randomly oriented, p = 0.25 and parallel, p = 0.30).

The representative area A is assumed to constitute a part of a statistically homogeneous field of cracks

(extending all the way to the external boundary) and stresses at the boundary I"of A are assumed constant
and equal to the remotely applied ones. This assumption is rigorously correct for non-interacting cracks,
when cracks inside A do not experience any influence of those outside A. For interacting cracks, stresses
fluctuate along I'. The errors due to the mentioned assumption depend on the size of the sample. They cause
scatter of results from one realization of the crack field statistics to another, but are not expected to produce
errors of a systematic sign. Figs. 2 and 3 show that the scatter is relatively small.

Figs.2 and 3 show results for the Young's modulus for randomly oriented and parallel arrays. Vertical

RESULTS

bars show scatter of the results from one sample to another.
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FIG.2. Effective Young's modulus, randomly oriented cracks: results for sample arrays vs predictions
of the approximation of non-interacting cracks, self-consistent and differential schemes.
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FIG.3. Effective Young's modulus, parallel cracks: results for sample arrays vs the approximation of
non-interacting cracks and the differential scheme.

For randomly oriented cracks, the approximation of non-interacting cracks provides surprisingly good
results, well into the domain of strong interactions where this approximation is usually considered
inapplicable.

For parallel cracks, the approximation of non-interacting cracks still provides good results. However,
there is a slight but distinguishable tendency for the stiffening overall effect of interactions, indicating a
slight dominance of the shielding mode of interactions. The reason for this tendency is not fully clear. We
suspect that the prohibition for spacings between substantially overlapping cracks to be smailer than 0.15 of
the crack length (that made the sample arrays slightly non-random) may have created a slight "bias" in
favour of shielding.

We also calculated the shear modulus for parallel crack arrays (for two arrays, p = 0.15 and 0.20). It
differed from the predictions for non-interacting cracks by less than 1.5%.

Preservation of orthotropy for interacting cracks. As discussed above, for non-interacting cracks
orthotropy (coaxial to ) is a rigorous result in 2-D. Consistently with the fact that, due to cancellation of
competing effects, the approximation of non-interacting cracks remains accurate at high crack densities,

orthotropy can be expected to hold at high p.
We examined deviation from orthotropy in sample arrays of non-randomly oriented (but randomly
located) cracks, by solving the interaction problem for two families of parallel cracks of equal density

inclined at 30° to each other. At p = 0.24 (significant interactions) the deviation from orthotropy produced
by interactions was very small: in the principal coordinate system of o the non-orthotropic compliances

AM ;12 and AMy,;, were 10°3- 10~ of the orthotropic compliances, i.e. within the accuracy of the results.
This means that characterization of crack arrays by the crack density tensor remains adequate even at
high crack densities when interactions are strong, and implies that the "natural” coordinate system (coaxial to

o) remains the system of choice for calculation of the effective moduli.

DISCUSSION

The results show that, well into the interval of crack densities (0 up to 0.35) where the interactions
become significant, the approximation of non-interacting cracks remains quite accurate.

The underlying reason for this accuracy is not that the interactions can be neglected, but that the
competing effects of stress shielding and stress amplification cancel each other.
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This is a direct consequence of the fact that introduction of traction-free cracks does not change the
average stress in the solid (provided tractions are prescribed on the boundary). Therefore, if a certain
number of "new" cracks is introduced into the environment of the preexisting ones in a random fashion,
these new cracks will, on the average, experience no effect of the preexisting cracks. In the language of

stress superpositions, the additional tractions At* will be of both amplifying and shielding nature on different
cracks; on the average, their impacts will cancel each other.

We emphasize that this conclusion assumes the absence of "bias” in crack statistics towards either
amplifying or shielding arrangements. Otherwise (in "ordered" arrays, for example) the impact of
interactions can be very large, both in the direction of "softening" and "stiffening”.

The reported results are for the 2-D configurations. The approximation of non-interacting cracks will
remain accurate in 3-D as well, due to the same mechanism of cancellation of shielding and amplification
effects. 2Moreover, we expect the scatter of the results to be smaller, since interactions are weaker in 3-D
(see [1,2]).
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POTENTIAL DROP CRACK GROWTH MONITORING IN
HIGH TEMPERATURE BIAXIAL FATIGUE TESTS

B. P. Fitzgerald and E. Krempl
Mechanics of Materials Laboratory
Rensselaer Polytechnic Institute
Troy, New York 12180-3590

Abstract. The present work describes a procedure [or monitoring crack growth in high temperature,
biaxial, low cycle fatigue tests. The reversing DC potential drop cquipment monitors smooth, tubular
type 304 stainless steel specimens during fatiguc testing. Electrical interference from an induction heater
is filtered out by an analog filicr and by using a long intcgration time. A Fourier smoothing algorithm and
two splinc intcrpolations process the large data sct. The experimentally determinced electrical potential drop
is compared with the theoretical clectrostatic potential that is found by solving Laplace’s equation for an
clliptical crack in a scmi-infinitc conducting medium. Since agreement between theory and experiment is
good, the method can be used to measure crack growth to failure from the threshold of detectability.

TEST PROCEDURE

HE laboratory cquipment consists of a computer-controlled MTS scrvohydraulic testing machine and a computerized

DC potential drop sysiem. The potential drop monitoring systcm was designed by the first author and consists of a
constant currcnt powcr supply, a passive RC filter bank, a multichannel digital voltmeter, solid state rclays, and a 386
personal computer with a thermocouple board and a gencral purposc interface bus.

Testing is performed in strain control, using an MTS high tempcraturc biaxial cxtensometer. Smooth type 304
stainless steel tubular specimens with an inside diamcter of 15.1 mm and an outsidc diamcter of 18.6 mm arc tested.
The wall thickness was reduced by 10% in the gauge scction to promote crack initiation in that region. For the initial
tests, a sinusoidal command signal with strain amplitude of ¢, = .005 was used. In follow-on tests, shear strain control
was staved in-phasc to the axial channel to achicve proportional loading, in which the axial and shear strain amplitudes
were chosen so as to satisfy the relation

1
ey = G4+ 370 utep = 005.

Temperature is maintained at 538°C with a 10 kHz induction heater and controller. The use of thiricen type K
thermocouples provides excellent coverage of the gauge section. Five thermocouples are located in the gauge section
mid plane, four 12.7 mm above the mid plane, and four arc located below. One thermocouple is used for heater control,
two for auxiliary indication, ninc for post-test compensation of the voltage data, and one for an installed rcady spare. The
desired tcmpcerature and temperaturce distribution is achieved by positioning two heating coils with a threaded reach rod
system designed by the first author. To prepare for an cxperiment, a specimen is gripped and heated in manual control
10 538°C, after which the heater is switched to automatic. The heater coils arc adjusted both up, both down, together,
or farther apart, as nceded, using the reach rods, until a temperature distribution uniform within £2.5°C of the desired
temperature is achieved. Over the course of the test, oxidation decreascs the material thermal conductivity, resulting in
an axial shift in the temperature distribution; however, no channel changes by more than 3.5°C from its starting value.

A constant 12A dircct current is passed through the specimen. The potential drop is measured across the gauge
section with ninc voltage probe pairs connccted to a multichanncl digital voltmeter, and stored on the 386 personal
computer. The voltage probes consist of two 0.127 mm diamcter chromel wires spot welded to the specimen surface
(Figure 1). To allow for placement of the extensometer and the thermocouples, the potential drop Ieads are arranged in
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three equally spaced groups of three. Electrical noise originating from the induction heater is largely eliminated by an
RC filter bank and by using a long voltmeter integration time. Care is taken to electrically insulate the upper specimen
grip {rom the load frame to climinate DC current leakage. In order to compensate for the thermocouple potential arising
from minor changes in gauge section temperature gradients, the current is reversed after every reading, using the solid
state relays, and the voltages are remeasured. This is called the reversing DC electrical potential drop method [1]. After
reversing the current, it is necessary to wait 0.5 s for the RC filter transient to decay before remeasuring the potential
drop. Allowing time for passive filter decay and voltmeter integration, four seconds are required to obtain the positive
and negative voltage rcadings. Mechanical test data (axial load, torque, axial and shear strain, and command signal), the
cycle count, clapsed time, and thermocouple channel readings are recorded in synchronization with the potential drops.
Approximately five samples are taken per cycle. To minimize the impact of aliasing on the data, the mechanical cycling
frequency (0.04833 Hz) was selected so that the sampling frequency (0.25 Hz) is not an exact multiple.

To summarize, the data acquisition proceeds as follows:
Mechanical data (load, strain, etc.) is read from the test
controller and transferred to the 386 personal computer. The
current is switched positive, the thermocouples are read, and
following a delay, the potential drops are read. The current
is switched negative and following a delay, the potential
drops are reread. This cycle repeats continuously. Figure 2
(next page) shows the relationship of the test equipment and
instrumentation.

During the test, the load (or torque) is plotied on an
x-y flatbed plotter, and the cyclic load amplitude is checked
frequently for a decrease that would warn of a crack for-
mation. In addition, potential drop readings are displayed
as they are read and a rough plot of potcntial drop vs. time
is maintained by hand and checked for sudden changes.
Finally, without interrupting the test, the specimen surface
is visually inspected for cracks every 30 minutes using a
portable 25 x microscope. The test is stopped when a crack
can be seen with the microscope, or with the unaided eye.
However, the extensometer heat shicld blocks complete vi-
sual coverage of the specimen surface. In all tests to date,
the crack had grown very long before it could be secn. After
the test has completed, the specimen is removed from the
testing machine, and the crack length, depth and location
are measured.

Figure 1: View of potential drop leads and induction coil
arrangement.

DATA ANALYSIS

The potential drop data consist of positive and negative values. By taking the difference between them, we
compensate for changes in thermocouple emf’s occurring in the potential drop leads. Also, a temperature correction is
applied to compensate for specimen clectrical resistivity changes due to temperature variation.

The voltage oscillates within a 150V band (refer 1o subplot 1 of Figure 3). The periodic nature of the signal lends
itself to standard signal processing methods [2]. First, we interpolate the data with respect to time using the low pass
filter of Oetken [3], as shown in subplot 2 of Figure 3. Since we have sampled the signal at .25 Hz, which is well above
the Nyquist frequency, the interpolation is accurate, and free of aliasing.

The signal oscillates within a 150V range due to the cyclic specimen length change: In a cyclic test with a nonzero
axial strain amplitude, the potential drop oscillates in phase with strain as a consequence of the standard resistance
relation, R = pl/A, where [ is the gauge length. The voltage oscillation dominates the signal, and makes the entire
Fourier analysis possible, but is unrelated to crack size measurement, and must be accounted for. If a crack is present,
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the maximum potential drop occurs at maximum crack cxtension; therefore we identify withing the interpolated data,
the maximum per-cycle potential drop. Four such maxima arc shown in subplot 3 of Figure 3. The maximum per-cycle
potcntial drop for an cntire test is shown in subplot 4 of the same figure.

The per-cycle potential drop maxima are then

interpolated with respect to time using a piecewise Test Equipment
cubic smoothing spline {4]. For a given volimeter Load
channel, the ratio of potential drop, ®(#) to the cet | o7
starting value, ®(0), is given by ¢ = ®(¢)/®(0), I
and is shown plotted in subplot 1 of Figurc 4. The Grip Relays DC Pwr. Supp.
curves for the group of potential drop lcads with A
the highest reading ¢ (probces 7, 8, and 9 in this D pd leads 3 RC Filter
casc) arc centered for clarity. | 386
The ¢ valucs arc interpolated again, this time 7 o v:nmmcr—-y - I
with respect to time (7) and circumferential an- E &
gular position (6), accounting for the unequal po- § T Thermocouples AD Board
tential drop Icad spacing. The two dimensional ?
tensor product spline of de Boor was used over Induction Hir. s, Controller
a uniform output grid. The boundary conditions
imposed on ¢(4, t) are:
&Y Extensometer PDP-11
#(0,1) = (27, 1), _ MTS 448 X
dé Grip =-=> g,t — > Test MTS 463
&(8.0) = —(6.0)=0. 5 Controller Test
di g Valve Control Processor
Initially, the potential drops mecasured on all =

channels remain nearly level, orrisc together. The

rate of incrcase riscs gradually, but uniformly. Figurc 2: Block diagram of test equipment.

The uniform risc in potential drop may be duc to the increased clectrical resistance resulting from progressive surface
oxidation at high tempecraturc. Other factors, including the dislocation density increase from hardening, the formation
of many uniformly distributed small cracks, or other unknown chemical and physical changes also result in a uniform
potential drop risc. Eventually, a crack grows large cnough to be detected and the potential drop for the probe pair
closest to the crack begins to risc faster than the others. However, the crack affects the potential drop far away, too, and
all potential drop readings increase faster as a result (refer to subplot 1 of Figure 4).

Clearly, we need a way 1o scparate the local rise in ¢ duc to crack growth from the general rise in © which is
aflecied by many factors in unknown proportion. Therefore, we subtract the lowest ¢ from all the others. We dcfine the
incremental normalized potential drop at time 1 as, ¢;,,-(8.1) = o(68.1) — min(H(6.1)). A crack is “detectable” when
a localized risc in ¢, is noticcable. As the crack grows, the ¢, curve around the crack broadens and grows higher
(refer to subplot 2 of Figure 4). The highest curve is centered for clarity. The y axis is arbitrarily chosen to originate
from the highest curve.

We note that for the longest test (refer to Figure 5) the time required to perform the Fourier interpolation was 7:49
{wall clock, in mm:ss) on a Sun Sparc 10 model 30 with fifty users logged in at the time. An IBM Powerstation 320H
performs the calculations in about the same time. The smoothing spline required 3:11 and the tensor spline interpolation
required 0:07. The raw data consisted of a 15607 x 37 doublc precision array requiring 4.6 MB (megabytes) of memory.
The largest array used was for the interpolated voltages, and required 11.2 MB of memory. The total memory requirement
for the process was 41.9 MB.
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Figure 3: Fourier analysis. The procedure for performing the Fourier interpolation on one of nine potential drop (pd)
channls is illustrated in this figure, for test ¢9. 1. 300 raw data points (approximately 58 fatiguc cycles) arc shown.
Notc the falsc wave pattem. Therc appcear 10 be five overlapping waves shown. This an antifact of the data collcction
mcthod. 2. Only 20 raw data points (+) arc shown. The 10:1 Fouricr interpolation is plotted with dots. 3. The per-cycle
maxima (#) of the Fourier interpolation is plotted. 4. Subplot 3 showed only four potential drop maxima. Subplot 4
shows an entire test (N, = 1464).
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1. Normalized, smoothed pd 2. Smoothed incremental pd

1.05+

Figure 4: Cubic spline interpolation procedure. 1. The pd maxima shown in subplot 4 of Figure 3 are smoothed,
normalized, and interpolated at 101 time points, and plotted for all nine voltmeter channels (ch). 2. The mesh points in
subplot 1 arc interpolated over a uniform mesh in two dimensions, time () and position (y). y is measured horizontally
{from the highest curve. The lowest @ per time stcp was subtracted to obtain djy..

TEST RESULTS

A total of six experiments were performed and are summarized in Figure 5. Tests ¢6 and c7 were axial fatigue tests
(34 = 0). The follow-on tests were proportional loading tcsts. In tests c8 and ¢9 the axial and shear strain amplitudes
were both 0043 and in tests dO and d1, the axial strain amplitude was .0025 and the shear strain amplitude was .0075.
It appears that the cycles-to-failure (V) increascs as ¢, decreascs, as might be cxpected. In all tests, ¢ initially riscs
uniformly for ali channcls, and as a result, &, remains closc to zero. This is shown on all subplots in Figure 5 as a
“platcau” for the initial portion of the test. Eventually, a “hill” appears on the plot and grows and broadens. The increase
il &, corresponds to crack growth. In all cascs, the location of the hill corresponds to the position of the crack.

For test ¢6, the data is shown truncated after 1443 cycles (8.08 h). Aftcr this time, the crack had grown very large,
and the o,,,.. for those times is too high to plot on the same scale as the portion of the tcst shown. For the same reason,
the ¢7 test data is shown truncated after 265 cycles (2.67 h).

Test ¢7 was intended to cheek the effect of introducing a defect of known geometry part way into the test. After 176
cycles a .54 mm diametcr, .65 mm decp holc was drilled. The result was a slight risc in ¢, which appcars as a small
upward step at (y,/) = (0,.97) in subplot ¢7 of Figure 5. Aftert = .97h, a crack formed at the hole and grew until the
test was stopped. This corresponds to the rise and spread of the curve after .97 hin the plot.

THEORETICAL POTENTIAL DROP NEAR THE CRACK

In this scction, we compute the potential drop predicted by clectrostatic theory for the measurcd final crack geometry.
We will compare our potential drop measurcments with Tada’a solution to Laplace’s cquation for a semi-clliptical flat
crack in a semi-infinite body [5] (refer to Figure 6). The potential at any point in the body is given by:

A2 ~ dt
d=zE 1+ ’ )
215(k) Jin ,\/,(,+1)(t.+,\2)
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Test Cu 370 Ny ) (mm) Pine size (MB) data points
c6 .00S 0 1461 8.2 372 49x 1073% 1.7 7329
¢7 005 0 538 3.0 139 4.0x 1073¢ 0.7 2690
c8 0043 0.0025 2249 13.7 193 39x1072 2.9 11640
c9 0043 0.0025 1464 84 109 2.0x 1072 1.8 7510
d0 .0025 0.0043 3021 17.5 26.1 3.9x 1072 3.7 14310
di .0025 0.0043 2774 16.0 163 3.8x 1072 34 14340

Figure 5: Experimental results. Ny = cycles to failure. f; = time to failurc. 2a; = linal crack size. ¢,,, = linal

incremental normalized potential drop. Tests ¢6 and ¢7 were axial fatiguc tests. Tests ¢8, ¢9, d0, and d1 were biaxial
tests. jafter 1443 cycles (8.08 h). tafter 265 cycles (2.67 h). In test ¢7, a .54 mm diamcter hole was drilled after
176 cycles (0.97 h) as a check on the sensitivity of the experimental technigue.
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Figurc 6: Crack geometry and Tada's solution to Laplace’s equation

where F.. is the electric ficld strength at infinity, £ is the compicte clliptic integral of the sccond kind with modulus £,
where & = VT = A2, A is the crack “aspect ratio”, given by A = b/«, and D is the “cffective distance” measured from
the crack to the position (.r. y. =), and is found by solving

X2 272 ,
S VILNTY) + =1 (2)
D24+ A pD2+1 D

where ¥ = r/a, Y = y/a,and Z = z/a. For surfacc potential measurcments @ = 0, and the solution to equation 2 is:

Y24 22— 14+ \J(Y2+ 22— 12 +4- 22
DOY.Z) = ; .

Equation 1 gives the normalized potential drop from a single voltage probe pair lead to the crack center, but a
potential drop measurcment is taken between pairs of lcads. For a crack located at a distance h from the lower row of
leads, the potential drop is

A2 x dl 22 e dt
b =hto 1+ = FU=ME T+ —— . (3)
2Ek) Jir, /\//(/ F 1)+ A2) 2E(k) 2, _, I.\/l(l F 1)1+ A2)

where D, = D (;’f{—:) and Dyy—p = D ;‘f'—%) The obscrved potential drop should correspond to cquation 3 only
il the crack is the sole factor affecting clectrical resistivity. However, it was mentioncd in the Analysis section that there
arc many other factors that have a much greater influence on @ than the crack does. The theoretical & of equation 3

includes the gencral risc noted on all channcls, which we subtract to obtain the incremental value.

Let the minimum potential drop be @y, calculated from equation 3 using ¥ = Ymar- In the cylindrical geometry,
Y is hall the specimen circumference, or 14.5 mm in specimen ¢9, for cxample. If we subtract the minimum potential
drop from any other potential drop, we oblain an “incremental” valuc. If we normalize this potential to the value that
would be obtained if no crack were present, we predict:

1 /\2 /’)?Inuu-.h (l! _ (l _ l)) ,)?I"llll-’—h (l,

Pine = 7 == A I (4)
OER) U I, nfue+ e+ 2 2w LU+ 1)1+ X2)

An approximate cvaluation of cquation 4 is plotted in Figuré 6, using the mcasurcd final specimen crack gecometry for
test ¢9. In that test, a 10.9 mm crack formed 4.7 mm above the lower row of potential drop lcads. The predicted ¢ for
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a range of crack sizes from 2a = (0.545 mm to the actual final valuc of 2¢ = 10.9 mm is plotted, for a probe spacing
of 25.4 mm. By the cnd of the test, the crack had complctcely breached the wall thickness (1.61 mm), so this value was
uscd for the final semiminor axis, b, of the cllipse shown in Figurc 6. A constant crack aspect ratio of b/a = A = 0.29
was assumed for preparing the plot.

In test €9, the final experimentally determined peak valuc for ¢, was 0.020 (refer to Figure 4). The peak value
shown in Figure 6 is 0.006. We reconsider here the assumptions used to derive the theoretical value. A semi-infinite
mcdium was assumcd. For cracks much shorter than the specimen circumference, an infinite medium in the -y directions
is a rcasonablc assumption. Likewisc, for cracks much shallower than the wall thickness, a semi-infinitc medium in the
~r dircction is reasonable. These assumptions would probably have been valid carly in a test when the crack was small,
but arc poor at the end of a test because the crack is long compared to the circumference, and is completely through the
wall.

CONCLUSIONS

There is qualitative agreement between the experimentally determined potential drop shown in Figurc 4 and the theoretical
valuc predicted by clectrostatic theory, as shown in Figure 6. The experimentally determined &, curve has the shape
of a hill symmetric about the crack, and broadens and incrcases as the crack grows. The theoretical ¢, has a similar
shape, for crack gecometry similar to the cxperimental one.

For the example test (c9) the final cxperimental ¢, cxceeds the theoretical by a factor of threc becausc a semi-
clliptical crack was assumed, but the actual final gcometry was a through crack. Futurc work will include fitting the
cxperimental data to other solutions to Laplace’s equation, including a through crack [6]. Morc tests such as ¢7, in
which a holc was drilled, will be performed. The measured potential drop will be compared to the theoretical value for
the actual hole.
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ABSTRACT

In previous papers [1]-[2], it has been suggested to use the Preisach model driven
by stochastic inputs as a model for aftereffect. However, in these papers the stochastic
inputs have been modeled by discrete time i.i.d. (independent identically distributed)
random processes. Here, we further extend the aforementioned approach by modeling the
stochastic inputs by continuous time diffusion processes. It is shown that the mathemat-
ical machinery of the “exit problem” is instrumental for calculations of time evolutions
of the expected value of the output of the Preisach model.

INTRODUCTION

It is well-known that the physical origin of hysteresis is due to the multiplicity of metastable
states. At equilibrium, large deviations of random thermal perturbations may cause a hysteretic
system to move gradually from higher to lower energy metastable states. This phenomenon is
generally referred to in the literature as “aftereffect,” “viscosity,” or “creep.”

Traditionally, the modeling of hysteresis and viscosity has been pursued along two quite distinct
lines. In phenomenological modeling of hysteresis the Preisach approach has been prominent, while
the viscosity phenomenon has been studied by using thermal activation type models. It is desirable
to develop the uniform approach to the modeling of both hysteresis and viscosity. Recently, it has
been suggested to use the Preisach model driven by stochastic inputs as model for aftereffect (see [1]-
[3]). However, in these publications, the stochastic inputs have been modeled by discrete time i.i.d.
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(independent identically distributed) random processes. Below, this approach is further extended
by modeling the stochastic inputs by continuous time diffusion processes. From the mathematical
point of view, it makes the problem much more complicated. It is shown in- the sequel that these
difficulties can be largely overcome by using the mathematical machinery of the “exit problem.”

TECHNICAL DISCUSSION

Consider a deterministic input u(t) of the Preisach model which at time ¢ = 0 assumes some
value ug and remains constant thereafter. In a purely deterministic situation, the output would re-
main constant for ¢ > 0 as well. To model the aftereffect, we assume that some noise is superimposed
on the constant input. In other words, we assume that the Preisach model is driven by the process:

zy = uo + Xi, X.=0. (1)

The noise X; will be modeled by a (continuous time and continuous samples) diffusion process which

is a solution to the Ito stochastic differential equation:

CdX, = b(X.)dt + o(Xo)dW, (2)

The output f; of the Preisach model

fi= [ [ M BYapzidods 3)

a>p

will be a random process as well, and we shall be interested in the time evolution of the expected

value, f;, of this output process.

Since integration is a linear operation, from (3) we derive:

Fo= [ [ bla, BYE{apa:}dodp. )

a>f

Thus, the problem is reduced to the evaluation of the expected value, E{§apz:}-

Let

Gas(t) = Prob{fa,pze = +1}. (5)

Since 94 pz: may assume only two values +1 and —1, we find:

E{dapz:i} = 2qa,s(t) — 1 (6)

In this way, the problem is reduced to the calculation of ga,s(t). The last quantity can be expressed

in terms of switching probabilities P (t) and Py (¢) which are defined as follows:
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Pi(t)= .Pmb{ k switchings of 44,5 during } -

timeinterval (0,%) | Ja,s To = +1

—ra k switchings of 9,4 during
Pe(t)= Prob{ timeinterval (0,¢) | Ya,g o= —1 (8)

By using the above switching probabilities, we derive:

S PR®, I Fepso =+l

=S ©)
2 Pi(®), i Fupzo= -1,

op(t) =

The last expression is valid because occurrences of different numbers of switchings are nonintersecting
(disjoint) events.

Next, we shall discuss the mechanism of switching. It is clear from Figure 1 that the first
switching occurs at the moment when the stochastic process z, starting from the point zo exits the
semi-infinite interval (3,00). Then, the second switching occurs at the moment, when the process
z, starting from the point z = 3 exits the semi-infinite interval (—oo, @). The third switching takes
place at the moment when the process z, starting from the poiht z = «a exists the semi-infinite
interval (8,00). It is apparent that the mechanism of all subsequent even switchings is identical
to the mechanism of the second switching, while all subsequent odd switchings occur in the same
manner as the third switching. Thus, switchings of rectangular loops 4a,s are closely related to the
exit problem for stochastic processes. This problem is one of the most studied problems in the theory
of diffusion processes and the mathematical machinery developed for the solution of this problem
will be utilized in the calculation of probabilities PE(t).

’?ocht
+1 — —— N
:
B LS5 —- —
xo
-1
—ﬂ
B *o
B o'
B (o'

Figure 1: Mechanism of Switching
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The exit problems described above can be characterized by exit times 77 which are random
variables. In the above notation for the exit times, subscript “z” means that process r, starts from
point x, while superscripts “+” mean that upward and downward switchings, respectively, occur at
these exit times. Next, we introduce the functions: .

vE(t, ) = Prob{rE > t}, (10)

VE(t, z) = e(t) — vi(L, ), (11)

where e(t) is a unit step-function. It is clear that,

VE(t, z) = Prob{r¥ < t}, (12)

which means that V*(¢,z) has the meaning of cumulative distribution function for the random

variable 7. This, in turn, implies that

pr(t,z) = 202 (13)

is the probability density function for the random variable 7.

It is apparent from (11) - (13) that p*(¢,z) can be easily computed if v*(t,z) are somehow
found. It turns out (and this is a well known result from the theory of stochastic processes) that
v¥(t,z) is the solution to the following initial-boundary value problem for the backward Kolmogorov

equation:
wE  o%(z) 8%* dv*
o =2 o TG (19
v(0,z) =1, wv(t,cE)=0, (15)

where ¢ are the exit points for the process.

Next, we shall show that switching probabilities PE(¢) can be expressed in- terms of v*(t) and
p=(t). Note that, according to (11)-(13), p*(t) are related to v*(t) as follows:

0
PE(E) = le(t) — o*(2) (16)
It is clear from the very definition of v*(¢, z) that:

PE(t) = v¥(t,0). (17)

It is apparent from Figure 2 that the occurrence of exactly one downward switching is the union
of the following disjoint elementary events: downward switching occurs in the time interval (A, A\+d))
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and then no upward switching occurs up to the time t. Due to the strong Markov property of X,
the probability of the above elementary event is given by:

p~ (A, 000t (t =\, B —u,)dA. (18)
’?aﬁxt
+1
t t t.: =
A | A+dA :
-1 4 :

Figure 2: Occurrence of Exactly One Downward Switching

Now, the probability P;"(t) of exactly one downward switching can be found by integrating (18)
from 0 to t: '

PH(E) = [ (A 0)*(t = X, B — o)A, (19)

In other words, P;t(t) is the convolution of p~(%,0) and v*(¢,8 — u,):

P(t) = p™(8,0) v (2, 8 — u,). (20)

By using similar reasoning, we can derive:

P (t) = p*(2,0) % v~ (¢, — u,) (21)

Next, consider the probability P;"(2) of the occurrence of exactly two switchings starting from
the initial state 4oz, = 1. According to Figure 3, this occurrence can be considered as the union of
the following disjoint elementary events: downward switching occurs in the time interval (A, A + d))
and then exactly one upward switching occurs up to the time t. The probability of these elementary
events is given by:

p~ (A, 0)P7 (2 — A)dA (22)
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Al 2A+dA

-1 4

Figure 3: Occurrence of Exactly Two Switchings

Now, by integrating (22), we find:

PF(t) = [ o~ (0P (£, N)aA. (23)

From (21) and (23) we obtain:

P (t) = p~(£,0) % pT(t, B — uo) ¥ v~ (2, 0 — ). (24)
By using the same line of reasoning, we derive:

Py (t) = p*(2,0) * p~ (b, 0 — u,) * v (¢, B — wo). (25)

For the sake of conciseness, we introduce the notations:
pEE,0) = pE(t), p(E,B—uo) =p*(), p(ta—u)=p7(2), (26)

vE(L,0) = vE(t), vt(t, B —u,) =vF(t), v (t,a—u) =v7(¢). (27)

Now, by using the same line of reasoning as before and the induction argument, we can easily
derive the following expressions for the switching probabilities:

2k=2 terms
Pt uo) = p7(2) * p*(8) % 5 (2) % pF (2) % -+ % p™ (2) % ™ (¢) #07(2), (28)
2k tﬁrms
Pt (8,0) = pF(2) % 7 (£) % p¥(£) % -+ % p™ () * p* (2) %07 (2). (29)

90



By substituting (28) and (29) into (9), we obtain the expression for ¢op(t) in terms of infinite
series of iterated convolutions. These series can be reduced to geometric ones by employing Laplace

transforms:

A(s) = / p(t)e"dt,  (Re s>0),

B(s) = fv(s)e"‘dt.

0

It is clear that

| (s) |< L.

By using these Laplace transforms, from (17), (28), and (29) we obtain:

~

P (s) =73(s),

o

Bi(s) = 55 (8)5¥ ()57 ()™ ()8 ()",

Pra(s) = B (s)o ()5~ (s)A™ (9)]"

From (35) and (9), we derive:

pr(s)o (s .
Gap(s) = l—f"-ﬁ(f—'zs)%%s‘)', if FapTo= —1.

A similar expression can be derived for the case Y44z, = +1.

According to (16)

FE(s) = 1 — s5%(s).

(31)

(32)

(33)

(34)

(36)

(37)

Thus, the problem of computing §ag is reduced to the problem of determining %(s). This can
be accomplished by using the initial-boundary value problem (14)-(15). The complexity of this task
will depend on the nature of the stochastic process X, which models the noise in hysteretic systems.
It is natural to require that the stochastic process which models the noise must be a stationary
Gaussian Markov process. According to the Doob theorem, the only process which satisfies these
requirements is the Ornstein-Uhlenbeck process. This process is the solution to the following Ito

stochastic differential equation:

dX, = —bX.dt + odW,,
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where } has the meaning of the correlation time. (This means that X, and X, are only
significantly correlated if | £ — t < 1)
The backward Kolmogorov equation for the Ornstein-Uhlenbeck process has the form:
ovE o d%E dv*

-2 _ 3¢
ot~ 2 0z bz O (39)

This equation should be considered jointly with initial and boundary conditions (15). By
applying the Laplace transform to (39) and (15), we arrive at the following boundary value problem

for 5%(s):

o? d*o%(s, ) do*(s,z) 5t
9 dx? — bz dx (s,2) = =1, (40)
55 (s,cE) = 0, 5% (s,00) = % (41)

The solution to the boundary value problem (40) - (41) can be written in the form:

#(s,2) = {1 - T 23] D_‘_"((;))] (42)

where: D_:(%) are parabolic cylinder functions, while A = —%.

Expressions (36), (37), (42) jointly with (4) and (6) outline the main steps of the solution of
the problem posed in this paper.
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ABSTRACT

A program to study the micromechanics of polycrystalline deformation is outlined. The
viscoplastic stress-strain behavior of a polycrystalline metal was successfully predicted from
the measured single crystal properties of the same metal and the predictions were experi-
mentally verified. Current research focuses on predicting the grain to grain heterogeneity
of the mechanical response. This response has been predicted using both a self-consistent
method and a more detailed method using an integral equation approach. The predicted
response will be compareéd with a Moiré strain analysis and neutron diffraction experi-
ments to be performed on a coarse grained sample of polycrystalline Hastelloy-X metal.
The goal is to produce an experimentally verified model capable of realistically modeling
the heterogeneous mechanical response due to orientation variation of the grains in the

polycrystal.

INTRODUCTION

Engineering metals are made up of many randomly orientated singe crystal grains.
This arrangement leads to locally heterogeneous deformation. A frequently pursued goal
has been to successfully predict the average mechanical response of the polycrystalline
aggregate from the properties of single crystal grains. Nearly all such efforts have utilized
assumed single crystal properties to make predictions of the polycrystalline response. In
the first part of this program both single crystal and polycrystal samples of the same
alloy, Hastelloy-X, were tested so that actual single crystal viscoplastic properties could
be used to make predictions of polycrystal behavior without having the freedom to choose
“reasonable single crystal properties.” In this real test of the predictive abilities of the self-
consistent model it was found that very good predictions were possible. A representative
prediction is shown in Fig. 1.

MICROMECHANICS MODELS

The self-consistent model is shown in Fig. 2. In this model the very complex three-
dimensional geometry of randomly orientated grains is replaced by a spherical grain of
single crystal material embedded in an isotropic effective medium, whose properties are
obtained by angle averaging the constrained response of the embedded spherical grain.
Because the isotropic properties depend on the response of the embedded grain, the self-
consistent model is generally implicit. In the viscoplastic case, if a forward difference
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incremental scheme is adopted, the method is explicit for all quantities except the effective
isotropic elasticity tensor, D;;,. The self-consistent method which produced Fig. 1 is
embodied in the following incremental equations [4]:

Aoii(n, B, 8) = Dijui(m, B, ) (8ek(n, B8, 8) — Aeki(n, B, 9)) (1)

and

-1 -1
Ae’il;'(ﬂ, B, ¢) = [L'J’mn + Sijes (Dgqu ( pqmn(777 B,¢) — qumn)] X
X {A€9,m + Smnki (Aiiz(ﬂy B,4)— Defy) +

+ Sntt (DY) (D, 8,8) = D) A1, 8,9}, ()

where S;jy are the Eshelby tensor components which are calculated from the components
of the elasticity tensor, Df, for the effective medium in which the spherical grain is

embedded. The tensor components Di;xi(n, 8, ), Ack 5(n,8,¢) and Ae?, (1, B, ¢) represent
the elasticity tensor and the total and viscoplastic stra.m increments in the global coordinate
system—to which strains in the polycrysta.l are referred—and (7, 8, ) are the Euler angles
which locate the orientation of the grain’s crystallogra.L_ axes with respect to the global
system of the polycrystal Finally, the components Aef; represent the angle average of

the viscoplastic strain increment, viz.,

A= (A B8 =5 [ [ [ Aknp.4)sandndgds, ()

where the viscoplastic strain increment, Aefj(n,ﬂ, #), is obtained by integrating a vis-
coplastic constitutive model [1,5] for the single crystal material based on crystallographic
slip theory. The preceding equations allow the stress, strain and viscoplastic state vari-
able histories in the grain to be updated after each load step. By equating the elastic
and viscoplastic portions of the overall equation governing the constitutive behavior of the

polycrystal, viz.,
Aol = Dy (Asg, - Aef), (4)

we find that [4]

DYy = <Dijrs(7]1ﬂa ®) |Lrskt + Srapq (ngm,,)'l (Dmnkz(n,ﬁ, $)— D° nkl)]-l> -

and
= [DZe (Soars = Loars)] ™ {Drsus(ms B, 8)
-1 -1
[qugh + Suuef (Dejmn) ( mngh(ns ﬂ: ¢) Dmngh)] X
X (Syhkl - ghkl) Aekl(na ﬂy ¢)> ’ (6)

in which the angle brackets denote angle averaging according to equation (3). This model,
which clearly idealizes the actual geometry, made excellent predictions of the average
response as shown in Fig. 1. Further predictions are presented in {4] and [5].
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In the second part of this project this model has been used to predict the grain to grain
heterogeneity. Because neighboring grain effects are represented only in an average sense,
it is expected that the self-consistent model will underestimate the degree of heterogeneity
of the mechanical response. For that reason a second, more complex, model has also been
developed.

The second model represents a finite number of individual two-dimensional grains ex-
plicitly. These grains may be embedded in either an effective medium or in a repeating
periodic array of grain patches. This model is more completely described in several of the
authors papers [7,8,9,11,29]. Two variants of the method have been developed: one based
on Fourier series and a second variant based on Green’s functions. The Green function
method can be derived from the Fourier series method using a Poisson sum procedure.
Figure 3 show a representative model of a group of randomly orientated grains that in this
particular case are chosen to be square. The method starts with an exact integral equa-
tion based on known Green’s functions. The equations are than solved approximately by
dividing the body into subvoloumes. The strain increment in each subvolume is assumed
to be constant. This constant strain increment is the volume averaged value of the exact
strain field over the subvolume. In the resulting equations there appear geometric integrals
which have been solved in closed form for squares, rectangles, and recently for triangles
[11]. By using the known closed form representation of these integrals, the computational
effort néeded to calculate the stresses and strains in the unit cell has been much reduced.
The complete details of the method are given in [7,8,9,11,29]. The key governing integral
equation has the following form:

Acy (r) = Aely + / / / Usimn (v — ) Ay, (¢') dV(x') —-

5 [[[ V@) [[[Vmn (6 = ) 22, () V), (7)
A J

in which the eigenstrain increment is defined by the relation

mnrs mnrs mnrs

Atk (v') = Dy AE, (1) = (Disnry = D) [Ah () = AL, ()], (8)
and where D¢ and D™ . denote the elasticity components of the crystal and an effective
reference matrix material, respectively. The tensor components Uyimn involve the second
spatial derivatives of the Green function for the reference matrix material.

This method has proven to be computationally efficient for small example problems.
For example, the calculation of the transverse stresses in the 7 x 7 array of subvolumes
shown in Fig. 6 takes only a few seconds on a Sun Sparc II workstation.

MEASURES OF HETEROGENEITY

The preceding models and the experimental techniques to be described next will be used
to determine individual grain strains for grains of various orientations and with different
near neighbor situations. We are interested in histograms of the stresses and in their
extreme values. Extreme values are expected to govern the onset of fatigue and are of
special interest. The stress in a grain is characterized by six independent components of
the stress tensor. One must choose one or more specific measures of grain response when
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plotting histograms. We have chosen to use stress and strain quantities volume averaged
over each grain. We will later look at strain and stress variation within the grains. We
have chosen to use two non-dimensional measures of individual grain strains as follows:

1. For uniaxial loading consider the stress (or strain) in the grain in the primary load-
ing direction divided by the average applied stress (strain). We will call this the
normalized pull stress.

2. For the case of crystallographic slip we may focus attention on the maximum resolved
(Schmid) shear stress on potentially active slip systems divided by the average max-
imum principal shear stress. We will call this the normalized crystallographic shear
stress.

We plan to compare computed and experimentally measured histograms of the two
non-dimensional grain response measures and also to compare measured and calculated
extreme values of these quantities.

PROPOSED EXPERIMENTS

Throughout this program a single phase, solution strengthened nickel base alloy, Ha-
stelloy-X, has been used. This material was chosen because it was available not only in
polycrystalline form, but also in large single crystals made specially for us by courtesy of
Pratt & Whitney. In developing the single crystal constitutive model and in generating
data to check our ability to predict the overall response, the tension-torsion test system
built at the University of Connecticut was used. To enable individual grain strains to
be measured, special large grained (1 to 2 mm) Hastelloy-X specimens have been made
by growing grains from 0.02 mm up to about 2 mm in size via a 30 hour, 1240° C, heat
treatment. This heat treatment was developed through a series of about a dozen trial heat
treatments. The coarse grained material is now being machined into test specimens for
use in the Moiré and neutron diffraction experiments.

Moiré strain analysis is a full field, high spatial resolution, strain measuring method
capable of giving full field information about strains within the 2 mm grains of our sample.
These experiments are to be performed at INEL by Dr. Epstein and Dr. Reuter. The
data collected will allow a reasonable number of individual surface grain strains to be
determined at room temperature for both elastic and plastic loadings. Histograms will be
constructed for comparison with calculations.

Neutron diffraction experiments will also be carried out in which lattice parameters will
be measured at various loads for both elastic and plastic conditions. These experiments
will sample both surface grains and internal grains and will provide measures of the stress,
rather than the strain, as obtained in the Moiré experiments. Accordingly, these experi-
ments will complement the Moiré experiments. These novel and challenging experiments
will be done by directing a pulsed neutron beam from the Argonne Pulsed Neutron Source
(IPNS). This apparatus produces diffraction spectra from polyenergetic neutrons having a
variety of DeBroglie wavelengths. The beam size is such that, typically, the spectra from
five grains will be obtained simultaneously. The challenge will be to sort out the spec-
tra unambiguously. Multiple detector banks are expected to aid in this process. These
experiments will be conducted by Dr. Jordan (U. Conn) and Drs. Richardson and Kup-
perman of Argonne. These experiments will provide histograms of stress for comparison
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with calculation. Samples have just been successfully fabricated and the experiments will
be conducted this summer.

COMPUTED RESULTS

The variation of normalized pull stress as a function of the Euler angles defining the
grain orientation is shown in Fig. 4. For simple pull experiments only 2 of 3 possible Euler
angles matter. Figure 5 shows the extreme value of normalized stress for various materials
as a function of the Zener parameter, (D111 — Di122)/2D1212, which is a measure of the
degree of anisotropy of the material.

The integral equation model has been run for elastic crystal arrays as shown in Fig. 3,
in which only one subvolume per grain is used. Many cases have been run. Here we will
mention two of the more interesting ones. Two thousand 7 X 7 grain arrays were run for a
total of 100,000 grains and the extreme values of the normalized pull stress were retained.
The values were found to be 1.5 and 0.7. For comparison, the special arrangement of
Figs 6a and 6b were run, yielding normalized pull stress extreme values of 2.1 and 0.6.
These values may be compared to the self-consistent spherical grain values of 1.2 and
0.8. This series of trials shows that the self-consistent model, as expected, underestimates
the extreme values. The highly unlikely configuration of Fig. 6 shows that in discussing
extreme values, very low probability arrangements—as in Fig. 6—yield extreme values.
The numbers in Figs 6a and 6b represent the transverse stresses in a unit cell when the
structure is loaded “at infinity” with an overall transverse stress, perpendicular to the two-
dimensional grains, of 1000 kPa. The orientation of the single crystal grains with respect
to the global axes are denoted by the clear and shaded regions in the figures.

CONCLUSIONS

1. The self-consistent model was able to accurately predict the overall average response
of the polycrystal experiments from single crystal properties, using no adjustable
parameters.

9. Prediction of heterogeneity using the self-consistent model significantly underesti-
mates heterogeneity.

3. More extreme heterogeneity was produced by constructing a special, highly improba-
ble, configuration of grains. This special configuration was significantly more extreme
than the most extreme result from 100,000 random grains. These results support the
notion that the histogram of normalized stresses has extreme values at very low
probabilities.

WORK PUBLISHED UNDER DOE PROGRAM

The following papers/reports have been published and document the work performed
under the DOE program on the title and allied subjects. Dr. Oscar P. Manley served as
contract monitor.
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FULLY PLASTIC FRACTURE MECHANICS
FOR PLANE STRAIN CRACK GROWTH

F.A. McClintock, Y.J. Kim, and D.M. Parks
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.

ABSTRACT

A theoretical framework is given for designing possibly cracked structures to remain ductile
under accidental overloads. For non-hardening, fully-plastic plane strain crack growth in a number
of geometries and loadings, near tip fields are characterized by three parameters: the slip line angle
0, and the normal stress o, and shear displacement §u, across the slip line. These parameters
are found in terms of the far-field geometries and loadings through slip line fields or least upper
bound analyses based on circular arcs. Then the crack growth criterion in terms of the crack tip
opening angle (CTOA) is proposed as a function of near tip parameters and material properties.
Experiments are suggested to determine the dependence of the CTOA on those variables.

INTRODUCTION

Under monotonic loading, structures should ideally be ductile, in order to provide both a
warning before initial crack growth and continued resistance during crack growth. Such fully plas-
tic behavior is of interest in design against collisions, tank car accidents, earthquakes, and ship
groundings.

For brittle structures in tensile (Mode I) loading across a crack, only a criterion for initial growth
is needed, because the crack is immediately unstable. The criterion is based on the discovery in the
1950°s that there can be a region around the crack tip, large compared to either a plastic zone or to
the microstructural fracture process zone, and small compared to the distance to the next nearest
boundary, in which the stress and strain are uniquely defined in terms of a single parameter, the
stress intensity factor Ky (see [1]). At a critical value for a given material, K/, the crack begins to
grow unstably. (At lower values of K, the growth is negligible unless loading is repeated thousands
of times as in fatigue.) The value of the applied K is determined from the far-field geometry and
loading [2,3]. Thus for a brittle structure &ne with a crack tip plastic zone small compared to any
characteristic dimension of the part or to a crack in it), unstable crack growth occurs under the
local condition

K(geometry and loading) > Krc(material). (1)

For more extensive plastic flow around a crack in a structure, it was found in the 1960’s that for
power-law strain hardening with o = oy¢ and with a sufficiently high strain hardening exponent n,
the stress and strain fields around a crack tip are characterized by another coefficient J , such that
stable crack growth occurs under the local condition

Jr(geometry, loading, o1, n) > Jrc(material ). (2)

103




For crack growth large compared to the region in which a J-field dominates, the J-concept is
no longer valid because it would have to be based on the current crack tip, and would not include
the prior history which has left residual stresses and strain-hardening.

Asymptotic solutions have been found for an elastic-plastic growing crack, but the region in
which the fracture strain dominates the yield strain turn out to be of sub-atomic size for the low
strength alloys of interest here (see [4]).

For initial growth, the singular expansions giving the first-order coefficients K and J have been
extended to higher stress levels (toward general yield) by including second-order coefficients T or
Q [5,6], but the difficulties with finite crack growth remain.

For fully plastic flow in the limiting case of a vanishingly small strain hardening exponent n,
the governing equations become hyperbolic, unique singular solutions do not e)éist, and the effects
of far-field loading and geometry penetrate all the way to the crack tip in“fianyy[7]. For ductile
alloys, elastic strains are negligible, and the fields of strain increments and stress for growing cracks
are the same as for stationary cracks. The strain fields are then found by superposition of the strain
increments for successive crack tip positions. Thus the known slip line fields for stationary cracks
are applicable to growing cracks. The distortion of non-hardening fields by strain hardening is less
in growing than in stationary cracks, because the advance of the fields through the materjal smooths
out the discontinuities. Even in annealed aluminum, with a ratio of tensile to yield strength of 2.5,
the deformation field around a growing crack (shear bands around a rigid wedge in front of the
crack) shows a strong resemblance to the non-hardening field (see [8], p. 378).

Here we review the extension of fracture mechanics to the limiting case of non-hardening, plane
strain crack growth. It turns out that for Mode I loading, many of the infinite variety of non-
hardening stress and strain fields can be usefully approximated by just three parameters. (For
unsymmetrical fields, see [9].) While three parameters are more than for brittle structures or for
the ductile initiation of crack growth discussed above, this theory should provide a guide for the
design of crack-resistant structures of common low-strength alloys.

NEAR-TIP FIELD CHARACTERIZATION
FROM SLIP LINE FIELD ANALYSIS

Fields of stress and displacement increments for cracked structures of rigid-plastic, non-hardening
materials have been found for a variety of geometries and loadings (see (7,10]). At the crack tip,
a number of these fields consist simply of a pair of slip lines surrounded by rigid regions, e.g., the
single-face-cracked specimens under bending (Fig. 1a). Other fields consist of a pair of deforming
fans surrounded by regions with less concentrated plastic flow, e.g., the doubly grooved specimens
under tension (Fig. 1b). To simplify the problem, regard the deformation in the fan at the crack
tip as being concentrated on a single slip line which is surrounded by rigid regions.

k.
oot g e

I

|

Fig. 1. Slip line fields () for a deep, single-face-cracked plate under pure bending,
and (b) a symmetric doubly-cracked plate in tension.

For symmetric geometry and loading, the near tip fields are now characterized by just three
parameters: the slip line angle §, and the normal stress o, and shear displacement §u, across the
slip line. This three-parameter characterization of near tip fields in fully plastic fracture crack
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growth mechanics presents a contrast to the one-parameter (K) in elastic fracture mechanics or

the 1tlwo.-pa.ra.meter (K or J and T or Q) characterization in linear or non-linear elastic fracture
mechanics.

If pairs of slip lines are available for the problem at the hand, they describe a local field, (as
does K) as a function of loading and geometry:

{ a, } = { f }(fa.r-ﬁeld geometry, loadings, and their increments). 3)
bu, ‘

Now consider forms of (3) for cases in which the slip line fields are not available or are more
complicated than pair of slip lines.

NEAR-TIP FIELD CHARACTERIZATION
FROM LEAST UPPER BOUND ANALYSIS

Finding 0, and éu,

The least upper bound (LUB) field with a circular arc provides an estimate not only of the
limit load, but also of the slip plane angle 8, and displacement éu,, all in terms of far-field geometry
and loadings. For example, consider a single-face-cracked plate with shear strength k, subject to
combined bending and large tension (Fig. 2a). For given net section shear V,(= 0) and tension N,
the LUB to the moment M, can be found by minimizing M,, determined from relative sliding along
the circular arc with respect to two independent arc parameters, @ and 8. The yield locus from
the LUB analysis is shown in Fig. 2b, including that where slip line fields are known [11]. Figure
2b also includes results from finite element limit analysis by Lee and Parks [12]. For predominant
bending (0 < N,/(2kb) < 0.55), FEM results are consistent with the SLF solutions. For combined
bending with large tension (0.55 < N,/(2kb) < 1.0), the locus from the LUB analysis is no more
than 3% above the FEM results.

The LUB field also provides éu, (or the crack tip opening displacement increment §CTOD) in
terms of far field increments of displacement éu and rotation 68 (Fig. 2a):

N E i T
811 nM1 o 1.5F . Ce -
4
8 V=0 = "')——H\'%
| <
t 2 Ib/2 % 1F 0“,“._
: )
o °
: -
2 i — LUB analysis 9
= 0.5 - - SLF analysis ki
9 o o FE analysis
e ] ?
g 0 1 ‘
2 -1 -0.5 0 0.5 1

Normalized net-tension N,/(2kb)

Fig. 2. (a) Circular arc for an upper bound in a deep, single-face-cracked specimen
under combined bending and large tension, and (b) limit loads from the least upper
bound field and FEM results.
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( §CTOD/2
bu, | =

sin 8,

) I [5u + (% - a)60] . (4)

sin 4,

Finding o,

It is very difficult to glean information on the local stress from lower bound stress fields
satisfying equilibrium, the yield condition, and traction boundary conditions. We show here a
new method of approximating o, from the least upper bound.

Consider rigid-body rotation across a circular arc extending from a crack tip across a ligament of
width b in a plate with shear strength k (Fig. 3), subject to general loading with three components:
V, N, and M. Suppose that two loading components are specified and that the circular arc for the
LUB to the unspecified loading component has been found. Along the arc, the shear component of
traction is k. Then the following theorem holds, as proven in [13].

Assume that the normal component of traction, o, on the LUB arc satisfies the first Hencky
equation of equilibrium with one unknown (the reference stress o,) evaluated at 1 = 0:

do =2kdyy or o =o,+2kp. (5)

Then if o, is chosen to satisfy force equilibrium in any other than the chordal direction (the I-
direction in Fig. 8), the tractions on the LUB arc satisfy global equilibrium.

Fig. 3. Kinematically admissible plane strain deformation field consisting of
rigid-body rotation across a circular arc in a cracked plate.
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Fig. 4. Near tip slip angle 8, and crack tip stress triaxiality o,/(2k) for deep,
single-face-cracked plates under combined bending and tension.
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The normal stress across the LUB arc at the crack tip, o,, can be approximated fr?m the
Hencky equation (5) with the determined reference stress o,. Therefore the LUB arc provides an
approximation to the stress and deformation fields at a crack tip, consistent with global equilibrium.

To test accuracy with an example, consider again the single-face-cracked plate under combined
bending and large tension (Fig. 2a), for which exact slip line field solutions are not known but
finite element results are available [12]. (As shown in Fig. 4 for various bending-to-tension ratios,
at the ends of the curves where SLF results are available, 8, and o,/2k are consistent with the SLF
values, except that o,/2k is 5% low at M,/(bN,) = 0.64.) For bending with large tension, the LUB
values of 8, and o,/2k appear accurate within 5%. The accuracy of the third parameter, éu,, is
not available from the FEM results, but for pure tension and for the modified Green and Hundy
field with M,/(bN,) = 0.60, éu, from the LUB is exactly that from the SLF. (This agreement is
somewhat coincidental, because for pure bending éu, from the LUB is 1.4 times that from the SLF.)

The accuracy of the LUB analysis has also been considered for three cases with known SLF [13].
For a single-face-cracked plate in pure shear, 6, from the LUB analysis is zero compared to +8.2°
from the SLF analysis; o,/2k is zero compared to +0.14, and §u, is exact. For a three-point bend
plate with a total length to ligament ratio of 6, 6, from the LUB analysis is 56° compared to 68°;
o,/2k is 1.06 compared to 1.22, and du, is 2.4 times the SLF value for the same end displacements.
As here, the agreement is worst with fields involving constant state regions or fans. For the classical
double-face-cracked plate in tension, the fan runs from 45° to 135° with o,/2k falling from 2.1 to
0.5; 6, from the LUB analysis comes in at a reasonable 8, = 68°, but o,/2k is high at 2.54, §u, is
low by a factor of 0.5 to 0.67, depending on whether the Prandtl, Hill, or Neimark displacement
field is used for comparison. In this case, improved agreement would require more parameters in
the fracture criterion. In other cases, values from the LUB analysis might be improved by extend
the LUB fields to include constant deformation fields, as well as arcs.

CRACK GROWTH CRITERION

With the local field characterized by 4,, o,, and §u,, we turn to the response of the material
by crack growth éa in terms of those parameters. The response can be expressed in terms of the
crack tip opening angle CTOA:

éu,siné,

bal0s 00 bu.) = e AT

, where CTOA(,,0,, material). (6)

The functional form of CTOA shéuld ultimately be determined by experiment, just as is K. Such
experiments are outlined below, but for insight, first consider a micromechanical model.

A sliding off and shear-cracking model for a growing crack

Consider zig-zag crack growth, sliding off by s and cracking by ¢ along a shear band before
changing direction (Fig: 5). The geometry gives the form of CTOA in terms of 4, and s/c:

(CTOA) ssiné, 1
tan

2. ) (c+c+s)cosb, 2(c/s)+lta'n0" (M

Geomtery also gives the relation between the fracture shear strain in the band 4¢, and s and c:

S

= (s+¢c)sin24,” (8)

Eliminating (c/s) in (7) with (8) gives

o (C’TOA) 1 ). )

3 ) T Bl(yemesy =1 =°
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Fig. 5. Sliding off and shear cracking model for a growing crack.

Equation (9) gives the CTOA in terms of 8, and 5. The fracture strain vy will depend on the
mean normal stress in the shear band, ¢,, and on material properties such as hardening and an
initial volume fraction of holes, which will be discussed next.

Fracture strain in the shear band

Accounting for micromechanisms for crack growth such as hole nucleation, hole growth, and
linkage by localization or fine cracking, McClintock et al. {4] proposed

(1-n)A
sinh[(1 — n)o,/k]

T = +B(0,), (10)

where A and B are parameters and n is the strain hardening exponent in k = k,7" with k,=constant.
The first term on the RHS of (10) can be viewed as a strain for hole growth to linkage by localization
or by fine cracking [14]. The second term, B(c,), can be viewed as a strain for hole nucleation,
which is generally a function of mean normal stress [15]. For preliminary insight, assume the nucle-
ation strain is negligible (B = 0). Figure 6a shows an inverse exponential dependence on o,/k for
non-hardening (n = 0) flow and for typical values of A, ranging from 0.2 to 1.2, along with limited
available experimental data on CTOA from the literature [16,17]. Hancock et al. [18] performed
fully plastic (crack initiation and growth) tests providing a wide range of crack tip triaxiality: three
point bending, compact tension, and center cracked panel (CCP) test. (Their CCP test specimens
did not meet plane strain requirements, so the resulting crack tip triaxiality would be lower than
that for single-face-cracked specimens in tension.) Their results also showed a dramatic decrease in
CTOA with increasing o,/k as in Fig. 6a. Figure 6b shows a higher order parabolic dependence on
8, (45° < 8, < 72°) for non-hardening (n = 0) and for two values of A = 1.0,0.5. Therefore, to a
first order for small n, (9) with (10) suggests that the CTOA has inverse exponential dependence

Low uiaxia}iry 10 High triaxiality

A=l12 _ 60
80 A .
. 1.0, \o experimental | gi. . . -
%0 data {16} 0 emenmental —_
5 60 - 1 6 m(i7] | ¥ 40f
< S
(&3 A=1.2 & 20F
2 . Qo
0 - 0
0 0.5 1 1.5 1.5 2 2.5 3
Crack tip triaxiality o,/2k Slip line angle 8, (deg)

Fig. 6. Dependence of the estimated crack tip opening angle (CTOA) on o,/(2k)
and 4,. Equation (9) and (10) with n =0 and B =0.
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on d,/k and higher order parabolic dependence on 6, for 45° < 4, < 72°.
Note that (10) is analogous to Krc(material), and therefore the parameters 4 and B in (10) re-
flect material properties and should be found from fully plastic crack growth experiments, as follows.

Suggested experimental determination of CTOA

The functional dependence of CTOA(4,,0,), on the parameters A and B of the fracture cri-
terion of (9) with (10), can be found by fully plastic crack growth tests. For example, at 8, = 45°,
0,/2k can be increased from 0.5 to 1.547 in the unequally grooved specimens of Fig. 7a by de-
creasing the back-angle 2¢ from 180° to 60° [7]. Solving (9) with (10) from the experimental data
would allow fitting the constants A and B. For higher values of 4,, consider the 4-point bending
specimen of Fig. 7b. According to the SLF analysis [19], decreasing the back-angle 24 from 180°
to 90° would increase o,/2k from 1.177 to 1.543 with 4, nearly constant in the range from 67° to
72°. The constants A and B found from fitting these data should be the same as those from the
unequally grooved tensile tests.

A

Fig. 7. Slip line fields for unequally grooved specimens (a) under pure extension,
and (b) under pure bending.

CONCLUSION

For designing possibly cracked structures that must remain ductile under accidental overloads,
we present a practical theory for fully plastic, plane strain crack growth. The one or two param-
eter characterization in linear or nonlinear elastic fracture mechanics must be extended to three
parameters for the near tip fields of a growing crack in fully plastic, plane strain conditions: the
slip line angle §, and the normal stress o, and shear displacement §u, across the slip line. These
parameters are found for the geometry and loading condition either from slip line field analysis or
from least upper bound analysis based on a circular arc using only a programmable calculator. This
is analogous, for example, to the Kj(geometry and loa.dings%’ of linear elastic fracture mechanics.

The material function analogous to Kc(material) is expressed as the dependence of the crack
tip opening angle (CTOA) on o,, 0, and material properties. This dependence should be deter-
mined from fully plastic crack growth tests, which are suggested.
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FRACTURE TOUGHNESS AS A FUNCTION OF CONSTRAINT FOR SIMULATED WELDMENTS

W. G. Reuter, W. R. Lloyd, and J. S. Epstein

Idaho National Engineering Laboratory
Idaho Falls, Idaho 83415 U.S.A.

ABSTRACT

One of the primary needs in structural design is the ability to predict structural integrity using fracture
toughness data obtained from small, standard test specimens. Sufficient understanding of the fracture process in
homogeneous, isotropic materials has been gained to extend the research into weldments, which are considered to be
the primary region of fracture for structural components. Weldments have a great many parameters that influence
fracture, and it is very difficult to isolate their effects on the fracture process. Specimens of a "model system" were
fabricated to reduce this complexity. This paper provides preliminary results of fracture toughness testing of these
simulated weldments.

INTRODUCTION

Fracture mechanics technology may be used in alloy development, in improving fabrication procedures, as a
basis for purchasing materials, and to predict structural integrity. Predicting structural integrity is the purpose of the
rescarch described in this paper. Methods have been developed to predict some of the fracture process (crack growth
initiation, subsequent crack growth, and failure) for homogeneous, isotropic materials. A schematic of the fracture
process is shown in Figure 1. Structural design criteria may be
based on one of these stages of fracture, such as initiation of
crack growth (Point C); conditions associated with subcritical " Final
crack growth, c.g. the crack penctrating the wall thickness (in Crack Failure m»
Region BY; or failure (Point X). For cach stage, very complex Initiation -9
issucs must be addressed, such as identifying the critical
parameters that describe the fracture process and developing
the ability to normalize these parameters as a function of
specimen size, configuration, and loading.

Force

/,
/
/
/

Region A
I

Research in this Idaho National Engineering Laboratory
(INEL)/Massachusetts Institute of Technology (MIT) program
has led to numerical capabilities, verified by experiment, for
predicting crack growth initiation for a structural component
based on test data generated from small, standard fracture
toughness specimens.! Sufficient understanding of the
fracture process in homogeneous, isotropic materials, as well
as capabilities in both numerical analysis and experimental
techniques, has been developed to extend the research into weldments. Weldments often contain defects and resxdual
stresses and are considered to be the primary region of failure for structural components.

N
NN

Displacement
Figure 1 Schematic of Fracture Process

Weldments consist of a base metal, heat affected zone (HAZ), and a fusion zone, see Figure 2. These three
regions each contain different microstructures; furthermore, the microstructure of the HAZ will range from coarse
grained adjacent to the fusion line to fine grained near the base metal. Local changes in microstructure also occur due

111




< Residual Stress >
Undercut
Base Metal Base Metal
Fine Grained HAZ —> Angular
Distortion

Coarse Grained HAZ 3 .
Heat-Affected Zone (HAZ) j \—— Weld Metal T
Embritttement Embrittlement
Strain Aging Weld Defects
Age Hardening Blow holes
Weld Defects Lack of Penetration
Cracking Slag Inclusions
Mechanical Properties Weld cracking
Softening
Hardening
Variability

Figure 2 Diagram of a Weldment

to subsequent passes in a multipass welding process. The different microstructures generally exhibit different
mechanical properties. Their nonhomogeneous nature puts weldments outside the realm for which fracture mechanics
concepts have been developed. Some of the technology developed for homogeneous, isotropic base metal can be
extended to weldments, but it is necessary to identify its limits of applicability.

Fracture toughness testing of as-welded Type 304 stainless steel (SS) was attempted at the INEL, but difficulties
were experienced in producing acceptable fatigue precracks (too much crack front curvature), in placing the tip of the
fatigue precrack in the microstructure of interest, and in performing single specimen unloading tests to measure Jier
(Various complications associated with fracture toughness testing of real weldments of Type 304 SS are reported in
Graham ct al.?) It was obvious that many parameters could influence the test results and that it would be very
difficult 10 isolate their cffect on the fracture process in weldments. Thercfore, a model system of Ti-6Al-4V diffusion
bonded to commercially pure Ti (CP Ti) was chosen for study. This paper provides preliminary results of fracture
toughness testing of these simulated weldments. :

EXPERIMENTAL APPROACH

Pieces of CP Ti 3.2, 6.4, or 12.7 mm thick were sandwiched between two pieces of Ti-6Al-4V and diffusion
bonded. The mechanical properties of the two titanium alloys after the diffusion bonding cycles are provided in
Table 1. Because the two materials have essentially the same elastic constants, it is assumed that very little residual
stresses were generated during diffusion bonding. There are only very narrow zones at the interfaces where elements
could diffuse; therefore, the "HAZ" in these simulated weldments is nonexistent. However, the yield strength of the
weld metal is less than that of the base metal, so these specimens simulate "undermatched" welds.

SE(B) specimens, shown schematically in Figure 3, were machined from the diffusion-bonded pieces. The crack
was located in the center of the weld. These specimens were tested using four-point bending to quantify the effect of
constraint on the load-displaccment curve, apparent J;. and dJ/da, and the extent of stable crack growth. The
constraint has not yet been quantificd for any specimen, but is assumed to range from a high for the "thinnest weld”
(H = 3.2 mm, sce Figure 3) to a low for the "thickest weld” (H = 12.7 mm). The constraint is due to the Ti-6Al-4V
bchaving as an clastic body that limits the ability of the CP Ti to deform.
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Table 1

Mechanical Properties of Titanium Used for Diffusion Bonding?

CP Ti Ti 6A1-4V
Coefficient of thermal expansion, CTE (21 to 871°C) 10.3 x 10%,C 10.3 x 10%PC
Modulus of elasticity, E 112 GPa 123 GPa
0.2% offset yield strength, o, (also called o) 366 MPa 886 MPa
Ultimate tensile strength, o, 486 MPa 925 MPa
Strain-hardening coefficient, n 7.8 15
e 110 kJ/m? 63 kJ/m?

a. 3.45 MPa pressure at 870 to 900°C for 60 min in argon, followed by furnace cooling.

Ti-BAl-4V

Figure 3 Schematic of Simulated Weldment Specimens

Moiré interferometry techniques were used to measure the displacement fields at the crack tip as a function of
the applied load. Thesc data will be compared with results of finite-element analyses.

TEST RESULTS AND DISCUSSION

Plots of moment versus bend angle (four-point bend test) are presented in Figure 4 for the three specimens
tested to date. The specimen with H = 3.2 mm was able to carry the maximum load, which may be beneficial for a
structural design controlicd by plastic collapse. The J-aa plots are summarized in Figure 5 and the estimated values of
Jic and dJ/da arc summarized in Table 2. The magnitude of the tunneling observed for all three specimens is such that
test standards ASTM E 813 and E 1152 are not satisficd and a valid J;, cannot be measured, thus the energy density
values given in Figure 4 and Table 2 are based on specimen dimensions and the total area under the applied moment
versus bend angle curve.  Although these energy density values are not true "J” values (based on ASTM E 813-89) and
cannot be directly compared to Jy for the component materials, they are useful for comparison of the behavior of the
three different specimens. It is expected that the tunneling will not have a significant effect on Jy, but will affect dJ/da.
Additional problems were encountered in identifying the appropriate flow stress for use with each constraint condition.
It is apparent that for a thinner weld zone (H), "J;." is lower, dJ/da is lower, and there is less stable crack growth. The
decrease in J; with increasing constraint is consistent with Reference 1. For a design based on fracture mechanics, the
use of the smallest weld width is not considered to be beneficial.

Work of McClintock et al.3 and of Kim et al.* shows a basis for concern about the ability of dJ/da to describe
the crack growth process. This is especially true when aa is greater than 2 to 3 times CTOD. Therefore, the fracture
surfaces of the test specimens were examined using microtopography, a technique developed at the INEL to
reconstruct the fracture process. With microtopography, CTOD at initiation of crack growth and CTOA as a function
of crack growth (aa) can be measurcd. The values of CTOD are presented in Table 2.

The increase in constraint due to reducing weld width led to: (1) a substantial increase in the load carrying
capability, (2) a decrease in "J; " and "CTOD;,;", and (3) a significant reduction in dJ/da and in a associated with
failure (or significant pop-in). For cngincering applications, the reduction of the width of the weld metal may provide
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Table 2

Summary of Test Results for Simulated Weldments

Weld thickness, H 32 dJ/da® sa CTOD,;,
(mm) (KJ/m?) (kJ/m>) (mm) (mm)
3.2 95 =0 0.18 0.10-0.12
6.4 : 175 =105 000 0.68 Not determined
127 =175 105 000 >2.0 0.18-0.2

a. Estimated values based on area under M-¢ plot (Figure 4).

b. Estimated by drawing straight line on plots in Figure S.

a way to obtain a stronger, though more brittle, weld. It is conceivable that an optimum "weld” width may be
developed by combining the requirements for strength and fracture toughness.

CONCLUSIONS
. J. decreased with increasing constraint and aa (prior to failure) decreased with increasing constraint (Table 2).
. dJ/da decrcased with increasing constraint. The dJ/da data did not satisfy E 813 or E 1152, which means that

comparisons can only be made on a qualitative basis.

. CTOD for crack initiation decreased with increasing constraint.
. Reduction of the width of the weldment results in an increase in the load carrying capability.
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MEASUREMENTS OF THE ELASTIC CONSTANTS OF SUPERLATTICE FILMS
BY LINE-FOCUS ACOUSTIC MICROSCOPY

1. D. Achenbach, J. O. Kim, and Y.-C. Lee

Center for Quality Engineering and Failure Prevention
Northwestern University
Evanston, Ilinois 60208

ABSTRACT

The effective elastic constants of single-crystal TIN/NbN (001) superlattices have been
determined using line-focus acoustic microscopy. Two independent procedures to determine
the elastic constants of the superlattices are discussed. The first procedure calculates the
effective elastic constants of the TiN/NbN superlattices from the elastic constants of the
constituent TiN and NbN layers and verifies the calculated elastic constants by comparing the
corresponding calculated SAW dispersion curves with measured dispersion curves. In the
second procedure the effective elastic constants of the TIN/NbN superlattices are determined
from the measured SAW dispersion data of the superlattices deposited on MgO substrates.
The accuracy of each constant is estimated by considering the sensitivity of the dispersion
curves to changes of each constant. The results of the two procedures are compared and
advantages and disadvantages of each procedure are discussed.

INTRODUCTION

A superlattice film consists of a number of alternating thin layers of different elastic constants with

period A, as shown in Figure 1. It has been shown that transition-metal nitride superlattice films, such as
TiN/NbN, exhibit much higher hardness than homogeneous nitride films and show hardness peaks at

particular values of the period A [1]. It has been suggested that the hardness peaks may be correlated with
peaks in the elastic moduli, the so-called supermodulus effect [2]. A supermodulus effect, if present, is
anomalous since analytical expressions for the elastic moduli of superlattices show that these quantities are

independent of A. Recent Brillouin scattering measurements for TiN/NbN superlattices did not show a

dependence of the Rayleigh wave velocity on A [3]. While these results show no anomaly, a more complete
set of experimentally-determined superlattice elastic moduli is required to dismiss the possibility of elastic
anomaly effects.

In the quantitative mode of acoustic microscopy the velocity of surface acoustic waves (SAWs) is
measured [4]. Unlike point-focus acoustic microscopy, by which the velocity of SAWSs averaged over all
directions is measured, line-focus acoustic microscopy allows the measurement of the SAW velocity in a
prescribed direction [5]. Hence line-focus acoustic microscopy has been used to measure the elastic
properties of anisotropic materials. Measurements of anisotropic SAW dispersion curves for single-crystal
thin films deposited on single-crystal solids have been reported in Ref. [6]. Recently, this technique has
been applied to determine the elastic constants of single-crystal transition-metal nitride films [7] and
amorphous carbon films [8]. The technique has also been used to verify the effective elastic constants of
TiN/NbN superlattice films calculated from the elastic constants of the constituent layers [9].

In the present paper, a complete set of the effective elastic constants of TiN/NbN (001) superlattice
films are determined by two independent procedures. Figure 2 is a flow chart of these procedures. Both
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Figure 1. Schematic diagram of a line-focus acoustic lens and a TiN/NbN superlattice specimen. A number
of alternating TiN and NbN layers were epitaxially grown on a cubic-crystal MgO substrate.

procedures are based on the SAW dispersion data obtained by line-focus acoustic microscopy for the films
deposited on substrates.

The first procedure (referred to as Calculation Procedure) consists of several steps. The elastic
constants of homogeneous TiN and NbN films deposited on MgO are determined from measured SAW
dispersion data, according to the inversion method of Ref. [10]. From the so-obtained elastic constants of
single-crystal TiN and NbN, the effective elastic constants of TiN/NbN superlattices are calculated. The
calculated effective elastic constants are subsequently verified by comparing the corresponding calculated
SAW dispersion curves with measured dispersion data for the TiN/NbN superlattice films deposited on
MgO substrates.

In the second procedure (referred to as Measurement Procedure) the effective elastic constants of the
TiN/NbN superlattices are determined directly from the measured SAW dispersion data of the superlattices
deposited on MgO substrates. The inversion method is similar to but slightly modified from the method
discussed in Ref. [10]. The accuracy of each constant is estimated by considering the sensitivity of the
dispersion curves to changes of that constant.

¥y
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v ¥

(_ coMmPARISON )

Calculation Procedure I Measurement Procedure
TiN NbN | (__TiNNODN )
Ref. [7] | Y EXPERIMENT
elastic constants of elastic constants of I SAW dispersion data of
TN _ch.ch.c NbN ¢, cib, cll TiN/NbN on MgO
¥ FORMULA J ¥ INVERSION
eftective elastic constants of TiN/NbN || [effective elastic constants of TiIN/NbN
Cu, Cs3, Ci2, C13, Ca4, Css | C11(=Cs3), C12(=C13), C14(=Css)
CALCULATION v . I vCALCULATION
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|
|

Figure 2. Two procedures to determine the effective elastic constants of single-crystal TIN/NbN (001)
superlattices.
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The results obtained by these two procedures are compared. Advantages and disadvantages of each
procedure are discussed.

EXPERIMENTS

The TiN/NbN superlattice films were deposited on cubic-crystal MgO substrates using an ultra-high
vacuum reactive magnetron sputtering system [11]. In-situ low energy electron diffraction from the

specimens yielded spot patterns, indicating that epitaxial films were grown [1]. The period A was extracted
from the x-ray diffraction results and when multiplied by the number of periods, yielded an estimate of the

film thickness k. The film thickness & and the superlattice period A of the specimens used for the
experiments are listed in Table 1. The fraction of the TiN layer thickness dt to the period A is constant

(d1/A =0.3) for all superlattice specimens.

The experimental results reported in this paper were obtained with a Honda AMS-5000 ultrasonic
measurement system. The principle of this system and its hardware have been described in detail by
Kushibiki and Chubachi [5]. The acoustic probe is schematically shown in Figure 1. The frequency of
operation is around 225 MHz. The quantitative mode of acoustic microscopy is based on the measurement
of the V(z) curve, which is a record of the transducer voltage output V with the variation of the distance z
between the focal line of the acoustic lens and the surface of the specimen. The V(z) curves display
oscillations due to interference between the specular reflection of the incident waves from the surface of the
specimen and radiation of leaky surface waves generated by critical-angle-incident rays,.

The surface wave velocity v has a functional relationship to the spacing Az of the valleys of the V(z)
curve [12], which is given by the following equation [5,13]:

U = Uy /{1 -(1 -vw/2fA2)2]1/2 = (vw - f- Az)l’z/(l -vw/4fAz)1/2 "

where vy, is the wave velocity in the coupling water and f is the wave frequency. The spacing Az, and thus
the SAW velocity of the specimen, is obtained by processing the V(z) data. The processing procedure
consists of three main steps: subtraction of the geometric effect of the acoustic lens from the V(z) data, a
digital low-pass filtering to reduce the component of high frequency noise, and fast Fourier transform
analysis.

SAW velocities were measured on the (001) plane along wave propagation directions varying
incrementally from the [100] to the [010] directions. The diamond-shaped symbols in Figure 3 are the

results for 0.43, 0.91, 1.37 and 2.36 um TiN/NbN superlattice films, as well as for bare MgO, measured at
225 MHz. The angle represents the direction relative to the [100] crystalline axis. Figure 3 shows the
anisotropic dependence of the SAW velocities on the propagation direction for TiN/NbN (001) superlattice
films epitaxially deposited on cubic-crystal MgO substrates. The results represented by solid lines and
dashed lines (with circles) in Figure 3 are discussed in the next section.

CALCULATION OF THE EFFECTIVE ELASTIC CONSTANTS
Effective Elastic Constants Formula

The effective elastic constants of a superlattice film have been derived in terms of the elastic
constants of the constituent layers. The effective elastic constants of a superlattice composed of isotropic
layers can be found in Ref. [14]. For the more general case, i.e. a superlattice composed of single-crystal
layers, the effective elastic constants were derived by Grimsditch [15].

Consider a superlattice which consists of cubic-crystal layers, all with the same orientation. The
superlattice is considered to be tetragonal-symmetric because the properties along the direction vertical to
the layer planes may be different from those along the layer planes. For an anisotropic material of
tetragonal symmetry the stress-strain relations are
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Figure 3. Anisotropic dependence of the SAW velocity at 225 MHz
for the TiN/NbN (001) superlattices on MgO substrates.
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As shown in Figure 1, the thicknesses of the TiN and NbN layers are dt and dn, respectively, and the
fractions of TiN and NbN are
dy = dv/dt + dv) = dv/A. (3a,b)

dp = dp(dp + dy) = d/A and

The formulas to calculate the effective elastic constants of the tetragonal-symmetric superlattice can be
obtained from Grimsditch's general results as:

¢y = —L— +(c¥1'c¥1)2'(°}‘2'011‘12)2, C3g = —1 |
dr  dy ch e dr  dy
cfi ch dr dn chi
e (o edy (i, Aok G ay S
crp = —11C1 dy ) P o\ I
ar,dn of, el ar ax
cfi e} dr dn cf; e}
Cag = —1L1— and cgg = dr CL+ENC§4, (4a-f)
dr  dn
ey chy
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where (cT;, cTs, cT) and (e}, ¢}, ¢l are the elastic constants of the constituent layers of cubic symmetry.
The effective mass density of the superlattice is

p =HTPT+ENpN. 5

Equations (4a-f) predict that the effective elastic constants do not depend on the superlattice period but do
depend on the fraction of the two constituent layers.

The elastic constants of cubic-crystal TiN and NbN films have been determined from measured
SAW dispersion data, according to the inversion method, and have been obtained as ¢}y = 625, cTy = 165,
and ¢, = 163 GPa for TiN and ¢} = 556, ¢} = 152, and c}; = 125 GPa for NbN [7]. The mass density of
TiN is 5.39 g/cm3 and that of NbN is 8.43 g/cm3 [16]. The TiN fraction of the superlattices used in the
experiment is d1/A = 0.3. The effective elastic constants of TiN/NbN superlattices (d1/A = 0.3) calculated
using Equations (4a-f) are ¢y = 577, c33 = 575, c12 = 156, c13 = 156, cas = 134, and cg6 = 136 GPa. The
effective mass density of the superlattice obtained by Eq. (5) is 7.52 g/cm3.

Verification of the Calculated Constants

As discussed in Ref. [6], the theoretical SAW velocities can most easily be compared with the
measurements along the [100] and [110] directions. The velocity of SAWs propagating along a symmetry
axis, either the [100] or the [110] direction, on the (001) plane of a tetragonal-symmetric film deposited on a
cubic-symmetric substrate, can be calculated by equations presented in Ref. [9]. The measurements were
carried out for the specimens of various thicknesses as listed in Table 1 at 195, 225, and 255 MHz. The
SAW velocities calculated and measured for the various values of the film thickness and the frequency have

been displayed in Figure 4 as functions of the normalized film thickness #/As, where 4 is the film thickness
and A is the wavelength of a transverse wave in the substrate. Since the thicknesses of the films are much
smaller than the SAW wavelength (~20 pum), the surface wave penetrates through the film into the substrate.
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Figure 4. Dispersion curves of SAWs propagating along the [100] and [110] directions on the TiN/NbN
(001) superlattice films deposited on MgO substrates. Specimen numbers are as shown in Table 1.
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The results in Figure 4 show the effect of dispersion, i.e., the dependence of the velocity on the film
thickness normalized by the wavelength of the transverse wave in the substrate. The dashed lines in Figure
4 are the dispersion curves for a TIN/NbN superlattice film deposited on an MgO substrate, calculated from
the elastic constants and the mass density of the superlattice film determined in this section and the known
elastic properties of the MgO substrate. The symbols are the measured SAW velocities. The experimental
results show good agreement with the calculated results.

The SAW velocities for the superlattice films used in this work have also been calculated from the
analysis of the V(z) curves in Ref. [17]. Solid lines in Figure 3 represent the results calculated using the
effective elastic constants obtained above. Dashed lines with circles are the results calculated by
considering the superlattice as a multilayer and using the elastic constants of the constituent TiN and NbN
layers. Solid lines and dashed lines (with circles) in Figure 3 agree very well. It is, therefore, shown that
the effective elastic constant approach is a sufficient accurate way to study the elastic properties of
superlattice films.

MEASUREMENTS OF THE EFFECTIVE ELASTIC CONSTANTS

The Measurement Procedure determines the effective elastic constants of the superlattices from the
SAW dispersion data obtained experimentally and displayed in Figure 4. However, it is not necessary to
determine six independent elastic constants from the given data. Based on the calculated effective elastic

constants, which yielded c¢;; = ¢33, 12 = €13, and c44 = Ceg, it is assumed that the superlattice is a cubic-
symmetric structure, which has only three independent elastic constants.

With known elastic constants and mass density of the substrate and known mass density of the
superlattice, three independent elastic constants of the superlattice have been determined from the inversion
of the experimental SAW dispersion data displayed by symbols in Figure 4. The inversion procedure
consists of seeking a set of the constants that minimizes the sum of the squares of the deviations between
measured and calculated velocities of SAWs propagating in TiN/NbN superlattice films deposited on MgO
substrates. The sum is given as a function of c11, €12 and Cy44, as follows:

N
y =2 [(Vr%,q - Véq)z + (Vr?l.q . ng)z] ) (6)
q=1

where Veq = Vhg, c11, C12, c44) and £ is the normalized film thickness A/As. The superscripts A and
B refer to the [100] and [110] directions, respectively, the subscripts m and ¢ denote measured and
calculated results, and N is the number of data points for each direction. With initially estimated values of
the elastic constants of the superlattice, the velocities of SAWs propagating either in the [100] or the [110]
direction on the (001) plane of a cubic-symmetric film epitaxially deposited on a cubic-symmetric substrate,
are calculated by the equations presented in Ref. [6]. The iterative calculation for minimizing the sum y is
carried out by a systematic function minimization algorithm known as the simplex method [18].

The elastic constants of TiN/NbN superlattices have been determined by this procedure as ¢y = ¢33
= 587, ¢12 = c13 = 127, and ca4 = c¢¢ = 135 GPa. These measured elastic constants are compared with the
calculated elastic constants in Table 2 and discussed in the following section. The dispersion curves
calculated from the effective elastic constants determined in this section are displayed by solid lines in
Figure 4. They show good agreement with the measured dispersion data.

DISCUSSION

Accuracy

It is desirable to investigate the influence of each elastic constant on the SAW dispersion curves.
The influence of the elastic constants determined in the previous section on the SAW dispersion curves for
the TiN/NbN superlattices deposited on MgO substrates is shown in Figures 5(a) and 5(b). In Figure 5(a)
the wave propagation direction is [100] while it is [110] in Figure 5(b). Figures 5(a) and 5(b) display the
dispersion curves for the cases that one of the elastic constants is increased by 10%. It is observed that all
elastic constants contribute to the change of the dispersion curves (a) and/or (b). It is, however, noted that
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Table 2. The elastic properties of TiN, NbN, and TiN/NbN (d1/A = 0.3).

Effective elastic constants (GPa) mass
density
i C3  Ci2 €3 Cca  Ces  (glemd)
TiN Ref. [7D 625 165 163 5.39
NbN (Ref. [7]) 556 152 125 8.43
TiN/NDbN (calculation) 577 575 156 156 134 136 17.52
(measurement) 587 587 127 127 135 135
(discrepancy, %) (+2) (+2) (-19) -19) (+1) (D

the dispersion curve is more sensitive to changes of cq; and c44 and less sensitive to changes of ¢i2.
Inversely the calculated values of ¢;2 may, therefore, be less accurate than the calculated values of the other

constants.

ison of the Calculation an m I

m

The Calculation Procedure can determine six independent elastic constants of tetragonal-symmetric
superlattices. This procedure consists, however, of several steps, and the accuracy of the measured elastic
constants of the constituent layers affects the accuracy of the effective elastic constants of the superlattices.
The procedure also depends on the validity of the formulas for the effective elastic constants. For example,
if the interfaces between the layers are not perfect, the calculation of the effective elastic constants may not
be accurate.

The Measurement Procedure can be used only when the symmetry of the superlattice is similar to the
symmetry of the individual layers. If this assumption is valid, this procedure can determine the effective
elastic constants of the superlattices more simply than Calculation Procedure.

The results of these procedures are compared in Table 2. It appears that the values of ¢y, €33, C44
and cgg obtained by the two procedures show agreement within 2% deviation. The values of ¢ and ¢3
obtained by the procedures show, however, deviations of about 20%. These larger deviations are consistent
with the anticipated inaccuracy of these constants for the individual layers as discussed above.
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Figure 5. Influence of changes of cij, 12, and cqq of TiN/NbN on the SAW dispersion curves of the

superlattice films on the MgO substrates: (a) the [100] direction, (b) the [110] direction.
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SUMMARY AND CONCLUSION

The effective elastic constants of single-crystal superlattices have been determined by using SAW
dispersion data obtained by line-focus acoustic microscopy. Two different procedures to obtain the elastic
constants have been described. The first procedure calculates the effective elastic constants of the
superlattices from the elastic constants of the constituent layers and verifies the calculated elastic constants
by comparing the corresponding calculated SAW dispersion curves with measured dispersion curves. The
second procedure determines the effective elastic constants from the measured SAW dispersion data of the
superlattices deposited on substrates. Advantages and disadvantages of each procedure have been
discussed. The accuracy of each constant has been estimated by considering the sensitivity of the dispersion
curves to changes of that constant. The results for c1, ¢33, C44 and cgg obtained by the two procedures show
good agreement with each other, while the results for ¢;; and c;3 show significant deviations.
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SUPERCONDUCTING PROPERTY MEASUREMENTS
IN TAPE GEOMETRY

K. L. Telschow
Idaho National Engineering Laboratory
EG&G Idaho, Inc., P.O. Box 1625
Idaho Falls, ID 83415-2209

ABSTRACT

Fabrication of the new high T, superconductor materials into useable long-length
wires or tapes has proven difficult, often resulting in low critical currents. The ability to
measure critical currents in high T, superconducting tapes on a local scale can be valuable
for assessing the microstructure resulting from the fabrication process. This paper de-
scribes the results of research on using induced currents from a small noncontacting
electromagnetic probe to determine the critical current density in high T, tapes on a local
scale. The technique forces full-field penetration into the tape locally and infers the local
critical current density from the "critical state” model for flux penetration. Difficulties
encountered with the tape geometry and demagnetization effects are overcome by an
analysis procedure that provides comparative measurement of the critical current density
with the contacting DC transport probe method. Results for several tapes with different
critical currents are discussed.

INTRODUCTION

The new high T, materials are extreme type II superconductors where, in the presence of an
external magnetic field and/or a transport current, magnetic flux exists in the material in the form of flux
lines distributed on a lattice [1]. Individual flux lines are pinned at microstructural inhomogeneities such
that only under a sufficient force, caused by locally high current flows, will they become depinned and
flow throughout the material. The value of local current density at which depinning occurs, the
microscopic critical current density (J¢), is directly proportional to the pinning force strength. Intergrain
junctions form the weakest spots in polycrystalline samples. Flux penetrates the sample relatively easily
along the intergrain junctions, and these pinning sites are responsible for the low critical currents
observed to date in macroscopic tapes. The critical state model [2] describes the pinned flux line
distribution within the material quasistatically, assuming the equilibrium distribution is achieved at each
value of the externally applied field on a time scale that is short compared to experimental times. Flux
lines penetrate the material to a flux front boundary, which eventually penetrates the sample completely
at a particular value of the external field (H*). Ampere’s law relates the full-field penetration value H*
at the surface to the critical current density and layer thickness (d) by H* = J.d/2 for a layer
superconducting geometry in a parallel applied field.

This paper describes noncontacting AC measurements of H* in a set of 12 tapes of
(Bi,Pb),Sr,Ca,Cu,0y with silver cladding produced with varying pressing parameters. The tapes exhibit
a variety of critical currents resulting from various microstructural defects. The measurement results
presented can be described in terms of the single parameter H*, which is a function of tape thickness,
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temperature, and microstructure. An analysis procedure is described to quantitatively compare the AC
induction results with contact DC transport measurements.

EXPERIMENTAL RESULTS

A set of 12 Ag-clad (Bi,Pb),Sr,Ca,Cu,Oy (2223 phase) tapes, fabricated from polyphase
2212/2201 starting powder, were used for this study [3]. The tapes were approximately 1 cm wide by
3 cm long, with thicknesses of about 0.1 mm each for the superconducting and silver layers. The
composition of these tapes has been previously described [4]. Local magnetization was measured with
small concentric solenoidal coils. The drive field coil had a radius of 1.25 mm and was wound with
12 turns of #38 wire; balanced pickup coils were wound over the drive coil with 5 tums each. The
calculated peak magnetic field strength parallel to and at the sample surface ranges from approximately
350 A/m, in the absence of a sample, to 700 A/m with a fully superconducting sample, for an excitation
current of 100 Ma. Response of the induced current was recorded by a lockin amplifier at a frequency
of 1 KHz. Measurement geometry and cryostat have been previously described [5,6]. The coil position
was fixed at approximately the center of the sample surface at an elevation of 0.1 mm to the lowest
winding. The probe was used by increasing the AC excitation field until full penetration of the critical
state region through the tape was achieved locally under the coil. The effect of the eddy currents
induced in the silver coating was subtracted by an external signal dividing circuit balanced at 120 K,
well above the onset of superconductivity of about 110 K found for these samples.

AC measurements described are similar to laboratory AC magnetic susceptibility measurements
that are performed with cylindrically shaped samples in parallel externally applied magnetic fields.
However, in the geometry employed for the tape measurements, the externally applied field is
nonuniform, and significant demagnetization effects occur. Figure 1 shows the AC signal response for
four representative tape samples. The measured DC transport critical currents for the sample set ranged
from 520 A/cm?® for #4A to 2,200 A/cm? for #4C, all at 77 K and the earth’s magnetic field. Results
shown in Figure 1 are very similar to those obtained from the laboratory AC susceptibility
measurements, except that the demagnetization effects preclude quantitative comparison between theory
and experiment using the critical state model. The same features caused by intergrain and intragrain
critical currents are observed both in the demagnetizing geometry and in the laboratory geometry. In
particular, all samples show a transition temperature of about 110 K, where the inductive (imag) signal
drops abruptly due to the onset of superconductive shielding currents developed within grains of the
material. This initial drop is followed by a more gradual drop, with temperature caused by the onset of
intergranular shielding currents. When 70 K is reached, all samples provided essentially complete
shielding due to both intergranular and intragranular currents. Samples with the highest critical currents
at 77 K also exhibited the most rapid drop in inductive signals with temperature as illustrated in
Figure 1.

A great deal of information about a sample is contained in the data of Figure 1. However, for
nondestructive evaluation of tape processing, measurements are needed as a function of position along
the tape while the tape is at one temperature. These measurements are most conveniently taken at liquid
nitrogen temperature, with the tape submerged and with a small local probe that can be scanned along
the tape. The AC susceptibility measurements described can be used in this manner [5,6]. Probe coils
aré small and can be easily scanned along the tape surface. The task of determining the local critical
current density then can be performed by varying the excitation field and recording the change in
response of the tape as the critical state penetrates the tape thickness. Figure 2 shows the AC signal
magnitude as a function of the excitation coil current for the four samples considered. Results shown
are for sample temperatures from 30 to 110 K. The applied field has been subtracted by the balanced
coils, such that the net sample magnetization signal magnitude is shown. At the lowest temperature, the
response for the best samples (1A and 4C) is proportional to the excitation field (or AC current) and
corresponds with that for a completely shielded sample, i.e., the basic probe response. These results are
independent of the sample, since fields applied are much less than the upper critical field at this
temperature. Figure 2 also shows results for varying penetrations of the flux line lattice into the sample
that occur as the temperature is changed.
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Figure 1. AC Measurements of Four Tape Samples with Critical Current Densities at 77 K of 520
Afem? [4A], 873 AJem?® [1E], 1,133 AJem? [1A], and 2,200 A/cm’ [4C)

H* DATA ANALYSIS

To use the results of Figure 2 for quantitatively determining the local critical current, the critical
state model is invoked to obtain the local full penetration field strength. The basic probe response was
eliminated by dividing the results by the data at the lowest temperature. This yields the normalized
results of Figure 3 for the temperatures where the sample was superconducting. The critical state model
prediction for flux penetration is a geometric calculation based on one parameter: the full-field
penetration value, H*. For the given probe/sample geometry, there is a well-defined H*(T,d), which
depends on sample microstructure, temperature, and layer thickness. In principle, H* can be calculated
directly; however, this calculation has proved amenable only in situations where the externally applied
field is uniform and the sample shape is sufficiently simple that no demagnetization effects are present
[7,8]. Calculations of References 7 and 8 are for a slab geometry in a parallel field where the
demagnetizing factor is zero and assume a 1/H, oc,; dependence of the local critical current density.
Results reported here are very similar, even though the geometry is more complex. Recently,
calculations have been reported for sample shapes (sphere and cylinder) exhibiting demagnetization
effects in a uniform field [9,10]. The geometry used here is that most practical for actual measurement
on tapes; it uses a source coil producing a nonuniform field throughout the sample exhibiting
demagnetizing effects. ‘At the present time an acceptable method for calculating the extent of the critical
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Figure 2. AC Response for the Four Sample Tapes of Figure 1 as a Function of the Excitation Field
(AC Current) and for Temperatures Ranging from 30 to 110 K

state region in geometries with nonuniform external fields has not been developed. With an appropriate
model, the complete signal response could be calculated and an accurate determination of H* obtained
directly from the measurements. In the absence of this calculational approach, an empirical approach
was taken to provide the required normalization [11]. Since the critical state model suggests the
response should be a function of only one intrinsic parameter, H*, all results should scale with this value
at a given temperature and sample thickness.

Figure 3 shows the data of Figure 2 redrawn at scaled drive current values such that all the data
overlap on one curve, a reference curve shown in Figure 3 for sample 4A. The reference curve was
obtained from the data of sample 1A and accounts for the probe/sample geometry. The reference curve
also provides a method with which to compare data for other temperatures and samples in a quantitative
manner to that of sample 1A. Scaling factors for the current that align the data depict the ratio between
the full-field penetration values for a given sample to that of the reference. Results of Figure 3 show
that the scaling renormalization works best for samples with high critical currents. This was generally
found for the entire sample set. Low critical currents are caused by poor intergrain junctions,
nonalignment of the grains, variation in layer thickness, and impurities. All of these characteristics are
present in these tape samples to some degree and have been previously described [4]. Presenting the
data in the form of Figure 3 appears to more selectively illustrate samples with these problems than
presenting the data in the form of Figure 2. Most deviations of Figure 3 occur for the higher external
fields, when the critical state is extending throughout the tape and reaching the lower layer boundary.

To obtain the critical current value for any other sample, the relationship between H* and J.d
must be known quantitatively. This relationship can be obtained through measuring critical current and
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Figure 3. Normalized AC Signals for the Four Samples of Figure 1 as a Function of the Scaled
Excitation Coil Current

layer thickness - Jo, and d, for one sample at some known temperature, T,, by the DC transport
technique and by measuring AC probe results, compared to the reference curve as before,
H*(T,)/H*(Tg). The critical current for the unknown sample is then given by:

J.Md  HD/HYTY

JoTyd,  HT)/H'T)

Figure 4 shows the resulting scale factors for the entire set of 12 samples at 77 K. The scaling
factors are proportional to the full-field penetration value (H*) for that sample. Data from sample 1A at
Tgr = 91 K was used as the reference curve. Theoretically, there should be a linear relationship between
critical current density (J.) and full-field penetration value (H*). Results in Figure 4 are shown
compared to a least squares fit straight line, which serves as a guide to the eye. There are several
reasons why there may be considerable scatter in the results. The critical current densities were obtained
by the contact DC transport method, which averages more than at least 1 cm of tape length, whereas the
AC probe is more local. The two measurements were not taken at exactly the same location along the
tape, as the samples tested here are cuttings from a longer tape. Also, the superconducting tape
thickness used to determine the DC transport critical current density could only be approximated by
taking one-third of the total tape thickness, since there was no way to obtain this value without
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sectioning the tape samples. Results are better correlated when one sample is used to find comparative
values of J. at different temperatures.
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Figure 4. Results for the Entire Set of 12 Samples Comparing the Full-Field Penetration Values

Obtained from the Scaling Factors Used in Figure 3 with the Independent DC Transport Critical Current

Density Measurements at 77 K

SUMMARY

This paper described a procedure, using induced screening currents, to measure the transport
critical current in high T, superconductors. The method is quantitative and applicable to practical
geometries, such as tapes. Data shown are consistent with the DC transport results and illustrate how
the local AC probe can be used to compare various locations along a given tape or to compare different
tapes. Either a full analytical determination of the critical state response in the probe/sample geometry
or a normalization with a DC transport J. measurement of a reference sample is required. The small
size of the probe allows spatial measurements within a resolution determined by coil size. The utility of
the method was demonstrated by measuring a set of 12 samples prepared by the powder-in-tube method

using varying pressing parameters.
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ABSTRACT

We have developed a new photothermal technique to investigate electronic phase transitions
of high temperature superconductors. The phase shift of the thermal wave yields the anisotropic
thermal diffusivity coefficient of the sample. The amplitude of the photothermal signal is sensitive
to electronic phase transitions of the second kind. The technique is completely noncontacting and
nondestructive, and is well suited to measure small and fragile single-crystal high-T superconduc-
tors. The measurements give good agreement with fluctuation theory near the transition tempera-
ture. We have studied diffusion in and superconducting fluctuations of single crystals of
YBazCu307.5 and BiySryCaCu,Og. Both systems show fluctuation effects beyond Gaussian fluctu-
ations. While YBapCu307.5 behaves as a three-dimensional anisotropic superconductor, results on
BipSryCaCu,Og indicate strong two-dimensional effects.

INTRODUCTION

High quality single crystal specimens of the newly discovered high-temperature supercon-
ductors are small. Their anisotropic thermal properties are often difficult to measure with standard
bulk techniques, and the effect of electronic phase transition on the thermal properties is often
masked by the dominant thermal properties of the bulk material. Therefore, a method that can mea-
sure thermal properties on a very small scale, and is sensitive to electronic phase transitions, is de-
sired.

In this paper, we describe a new photothermal technique that has the following capabilities:

1) It can measure anisotropic thermal diffusivity within an area of ~20 um?2.

2) It can measure a quantity that is proportional to the specific heat; hence, it
can provide useful information about the specific heat anomaly through the
transition.

The photothermal technique uses a modulated focused light beam to periodically vary the
temperature of a superconductor on which the beam impinges. The thermal waves excited, periodi-
cally vary the refractive index, and hence the optical reflectivity R, of the sample. The rate of
change of optical reflectivity with temperature JR/JT of the sample is detected with a second fo-
cused light beam. From the phase of the thermal wave, we can directly determine the anisotropic
diffusion coefficient of the material. Since the light couples energy directly to the electrons in the
material at the probe spot, the amplitude of the reflected probe beam is sensitive to the electron den-
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sity of the sample. This makes photothermal microscopy an extremely useful technique to investi-
gate directly the thermodynamic fluctuations of the electron density and density correlation near a
phase transition. The periodically-varying amplitude of the reflected detecting beam shows a large
peak near the critical temperature T, and this amplitude can be shown to be proportional to the sin-
gular part of the specific heat. The results can then be compared with the Ginzburg-Landau fluctua-
tion theory for phase transitions of superconductors.

The technique is completely noncontacting and nondestructive. More importantly, since we
focus light down to spot sizes of 2 pm in diameter, with a 10-15 um separation between the heat-
ing spot and probing spots, we can measure directional thermal diffusivity locally within one do-
main of a single-crystal high-T¢ superconductor. Similarly, the fluctuation measurements are made
in a very small region, a few cubic micrometers in extent.

DIFFUSION THEORY

In an anisotropic medium, if we align the coordinate axes along the principal axes so that the
anisotropic thermal diffusivity x;; =0 for i = j, the homogeneous diffusion equation becomes:

T ar
K T PCor

where T is the temperature, p is the density, and C is the heat capacity. This equation can be
written in a familiar isotropic form by changing the independent variables to x'; = x;4/K/K;;

x? Dot

i=1 i

-J°T 10T

where D = x/pC is defined as the isotropic thermal diffusivity in the new coordinate system. Fora
periodic temperature variation, expjax, the solutions for a point excitation are in the form of damped
thermal waves: (1/7')exp—(1+ j)r'J@/2D. If the phase delay A¢; of the temperature variation at
a distance Ax; away from the excitation source is measured along the ith directiop, the thermal dif-
fusivity can be determined along this direction by writing D';=(0/2)(Ax;/A¢;)". To account for
the finite size of the heating and probe beams, we have used a full three-dimensional model with a
Gaussian beam excitation to solve for the temperature variation, using the primed coordinate system
defined above. However, with a spot size of 2 pm , and separation distances between the exciting
and detecting beams over 12 pm apart, the simple approximation of a point source and point detec-
tor beam yields results very close to the full three-dimensional solution.

EXPERIMENT

The experimental set-up is shown in Fig. 1. An argon laser beam (514 nm) is acousto-opti-
cally modulated at a frequency of a few kiloherz and focused onto a sample; this beam periodically
modulates the temperature of the sample and excites a thermal wave with a diffusion length of the
order of 10-40 pm . At a known distance away, typically 10-15 pm , another infrared semiconduc-
tor laser (780 nm) is focused onto the sample and is used as a probe beam; a semiconductor laser is
chosen because of its low noise. The reflected infrared laser light is selected with a dichroic filter
and beamsplitter and impinges on a PIN photodiode whose output signal is measured with a lock-in
amplifier. The amplitude of the detected signal is proportional to dR/dT , where R is the reflectiv-
ity of the sample and the phase relative to the modulation of the incident beam is the result of ther-
mal wave propagation from the heating spot to the probe beam spot.. As already discussed, we use
the phase information to determine the anisotropic diffusion constant of the sample in the direction
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Fig. 1. Experimental setup for photothermal measurement of high-T, superconductors.

between the two laser spots. Phase measurement has the great advantage for this purpose that it is
independent of the incident signal amplitude or the reflectivity of the sample.

To measure the amplitude and phase of the output signal as a function of temperature, the
sample is mounted on a cold finger in a cryostat. The pressure inside the cryostat is kept below
2 x 107 torr to limit the ice build-up on the surface of the sample. The optical beams are focused
by a 0.33 NA long working distance lens onto the sample through a 100 pm thick sapphire win-
dow, made this thin to minimize aberrations of the focused beams.

During the cooling or heating process, the tip of the cold finger tends to move as a result of
mechanical contraction or expansion. Therefore, an autofocusing mechanism is employed to adjust
the z-position of the objective to ensure that the surface of the sample is always in focus. A
focusing error of +1 um , well within the depth of focus (5 um) of the focused beam, is easily
achieved in our measurements . The photothermal microscope is also used as a conventional mi-
croscope. A tungsten lamp is added to the optical path of the system to illuminate the sample sur-
face, and a high-pass filter is placed in front of the lamp to reduce its heating effect on the sample,
which is imaged with a CCD camera. This makes it possible to compensate manually for the
movement of the sample in the x- and y-directions with a motorized stage, and to select a crack-free
region of the sample for the measurement.

To ensure an accurate temperature measurement of the sample, we reduce the static heating
effect of the lasers. The laser power of both the heating and probe lasers is limited to only a few mi-
crowatts. The optical beams are focused to spots of 2 microns in diameter. A three-dimensional
theoretical simulation indicates that the temperature rise due to heating by the beams is less than
1K . The temperature reading of a silicon sensor attached to the sample mount is verified with an
in-situ magnetic susceptibility measurement. As shown in Fig. 2, two coils are embedded inside the
sapphire sample mount underneath the sample. The larger coil is driven with an ac current and the
induced voltage in the smaller coil is measured with a lock-in amplifier. At the transition tempera-
ture T, a sharp change in the induced voltage is observed.

The measured temperature dependence of the thermal diffusivities along the Cu-O plane and
the c-axis of an 87 K phase of BizSroCaCuz0Og is shown in Fig. 3 . The superconducting transition
appears in the ab-plane diffusivity as a large change in the slope with temperature.! Very little
change in the diffusivity along the c-axis is observed, and the diffusivity in this direction is much
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Fig. 3. Thermal diffusivity measurements of single-crystal BipSroCaCujOg along the Cu-O plane
and the c-axis. The heavy line shows the in-situ measurement of the induced voltage in the
pick-up coil undereath the 87 K crystal. The sharp transition in the induced voltage
indicates the superconducting transition.

smaller than along the a-b plane. These are the first direct measurements of diffusivity rather than
thermal conductivity in these materials. Such measurements are convenient as a check on the the-
ory, since they are not dominated, as the thermal conductivity measurements are, by the rapid de-
crease of heat capacity below T.. The increase in the thermal diffusivity below T, is caused by a
drop in electron-phonon scattering as the electrical carriers condense into superconducting pairs,
since estimates based on electrical resistivity measurements and the Wiedemann-Franz Law indicate
that the major part of the heat flow is transmitted by the lattice. Therefore, the loss of the electronic
component of diffusivity below T, more than offsets the bulk diffusivity and contributes substan-
tially to tflle increase in the phonon mean-free path. Further discussion of these results is given by
Wu et al.

Another set of measurements of the diffusion as a function of temperature in YBa,;Cu3O7.5
is shown in Fig. 4. A major advantage of measuring within a small volume is demonstrated by these
results, where the diffusivity measurements were conducted fora 10 um spacing between the exci-
tation and the probe areas in a single YBCO domain, and across the twin boundary. For compari-
son, the diffusivity measurements for thin YBCO films using another optical technique, the transient
grating method, in a region 200 pm across, are also shown. It will be seen that, above the transition
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temperature, the thermal diffusivity decreases slowly with temperature. The diffusivity measured
over large-area thin film samples (200 pum across), and across a grain boundary, agree with bulk
measurements, but the diffusivity measured within a grain is approximately twice as large as the
measured value across a grain boundary. This result indicates that there must be a large change in
temperature across the grain boundary, and tends to indicate that phonons (presumably optical pho-
nons) and normal electrons (which contribute to diffusion) are reflected at the grain boundary.?
Further measurements with variable spacing between the two beams confirm this hypothesis.

Below T, the data for different samples differs dramatically. For the single domain for
T <T,, diffusivity increases sharply over two orders of magnitude. This diffusivity enhancement
can be explained only by removal of free carriers from the conducting state into the superconducting
condensate. For samples of lower quality, the enhancement is less sharp, especially for the thin film
sample where the superconducting transition has almost no effect upon the diffusivity. The mea-
surement through the twin boundary is intermediate between the other two curves. The twin bound-
ary, though thin compared to the beam spacing, creates significant additional resistance for heat
transfer. The diffusivity enhancement is evidence of the phonon mechanism of heat transfer inside a
single domain. In thin films, scattering by point defects independent of the free carrier density prob-
ably dominate. We have shown? that the experimental results indicate that the scattering rate of
phonons is proportional to the number density of normal electrons at temperatures below T, .
Furthermore, the number density of normal electrons varies with temperature, much like the predic-
tions of BCS theory, although there are considerable experiment-theory differences near Te.

Figures 5 and 6 show raw data for the measured dR/dT of a YBa,Cu: O7.sand
BiySryCaCu,Og crystals, respectively. Both figures clearly indicate a sharp givergence of the am-
plitude of the photothermal signal at the superconducting transition above a slowly-varying back-
ground amplitude, as indicated by the accompanying inductive measurements.

The optical method described below has the advantage that it measures a volume small
enough, typically much smaller than a single crystallite, to avoid gross inhomogeneities. Following
our analysis of the nature of the divergence, we conclude that for YBayCu305, Gaussian
fluctuations are observable for a temperature range as wide as +35 K ‘around T, while close to the
transition critical fluctuations are observed. The critical region is established to be of the order of
(T -T )T, ~0.05 , in good agreement with other published data. For BiySr,CaCuyOg, the result is
more consistent with quasi two-dimensional behavior, similar to that in thin superconducting films.

Using Ginzburg-Landau theory, with Gaussian fluctuations as the first correction, we expect
the excess specific heat to diverge as C+[(T - T.¥TJ-®, where o= (4-d)/2 ,the + and - signs
denote above and below the transition, respectively, and d is the dimensionality of the interaction.
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Fig. 6. Amplitude response of the photothermal signal measured on an 87 K single-crystal
Bi,Sr,CaCu,Og superconductor. The full line is the induced voltage of the ac in-situ sus-

ceptibility measurement.

The amplitude of the fluctuating specific heat obeys C4+/C. = 2:42p  where n is the number of
components of the order parameter.

We have argued above that the intensity of the reflected light is proportional to drR/dr ,
where R is the reflectivity of the sample. In general we can write:
dR _JRdy  dRdo
—— +
dl JdydTl dJdodrl

?

where ¥ = xn+ Xs and 0=0y + 05 , ¥ and O are the dielectric response and the electrical con-
ductivity, respectively, and the subscripts n and s, denote normal electrons and superconducting
electron pairs, respectively. Assuming that %, and 0, are smooth functions of temperature, we
have shown that at optical frequencies the dominant singular term is:
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which indicates that dR/dT diverges at the phase transition in the same way as the specific heat.

The above simple analysis is the basis of our understanding of the diverging part of the pho-
tothermal data. However, the amplitude response we measure is not entirely due to fluctuation ef-
fects. Note that in both Figs. 5 and 6 there is a well behaved background above T, which is clearly
not associated with superconductivity, resulting from some temperature-dependent material proper-
ties in the normal state. Figure 7 shows the amplitude response for YBCO with a linear back-
ground, as extrapolated from high temperatures, subtracted from the curve of Fig. 5. The result
indicates a very broad temperature range from 45 K below the transition up to 60 K above T,
where fluctuations are detected.

Amplitude-Background
{arb. unit]

T-T_[K]

Fig. 7. Amplitude response of photothermal signal measured on a 93 K phase single-crystal
YBajCu3017.5 superconductor with a linear background subtracted. The solid lines are
power-law fit with C,/C. setas 0.7 . The dashed line indicates the mean-field step jump
needed for the best fit.

For YBayCu307.5, with a dimensionality of d =3, fitting the data to the above relation, we
find that, as in specific heat measurements, a small background jump AC must be subtracted from
the total value of C. The solid line in Fig. 6 represents the best fit for n = 2, allowing the back-
ground to have a different slope below and above T.. Closer to T, , the data indicate that a differ-
ent, weaker, divergence has to be involved. In fact, by using a slowly-varying parabolic back-
ground, we can fit the data to a logarithmic function of reduced temperature. The fit is good over a
decade in reduced temperature (from 0.005 to 0.05), especially for data above the transition. The
crossover to the critical region occurs within about 5K around T, in good agreement with simple
estimates based on material properties.3

There is a qualitative difference in the raw data between YBa2Cu307-§ and
Bi,SryCaCuyOg (Figs. 5 and 6). The divergence is weaker for Bi;Sr,CaCuyOg, although the onset
is much steeper for this crystal. Since the Bi;SryCaCuyOg system is much more anisotropic, we ex-
pect two-dimensional behavior in all of the accessible temperature range near T, and, in fact, can
fit the data away from the peak with a value of d=2 and an amplitude that variesas 1(T" - T;)
using similar procedures to those already described. An analysis of the data indicates good
agreement with theory for the specific heat of Rickayzen et al,# which solves the Ginzburg-Landau
Hamiltonian for the two-dimensional case. Figure 8 shows the data of Fig. 6, now the normalized
amplitude divided by the temperature, is plotted against temperature. The solid line is a good fit to
Rickayzen's theory. Note that the data indicates a slightly sharper feature than the theoretical one.
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CONCLUSIONS

We have described a photothermal microscope that can measure anisotropic thermal diffu-
sivity and investigate diffusion and electronic phase transitions of high-temperature superconduc-
tors. Since we use focused laser light to excite and detect thermal waves, the technique is com-
pletely noncontacting, nondestructive and well suited for small high-T; samples.

We have made the first measurements of thermal diffusivities along the Cu-O superconduct-
ing plane and the c-axis within one domain of single-crystal samples of BiSroCaCusOg and
YBa2Cu307.§. The ab-plane diffusivity undergoes a sharp increase below the transition, which is
evidence of the decoupling of electrons and phonons. A similar effect is not observed along the
c-axis. Since thermal diffusivity near T, is a direct measurement of the electron-phonon scattering
process, accurate measurement of thermal diffusivity without the interference of grain boundaries
can supply important information about the superconductivity mechanism.

The amplitude of the photothermal signal shows a strong divergence at the superconducting
transition. This divergence in the modulated signal above T, is a direct observation of the thermo-
dynamic fluctuations of the electron density and density correlation. We have shown that the ampli-
tude signal diverges in the same way as the electronic specific heat. We have seen similar effects at
the charge density wave phase transition in NbSej. It is apparent that photothermal microscopy can
also be used to observe other electronic phase transition processes with unique sensitivity and selec-
tivity.

This work was supported by the Department of Energy (DOE) under Contract No.
DE-FG03-90ER14157.
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DIELECTRIC STUDIES OF FLUIDS WITH REENTRANT RESONATORS
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ABSTRACT

We have used a reentrant radio-frequency (rf) cavity as a resonator operating near 375 MHz to
measure changes in the dielectric constant of fluids within it. The utility of these measurements was
demonstrated by determining the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate
replacement refrigerant (denoted R236ea) and by detecting the phase boundaries in the mixture
{(1-x)CoHg + xCO,}, for the mole fraction x = 0.492. The densities of the coexisting phases of the
mixture were determined using the Clausius-Mossotti relation which has errors on the order of 0.5 %
in this application. To test the accuracy of the present techniques, the rf resonator was calibrated with
helium and then used to redetermine the molar polarizability A, of argon. The results were in
excellent agreement with published values. Our design of the reentrant resonator makes it suitable for
use with corrosive fluids at temperatures up to 400°C.

1. INTRODUCTION

In the present work, we are extending techniques for measuring the dielectric constants of fluids
at radio frequencies (rf). The primary objective is to develop a versatile, reliable, automated method
of detecting the density changes associated with the onset of phase transitions in fluid mixtures. Such
a method would be an economical alternative to those tedious conventional experimental
investigations of dew and bubble curves that rely on visual observation of the first onset of liquid or
vapor. Conventional investigations often involve sample volumes on the order of 500 cm3 and suffer
uncertainties arising from "dead” volumes. Sometimes, these apparatus use mercury to vary the
volume. If so, they cannot be used at high temperatures. The methods developed here use samples on
the order of 60 cm3 and are applicable to high temperatures.

Capacitors that can be easily filled with various test fluids have a capacitance of no more than a
few hundred picofarads in vacuum. Thus, at audio frequencies, they are high-impedance electrical
sources (typically 0.1 - 1 MQ). It follows that the measurement of the dielectric constant at audio
frequencies puts great demands on the insulators that are used to maintain the stable mechanical
spacing between the conducting plates. Furthermore, even the slight conductivity that results from
polar impurities in normally insulating fluids may interfere with the measurements. As the
temperature is raised, the conductivity of most fluids increases and the difficulties in measuring the
dielectric constant at audio frequencies increases.

At rf and microwave frequencies, the source impedance of capacitors is much lower; therefore, a
greater parallel conductivity can be tolerated. Furthermore, as shown below, rf capacitors can be
designed that do not have insulators in critical locations. This avoids metal-insulator joints that are
often troublesome when they are subjected to stresses from either thermal expansion or applied
pressure.
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2. REENTRANT CAVITIES

Reentrant rf cavities have been used to accurately measure the dielectric constant and losses of
solid insulators [1,2] at frequencies of 50 - 1000 MHz. They have been used by Van Degrift as
pressure sensors and he proposed that they be used as thermometers, accelerometers, and liquid-level
indicators. [3,4].

In a first approximation, reentrant cavities function as a parallel LCR network with a resonant
frequency given by

2rf=C)Y72 1)

where L is the inductance and C is the capacitance. For a resonator constructed from non-magnetic
materials, both L and C are determined by the geometry of the cavity and by the electrical properties
of the fluid within it. L is proportional to the relative permeability u, of the fluid and Cis
proportional to the dielectric constant of the fluid &. For almost all fluids, (1-1) << (&-1); therefore,
the changes in f are dominated by the changes in the capacitance. {As an example, we mention
difluorodichloromethane at 298 K and 0.1 MPa for which (i-1) = 1x10-8 [5] and (g-1) = 3x10-3}
Thus, the problem of measuring changes in the dielectric constant is reduced to the easier problem of
measuring changes in a resonance frequency.

A cross-section of one reentrant resonator used in this work is shown in Fig. 1. Most of the
resonator was comprised of two metal parts. The lower part was a hollow cylinder closed at the
bottom. It had an internal radius b = 25 mm and a wall thickness of 10 mm. The upper part of the
resonator served as a lid to the cylinder and had a bulbous coaxial extension into the cavity. Near its
top, the extension to the lid had an outer radius ¢ = 5 mm and an effective length / = 18.5 mm. The
bulbous portion of the extension had an outer radius @ =24 mm and a length M =20 mm. The
assembled resonator had an internal volume of approximately 60 cm3.

When the resonator was assembled, an annular gap 1 mm wide separated the bulbous extension
of the lid from the inner surface of the cylinder. To a first approximation, we measured

Co-axial cable —___ ; Thermometer the dielectric constant & of the fluid in this gap.
! well The capacitance of the gap was estimated from
I
Weld I C=gé&2nM/In (bla) =27 pF, 2

where & is the permittivity of vacuum. This

estimate for C is approximately 10% too small

 because it neglects the capacitance of the volume

Gold o-fing peneath the bulbous extension. The inductor L

inductor was formed by the upper part of the cavity and
has the approximate value:

\

%
L/
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-

Bolt
° L= linGlc)/@n) =596 nH,  (3)

Capacitor \where g1, is the permeability of vacuum.

The amplitudes of the rf fields decay
exponentially within the metal walls of the
resonator. At 375 MHz, the decay length is:

S=(muy ity 612 = 6.8 um, 4)

where p, and o are the magnetic permeability and

FIGURE 1. Cross-section of the reentrant cavity. the conductivity of the wall, respectively. For the
brass resonator, we used the electrical resistivity

from [6].
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The resistance R that appears in series with the inductor and in parallel with the capacitor was
estimated from
1 (1, 1

R=pee i Ly 2ln(c/b)} ~ 12 mQ. )

Here I’= 17 mm was the length of the inductor at its inner radius ¢ and !/’ ’= 40 mm was the sum of
the length of the inductor at its outer radius b and a length M to account for the effective current path
in the capacitor.

The resonance frequency predicted by Eq. (1) is 394 MHz; however, it was found to be
375 MHz. This 5% difference is not surprising because the dimensional measurements and the model
for the reentrant resonator represented by Eqgs. (1) - (5) are very crude in comparison with the
precision of the frequency measurements. Furthermore, we expected corrections to C on the order of
5% resulting from fringing fields [(b - @)/M = 0.05] and comparably sized corrections from the volume
below the gap. Corrections to L and C from the rf decay length are on the order &/(dimensions of the
cavity). For the smallest dimension of the capacitor they are 6/(b-a) = 7 um/1 mm = 0.007. There are
also corrections to Eq. (1) on the order of 1/Q2, depending on how the resonance is excited and
detected.

In the simple model presented here, the quality factor for the brass resonator at 375 MHz is
estimated to be:
Q=2nfL/R = 1155. ©)

The measured value of @ was only 604. Some of the excess loss was traced to excessive coupling of
the rf out of the resonator. The coupling loops in the prototype resonator were approximately
semicircles 5 mm in diameter and in a plane through the axis of the resonator. In future work, the
coupling will be reduced by rotating the planes of the loops.

Both parts of our first reentrant resonator were machined from a single cylindrical billet of
yellow brass (65% copper, 35% zinc). The parts met at an interlocking step. The step ensured
accurate concentric alignment of the parts when they were bolted together. The assembled resonator
was sealed with a gold O-ring; thus, its outer shell acted as a pressure vessel. The data reported
below were obtained this brass resonator. Subsequently, we have manufactured a resonator from
Inconel 625 [7] for use at high temperatures.

In the prototype resonator, the two electrical feedthroughs were formed from stainless-steel,
PTFE-insulated, coaxial cables that were sealed into the lid with high-pressure conical fittings
machined from nylon. In the high temperature version of the resonator shown in Fig. 1, special high-
temperature coaxial cables were welded into plugs that were themselves welded into the lid of the
resonator. The seals in the high-temperature cables are the only insulators in that resonator. Such
seals are often used in high vacuum systems which are baked at 450°C. In the rf resonator, the
electrical resistance of the seals can be much smaller than the resistance required of spacers used in
capacitors at audio frequencies. Furthermore, the dimensional stability of the seals is not critical.

In our prototype work, the resonance frequencies f and quality factors O were measured with a
network analyzer. When the network analyzer excited the resonator at 0 dBm, the signal detected at
resonance was -14 dBm. The complex transmission coefficient S5, was measured at a series of
frequencies near the resonance at 375 MHz and the data were fitted to determine f and Q. Typically,
the standard deviation of the fit was fractionally 5x10-8%f, and f and Q were determined with
precisions of approximately 10-7 and 104, respectively. The next higher frequency resonance was a
microwave mode near 2.1 GHz; its overlap with the 375 MHz 1f mode was negligible.

During future routine applications, we anticipate that the reentrant resonator will be used as the

frequency-determining element in an oscillator and that a comparatively inexpensive frequency
counter will be used to monitor changes in the fluid's dielectric constant.
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3. EXPERIMENTAL PROCEDURES AND MATERIALS

3.1 Gas handling procedures: Measurements on the pure fluids discussed below were obtained
along isotherms. To obtain phase boundaries of a fluid mixture under precisely controlled conditions,
the following operations were used: (1) The resonator and capillary filling lines were baked at 360 K
under vacuum; (2) the homogeneous sample was slowly expanded into the cavity; (3) when the
required pressure had been attained the resonator was sealed and its contents remixed until the
frequency f and pressure p had been stable to within pre-set limits; (4) the apparatus was cooled to
within = 5 K of the known phase envelope, and the isochore commenced; (5) at each of the 0.25 K
temperature steps the frequency, temperature, and pressure was measured; (6) after the phase
transition had been determined, the cell was returned to a temperature = 20 K above the transition, and
the sample was heated asymmetrically to remix it convectively; (7) when the sample was
homogeneous, as indicated by f and p, a small quantity of fluid was expanded out of the resonator;
and (8) steps 4 through 7 were repeated until data were obtained.

3.2 Additional capacitance measurements: The phase boundaries of the mixture
{(1-x)C;Hg + xCO,} (with x =0.492) that were determined with the reentrant resonator were
compared with additional capacitance measurements that used a conventional capacitor and a
capacitance bridge operating at 1 kHz. The capacitor used for these additional measurements had
been constructed by Younglove and Straty [8]. The electrodes were coaxial cylinders held in place by
cones at each end and insulated with a 12 um thick Kapton [7] polymer sheet.

3.3 Thermostat and thermometry: The entire resonator as well as the valve used to seal the test
gas within it, were suspended inside a stirred fluid bath that was thermostatted to 1 mK. The
temperature of the sample was determined with an industrial-grade stainless-steel-sheathed platinum
resistance thermometer and is reported on ITS-90. As indicated in Fig. 1, a blind hole was drilled into
the lid of the resonator to accept the thermometer. Resistances were measured with a d.c. digital
multimeter operating at a current of 1 mA, with a resolution of 0.1 m( and a fractional accuracy of
4.5x10-5. When the current was reversed, no differences were observed in the multimeter reading.
The short term accuracy of the multimeter was continually determined by comparison with a standard
resistor.

3.4 Pressure measurement: Two pressure gages were used for these measurements. For the
dielectric constant measurements, pressures were measured with a fused-quartz bourdon-tube
differential pressure gage. The manufacturer's calibration data indicated that the gage had a full scale
of 10 MPa and was linear to 1x10-5. However, the zero pressure indication of the gages varied by up
to 1 kPa between checks. The reference port of the gage was continuously evacuated by a mechanical
vacuum pump and monitored with a thermocouple vacuum gage. For the phase boundary
measurements another quartz pressure gage was used. It had a precision of 0.01 kPa and the
manufacturer stated that its accuracy was 0.3 kPa. It was mounted in the thermostat fluid with the
sensing element in the same plane as the center of the capacitor. When we compared this device to
the fused-quartz bourdon-tube differential pressure gage, we found differences of 4.29 kPa at pressures
between 0.1 MPa and 6 MPa. When this offset was accounted for, the discrepancies were reduced to
less than 0.1 kPa, a level more than adequate for our purpose and well within the manufacturer's
quoted accuracy.

3.5 Characterization of gases: The gaseous mixture (1-x)CoHg + xCO, with x=0.492 was
prepared gravimetrically by Magee [9] and was used by him for specific heat measurements and by
Weber [10] for equation-of-state measurements. We used a diaphragm pump to compress this sample
from its low-pressure (=700 kPa) storage containers into a 1000 cm3 vessel at a pressure greater than
9 MPa. During the compression, the temperature of the gas manifold was maintained at least 20 K
above the cricondentherm. After pumping, the mixture was convectively remixed. The carbon
dioxide and ethane were both research grade materials supplied by Matheson Gas Products, Inc. [7]
with a stated minimum mole fraction purity of 0.99995 and 0.9996, respectively.

The sample used to determine the dipole moment of R236ea was supplied by PCR Inc. [7] which
claimed that it had a minimum purity of 0.995 on a mole fraction basis. No information was provided
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concerning possible water and air impuritiecs. We analyzed the manufacturer's sample with a gas
chromatograph fitted with a thermal conductivity detector and 3 m column packed with Carbopack
and 5% Fluorcal [7] as the stationary phase operating at a temperature of 383 K. Four impurities were
detected: one was air with a mole fraction of 0.025 and the remaining three were not identified.
Presumably they were other halogenated hydrocarbons. The ratio of the area of the unidentified peak
to that of the sample was 0.0013. Before use, the sample was degassed by vacuum sublimation and
dried over 0.4 nm molecular sieve.

During the course of a set of measurements on each isotherm, aliquots of R236ea were cryo-
pumped from the reentrant resonator into an ampoule. The sample recovered from the ampoule at the
conclusion of the experiment was analyzed with the same gas chromatographic techniques described
above and no air was detected in it.

4. RESULTS AND ANALYSIS

4.1 The empty reentrant resonator: When the prototype reentrant resonator was assembled in
ambient air, its quality factor Q was approximately 400. At this stage the surfaces of the cavity had
turning marks left from the machining process. The interior surfaces of the resonator were then
polished with successively finer grades of emery paper and cutting oil and finally a commercially
available brass polish. After polishing, most of the tooling marks had been removed and the Q had
increased to approximately 600. We then determined the resonance frequency of the evacuated
resonator f(p=0,T) at 13 temperatures between 280 K and 340 K. The results can be represented as a
function of the Celsius temperature ¢ by:

f(p=0,0) = (374.9679 + 0.0004) MHz x [1 + (19.04 £ 0.07)x10-6¢ - (5.8 £ 0.9)x10-9:2] )

The linear coefficient of thermal expansion, 19.04 £ 0.07, was in excellent agreement with a value
from the literature [11]. Measurements obtained while increasing and decreasing the temperature
differed by less than 2x10-6 demonstrating the short-term mechanical stability of the resonator.
However, measurements of fip=0) following application of pressure to the resonator differed from
Eq. (7) by as much as 45 ppm (parts per million). Presumably, a steel resonator would have less
hysteresis.

4.2 Calibration of the resonator with helium: The capacitance associated with the rf resonance
is determined by the small gap in the reentrant resonator; thus, it is particularly sensitive to the
dilation of the resonator that occurs when unequal pressures are present inside and outside the
resonator. The pressure dependence of the capacitance C(¢,p) was determined from measurements of f
with helium in the resonator at pressures spanning the range 10 kPa to 300 kPa at 7 temperatures
between 280 K and 340 K. For this analysis, we used the dielectric constant of helium from
measurements of the temperature and pressure by using the virial equation of state together with the
expansion of the molar polarizability P in terms of the density:

P=(g- /(& +2)p] =Ac+Bep +Cep? - - -, @®)

We used the value A, = (0.5196 + 0.0002) cm3- mol-! from [12] and the value B = 11.59x10-6 m3/mol
from [13] for the second virial coefficient of helium. The results of the calibration were expressed as
a calibration factor o

oft,p) = C(1,0)/C(t,p) = [1 + 5.463x10-10(p/Pa) x (1 + 4.48x10-41)]. )
For subsequent measurements with other gases, the dielectric constant & was deduced by multiplying
the square of the resonance frequency ratio f2(2,0)/f2(t,p) by o(t,p). We compared Eq. (9) with a

simple model for the resonator that used the elastic constants of brass [14]. The model overestimated
the pressure dependence of oft,p) by 30%.
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4.3 Dielectric constant of argon: We
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Fractional deviations of the measured total polarizability P from the value 4.135 cm3/mol.

4.4 Dielectric constant of R236ea: The reentrant resonator was used to measure the dielectric
constant of R236ea at nine temperatures between 273.2 K and 350 K. The greatest pressures were
restricted to 0.6 times the vapor pressure to avoid the effects of precondensation; none was observed.
The results are shown in Fig. 3(a). The data for R236ea reveal temperature-dependent & in contrast
with the data for argon. Molecules such as R236ea have several conformal isomers with different
dipole moments. The populations of the isomers vary with temperature leading to a temperature-
dependent dipole moment (7). We deduced 1(T) from the Debye equation

A, = Acfatom.) + Acfelec)) + [4nNo/{9(@meq)k}IH2(DIT (10
where Ag(atom.) and A.(elec.) are the atomic and electronic contributions to the molar polarizability, No
is Avogadro's constant, and k is Boltzmann's constant. We obtained the value Ac(elec.) =
15.9 cm3- mol-! from measurements of the refractive index n of liquid R236ea using methods and an
apparatus that has been described in detail elsewhere [16]. The measured refractive index was
corrected to zero frequency using the empirical observation [17] that n(f=0) = 0.99n(f) to obtain

= 1.2359. Then A(elec.) was deduced using the Lorentz-Lorenz relation

(n2 - 1)/(n2 + 2) = p(p,T1)Ac(elec.) n

together with a measurement of the molar density of liquid R236ea reported by others [18]. In the
absence of spectroscopic information with which to determine Aq(atom.), we resorted to the observation
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FIGURE 3. (a) Measurements of the dielectric constant & for R236ea as a function of density p. (b)
Dipole moment g for R236ea as a function of the temperature 7.

that Ag(atom.) = 0.17A¢(elec.) [17]. For R236ea, Ac(atom.) contributes less than 6 % to A, and a 5 %
error in Ac(atom.) would lead to a fractional error in g of only 0.001 in the worst case. The values of
the dipole moment (T are shown in Fig. 3(b).

The dielectric constants of polar molecules such as R236ea are frequency-dependent. To estimate the
scale of this effect, we remeasured the dielectric constant of 2-(difluoromethoxy)-1,1,1-triflucroethane
(E245). At 335.84 K and 33.3 kPa, we obtained the value & = 1.002512 at 377 MHz. This value is
0.000048 smaller than the value & = 1.00256 obtained at 1 kHz under similar conditions [19]. The
difference is 2.4 times the uncertainty in the 1 kHz value and has the sign expected of dielectric
relaxation. If extremely accurate values of & are required near zero frequency, attention should be
paid to dielectric relaxation.

4.5 Phase diagram for the mixture (0.508 C,Hg + 0.492 CO,): To detect the onset of phase
separation in mixtures, we confined each sample to the resonator and monitored the resonance
frequency as the temperature was reduced. To a good approximation, the density of the sample (and
the resonance frequency) did not change until a second phase (either a bubble or a drop) formed. The
formation of a second phase was accompanied by flow of some of the parent phase into or out of the
capacitor.

Fig 4(a) shows the results for the binary mixture (0.508 CO, + 0.492 C,Hg) when the density
was 4.687 mol/dm3 and when the temperature was in the vicinity of a dew point at which a droplet of
liquid formed in the resonator, presumably near its bottom. As the temperature was reduced in steps
of 0.25 K, each lasting one hour, the droplet grew and the density of the remainder of the sample,
including the sample within the annular capacitor, decreased. The frequency increased as the
capacitance decreased. The onset of condensation was determined with a precision of + 0.06 K. (At
the phase transition df/dT = -1 MHz-K-1, and the fractional precision in each frequency measurement
was about 5x10-8.) At precisely the same temperature that df/dT had a discontinuity, the derivative of
the half-width of the resonance frequency dg/dT also had a discontinuity. The half-width is a function
ogfthe if decay length & which itself depends upon the frequency through Eq. (4) and through other
effects.

The values of f near a bubble point at a density of 12.508 mol-dm3 are shown in Fig. 4(b). They
provide further evidence for the extraordinary precision with which phase changes can be detected
using a reentrant resonator. At this density, df/dT = 1.5 MHz-K-1.

From our measurements of & and A. for each component, and assuming A.(x) is equal to the
mole fraction sum, we estimated the density p of the fluid within the capacitor. We used the coaxial

145




387 | | 818 l
mdm!mw:
4 mol/dm® 12 mol / dm® o
[o]
(o]
o]
°O
x %, 316} K -
s N o
- O, [+]
Oo oo
om% 314 Oo
QG °°°
350 ! | L |
280 285 290 280 285 290
T/K T/IK

FIGURE 4. Frequency of the reentrant resonator filled with the mixture (0.508 C,Hg + 0.492 CO,).
Left: dew point on the isochore p=4.687 mol-dm—3 where 7Td=(286.98+0.06)K and
pd = (5110 £ 8) kPa. Right: bubble point on the isochore p=12.51 mol-dm-3 where
Tb = (285.15 £ 0.06) K and pb = (5025 * 15) kPa.

capacitor [8] and 1 kHz bridge to determine A.(CO,, 1.45 MPa, 293.1 K) = 7344 cm3-mol-1 and
A.(CoHg, 2.77 MPa, 293.1 K) = 11150 cm3-mol-1. Based on the vapor-liquid equilibria and dielectric
constant measurements for helium and carbon dioxide systems of Burfield, et al. [20], we conclude
that our values of p have an accuracy of approximately 0.5 %.

In Fig. 5(a) we show the experimental values of the pressure p(7) at the onset of phase
separation for this mixture. We have included our results obtained with the reentrant resonator and
those obtained with the 1kHz coaxial capacitor, together with those reported by Weber from
conventional equation-of-state measurements [10]. Also shown are two correlations of other
experimental information independent of ours based on Leung-Griffiths-type equations of state
[21,22]. The level of agreement is quite remarkable. The density values are illustrated in a p(T)
projection in Fig. 5(b), along with values calculated from references [21] and [22]. Again, the
agreement is very good. It demonstrates the utility of the present method as well as the accuracy of
the assumption that A.(x) for this mixture is equal to the mole fraction sum.
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FIGURE 5. Phase borders for the mixture (0.508 C;Hg + 0.492 CO,). o, This work, reentrant
resonator; e, this work, concentric cylinder capacitor; o, equation-of-state measurements from [10];
correlation of literature data [21]; - - — correlation of literature data [22].
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