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ABSTRACT

We provide an overview of our recent work on passive (temperature) scalar mixing in
both homogeneous and inhomogeneous turbulent flows. We show that for homogeneous
grid generated turbulence, in the presence of a linear temperature profile, the probability
density function (pdf) of the temperature fluctuations has broad exponential tails, while the
pdf of velocity is Gaussian. However in the absence of a scalar gradient the pdf of
temperature is Gaussian. This new result sheds insight into the fundamentals of turbulent
mixing as well as to the nature of the velocity field. We also show that the spectrum of the
temperature fluctuations has a scaling region that is consistent with Kolmogorov scaling
although a similar scaling region is absent for the velocity field in this low Reynolds number
flow. Finally, we describe our results concerning the mixing and dispersion of scalars in a
jet. We show that although initially the scalar mixing is strongly dependent on input
co;(c)iitions, the mixing is rapid and that the correlation coefficient asymptotes to unity by x/D

INTRODUCTION

The understanding of scalar mixing and transport in turbulent flows remains a vital issue because of
its fundamental importance, both in its own right and also in the way it sheds light on the basic
. characteristics of the velocity field itself, and because of its obvious practical significance in combustors,
chemical mixers and the environment. At the fundamental level, a full statistical description has not
emerged, even for simple flows although very recently much progress has occurred in our understanding of
the nature of the probability density function (pdf) of the scalar fluctuations. Our contribution to this will
be described in part 1 below. There are, however, still complex problems concerning one of the oldest and
most studied statistical descriptions; the one dimensional scalar spectrum. Both experiments (e.g. Warhaft
and Lumley 1978) and computation, (Metais and Lesieur 1992) show anomalous scaling regions in the
scalar spectrum in isotropic turbulence. They are anomalous since they occur in the absence of such
regions in the velocity spectrum, Although the experimental observations are quite old there has been no
systematic study of the scalar spectrum as a function of Reynolds number and thus it has not been possible
to determine whether these scaling regions are artifacts of the initial conditions in these low Reynolds
number flows or whether they are fundamental to a statistical description of the flow. Our recent
" experiments towards an understanding of this problem will be described in part 2. We will show there is
indeed a scaling region of constant slope close to -5/3 and its width increases systematically with Reynolds
number. We also continue to be interested in the effect of initial conditions on the rate of mixing of scalar
fluctuations. We have recently been studying scalar dispersion from heated wires in a jet. We have
examined both single and two scalar mixing. Here we will describe our results and relate them to mixing in
grid turbulence.
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Thus our paper is concerned with three distinct topics: the pdf of passive scalar fluctuations, the
spectrum of scalar fluctuations, and mixing and transport in a jet. Necessarily, because of space, only a
brief summary can be provided and the reader is referred to Jayesh and Warhaft (1992, 1993), Warhaft
(1992) and Tong and Warhaft (1993) for details, including descriptions of experimental apparatus.

1. THE PROBABILITY DENSITY FUNCTION (PDF) OF A PASSIVE SCALAR
IN GRID TURBULENCE

Until our recent study (Jayesh and Warhaft 1991, 1992) there appeared to be no published
experimental data on the details of the passive scalar pdf in homogeneous isotropic turbulence, particularly
its tails that describe the higher-order moments. Possibly, this is due to it having been assumed that the
scalar fluctuations are purely Gaussian, reflecting the velocity field, which early on was shown to have a
Gaussian pdf, at least up to the fourth moment. Perhaps more pertinently, there has been no theory (until
recently, see below) that suggested universality in the tails of the scalar pdf and thus experimental
motivation has been lacking.

The principal impetus for our siudy came from the theory of Pumir, Shraiman and Siggia (1991).
They argued, using a one-dimensional phenomenalogical model for a passive scalar advected by
turbulence, that in the presence of a mean scalar gradient, the scalar pdf will have exponential tails but in the
absence of the gradient (i.e. with uniform mean temperature) the scalar will have a Gaussian pdf. The two
techniques we have developed over the years (the mandoline, Warhaft and Lumley (1978) and the toaster
Sirivat and Warhaft 1983) were ideal to test their theory since the mandoline provides temperature
fluctuations without a mean temperature gradient while the foaster can produce a linear temperature
gradient. In our experiment (Jayesh and Warhaft 1991, 1992) we systematically varied the Reynolds
number and other flow parameters.

(b}

Figure 1 a) Pdf's of longitudinal velocity, u. Lower curves are at x/M = 4, upper curve is at x/M = 62.4.
The solid line is Gaussian. The upper curve has been shifted one decade with respect to the lower one. b)

Pdf of temperature at various x/M U=8.9 m/sec, B=6.06 K/m. M=2.5 cm.
0:x/M=36.4;0 :x/M=62.4; O :x/M=82.4; X x/M=102.4;A x/M=132.4. Each curve has been
shifted one decade with respect to the lower one. A Gaussian curve is shown at x’M=36.4 and a straight

line fit to the tails (16/68'>2) is shown at x/M=82.4. Here U is the mean speed, B is the temperature gradient

and M is the mesh length. The pdf's have been normalized by the tempeature rms, 6'. Reproduced from
Physics of Fluids A.
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Figure 1 shows the velocity pdf and the temperature pdf in the presence of a mean scalar gradient.
While the velocity pdf is Gaussian deep into its tails (note the logarithmic plot) the scalar pdf is distinctly
non-Gaussian, showing exponential tails (linear on the log plot). Our study has shown that these tails
weaken slightly with downstream distance (Figure 1b) but always remain broader than Gaussian. They
were observed in the integral scale Reynolds number, Rej, range 60 < Rej, < 1100. On the other hand, in
the absence of a mean gradient, the scalar pdf is close to Gaussian (Jayesh and Warhaft 1992). The
qualitative difference between the gradient and no gradient case appears to provide confirmation of the
Pumir, Shraiman, Siggia theory and, for the gradient case are consistent with recent work of Gollub et al.
(1991) and Kerstein (1991).

We have also studied other statistics such as the conditional scalar dissipation rate, the pdf of the
temperature derivative and the effect of filtering on the scalar pdf. These are described in Jayesh and
Warhaft (1992).

Our findings should have particular significance in the fields of turbulent mixing and combustion
since they show, for the linear profile case, that enhanced thermal dissipation occurs in the presence of the
large, rare temperature fluctuations that are responsible for the extended tails of the pdf. Thus more rapid
smearing (mixing at the molecular level) will occur, enhancing reaction and combustion rates.

2. TEMPERATURE SPECTRA IN GRID TURBULENCE

The Corrsin-Obukhov (Corrsin 1957, Obukhov 1949) extension of the Kolmogorov (1941)
similarity theory shows that for high Reynolds numbers the spectrum of a passive scalar in the inertial
subrange has the form

Eg(k)=Pe~13egk-5/3 (M

Here Eg(k) is the one dimensional spectrum defined by 62 = [ Eg(k)dk where 67 is the scalar variance and
k is the wave number in the x direction; B is a universal constant and € and &g are the average dissipation

rate of energy and average rate at which 62 is smeared at the molecular diffusive scale respectively.
Measurements indeed show scaling regions but their slope is dependent on the type of flow and the
Reynolds number. Sreenivasan (1991) has compiled various data from shear flow experiments (wakes and
Jets and boundary layers, both in the laboratory and in the field) and shows that the scalar scaling exponent
increases from about 1.3 for a micro-scale (Taylor) Reynolds number, Rej, of about 200 to about 1.63 at
Rey, =2000. The data seem to suggest an asymptotic limit of -5/3 although the Reynolds numbers have not
been high enough to properly confirm this. It appears that for these strongly anisotropic shear flows R,
must be significantly greater than 2000 before a locally isotropic region is sufficiently well established to
fulfill the similarity requirements of the Kolmogorov-Corrsin-Obukhov theory.

Recently we (Jayesh and Warhaft 1991, 1992) have employed both the roaster and the mandoline to
study passive scalar fluctuations (principally the scalar probability density function (pdf) and related
statistics) in grid turbulence. In that work, for the mean gradient experiment, we varied the mean speed, U,
and the mesh length M thereby varying the integral scale Reynolds number, Re; from 60 to 1,100. Here

Rej=ul /v where u is the rms longitudinal velocity, / is the turbulence integral scale (close in value to the
mesh length, M) and v is the kinematic viscosity. This corresponds to a significant (but modest) variation

of the micro-scale Reynolds number, Ry, (= ul/v, where A is the Taylor micro-scale) from approximately
30 to 130. These experiments have provided a broad data set from which passive temperature spectra, as a
function of Reynolds number, can be studied.
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Figure 2(a) shows four temperature spectra, for different Reynolds numbers, using the roagster to
generate the passive thermal fluctuations (i.e., in the presence of a mean temperature gradient). The
Reynolds numbers are given in the figure caption. The spectra show that there is a scaling region (a region
of constant slope on a log-log plot) and that it increases with width as the Reynolds number increases.
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Figure 2 Temperature spectra in grid turbulence with a linear (passive) tempeature gradient. a) "Raw"
spectra, b) spectra of a) multiplied by f where n is the slope of the scaling region in a). The Reynolds
numbser for the four spectra are (i) Re; = 856, (ii) Re; = 282, (iii) Re; = 67, (iv) Re; = 59.

In order to more clearly display the scaling region we multiplied the ordinate of the raw spectra of

Figure 1(a) by f* (where f is the frequency and n is the scaling exponent). These spectra are shown in
Figure 2(b). We determined n by fitting a least square best fit straight line to the scaling region of the raw

spectra of Figure 2(a). The scaling region must be horizontal in the plot f*¢g(f) if the choice of n is correct.
Figure 2(b) shows a clear scaling region of more than a decade for the high Re; cases and no scaling region
for the lowest Re; case.

Figure 3 shows n as a function of Reynolds number for all of our experiments. Although there is
quite a bit of scatter within each experiment (for a fixed Rep), it is quite apparent that n does not have an
overall variation with Reynolds number: its value for all the data was found to be 1.58 with a standard
degiation of 0.07. Given the scatter the result is not inconsistent with the Kolmogorov scaling value of
1.67.

The data set of Figure 3 is mainly from the roaster experiments, for which there is a linear
temperature profile. However we also obtained one data set for the mandoline and this gives the same
scaling exponent as the toaster data (Figure 3). Note that although the velocity field is isotropic in both
cases, the thermal field is not; for the mean gradient there is a heat flux and thus large scale anisotropy in
the thermal field (Sirivat and Warhaft, 1983) while for the mandoline there is no heat flux (no mean
gradient), suggesting approximate isotropy for the large scale thermal field (Warhaft and Lumley 1978).
The same value of n obtained from these two different ways of creating the thermal field suggest it is the
large scale structure of the velocity field (rather than the thermal field) that is relevant in determining the
slope in the scaling region.
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The width of the scaling region for all of our data as a function of Reynolds number is shown in
Figure 4. The monotonic increase of the width with Reynolds number is consistent with fundamental
notions of scaling (e.g. Tennekes and Lumley, Chapter 8) and implies that our data are not "anomalous" as
was earlier thought from measurements done at a single Reynolds number. Note that here too, the
mandoline data are consistent with the foaster data. Kolmogorov scaling shows that the width of the

scaling region should increase as Re;3/4 since I /q~Re3/4 where ! is the integral scale and 1 is the

dissipation scale (note for our experiment of Prandtl number 0.7, njg ~ 1| where is the thermal smearing
scale). We have plotted a line of slope 0.75 on Figure 4 and it reasonably represents the trend in the data,
given its scatter.
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Figure 3. The slope of the scaling region for all experiments as a function of Re;. The mean value is 1.58
(solid line). It is within one standard deviation of the Kolmogorov value of 5/3. The 8 symbols are for
no tempeature gradient (mandoline), all other symbols are for the toaster.
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Figure 4. The width of the scaling region as a function of Re;. The solid line has a slope of 0.75, the value
predicted using Kolmogorov scaling: I/ ~ Re?'75.
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3. THERMAL DISPERSION AND MIXING IN A JET

Despite the importance of turbulent mixing in a jet, there appears to be no previous work on
diffusion and dispersion from point or line sources; all previous experiments have introduced the scalar
evenly throughout the flow (e.g. heating the jet (Corrsin and Uberoi 1980) or having a jet of pure species A
mixing with the surroundings of pure species B (Dowling and Dimotakis 1990)). Thus there has been no
information on how quickly one or two species mix in such a flow, an issue of fundamental importance.
Here we extend the inference method of Warhaft 1984, which consisted of placing two line sources in grid
turbulence, to placing two circular thin heated wire rings in a jet (Figure 5a). A single wire ring is
analagous to a single line source; from it we can determine how long the fluctuations take to smear and fill
the whole jet. Two line sources (or rings) enable us to determine, by inference, the cross correlation

between the fluctuations, thereby providing information on the mixing rate of two independent species
(Fig. 5b).

(@

Rings

Figure 5a) Side and plan view of the jet of diameter D showing the fine wire rings (of diameters d; and
d2). The rings were placed concentrically above the jet, both in the same plane. They were suspended in
the flow by means of their leads which were held by a clamp, outside the jet. The wires for the rings were
0.127 mm nichrome. b) Instantaneous thermal fields for two thermal line sources in a turbulent flow
showing the region of overlap or interference (hatched region). This situation was studied by Warhaft
1984. Here we present the jet analogue using two fine wire rings.

As in our previous studies (Warhaft 1981, 1984) the cross correlation, p, between the thermal
fields coming from each ring is determined by operating ring 1 and ring 2 separately and then operating

them together. Under the assumptions of statistical stationarity, and that the scalar fields are passive, we
determine the cross correlation from the relation

p=©2 -0 -62)[ 26212 @212 @

where 9% = (81 + 62)2 is the variance with both rings operating and 9% and 9% are the variances of each

ring operating separately. Figure 5b shows a sketch of a region of overlap (mixing of 2 scalars) for 2 line
sources. Our interest is in determining p for this region, when two rings are used to generate the
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thermal field (Figure 5a). A practical realization of our experiment would be two species in concentric
pipes, mixing in a jet formation (Kerstein 1990).

We have carried out a systematic investigation of ring placement which was varied relative to the jet
exit, and of Reynolds number. We have also studied the effect of the rings on the flow since they tend to
slightly suppress the velocity fluctuations by inhibiting vortex paring. Our studies will be reported in Tong

and Warhaft 1993. Here we show the effect of initial conditions on the evolution of p and compare it to
grid turbulence.

Figure 6a shows p vs. x/D (where D is the jet diameter) for rings placed concentrically at x/D=9,
i.e. at the beginning of the turbulent region. D for the jet was 30mm and the Reynolds number was

18,000. Notice that in spite of the large early differences in p, they all asymptote to unity very quickly, by

X
about x/D = 20, which is equivalent to an eddy turn over time S |= | d ’; //l?) of about 2. (Here U and
Xo

u are the mean and fluctuating velocity respectively /, is the integral scale and xg is the virtual jet origin).
On the other hand, in grid generated turbulence, without mean shear, the evolution time for p is very long.

Figure 6b compares the jet to the grid turbulence. Notice for comparable wire spacing complete mixing has

not occurred by 4 eddy turn over times for the grid turbulence showing the important role of mean shear
(and anisotropy) in the mixing process.

A systematic study of the evolution of p as well as temperature spectra and cospectra, pdf's and
conditional dissipation is given in Tong and Warhaft 1993,
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Figure 6a) p vs. x/D and S (the eddy turnover time) for the rings placed at x/D=9 for a 3 cm jet, Re=1.8x

104. The ring diameters for the circles are 35 and 40 mm, for the triangles they are 30 and 40 mm, and for
the squares they are 20 and 40 mm. b) The data for the circles and squares of part a) compared with
experiments carried out in grid turbulence for comparable wire spacing i.e. for comparable d// where d is
the distance between the wires and { is the integral scale of the turbulence (Warhaft 1984).
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ABSTRACT

An overview is presented of research that focuses on slow flows of suspensions in which colloidal and

inertial effects are negligibly small. We describe nuclear magnetic resonance imaging experiments to quantita-
tively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform
shear rate. These experiments address the issue of how the flow field affects the microstructure of suspen-
‘sions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying
concentration, one must know how the viscosity of a homogeneous suspension depends on such variables
as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using
small balls, as a method to determine the effective viscosity of a suspension without affecting the original
microstructure significantly. We also describe data from experiments in which the detailed fluctuations of
a falling ball’s velocity indicate the noncontinuum nature of the suspension and may lead to more insights
into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other
experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear
rotational viscometers) in order to learn more about boundary effects in concentrated suspensions.

INTRODUCTION

Many industrial processes include the transport of suspensions of solid particles in liquids, such as coal
and other solid feedstock slurries. Oil, gas, and geothermal energy production rely on the transport of
suspensions such as muds, cements, proppant, and gravel slurries in the drilling and completion of a well.
Suspensions are not only ubiquitous in energy production, but also in high-energy-consumption industrial
processes such as found in pulp and paper manufacturing. The complex rheological response of suspensions
often limit the efficiency of the design of such processes, causing loss of productivity, increased cost, and
increased energy consumption. Because of the importance of particulate two-phase flows in the applications
described above, the study of suspension rheology remains an important component of the technical research
directed by a national energy policy.

This overview of our recent research supported by the Department of Energy, Office of Basic Energy
Sciences, will focus on slow flows of suspensions of relatively large particles, in which colloidal and inertial
effects are negligibly small. There is growing evidence that even in this restricted range of flows, the
rheology of a suspension with a nondilute particle concentration cannot be characterized by a single viscosity.
Instead, the microstructure of the suspension determines the overall macroscopic properties, and the flow
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history of the suspension determines:aspects of the microstructure. (A good overview of flow-induced
microstructural changes can be found in an article by Acrivos [1].) Hence, conventional viscometers, which
impose macroscopic flow fields, may not measure the viscosity of the homogeneous suspension originally
introduced into the viscometer, but rather may represent a property governed by the nonhomogeneous
structure created by the flow. Such structures may be intrinsically different for various classes of flow fields
associated with different viscometers.

Advances in the ability to predict the rheological response of concentrated suspensions depend on an-
swering three broad questions: 1) How does the macroscopically imposed flow field affect the microstructure
of a suspension? 2) How does the microstructure of a suspension affect the rheological properties? 3) How
do boundaries, such as walls, affect the microstructure and properties? Aspects of these questions are being
addressed in our work.

In the following section we will illustrate the existence of flow-induced microstructural changes with
data on the time evolution of concentration and velocity profiles in suspensions undergoing flow between
counter-rotating concentric cylinders (similar to the geometry found in “cup and bob” or “Couette” vis-
cometers). We will show that the resultant profiles in these one-dimensional flows can be predicted well by
the expressions describing “hydrodynamic diffusion” originally developed by Leighton and Acrivos (2, 3, 4].
However, additional phenomena arise in more complex flows, such as the two-dimensional migration of
particles seen in the eccentric annular gap of 2 “journal bearing” flow. This illustrates that the complex
interaction of particles cannot be adequately described by the one-dimensional theory originally proposed
by Leighton and Acrivos, and it suggests that other avenues be taken to relate the macroscopic behavior
to the evolution of microstructure. One such avenue recently suggested in the literature is to use a kinetic
theory approach, which has been applied successfully in granular flows [5, 6]. In this theory the intensity
of the velocity fluctuations, caused by particle interactions, is characterized by a “granular temperature”
analogous to the temperature in classical kinetic theories and governed by a balance of fluctuation energy.
Kinetic theory approaches emphasize the importance of obtaining experimental data not only on average
behavior of suspensions but also on the fluctuations about those averages.

In the third section we will discuss the use of falling ball rheometry as a means to circumvent the
problems encountered with using conventional rotational devices to measure suspension viscosity. If the size
of the falling ball is of the order of the characteristic length of the suspended particles, the ball disturbs the
original microstructure of the quiescent suspension only slightly as it falls. Hence, one can use this technique
to determine the viscosity of a homogeneous suspension (or likewise one with any set microstructure). One
can then incorporate this information into a constitutive relationship to determine the local viscosity in a
flow field, given that the local concentration is known [4]. Furthermore, falling ball rheometry is not limited
to the measurement of macroscopic average viscosities. The velocity fluctuations experienced by the falling
ball can also be measured and can give insights into the importance of particle interactions.

We have also proposed use of quiescent suspensions in other apparatus to provide further insights into the
rheological behavior of concentrated suspensions, especially the effects of boundaries. Rolling ball rheometry
could be explored as a means to determine the effect on the local viscosity of the microstructure imposed by
the wall. Measuring the torque on a ball spinning in an otherwise quiescent suspension has been proposed
as a sensitive measure of slip at the wall. These ideas will be addressed in the fourth section of this article,
and the results of preliminary measurements will be discussed. In the final section we will summarize our
conclusions.

EFFECTS OF FLOW ON THE MICROSTRUCTURE OF SUSPENSIONS

Flow-induced migration and ordering of suspended particles have been hypothesized to create viscosity
measurements that vary with the total strain to which a given suspension has been subjected [7, 3]. This
migration is thought to occur whenever particle interactions are stronger or more frequent in one part of
a flow field than in another, as could occur in the presence of spatially varying shear rate, concentration,
or viscosity fields. A Newtonian fluid in the annular domain between rotating concentric cylinders (i.e.
wide-gap Couette apparatus) possesses perhaps the simplest flow field of any realizable nonhomogeneous
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shear flow. As such, this is a useful device in which to study the effects of nonhomogeneous shear on the
microstructure of a concentrated suspension.

The spatial distribution of suspended particles present in concentrated suspensions is difficult to measure
because most suspensions are opaque even at relatively low particle concentrations. However, under the
auspices of the Department of Energy, Office of Basic Energy Sciences, noninvasive techniques based on
nuclear magnetic resonance (NMR) imaging have been developed by Fukushima and coworkers to study
both concentration and velocity profiles in multiphase flows [8, 9]. We have employed these NMR imaging
techniques to study the flow-induced migration of particles in a suspension undergoing flow in a wide-
gap Couette apparatus. The details of the experiments can be found elsewhere [10, 11]. However, some
results of these studies will be briefly discussed here in order to illustrate how dramatically a suspension’s
microstructure can be affected during flow.

The primary data obtained from these experiments are NMR images of the concentration and velocity
fields. Representative examples of the concentration images are shown in Figure 1. As shown on the left, the
initial image of a bimodal suspension (60 vol% neutrally buoyant spheres, of which 65% are 3.175 mm and
35% are 780 um in diameter, in a viscous Newtonian liquid) is essentially uniform. Dark areas represent areas
of high solid concentration. Individual large spheres can almost be distinguished, although the thickness
of the imaged volume (2.4 cm) results in a blurring of the particles. After 3600 revolutions of the inner
cylinder, the final image was taken, shown on the right. In this image the fluid fraction is significantly
higher near the inner rod (the region of highest shear rate) and lower near the outer cylinder. It is apparent
that the particles have migrated from the region of highest shear to the region of lowest. Furthermore,
distinct shells of larger spheres, interspersed with fluid and smaller spheres, can be seen in this image.
From visual observations of the particles near the outer wall of the apparatus, the larger spheres appear
approximately hexagonal close packed within the outermost shell. That is, the arrangement of the large
spheres is two-dimensional hexagonal close packed in concentric sheets. This structure begins to appear very
quickly: significant migration can be detected after only 50 revolutions of the inner cylinder. It is important
to note that this migration does not appear to be caused by inertial effects, which are negligible at the
rates of rotation, the viscosity of the suspending liquid, and the particle sizes involved here. Subsequent
experiments with suspensions of unimodal distributions of large spheres revealed that this shear-induced
structure was not unique to bimodal suspensions.

The concentration can be quantified in any region of the image by recognizing that the fluid in the imaged
slice gives a full-intensity signal and the particles give no signal. The normalized value of the image intensity
is proportional to the density of the liquid phase protons in a volume element. By using an imaging sequence
with a slice selective refocusing pulse, as proposed by Cho and coworkers [12], the relative phase shift can
be made proportional to the velocity. By using such a technique we can also find the velocity in each region
of an image of a flowing suspension. Figure 2 shows velocity measurements for a suspension of 50 vol% of
675 pm spheres undergoing flow in a wide-gap Couette apparatus after a steady-state microstructure has
formed. The velocity profile falls off much more rapidly than in a Newtonian fluid (shown for comparison
by the solid curve). The particle concentration approaches maximum packing near the outer wall, and the
velocity profiles reveal that the suspension is almost stagnant in this region.

In addition to expanding our general understanding of the micromechanics of shear-induced migration,
the primary purpose of the NMR imaging studies was to determine the dependence of the particle migration
on a number of experimental parameters. These parameters included strain, shear rate, and viscosity of
the suspending fluid, as well as concentration and diameter of the suspended particles. The results of a
constitutive model based on Leighton and Acrivos’ scaling arguments compared very favorably to these
experimental results [4].

This constitutive model consists of both a Newtonian constitutive equation, in which the viscosity de-
pends on the local particle volume fraction, and a diffusive equation that accounts for shear-induced particle
migration. Two adjustable parameters arise in the diffusive equation, which describe the relative strength
of the mechanisms for particle migration. These two rate parameters were taken to be constants and were
evaluated by comparison to the experimental measurements of velocity and concentration profiles in the
wide-gap Couette apparatus for one suspension at one strain. With these parameters fixed, predictions for
particle concentration profiles were then compared to the experimental results for suspensions with a wide
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Figure 1: NMR images of a cross section of a suspension of 60 vol% bidisperse spheres between concentric
cylinders. The image on the left represents the initially well dispersed state of the suspension. The image
on the right was taken after rotating the inner cylinder until a steady state was achieved. The bright area
near the inner cylinder represents a higher fluid fraction, indicating that the particles have migrated away
from this area of higher shear rate.
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Figure 2: Steady-state velocity profile for a suspension of 50 vol % spheres with a mean diameter of 675 pm.
The azimuthal velocity was measured along one diameter of the image. The solid curve is the velocity profile
for a Newtonian fluid.
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Figure 3: Transient profiles of the particle concentration for a suspension of 55 vol% particles with a mean
diameter of 675 pm compared to predictions. Results are shown for the initial profile (o) and after the
number of revolutions of the inner cylinder (n) equals 50 (x), 100 (O), 200 (<), 800 (A), and 12000 (e).
Model parameters used are those that best fit the data at n=200. Both model and data show that steady
state is reached by the time the inner cylinder has rotated about 800 times.

range of particle sizes and concentrations.

Figure 3 shows the remarkably good comparison between the predictions of this model and the transient
concentration profiles obtained for a suspension of 675 um spheres at a volume fraction of 0.55. Figure 4
shows the steady-state concentration profiles for suspensions of either 100 or 675 pm particles compared with
the predictions. The agreement between model and experiment is again excellent, with the theory fitting
the experimental data for the suspension of 100 pm particles nearly as well as it did for the suspension of
much larger particles used to calculate the two rate parameters.

Excitement generated by these results must be tempered by the results of ongoing research in more
complicated two-dimensional flows. NMR imaging has also been used to study the flow of concentrated
suspensions in the gap between a rotating inner cylinder placed eccentrically within an outer fixed cylinder
(a journal bearing). With a Newtonian fluid, the majority of the flow will be in a cell concentric with the
inner cylinder; however, with certain placements of the inner cylinder, a second cell, which rotates in the
opposite direction, forms near the region of the outer wall furthest from the inner cylinder [13]. We have used
NMR imaging to confirm that similar behavior occurs in concentrated suspensions. Here, particle migration
creates a region of maximum solids concentration in the low-shear-rate region of the second cell (away from
the wall).

The constitutive expression previously described was subsequently expanded to two-dimensional flows
by describing the flow in terms of the strain rate tensor D and the migration in terms of gradients in the
generalized shear rate 9=+2trD2. The equation set was then again solved numerically and the predictions
compared to the NMR imaging data. Unfortunately, this model failed to predict that the steady-state
maximum concentration is not always at the outer wall, but in many cases is at a location within the gap.

The failure of the simple expression for one-dimensional hydrodynamic diffusion to capture the qualita-
tive nature of this two-dimensional flow suggests that it has not been appropriately generalized to multiple
dimensions and that other avenues should be explored in attempting to relate the macroscopic behavior to
the evolution of microstructure. One such avenue recently suggested is to use a kinetic theory approach,
which has been applied successfully in granular flows [5, 6]. In this theory the intensity of the velocity
fluctuations, caused by particle interactions, is characterized by a “granular temperature” analogous to the
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Figure 4: Measurements and predictions of the concentration profiles for suspensions of 50 vol% of either
100 pm () or 675 um (Q) particles. Both results are shown for 8000 rotations of the inner cylinder. Model
parameters are unchanged from those used in Figure 3.

temperature in classical kinetic theories and governed by a balance of fluctuation energy. This approach
emphasizes the importance of measuring not only average behavior of suspensions but the details of the
fluctuations about those averages. .

FALLING-BALL RHEOMETRY IN SUSPENSIONS

In previous work, we have shown that falling ball rheometry is an excellent tool to probe the rheological
properties of a suspension without changing the properties through the very act of measuring them. Unlike
conventional viscometers, which employ flow fields that tend to influence the microstructure of the suspen-
sion, falling ball rtheometry can be used to determine the macroscopic viscosity of a suspension with little
effect on the microstructure [14].

The discrete nature of the suspension is readily apparent in falling ball experiments. One expects a very
large ball to fall smoothly through a suspension of tiny particles and its velocity to appear fairly constant.
However, when we observe the passage of a ball of the same diameter as large suspended particles, we see
that actually the velocity is not constant. Periods of almost no motion, as the falling ball approaches and
“rolls off” suspended particles, alternate with periods of almost free fall in the interstices between suspended
spheres. However, a statistical analysis reveals that the average terminal velocity of the ball, measured over
a distance usually between 100 and 1000 suspended particle diameters, is reproducible. Furthermore, if this
average terminal velocity, corrected for Newtonian wall effects, is translated into a viscosity, this viscosity
is independent of the diameter of the falling ball relative to the diameter of the suspended particles over a
wide range of falling-ball sizes.

We are also exploring the possibility of using the fluctuations in the terminal velocity, as the ball in-
teracts with individual suspended particles or clusters of suspended particles, to give information about
the suspension microstructure. Whereas the mean settling velocity predicts the continuum behavior of the
suspension, the dispersivity around the mean velocity allows insight into the non-continuum behavior of the
suspension caused by the presence of the macroscopic suspended spheres.

We performed experiments which focused on the three-dimensional dispersion of a single ball settling
through a suspension of neutrally buoyant particles. The detailed paths of falling balls were recorded from
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direct observations in transparent suspensions (in which the refractive index of the suspending fluid was
matched to that of the suspended particles) and using real-time radiography in opaque suspensions. The
primary experimental parameters were the relative size of the settling ball and suspended particles, and the
concentration and geometry of the suspended particles.

A principal objective of these experiments was to test whether the observed variations in the ball’s
settling velocity were the result of a Fickian (random) process. For sufficiently long times, the variances
grew linearly with time, as predicted for a Fickian process. Because the falling ball in these experiments
was similar in size to the suspended particles, it was possible to see the transition between the deterministic
effects of a sphere settling past a particular arrangement of particles and the random process associated with
a sphere settling past many such arrangements. The deterministic effects resulted in a quadratic growth
in the variances for short times. The short-time nonlinear variances of Brownian tracer particles can be
described in terms of particle inertia [15). However, the short-time behavior of a ball falling in a suspension
was not caused by the inertia of the falling ball, but rather by the time needed for the ball to change its local
environment. This conclusion was supported experimentally by the observed insensitivity of the dispersive
behavior to the falling ball’s density. To determine the dispersivity when the variances were deterministic,
we estimated the time scale on which it takes the settling ball to change its local neighborhood. (Because
the settling ball tends to drag the suspension along with it, this time scale is greater than the time to travel
just a few ball diameters.) This time scale was then used in a model, similar to that for Brownian tracers,
relating the measured short-time variances to the dispersivity.

The resulting dimensionless vertical dispersivities are shown in Figure 5 as functions of falling ball size
and volume concentration of suspended spheres. For moderately concentrated suspensions, the vertical
dispersivity decreased with increasing ball size, but always less rapidly than predicted by Davis and Hill for
dilute suspensions [16]. This effect decreased with concentration, until, for a suspension with a solids volume
concentration of 50%, the dispersivity was independent of ball size. At a constant size of falling ball relative
to the suspended spheres, the vertical dispersivity increased approximately linearly with concentration. For
example, for falling balls the same size as the suspended spheres, the dimensionless vertical dispersivity D*
was ohserved to depend on the volume fraction of solids, ¢, as D* = 0.60¢!%8. The measured horizontal
dispersivity was at least 25 times smaller than its vertical counterpart (and below the experimental resolution
for suspensions with only 15 vol% solids).

Vertical dispersivity was also measured in suspensions of randomly oriented rods. Here, the dispersivity
was always virtually independent of ball size (however, one should note that the balls tested were always
significantly larger than the rod diameter). The vertical dispersivity in these suspensions increased linearly
with the specific viscosity. Because the viscosity was approximately linear with volume fraction for the
suspensions tested [17], this parallels the theoretical behavior in dilute suspensions of spheres [16].

We have recently begun to observe not only the velocity of, but also the pressure drop across a ball falling
in a quiescent suspension. For a ball falling in a single-phase Newtonian liquid, this pressure is constant,
independent of viscosity (at low Reynolds numbers), and can be described analytically [18]. Although the
pressure drop is independent of viscosity in a Newtonian liquid, it is reasonable to speculate that in a
suspension the pressure drop may be dependent on the microstructure. Therefore, like the local viscosity, it
may vary due to the discrete nature of the material.

We first tested this speculation by modeling a falling ball rheometer numerically with the boundary
element method [19]. In this technique, the boundary integral equations for Stokes flow, coupled with the
equilibrium equations for the solid particles, are discretized and solved numerically. Fully three-dimensional
simulations of suspensions of spheres in a Newtonian liquid bounded by cylindrical walls were performed.
The number and size of individual suspended spheres were varied to give volume concentrations ranging from
zero to 5%. In these simulations, the pressure drop was influenced only weakly, if at all, by the introduction of
neutrally buoyant particles. Furthermore, the arrangement of particles affected the pressure drop negligibly.
In contrast, the relative viscosity in these simulations varied by over 10%. These results were consistent
with the hypothesis that, despite the noncontinuum nature of these suspensions, each suspension could be
treated as a Newtonian liquid with an effective relative viscosity. It also implied that the fluctuations in
the velocity of the falling ball would be far more indicative of microstructural variations than would the
corresponding fluctuations in pressure drop. However, the suspensions studied were all relatively dilute, and
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Figure 5: The dimensionless dispersivity as a function of the ratio of the radius of the settling ball (2) to the
radius of the suspended spheres (b) for various volume concentrations of solids: 15 vol% (Q), 30 vol% (e),
or 50 vol% (x). The error limits shown are based on the nonlinear analysis which assumes that the time
scale is known exactly, so they represent a minimum for the actual 95% confidence limits.

this behavior may not be present at high concentrations.

In laboratory experiments we have begun to measure the pressure drop across balls of various sizes falling
in more concentrated suspensions. Preliminary data indicate that the pressure drop occurring in a suspen-
sion made with 30 vol% uniformly sized spheres is identical to that predicted to occur in a single-phase
Newtonian liquid. Like the viscosity measurements in moderately concentrated suspensions, the pressure
drop behavior is independent of the relative sizes of the falling ball and suspended spheres. (However, the
absolute measure of pressure drop in both single- and two-phase fluids is directly proportional to the weight
of the falling ball.) Experiments are planned to look at suspensions of higher concentrations, as well as at
falling balls much smaller than the suspended spheres.

OTHER EXPERIMENTS IN QUIESCENT SUSPENSIONS

In the falling ball experiments described in the section above, the drag on the ball appeared to be that
found in a Newtonian liquid with no slip at the boundaries. Instead of measuring the mean velocity of a
falling ball, we could instead measure the mean torque on a spinning ball. This geometry is more sensitive
to slip at the ball boundary. Whereas the force F on a ball moving slowly through an unbounded Newtonian
liquid without slip can be described as F' = 6wpav (where p is the viscosity of the liquid and @ and v are
the radius and velocity of the ball, respectively), the force with perfect slip is 4rpav. In contrast, the torque
T on a ball spinning slowly in a Newtonian liquid is 8ruadQ (where Q is the angular velocity of the ball);
however, the torque on a ball with perfect slip at the boundaries is zero [20].

Kunesh and coworkers studied the torque on balls spinning in single-phase Newtonian liquids, verified
the formula above, and quantified the effects of the free surface [21]. We propose similar experiments to
measure the torque on balls spinning in otherwise quiescent suspensions. We will analyze the data for any
apparent slip at the balls’ boundaries.

Figure 6 is an illustration of the apparatus we have built with this goal in mind. A calibrated torque
wire holds a ball on a rod while the suspension is rotated on a motorized platform. The number of rotations
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Figure 6: Apparatus to measure the torque on a ball spinning in a suspension.

of the platform is recorded automatically. A mirror at the bottom of the torque wire reflects a laser beam
to a detector. The data from the detector is fed to a stepper motor holding the torque wire from above.
The controller on the stepper motor uses this information to correct the position of the stepper motor and
torque wire so that the reflected laser beam is maintained at the center of the detector. The corrections are
recorded so that one knows how much the torque wire has twisted as a function of time. The twist can be
directly related to the torque experienced by the ball and rod. We plan to measure this torque as a function
of § on balls of various sizes relative to the suspended particles and in suspensions of various concentrations.

One must note that this flow geometry has the potential to induce structure over time. This will result
in a decrease of the measured torque over time. However, the apparatus will allow us to record any time
history associated with the torque, and the short-time behavior should still be an indication of any apparent
slip at the ball’s surface. The time history obtained will also allow us to study the fluctuations of the torque
about the mean, which again may be indicative of the suspension microstructure.

The presence of the walls of a container can also induce structure. Another proposed study is of the
behavior of a ball rolling down the wall of a inclined container holding a concentrated suspension. In rolling
ball viscometry, a dense ball is allowed to roll/slide down an inclined surface, and its rate of travel is compared
to that in a fluid of known viscosity. In a suspension, we can ratio the time it takes for the ball to travel a
known distance in the suspension to that in the suspending liquid alone and, from this ratio, estimate the
apparent relative viscosity. This procedure is similar to estimating the apparent viscosity with falling ball
viscometry; however, the immediate region of the suspension seen by the moving ball is not uniform but has
structure determined by the proximity of the bounding wall.

Preliminary studies have been performed with a suspension of 30 vol% 0.318-cm-diameter spheres neu-
trally buoyant in a viscous Newtonian liquid. The mean velocity of balls of three sizes ranging from 0.238
to 1.905 cm were first measured as they rolled down an 11° incline in the suspending liquid alone. Then the
suspended particles were added, the suspension mixed well, and the measurements repeated. Again, as in
the falling ball study, the moderately concentrated suspension behaved as a single-phase Newtonian liquid
with an effective viscosity. The viscosity implied by the mean velocities of the rolling balls was independent
of the ball size and was statistically indistinguishable from that measured in the falling ball experiments.

If one assumes that the suspension microstructure closest to the ball influences most the ball’s velocity,
then these results imply that in a moderately concentrated suspension, the microstructure near the bounding
walls is similar to that in the bulk suspension. (The assumption of nearest-neighbor domination has been
shown to be a good one in boundary element method calculations of the effect of neutrally buoyant particles
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various distances from a falling ball. Here, particles beyond about 5 ball diameters away exerted negligible
influence on the ball’s velocity. In other words, the ball fell at the same velocity whether or not the far-field
particles were present [19].) Further experiments in very concentrated suspensions are planned. Here, the
walls are more likely to induce structure (as seen with NMR imaging near the outer walls of the wide-gap
Couette apparatus after the particles have migrated and concentrated to near maximum packing).

CONCLUSIONS

We have performed a variety of experimental and numerical studies to elucidate the linkage between
the microstructure and the macroscopically observed responses of suspensions of particles in liquids. NMR
imaging studies and visual observations have confirmed that a suspension’s microstructure can change dra-
matically during flow: large concentration gradients can be formed from regions of low shear rate to regions
of high shear rate, ordered structure can form at the walls in regions of high concentration, particles of
aspect ratio greater than 1.0 can align, etc. Conventional rotational viscometers may induce such changes
in the microstructure over time, and, therefore, the data from them may not be accurate measurements of
the viscosity of the suspension originally introduced into the viscometer. In fact, a suspension cannot be
simply described by a single effective viscosity.

Falling ball viscometers, on the other hand, can be used (with small falling balls) to determine an ap-
parent viscosity of a homogeneous suspension, without significantly affecting the microstructure during the
measurement. Such a measurement can then be combined with information about the evolving microstruc-
ture in a flow to predict the spatial variations in viscosity and the global behavior. However, further studies
of the details of particle interactions are needed before definitive predictive capabilities can be developed.
Measurement of the detailed fluctuations of the velocity of a ball falling through a suspension is an example
of one such study.

Quiescent suspensions can also be used to examine effects of boundaries. We propose to complete two
such studies: measurements of the torque on a spinning ball and the drag on a ball rolling down a wall. The
former should be a more sensitive measure of apparent slip at the ball boundaries. The latter may elucidate
the effect of structure induced by the proximity of walls.
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MOLECULAR MIXING IN TURBULENT FLOW

Alan R. Kerstein
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ABSTRACT

The evolution of a diffusive scalar field subject to turbulent stirring is investigated by
comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-
profile representation, to results previously obtained by direct numerical simulation (DNS)
and by mapping-closure analysis. The comparisons indicate that scalar field evolution is
sensitive to the bandwidth of the stirring process, and they suggest that the good agree-
ment between DNS and mapping closure reflects the narrowband character of both. The
new models predict qualitatively new behaviors in the wideband stirring regime corre-
sponding to high-Reynolds-number turbulence.

INTRODUCTION

The advection of a passive, diffusive scalar field, whether by a deterministic or a stochastic
stirring mechanism, is a process whose richness becomes increasingly apparent as various configu-
rations are investigated. Diverse models of this process have been formulated, motivated by their
interesting mathematical properties or by their implications for turbulent mixing.

Here, results previously obtained by two methods, direct numerical simulation and mapping-
closure analysis, are reassessed in the context of two new models that are proposed. One of the
new models is based on the linear-eddy approach, in which mixing is simulated in one spatial
dimensijon by means of a stochastic process that emulates turbulent advection [1]. The other
new model is the clipped-laminar-profile representation (CLAPR), a geometrical construction that
subsumes the results of mapping-closure analysis as a special case and generalizes the class of
advection processes that is treated [2]. The comparison of the two previous and two new methods
leads to new insights concerning both the mathematical properties of diffusion-advection and the
phenomenology of turbulent mixing.

Before introducing the new models, the DNS and mapping closure results are summarized. The
particular DNS configuration that is considered [3] involves a statistically steady advection process
based on numerical solution of the Navier-Stokes equation with stochastic low-wavenumber forcing.
Both the advection process and the initial scalar field are homogeneous and isotropic, to a sufficient
approximation, within a periodic box. The probability density function (pdf) of the initial scalar
field approximates the double-delta-function form f(¢;0) = (1/2)[6(¢— 1) + (¢ +1)] corresponding
to two initially unmixed streams. Under the influence of advection and diffusion (with Schmidt
number Sc = 0.7), the pdf f(¢;t) evolves toward the large-t asymptote §(0). The evolution of the
pdf is the principal focus of the present investigation.
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Mapping-closure analysis [4] has been used to predict the family of pdf shapes obtained during
this evolution, parametrized by a time variable whose relation to physical time is undetermined [5).
The method of analysis is not discussed here, but a new geometrical interpretation of the result
that is obtained is outlined shortly.

Figure 1 shows families of pdf shapes obtained by DNS and by mapping closure. Prior to the
present investigation, no mechanistic interpretation of the good agreement between these families
had been offered. The new results presented here suggest an interpretation and provide additional

insights.
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Figure 1. Scalar Pdf Families from Direct Numerical Simulation (Top Left; Parametrized
by Rms Scalar Fluctuation ¢’ Normalized by its Initial Value ¢/ ), Mapping Closure (Top
Right; Parametrized by o) and Single-Scale Linear-Eddy Simulation (Bottom; Parametrized

by ¢'/¢})
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CLIPPED-LAMINAR-PROFILE REPRESENTATION

A purely geometrical construction is used to obtain a family of pdf shapes. The mechanistic
significance of this construction is inferred by comparing the results to those of other models.

A pdf of the scalar ¢ is obtained by taking the spatial domain to be a collection of line segments.
The length 2w of a given segment is obtained by randomly sampling w from a pdf h(w). Denoting
spatial location within a segment by z, where —w < z < w, the spatial profile of ¢ on each segment

is assigned to be
o(z) = erf (é) , (1)

where o has the same value for all segments. For given h(w) and o, the pdf of ¢ for the scalar field
thus defined is given by [6]
dz 1- H(z)
flgio)=——F———, (2)
(¢:9) d¢ 2 fol wh(w) dw

where H(w) is the cumulative distribution function (cdf) corresponding to h(w) and the functional
dependence z(¢) is determined implicitly by Eq. (1).

In Eq. (2), the pdf is parametrized by o. Variation of o generates a one-parameter family
of pdf’s, indicating that ¢ plays a role analogous to the time parameter of the mapping-closure
analysis.

For ¢ = 0, the spatial profile on each segment reduces to ¢(z) = sign(z), so f(¢4;0) is of
double-delta-function form for any h(w), corresponding to the initial condition for the mixing
problem under consideration. In the limit & — 00, ¢(z) becomes identically zero, indicating that
the physically correct final state is reached. For finite o, the concentration profile on each segment
corresponds to a solution of the diffusion equation on an infinite one-dimensional domain. This
does not in itself justify the adoption of this functional form on clipped (finite) domains because it
neglects interactions between neighboring interfaces, not to mention the effect of advection.

The motivation for the error-function ansatz is that it allows a result of mapping-closure anal-
ysis to be reproduced. Namely, if the cdf of the segment-length parameter w is taken to be
H(w) = 1 — exp(—w?), then Eqgs. (1) and (2) yield a family of scalar pdf’s that is identical to
the mapping-closure family [6]. Moreover, by parametric variation of the functional form of H(w),
other families are obtained that may be compared to the mapping-closure family in order to identify
the mechanistic origin of particular behaviors.

For this purpose, cdf’s of the form
H(w) =1 - exp(-w") @)

are considered, where the case n = 2 corresponds to the mapping-closure result. The key property
of Eq. (3) is that the bandwidth of H(w) increases with decreasing n. The family of scalar pdf’s
corresponding to n = 1 is shown in Fig. 2. Unlike the pdf’s in Fig. 1, this family exhibits a regime
of trimodality during its transient evolution.

This behavior can be understood as follows. A wideband segment-size distribution corresponds,
for intermediate o values, to a large number of segments much smaller than ¢ and a few segments
much larger than ¢. The many small segments have ¢ profiles entirely contained within a small
neighborhood of ¢ = 0, therefore contributing a peak in the vicinity of ¢ = 0 to the pdf of ¢. The
large segments, though few in number, contain a large enough fraction of the total scalar domain so
that their contribution to the pdf is significant. On these segments, o is so much smaller than w that
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the scalar on these segments is predominantly unmixed, corresponding to the double-delta-function
form of the scalar pdf. The combination of the two contributions accounts for the intermediate
trimodality.

Though this reasoning relates properties of the scalar pdf to geometrical propertics of CLAPR,
it does not assure that these considerations are pertinent to turbulent mixing. A qualitative justifi-
cation of this extension is as follows. High-Reynolds-number turbulence consists of eddies spanning
a wide dynamic range, including large, slow eddies responsible for initial length-scale breakdown and
numerous small eddies that rapidly complete the homogenization process. Due to intermittency,
different localities within the flow will be at different stages of length-scale breakdown at a given in-
stant. Some fluid parcels will have achieved a degree of breakdown such that rapid homogenization
occurs, while others will be in a largely unmixed state.

Thus, a connection between trimodality and eddy dynamic range is plausible in the turbulent
mixing context. The quantification of this connection by means of a mixing model is now considered.
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----- c=22 wweeee ' 1O, = 0.73
-e=0c=12 -— 1% = 0.62
essesc g = 0.8 S a
2.0 ———G =05 204 1 ¢ /6 = 0.48
o —_— b 10 = 0.34
1.5+ 1.5
2 e
L -
° k-
Q. Q
1.0 - 1.0
0,5~ 0.5~
0.0+ T 0.0 T
-2 2 -2 2

Figure 2. Scalar Pdf Families from CLAPR with n = 1 (Left) and Multi-Scale Linear-Eddy
Simulation (Right)

LINEAR-EDDY MODEL

The linear-eddy model is a stochastic simulation of advection-diffusion formulated so as to
capture the essential mechanistic features of the process in a computation that is affordable at
high Reynolds number (Re). The modeling strategy is to maintain full spatial resolution, so that
molecular diffusion can be correctly implemented, but to simplify the computation by reducing the
problem to one spatial dimension. Since continuum flow cannot be implemented in one dimension
(except for trivial Galilean transformations), advection is represented by a random sequence of
instantaneous events. Each event involves spatial rearrangement of a randomly selected interval of
the spatial domain. The rearrangement is a mapping, denoted the “triplet map,” of the interval
onto itself.

This mapping is conveniently defined as a two-step process. First, the scalar field within the
chosen interval is replaced by three compressed copies of the original scalar field within the interval.
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Each copy is compressed spatially by a factor of three so that the three copies fill the original
interval. Second, the middle copy is spatially inverted (“flipped”).

Graphical illustrations and a formal mathematical definition of this map, as well as a mechanis-
tic rationale for this formulation, have been presented [1]. The triplet map captures, in one spatial
dimension, the essential properties of the baker’s map as commonly applied to mixing problems. In
particular, a spatially homogeneous, statistically stationary sequence of triplet-map events induces
exponential growth of material-surface area. In this and other respects, the rearrangement process
emulates compressive strain effects in turbulent flow [1].

Operationally, the linear-eddy model is implemented as a Monte Carlo simulation. Molecular
processes evolve in a conventional manner based on deterministic finite-difference solution of the
governing equations. This deterministic evolution is punctuated by the stochastic rearrangement
events.

In the simulations considered here, the size of the mapping interval either is fixed or is randomly
selected for each rearrangement event based on a size-versus-frequency distribution corresponding
to the eddy-size distribution in inertial-range turbulence. These are denoted the single-scale and
multi-scale formulations, respectively. Viewing each mapping event as the model analog of an eddy,
comparison of these formulations allows an assessment of the impact of eddy dynamic range on
mixing properties.

Scalar field statistics are gathered from the simulation by running an ensemble of realizations for
a given initial condition and mapping interval size-versus-frequency distribution. Each realization
constitutes a scalar field time-history. Thus, the time evolution of quantities such as the scalar
variance and scalar dissipation, as well as the family of pdf shapes, can be extracted.

For comparison to the DNS results, the initial scalar field and molecular diffusivity are assigned
in conformance with the DNS calculation. For the multi-scale formulation, the size-versus-frequency
distribution is determined by matching the turbulent diffusivity and dynamic range of the DNS flow
field. For the single-scale formulation, the eddy size is chosen so that kurtosis of the linear-eddy
scalar pdf converges to the same large-t asymptote as the DNS scalar pdf. The eddy frequency is
chosen to match the DNS turbulent diffusivity. The rationale for this procedure, and additional
details, are presented elsewhere (2,7)].

The scalar pdf evolution obtained in this manner for the single-scale formulation is shown in
Fig. 1. It is in close correspondence with the pdf evolution indicated by DNS and mapping closure.
The multi-scale formulation yields the pdf evolution shown in Fig. 2. That formulation is seen to
be in close correspondence with the CLAPR result for n = 1. Several aspects of these comparisons
are noteworthy.

First, the linear-eddy results exhibit the relationship between trimodality and eddy dynamic
range that was discussed in the previous section. This supports the mechanistic interpretation of
trimodality as an intermittency effect arising in flows with disparate times scales governing initial
length-scale breakdown and mixing completion, respectively. Moreover, the agreement between
CLAPR and linear-eddy pdf families indicates that pdf evolution may be insensitive to other aspects
of scalar field structure or evolution mechanisms.

Second, the connection between pdf evolution and dynamic range, in conjunction with the
good agreement between DNS and single-scale linear-eddy results, suggest that the DNS calculation
corresponds to a narrowband rather than a wideband mixing process. This inference is supported by
additional comparisons of DNS and single-scale linear-eddy results. For example, scalar variance and
scalar dissipation time-histories obtained from the single-scale linear-eddy simulations are in good
agreement with corresponding time-histories obtained from the DNS calculation [2]. The multi-
scale linear-eddy results do not agree as well [7], and the nature of the discrepancies suggests that
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this is due to higher stirring bandwidth in the linear-eddy simulations than in the DNS calculations
[2]. This implies that, for the moderate Re at which the DNS is implemented, it does not capture
the qualitative features of mixing at high turbulence intensity. In particular, it does not exhibit
intermittency effects associated with wideband mixing processes. Linear-eddy simulations indicate
that stirring bandwidth influences not only the transient evolution but also the large-t asymptotic
form of the pdf [2,7].

DISCUSSION

The comparisons among diverse representations of turbulent mixing indicate the likelihood
of high-Re effects that are not apparent at Re values presently accessible using DNS. This raises
the following question concerning the interpretation of DNS results. DNS may be viewed as a
representation of a small region within a large flow, and as such, should capture the fine-scale
properties of that flow (e.g., molecular mixing), however large the flow Re may be. This is true
especially when scalar fluctuation length scales are small compared to the DNS box size, so that
large-scale entrainment intermittency does not play a role in the mixing process. What, then, is
the difference between mixing in a small region within a large flow and the DNS representation of
mixing in that region?

The difference is a consequence of the statistics of the low-wavenumber forcing adopted in DNS
computations. The low-wavenumber energy input rate corresponds to the mean energy dissipation
rate of the flow, incorporating order-unity random fluctuations of the instantaneous input rate
relative to the mean. In high-Re turbulence, however, the variability of the energy dissipation rate
at a small scale corresponding to the DNS box size is much larger than the mean energy dissipation
rate. This extreme variability is a manifestation of the concentration of energy in a small, ostensibly
fractal subset of the flow volume (8].

To represent this extreme variability within DNS, it would be necessary to adopt a low-
wavenumber forcing consisting of long periods of near quiescence interspersed with brief periods
of intense activity. Though it is impractical to implement this computationally, a thought exper-
iment readily indicates its consequences for mixing. If an ensemble of initial-value problems were
computed in this manner, at intermediate times (i.e. several large-eddy turnover times based on
the mean energy dissipation rate), most realizations within the ensemble would experience little
advection and therefore would remain unmixed, but a few realizations would experience intense
advection and become well mixed. Gathering the pdf over this postulated ensemble of DNS realiza-
tions, it is plausible that the pdf would more closely resemble the wideband results obtained using
CLAPR and the linear-eddy model than the results of DNS as implemented to date.

As yet, there is no direct experimental or computational evidence of the validity of this conjec-
ture. If this picture of turbulent mixing holds true, then it is necessary to incorporate the influence
of fluctuations at all length scales in order to obtain a turbulent mixing model with the physically
correct fluctuation properties. The linear-eddy model is an economical formulation that satisfies
this requirement. For flows whose multidimensional large-scale structure cannot be represented
within the linear-eddy framework, a modeling approach that is presently being pursued involves
the use of the linear-eddy model as a subgrid model within large-scale flow computations such as
large-eddy simulations [9,10]. '
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ENSEMBLE PHASE AVERAGING FOR DISPERSE TWO-PHASE FLOWS

A. Prosperetti and D.Z. Zhang
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore MD 21218

ABSTRACT

The ensemble-averaging methods used in this paper differ from conventional ones in the use of
phase averages (in which only configurations such that the point of interest is in a specified phase
are considered) and of averages over quantities defined at particle centers. The first feature leads to
rigorous equations of motion of the general two-fluid type, and the second one renders a straightforward
derivation of the disperse momentum equation possible even in the presence of degenerate constitutive
relations for the particle material. We present numerous applications of this method to: (z) rigid
particles in inviscid incompressible flow; (i) spherical bubbles in inviscid incompressible flow; (i:%)
rigid particles in Stokes flow; (iv) heat transfer in high-diffusivity fluids. While most of the results
are lf?r the dilute limit, some numerical results for finite volume fractions are presented for the linear
problem.

INTRODUCTION

In Ref. [1] we have developed a method to derive disperse two-phase flow equations by ensemble
averaging over the individual phases. The results are useful to obtain approximate closures in the dilute
limit, to interpret numerical simulations at finite volume fractions, and possibly to derive approximate
closures. Here we give a very brief summary of the method, and illustrate its capabilities by means
of several applications, most of which are the result of work in progress.

Some our results coincide with others available in the literature while others are new. In any
event, an important point that we wish to stress is that our approach provides a rigorous unifying
framework by which a large number of disparate results can be systematically obtained without ad
hoc approximations.

Among the advantages of the present approach one may mention the fact that the phasic averaging
leads directly to a two-fluid formulation of the type generally used in the engineering literature. The
disperse-phase equations are derived without recourse to the artifices usuaﬁ]y needed when dealing
with degenerate equations of state, such as negligible density. The closure problem presents itself
in the form of computable quantities, for which approximate methods or direct numerical simulation
are suitable. Finally, as compared with the calculation of averaged properties, such as the effective
viscosity or thermal conductivity, the present approach has the virtue of systematically providing all
the terms in the equations.

AVERAGING RELATIONS

A detailed exposition of the averaging techniques and theorems used in this paper is given in L
Here we summarize the essential results omitting the proofs.

Consider an ensemble of two-phase flows in which each realization contains IV particles, drops, or
bubbles arranged in a time-dependent configuration C¥. We use this word and symbol in a technical
sense as short-hand for the set of position vectors of the particles’ centers, y*, a = 1,2,..., N, their
translational velocities w®, their radii a*, and any other set of parameters necessary for a complete
specification. Thus, for each member of the ensemble, with suitable initial conditions and dynamical
equations for the particles and the continuous phase, and conditions “at infinity” for the latter, the
exact microscopic problem is uniquely specified given the initial configuration.

For brevity here we develop the equations only for equal rigid particles and therefore a configuration
of the system is given by a set of positions y* of the particle centers, a set U of orientations of a
system of particle axes with respect to the laboratory frame, a set of translational velocities w*, and
a set of rotational velocities Q%. We refer to the first two sets as generalized positions, denoted by
the symbol g%, and to the second pair of sets as generalized momenta, denoted by p®. The case of
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variable radius will be dealt with in the examples. To simplify the formulae the rotational degrees of
freedom are not explicitly indicated although, of course, they are accounted for where necessary.

Let P(N;t) be the probability of a specific configuration CN at time t. This quantity evolves in

time according to oP X
5 + 2 Vo= (§°P) + Vo - (5°P)] = 0. (1)

We take the particles to be indistingo{ﬁéhable, so that N! different arrangements of the NV particles cor-
respond to each physically distinguishable state of the system. It is convenient therefore to normalize
the integral of P to NI

Let xc(x; N) and xp(x; N) be the indicator functions of the continuous and disperse phases so
that, for example, xc = 1 when, with the particles in the configuration CV, the point x is in the
continuous phase, and equals 0 otherwise. Note that these are geometrical entities that depend on
time only indirectly through the time evolution of the configuration. The volume fractions of the two

phases are defined by 1
Bo,p = ﬁ/dCNP(N; t)xc.p(x, N). (2)

The particle boundary is assumed to have zero measure so that x¢ + xp = 1 and, as a consequence,

Bc + Bp = 1. )
For equal rigid spheres of radius @ one has

N
xp(x;N) = ZH(a—-lx—y"l) = 1 — xc(x; N), (3)
a=1
with H the Heaviside distribution. With this expression the definition (2) gives
t)= & t t)= [ ¥ | dPwP(1;). 4
.BD(x, ) '/lx’"Y'S“ yn(y’ )1 n(y’ ) / _/ wP( ) ) ( )

Here n is the particle number density. It will be noted that, in the presence of gradients of the particle
distribution, the relation fp = nv, with v = $xa® the particle volume, is not strictly valid.

The phase ensemble averages for a field fc,p(x,t; N) pertaining to the continuous or disperse phase
are defined by averaging over all the configurations such that the point x is in the appropriate phase:

< fep > (x,t) = m / dCN fe,p(x,t; N) xe,p(x; N) P(N; t). (5)

A similar definition is used for the conditional averages, i.e. averages over all configurations such that
some particles occupy a specified configuration.
By the same method used in [1] it is readily shown that

V(Bo<fo>) = Bo<Vie> + [ dSyn/dsw P(1;1) < fo > (x,t]1). (6)

x~y|=a

Here where < fc >; denotes the conditional average with one particle fixed. Similarly, for the time
derivative,

d _ dfc
gilbo<fo>) =fo<3i>—| d.S'y/d3ww ‘nP(,) < fo >, (7)
and for the Laplacian operator,
V(o< fo>) = fo<Vie> + V- [ ds,,n/d3wp(1;t) < fo >
xX—-y|=a
+ ds, -n/dawP(l;t) <Vfe>1. 8)
|x-y|=a

In the present approach averaging and differentiation do not commute as in the methods where
averaging is carried out irrespective of the pliase occupying the position x [2]. The counterpart for
this technical inconvenience is a much greater flexibility in the type of quantities that can be averaged
as they do not necessarily have to be defined in both phases.
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The integrals in (6) and (7) are over all the pa.rticies touching x for all of which the velocity field
satisfies the kinematic boundary condition n-w = n-uc(x,t|N). Therefore, upon combining the two
relations, the two integrals cancel so that

9(Bc ;tfc >) +V-(fc < feuec >)=Pec < —aaf-TC + V- (feue) > - )

Thus, though not commuting, averaging and convective differentiation satisfy a simple relation that
plays a central role in the derivation of the averaged equations of the following section.

The general definition of averaging for the disperse phase is given above in (5). This type of
average is however of limited usefulness (see [1]). We make extensive use, rather, of a different kind
of average appropriate for quantities g@(¢; N) defined at particle centers. Examples are the center-
of-mass velocity, momentum, radius, and others. For such quantities we define the ensemble average
over all the configurations such that the center of one particle is at y at time . On the assumption
that ¢(!) does not depend explicitly on the configuration of the other particles, the definition is

1
B(,0,1) = - [ PwP(L;1) 8V(a,p,0) (10)
As in [1], it is easy to show for such particle-centers averaged quantities that
. 5@
5;("0) + Vy - (nWgD) = n—7, (11)

where 0g(!)/8t is the time derivative following the motion of the particles. Since the field g is
defined only at particle centers, this result is the same as in kinetic theory, where the finite size of the
nilolecules is disregarded. We now use the previous relations to derive the equations of motion of the
phases.

AVERAGE EQUATIONS

With the neglect of compressibility, the equations of motion of the continuous phase are
V-.uc =0, (12)
6uc

1
TS + V- (ucuc) = ~——Vpe + veViue + g. (13)
Pc

Upon taking foc = 1 in (9) and using the continuity equation (12) we find the averaged continuity
equation for the continuous phase as

%+v-(ﬂc<uc>)=o. (14)

Similarly, upon taking fc = uc, we have from (9) and (13)

a
cht'(ﬂc <ug >)+peV - (fc <ueg ><uc¢ >) =—-PcV < pc >

+ ucV3(Be < uc >)+ fecAc(x,t) + BopcBe + pcV - (BcMc) + Bepcs, (15)
where we have introduced the “kinematic” Reynolds stress tensor
Mg =<ug ><ug>—<ucgug >=—< (UC— < ug >)(1lc—- < ue >) >, (16)
and we have set Ac(x,t) =V <pc > — < Voo >, (17)
or, from (6),
BcAc(x,t) = S dS,,n/d3w P(1,1)[< pc >1 (x,t]1)— < pc > (x,1)]. (18)
Furthermore,
BcBe = -V - eyl dSyn P(1;t) <uc > — ey < Vug >1 -nP(1;t)dS,. (19)
X-Y|=a X—-Yy|=a
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Equation (15) has been written in terms of the gradient of the average pressure as in the standard
two-fluid models. This choice introduces the quantity A¢ which must evidently contain all the local
phase momentum interactions. This procedure is similar to that of [3] but, rather than relying on
separation of scale arguments, has been effected by introducing a clear operational prescription that
enables the phase interaction term A¢ to be evaluated. An explicit expression for this quantity valid
in the dilute limit is given later.

If we were to follow the same procedure to derive the averaged equations for the disperse phase,
the result would involve the constitutive relations of that phase’s material. This is undesirable for
situations where such a relation is degenerate, as for rigid particles or massless bubbles. In order to
avoid this problem, we use the particle-centers averages defined in (10). We start with the number
density of the particles. By setting g() = 1 in (11) we have

on .
i +V, - (nW) =0, (20)

from which a conservation equation for the particle volume or mass (assumed constant) is readily
obtained. In the case of variable v or m, the appropriate procedure is to set g) = v or m in (11).
Similarly, by setting g() = mw, we find the averaged particle momentum equation in the form

-g—t(nW) +V, (nTAWW) = nmw. (21)

The last term in the right-hand side may be rewritten by recalling the equation of motion of the
particle center of mass which, neglecting collisions, is

mW = ey [-pc(x,t; N)n +7¢(x,t; N) - n] dS: + mg, (22)
X—y|=a

where 7¢ is the viscous stress tensor. The integral is over the surface of the particle centered at y.
Upon substituting this expression into the the right-hand side of (21) we find

OV |, - (nTrw) -_-/ dS;n - _/dsw < —pcl+7c > (%HL)P1;t)+g,  (23)
ot {x-Y|=a
or, with the definitions

Mp=WW~-Ww = —(Ww—-W)(w—-W), (24)

1 3

Ap = —— ndS,/d wP(L;t) [<pec >1(x,t1)— < pc > (x,t)]
nv Jix-y|=a
+ ! [vV <pc>- n<pc> (x,t)dS;] s (25)
v [x-yl=a

and pp = m/v,
onw
ppw + pDVy . (nW) = —nV,, <pc > +ppV- (nMp) +nAp +nppg + BpBp. (26)
SMALL-PARTICLE APPROXIMATION

The equations derived in the preceding sections contain several terms involving integration over
sEheres with a radius eatjua.l to the particle radius a. When the macroscopic quantities vary slowly over
this scale, these integrals may be approximated by Taylor series expansions. The detailed calculations
are given in 1. Here we simply note the pertinent results.

) h}f volume fraction Bp and average velocity < up > of the disperse phase are approximately
given by
Bp(x,t) = va(x,t)[1 + O(a?/L?)), <up > (x,t) = W(x,t)+ O(a/L), (27)
where L is the characteristic length for the variation of macroscopic quantities and v = §wa® is the
particle volume. To the same accuracy, the quantity Ap introduced in (25) is given by

ﬂDAD(yvt) = __//dsw P(Y)W; t) /lx vl= dSz n[< Pc >1 (X,tly,W)— <pc> (X,t)]. (28)
Notice that, even after this approximation, this quantity remains different from A¢ defined in (17)

because the integration is carried out over the surface of a particle centered at y rather than over the
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particles with center at y such that |y — x| = a. It can be shown that, with an error of order Bpa®/L?

[1%1’ . BecAc = —BpAp(x,t)+ V- BpTe, (29)
where  mp(x,1) = -5 / P /Iy_xlm dS,nn P(L;1)[< po >1 (¥,t11)— < pe > (¥,1))- (30)

It will be seen in the following that T¢ affects the average motion of the continuous phase in the same
way as an additional stress tensor.

If Ac and Ap were to be considered as “internal” forces of the mixture, then, on the basis of
a naive interpretation of the action-reaction principle of Mechanics, from the momentum equations
(15), (26), one would expect T¢ to be zero. However, in the next sections we give examples of explicit
calculations of T¢ that give non-zero results. The reason is that, while the action-reaction principle
must of course hold at the microscopic level, there is no reason for it to hold for the averaged quantities
Ac and Ap which are evaluated by integration over neighboring, but different finite surfaces. For
uniform mixtures, however, V - T¢c = 0 and fcAc = —fBpAp as expected. Hence the finite size of
the particles is seen to play a crucial role in the derivation of (29).

With the previous approximations the averaged equations of the previous section may be written
in a slightly more familiar form as follows. For the continuous phase, Eq. (14) is unchanged and will
not be repeated. The momentum equation (15) becomes instead

7]
pc-a—t-(ﬂc <ug >)+pcV - (fc < uec >< uc >)

= —fcV < pc > —BpAp(x,t)+ V - (BepcMc + Te) + Borcs, (31)
With (27), the number density conservation equation (20) becomes
0
% 19, (Bow) = 0, (32)

while the momentum equation (26) remains unchanged.

THE DILUTE LIMIT

The set of averaged equations derived before is not closed as the right-hand sides contain averages
with one particle held fixed and averages of products that must somehow be related to products of
averages. This is the well-known closure problem that is unavoidable in any averaging method.

The simplest closure can be effected in the dilute limit (i.e. with an O(8p) accuracy) as follows.
The integrals containing the conditional averages < ... >; in the right-hand sides of the uncondi-
tionally averaged equations give a contribution of O(fp). For accuracy to this order, therefore, these
conditionally averaged fields are only needed with O(1) accuracy. To this accuracy the conditionally
averaged equations are a closed system and can be solved subject to the condition of matching to
the unconditionally averaged fields at large distances from the particle held fixed. The solution thus
obtained can be substituted into the right-hand sides of the unconditionally averaged equations to
give a closed set.

In principle this procedure can be applied to find averaged equations correct to O(BX) for arbitrary
K, although for most problems K = 2 appears to be already the practical limit or possibly beyond.
An alternative is to use direct numericaf simulation. Finally, one may attempt to find heuristic
approximations to calculate the conditional fields.

We now present several examples of dilute-limit and numerical closures. Since from now on all
quantities are averaged, we drop the averaging symbols. Furthermore, we write up in place of W
which is permissible to O(8p) on the basis of (27).

For all the examples discussed below the continuity equations (14), (32) are necessary to close the
system and will not be repeated.

RIGID PARTICLES IN POTENTIAL FLOW

For rigid particles in inviscid flow the rotational degrees of freedom are unnecessary and the particle
configuration only depends on y* and w*, a =1,2,..., N. In [1] we have found the results

1 [o a 1
AD = §PC [._Eg +uc- Vuc - —uTD- -up - VUD -+ ng(ﬂDMD)} ) (33)

ot 0

Te = %pc {ﬂD [2(110 —up)’I— %(uc —up) (uc — uD)]} - %Pcﬂn [2(T1' Mp)Il-— %MD] ,  (34)
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Me = —-g—g— [3(110 - uD) . (UC - uD)I+ (uc - uD)(uc - UD)] + %}' [3 (Tr MD)I + MD] . (35)
Aside from the Reynolds-stress-like term Mp, the result for Ap agrees with the expression of the
force on a single sphere immersed in a flow obtained by several researchers and, most recently, in 4]).
The first group of terms in Mg is the same as the result obtained in [5] where however the particles
were implicitly taken to move with the same velocity so that Mp = 0.

Since the previous results have been obtained on the assumption of potential flow, they cannot
contain the effect of a rotation. If frame indifference is postulated, however, they can easily be
corrected for this effect as shown in [1] with the result AL = Ap + %pc(V x ug) X (up —ug), where
the first term in the right-hand side is given by (33). The corresponding expression of A¢; follows from
(29) with A% in place of Ap. The additional terms are the familiar lift force [4]. This result has been
obtained by assuming that a potential flow is viewed from a rotating coordinate frame. Hence, strictl
speaking, it is only valid provided V x uc has a spatially uniform value throughout the flow field.
However, with the usual assumptions about scale separation, it may be considered as approximately
applicable to more general situations as well.

Combining the previous results we have the final form of the momentum equations. For the
continuous phase the result is

pcBc [%!tg + (uc - V)uo] + BcVpc = —%Paﬂp [_3_6%9_ +uc-Vuc - 6_;22 —up- VUD]
- %pcﬂu (V xuc) x (up —uc) + j}:pcv . {ﬁu [(uc —up)*1 - 2(uc —up) (uc - uu)]}
~ 270V [8o(Tx Mp)] + fosos. (36)
Similarly, the final form of the disperse-phase momentum equation is
ppPp [%l_tg + (up - V)up] + fpVpc = %Pcﬂn [Qg—;—' +uc - Vuc - -aa—tuo —up- VUD]
+ 2p0Bo(V x uG) x (up ~ue) + (o0 + 56c)V - (BoM) + BopoE. (37)

The final closure of the system requires an expression for the fluctuating particle volume flux tensor
Mp [6]. This missing information cannot be supplied internally by the theory without a specification
of the initial conditions imposed on the particle probability distribution. This point was noted in
[7] where it was explicitly assumed that, at each position and time, the particle velocity probability
distribution is strongly peaked around its local, instantaneous mean value. In this case Mp = 0. A
similar assumption — whether explicit or implict — seems to be present in all of the previous work.

It is shown in [1] that the preceding expressions coincide with those of [8-10] to the present O(f8p).

SPHERICAL BUBBLES IN POTENTIAL FLOW

For massless spherical bubbles in inviscid flow the rotational degrees of freedom are again unnces-
sary but the particles instantaneous radii and radial velocities must be added to the set of variables
that define a configuration.

In a paper in preparation we study this problem allowing for a spectrum of bubble sizes. Here, for
simplicity, we quote only the results applicable when the probability distribution is strongly peaked
about an average radius @ and an average radial velocity a. Again upon dropping the averaging
symbols, the momentum equation for the bubbles is

1 due dup
BpoVpc = 2Pcﬂn [ T +uc - Vue - 35 ~up- VUD]

3 a
+ 'é'zpcﬂo (u¢ —up) (B_(tl +up- Va)

+ -;—pcﬂp (V X uc) X (uD - UC) + %pcv . (ﬂDMD). (38)
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For the continuous phase

pcBc [?_;_tc_ + (uc - V)uc] + BcVpc = same as rhs of (36)
d
+ %Pcﬂn(uo - ug) (a—(: +up- Va)
1 d a 5, (8 2
- Zl’cv' [ﬂoa (E+UD°V) (—a-z-*-uo'v) a—iﬂo (-a—:-+uD-Va) ] ; (39)

The equation of motion for the bubble radius generalizes the well-known Rayleigh-Plesset equation in

the form
d d 3 (da 2
a(—a—t-l-llD‘V) (-a—t"!-UD'V)G-*-E(E-l-UD'va)

1 20 1 1
= ;}' PB— = Pc] - Z(UD —ug)-(up —ug) + ZTrMD' (40)

RIGID PARTICLES IN STOKES Fi'JOW
In this case the probability distribution only depends on the position and angular orientation of

the particles. One finds 98p
BcVpc =V - (1*Vun) + 5';3‘/‘(“0 —uc) (41)

where p* is the effective viscosity 1 4 5/2 8p and um = Bpup + fcuc the volumetric velocity. The
equation of motion for the particles is
0 D 9 B

u
pD (—a—t + up - VuD) = —VPC' - EF(uD - uc)’ (42)

THE ENERGY EQUATION
The same averaging method may be applied to the energy equation for an incompressible fluid

0T¢ /8t +uc - VIg = DcV?Tg, where Tc is the temperature and D the thermal diffusivity. Upon
averaging the result is

Q%F-C- + V- (BoucTc) = V- (D5 VTc) + 3ﬁ22D ¢ (1 + %) (Tp — Tc)
+ Dcvz[ﬂD(Tc - TD)] + 1—36' (1 - ‘Ilg—z) V - [Bo(Tp — T¢)(up — UC)]’ (43)

where Kp, K¢ are the thermal conductivities, Df is the effective thermal diffusivity
36p(Kp — K¢)
Kp+2Kc |’
and Pe the particle Péclet number Pe = 2¢jup — uc|/De.
Upon averaging the microscopic energy equation for the particles KpV2Tp +4p = ppCpp0Tp/0t,

where p is the internal volumetric heat source and Cpp teh specific heat, one finds the averaged energy
equation for the disperse phase in the form

%(ﬂDTD) + V(BpupTp) =

Dy =Dc [1 + (44)

38p K¢ Pe) Bp .
—_—— 14+ — (T - T . 45
a?Cpp pD ( + 4 (To c) + C,,DquD (45)

LINEAR PROBLEM AT FINITE VOLUME FRACTIONS

We now consider the case of finite volume fractions for the linear problem for homogeneous sus-
pensions of rigid spheres in potential flow. On the basis of standard Continuum Mechanics argument
(Galilean invariance, isotropy, etc.), it is possible to show that Ap must have the form (1]
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Ap = %po Bc C (Bp,pp/pc) %(Uc —up), (46)

where C is a scalar coefficient dependent on the ratio of the densities and the volume fraction. The
corresponding form of Ac¢ is given by (29) with V.- T¢c = 0 due to homogeneity. The well-known
Zuber approximation corresponds to C' = 1 and Wallis’s “exertia” E [8] is given by E = 1pC. In (1]
we have calculated C by carrying out ensemble-averaging numerically. Some results are shown in the
figure on the left. The figure on the right shows instead an example of the probability distribution of
the values of C obtained from different simulations for fp = 0.4 and pp = 0. It is interesting to note
that the spread of this distribution is such as to obscure any dependence of C on its variables.
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PARTIAL CONTROL OF COMLEX CHEMICAL PROCESSES I.
CONTROL OF FLUIDIZED CATALYTIC CRACKER
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SUMMARY

A detailed dynamic model of a fluidized catalytic cracker has been developed that allows
evaluation of the impact of different designs, control configurations, catalyst and feed
composition and control strategies on the control of a fluid cracker. The present paper deals with
the existence and the topology of multiple steady states. It is shown that in some cases five
steady states can exist. Further, some of these can be close together in terms of the input
operating space. Present trends in operating conditions (higher regenerator temperatures and
higher catalyst activities) increase the likelihood that desirable operating conditions are in the
regions where such multiplicities occur. It is shown that catalytic combustion promoters can
eliminate or reduce this problem. The paper aliso shows that conventional control structures can
lead to input multiplicities and that the choice of additional control variables in the primary
matrix should depend on operating conditions.

INTRODUCTION

The goal of our research program is to provide a more rigorous framework for designing control
systems for complex chemical processes. First of all such processes are nonlinear. Second, the number of
variables that need to be controlled is often much larger than the number of manipulated variables at our
disposal. This gives rise to the concept of partial control.

In the conventional sense. controllability means keeping all controlled variables at specified values.
For partial control, controllability means that we can keep the vector of controlled variables in a given space.
One can use the information obtained from all measurements to adjust simultaneously all manipulated
variables via a detailed process model. Alternatively one can use a square matrix by choosing measurements
indicating the state of the process. One can then use the information obtained from measurement of the
complete output vector including process constraints as well as product specifications to adjust the setpoints
of the primary square control matrix. The latter, if properly done, requires less model sensitivity and
requires less detailed process information. It 1s often used in industry and is here our primary concern.

As the first example of our study we chose a fludized catalytic cracker (see Fig. 1 and Ref. 1). In
such a unit fluidized catalyst circulates between a reactor and a regenerator. In the reactor the hot catalyst
heats up the high boiling fraction of crude oil and cracks it to gasoline and gaseous products. Coke is
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formed on the catalyst during cracking. This catalyst goes to the regenerator in which the coke is
combusted with air. This supplies.the heat required for the process and the process is adiabatically heat

balanced.

Strippi ng Mcg
Steam
Regenerator Separator
Freeboard
Region
2 Riser

Withdrawel Regenerated s
Catalyst
Air Heater [:] Blower eed

U— Air Feed

Preheat

Figure 1: Schematic Diagram of FCC.

The feed can be preheated in a separate furnace and in some units heat can be removed from the
regenerator via a catalyst cooler In some older units catalyst circulation is fixed and can only be siowly
adjusted by changing catalyst inventory In new designs it can be adjusted. These design changes have a
strong impact on controllability

The flue gas from the regenerator normally contains a large fraction of carbon monoxide; many units
have a CO boiler to combust the remaiming CO in the flue gas. In the last twenty years, catalytic
combustion promoters have been introduced which allow complete combustion to CO, at temperatures below
1300°F. This increases the heat generated from the coke which, in the absence of a catalyst cooler, either
lowers conversion or limits the tvpe of the feed that the unit can handle.

Catalysts and feedstocks have changed strongly over the years which necessitates changes in
operating conditions. Feedstock quality and desired operating conditions can change drastically in a given
unit during any given year. In recent years, tighter product specifications have also increased the demand
for better control as the FCC 1s the kingpin of a modern refinery. It is the unit in the refinery which is the
most flexible and which can operate over the widest range of feed and operating conditions.

In the initial phase of our study we have developed a detailed model of the FCC, and have looked

at the basic features of the system such as inuluple steady states and the input multiplicities of those control
configurations currently used in the industrv
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FCC MODEL DEVELOPMENT

There are 2 number of detailed models for the FCC that would be satisfactory for our purposes, but
all are proprietary. None of the published models (2, 3, 4] have enough detail, especially on the reactor side,
to serve our purposes. In our method we use a detailed nonlinear model to serve as a substitute for the
system studied, and our design methods assume that the model is not completely accessible.

All the published models do not allow computation of the complete product specification vector.
Some of them do not allow the existence of the observed multiple steady states [8,9]. The model developed
up to this point will serve as a basis for future studies, but after further refinements in predicting product

properties are added to it.

A detailed description of the model is impossible within the short space allocated and will be
published separately. As the senior author has extensive experience with industrial FCC operation, the
model was checked as to its capability to predict the observed trends in real operation.

NONLINEARITIES OF CONTROL SYSTEMS

Most chemical reactors are nonlinear systems. Despite that, linearized transfer functions generally
serve quite well for the tuning of control loops. There are however, several features of nonlinear systems
which are important to understand:

1) Steady state control almost always requires nonlinear models [5].

2) The linearized transfer functions can depend quite strongly on the operating conditions.
Steady state gains and other parameters can even change sign as the result of small changes
in the operating conditions.

3) The system can have multiple steady states or exhibit stable oscillations [6, 7].

4) A given control matrix may exhibit input multiplicities.

In this paper, we focus on Items 3 and 4.

MULTIPLE STEADY STATES

The existence of multiple steady states as determined by both computation and observation has been
discussed in the literature [9, 10). Ref. 9 however does not give the details of the model used and there has
been no thorough discussion of the topology of these multiple states or of the impact of design, catalyst
properties and operating conditions on them.

Any adiabatic system such as an FCC has the potential for five steady states. If the feed is not hot
enough to cause ignition, there is only one steady state in which the unit remains cold. If the catalyst with
a specific feed does not generate enough coke to maintain operation at a high temperature the unit will crash
to this state (see Fig 2) Otherwise there are three steadv states.
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Figure 2: Multiple Steady States in Heat Balance.

The potential for the two additional steady states is created by the consecutive reaction of CO
combusting to CO, which, in the absence of a promoter. 1s a homogeneous reaction. At temperatures below
1200°F this reaction is stopped by the presence of catalyst. Therefore, if the flue gas contains oxygen, it
will 1gnite after leaving the cyclone. This will show up as a temperature difference across the cyclone. At
higher temperatures (above 1250°F) the inhibition decreases and the reactor can take off even in the presence

of a catalyst.

We have approximated this complex relaton by using a high activation energy (70 kg cal/g mole)
in the presence of a catalyst. This can lead to five steady states. Previously most FCC's operated at
temperatures below 1200°F. Modern, more active catalysts require higher regenerator temperatures due to
lower circulation rates and the desire for higher octane and more alkylate feed. This increase in temperature
makes the existence of five steady states more likely

Fig. 3 gives a plot of the different regimes as a function of open loop inputs of manipulated variables
(catalyst circulation rate and air flow rate) In Fig. 4 we show that the impact of feed properties (intrinsic
coking rate) on the existence regions of both three and five steady states. Fig. 5 gives the impact of catalyst
acuvity and Fig. 6 gives the impact of a catalyst promoter Decreasing the coking rate or catalyst activity
limits the range of stable operation (3 steady states) whereas increasing either one increases the likelihood
of five steady states.
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In Fig. 6, we show the impact of a catalytic
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There is a special characteristic of these multiple steady states in our system. In the desirable
operating range, there is a chance that these multiple steady states are close to each other. If they are far
apart one still has to know about their existence but their impact on controllability is usually larger when
they are close together.

INPUT MULTIPLICILTIES

In Fig. 8, we show some typical control configurations for an FCC. For brevity, we concentrate on
the case without a catalyst cooler. Feed temperature is manipulated only for steady state control. Dynamic
control focuses on air rate and catalyst circulation rate. Catalyst circulation rate is controlled to adjust the
reactor riser top temperature. (All the cracking takes place in the riser which functions as an adiabatic
reactor).

 Flue ——Products

Tris «-S—ET
SET—={Trgn|= ('\7/— Reactor
Steam ‘%Req nerator B v
Riser
y
Tfeed+— SET

Air Fuel $ oil

and Furnace .._—i
Air fuel

Figure 8: Major Control Loops of FCC.

Air rate is used to adjust one of the following: (1) regenerator bed temperature, (2) the temperature
differecne across the cyclones. or (3) the flue gas temperature leaving the cyclones. Regenerator bed
temperature 1s the one of direct importance as 1t is the only one that can intuitively be used to adjust
operating conditions to achieve the right conversion However, temperature difference or flue gas
temperature control have a faster response. This is useful to protect the cyclones from metalurgical damage
due to overheating. At high temperatures the cyclone temperatuare difference is small and therefore not
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suitable for control. One can use either regenerator or flue gas temperatures instead.

In the case where enough promoter is added to achieve complete CO combustion, oxygen in the flue
gas is used to control air rate. In Fig. 9, the air rate as a function of the controller settings for these four
different cases is shown for a fixed reactor temperature of 980 F. This is shown in the base case in Fig. 3.
We note that there are input multiplicities for each of the cases. However, they occur in different operating
regimes. This must be taken into account in the design of any control strategy.
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Our results also show that for some operating conditions the eigen values of the linearized control
matrix can vary strongly over reasonable changes in set points.

Previous control studies- [12,13] have emphasized the speed of the response. Our results clearly
indicate that in some operating ranges this is less important than the need to avoid large changes in the eigen
values for small changes in set points and also the need to avoid input multiplicities.

In a real system, catalyst properties and feed properties as well as operating conditions vary over a
wide range. For good control, it is not necessary to be able to reliably model the exact occurrence of
multiple steady states and input muitiplicities. But a thorough understanding of their nature and potential
topology is essential and will be incorporated in our design approach.
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ABSTRACT

Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal
filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation
of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique
of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response
of a simple model of a guyed tower.

INTRODUCTION

A rational analysis of offshore structures exposed to wave-induced loads requires the estimation of the fluid
kinematics at different spatial locations along the structure. In fact available kinematics information at one point on
the water surface, must be propagated on a spatial grid that is commensurate with the structural analysis procedure
used. Both vertical and horizontal kinematics propagation are important in this context. However, each of these
propagations features a peculiar behavior not present in the other. For example, the vertical propagation is not
accompanied by any phase shift, while the horizontal propagation features no attenuation. It is obvious, therefore,
that no single filter can be used in addressing both the horizontal and the vertical propagation issues. Examples of
filter approaches to wave kinematics representation can be found in other references [1-5]. For the vertical propagation
case, a filter should be designed possessing a phase that is independent of depth. This criterion will relinquish the
traditional control over the magnitude of the transfer function, in favor of control over the phase. It will be shown
that this criterion can only be satisfied if a non-causal filter is used, thus resulting in a symmetric Moving Average
(MA) design. In contrast, the horizontal propagation problem can be best accomplished using a filter with constant
magnitude, but with a phase that approximates the known phase of the wave propagation. This latter can be
obtained based on the dispersive character of horizontal kinematics propagation. The propagation of horizontal
wave kinematics is accomplished using an all pass filter with a nonlinear optimization criterion to match the phase
response function. .

Once filters have been designed for representing the wave kinematics, they can be used efficiently not only for
synthesizing time histories, but for conducting, as well, dynamic analyses of offshore structures. Attention to the
analytical advantages of filter approaches to ocean wave kinematics representation has been called in references such
as [5].

In this paper, the analytical advantages are demonstrated, in conjunction with the technique of statistical lin-
carization [6] for predicting the random response of a guyed tower.

FILTER DESIGN

The analysis of the propagation of wave kinematics at intermediate water depth relies on the Airy, or linearized
wave theory. First, an analysis of the vertical propagation of wave kinematics, from a perspective of amplitude and
phase, will be considered.

Vertical Propagation of Wave Kinematics

The spectrum of the horizontal velocity of particles at any location z measured from the bottom is given by the
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equation [5]

_ [ cosh(xz) 2
Su(w) = [wm] S',,,,(w) ’ (1)

where Sy, denotes the spectrum of the surface particle elevation. The above equation can be normalized using the
following substitutions,

b=xd G2=w2§=btanhb a=3 s 2

where d denotes the local water depth, and g denotes the acceleration of gravity. The resulting normalized equation
has the form

d Suuw) _ cosh(ab)]?
o e [ @

Adopting the procedure described by [8,6], equation (3) can be approximated using the rational function

Su(@) =

wiws

4
(@7 =2 ¥ awia V] (@ = w3 + o) ®
where wy, wa, £1, £2 are coefficients dependent on a. The right-hand side of the above equation can then be factorized -
as

S, = Su(@) =

SU(‘:’) = f?w(i‘:’)f{w("i‘:’) ’ (8)

where H,; denotes the frequency response function of the kinematics propagation filter at depth z and is given by
the equation,

Wi
[wf ot (:12 + i(2(1(d1£§)] [w% - (:)2 + i(2C2w2L:I)] )

The impulse response function corresponding to the function Hy:(s) is given by

Hy: (@) = (6)

wiws e—wia
hy:(t) = sgn(R;) \/}_21};2_1?. 168 cos(wyy/1 — (Pt + 1)
wiwi

+ Sgn(RZ)We_”’C" cos(way/1 — (3t + ¢2) , (7)
2

where

= 4wl [(wil1 — w22)(1 — 1)) 8

I = (wny/1-¢}) [(w? — w3) = 2Ciwi + 2C1w1Gows] (9)

L, _r T

tan¢; = = 3 <é1 < ) (10)

Ry = 4w} [(w2lz — w161)(1 — ¢2)] (11)

I = (2w2/1 — €3) [(wE — w}) — 2w} + 2C1wi(awo] (12)

tan¢z=-}%; -3 _¢2<§ (13)

The vertical propagation of the vertical velocity component can be treated in a similar fashion, starting with the
following nondimensional form of the spectrum,

s@ =2 0] - [Si:‘;ﬁi?]z : .

which is replaced by the following rational approximation,
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This spectrum can again be factorized using the transfer function H,. which is given by the equation,
N y2
H, (@) = (16)

(@2 — v2 + j2Bve] [1 + jea] ’
where v, 3, and ¢ are functions of a. Again, the coefficients in the above rational approximation are usually evaluated
80 as to minimize a measure of the error between the target spectrum and its approximation, and are therefore a
function of the fractional depth a. The impulse response function corresponding to the transfer function of this
spectrum can be shown to be equal to,

9y 2e-vBt 2:20 _ ¢
hos(t) = sgn(R) ;—I;—_Tﬁ cos(v4t + ¢) + 1—u2ﬁ:—c+{/c2c2 , an

where
va=/I=FF, I=20c~1), $=tan""(%), WI<T. (18)

The above formulations using cascaded single-degree-of-freedom models are based on an optimality criterion that
minimizes the error between the magnitude of the target and approximating spectra. Filters developed in this fashion
have a number of desirable properties, including a rational form of the spectrum which can be realized in the time
domain using cascaded differential operators. By restricting the error norm to the magnitude of the approximating
fupction, however, control is lost over the behavior of its phase. The implication of this fact on the simulated
process, is that although the magnitude of particle velocities are adequately reproduced, their phase relations are
arbitrary, This phenomenon can be crucial in designing structures to accommodate fluid-structure interaction where
the cross-correlation of the exciting force along the length of the structure is important. Based on this argument, it
is apparent that a constant phase is a desirable feature of a simulated process along the depth. Phase information
can be incorporated into the design of the filter by recasting the problem into a single-input-multi-output (SIMO)
framework (7] with the surface elevation being the input, and the kinematics at the various locations along the depth
being the outputs. In case the surface elevation is not a white noise process, it can always be considered as the
output of a digital filter to white noise input, and the system equations can be augmented accordingly. Based on the
kinematics propagation equations presented above, it can be shown that the phase transfer function for the vertical
propagation of the horizontal and vertical velocity components can be approximated by the following functions,
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7o _1 [2(Gw1 + Cowe)w® — 2nws(Grws + (ow1 )@
-\ — 1
(@) = Arg(Hu(@)) = tan™ | G T T Wi Grmwn)? Fwled | (19)
for the horizontal component, and
_ = _1 [e@® = (2Bv + cv®)@
8, (@) = Arg(H,(@)) = tan™? [—(2,31152-!- De? + Vz] : (20)

for the vertical component. Both of the above expressions for the phase responses of the filter feature nonlinear
dependence on frequency and depth. Figures (1) and (2) show these phase spectra for different vertical locations.
Note that as much as 27 rd phase difference can occur between values of a given realization at different water depths.
This is in contrast with the desired situation of zero-phase shift of the simulated process along the depth coordinate.
Such an ideal situation can be accommodated by using the following real transfer functions relating the kinematics
at the surface level to those at a specified depth.

Huz(w;a) = %.l%(%z—":;;) ’ (21)
and
Hox(w;a) = %%:‘%? ) (22)

The above functions are obtained by considering the square root of the spectrum for the propagation of the associated
kinematic, prior to making a rational function approximation. These transfer functions cannot be realized using causal
filters since they do not satisfy Kramers-Kronig relationships which require the real and imaginary parts of a transfer
function to be Hilbert transforms of one another. Infinite impulse response (IIR) filters cannot therefore be utilized
in this case, and only finite impulse response (FIR) filters are adequate for this task. This conclusion is expected
since the purpose of the filter is to simulate spatial variability of various kinematic quantities, and causality is a
property inherent only in processes with a preferred direction of propagation, this not being the case for the vertical
propagation of wave kinematics. As will be demonstrated below, this non-causality does not apply for the horizontal
propagation of wave kinematics, which again is expected in view of the preferred propagation in the direction of the
wave motion.

Coming back to the vertical propagation of wave kinematics, a two-sided, moving average (MA) filter can be
designed, based on an algorithm by Borgman [1]. The algorithm provides a mean for simulating the time evolution
of a specified wave kinematic at a specified vertical propagation distance, and a specified water depth and wind
velocity. The algorithm can be realized using the following equations,

We
A, =L / R (Ha(w; Az)) cos( %) duo (23)
We Jo We
1 [fwe . BAW
B, =~ / S (Ha (w; Az)) sin( 222 )dw (24)
We 0 We
ag = Ao, Gpn = An + Bn, G_n = Apn — By . (25)

In the above equations, the subscript z on H is used to represent either of the horizontal or the vertical component,
and R(.) and S(.) denote the real and imaginary components of a complex quantity, respectively. Once the above
coefficients have been calculated, the simulation can be performed using the following equation,

N
%= z @nZTien; k=N+1,N+2,..., (26)

n=-N
where n denotegr the n** time step. The time step A being related to the cut-off frequency w. through the Nyquist
relation, At = —. For the particular case at hand, and since the transfer functions involved are real, the coefficients

<
B, above are identically zero, and the coefficients of the filter thus obtained are symmetrical about the origin. Figure
(3) shows a typical result for the transfer function associated with a filter designed according to the above criteria.
Note that the filter features zero phase response over the entire frequency range.

Horizontal Propagation of Wave Kinematics

The above treatment is specific to the vertical propagation of water wave kinematics in intermediate water depth,
and it relies on the particular form of the transfer function. The above recommendations are intimately associated
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with the fact that along the vertical direction, wave kinematics should be subject to pure attenuation with no phase
lag. For the horizontal propagation of wave kinematics, the picture is quite different. In this case, no attenuation is
expected, and the propagation is expetted to be dispersive. The transfer function for any kinematics of interest in
this case, is given by the following equation,

H.(w; Az) = 79587 = =i, p= édﬁ . (27
In general, the cut-off frequency for the Pierson-Moskowitz wave spectrum is a function of the wind velocity. The
transfer function, and therefore, the coefficients of a digital filter will in general be a function of the local water depth
and the wind velocity, as well as of the propagation distance Az.

All-pass filters provide an attractive alternative for the horizontal propagation problem. These filters have a
constant transfer function over all frequencies, thus providing no magnitude attenuation, which is commensurate
with the horizontal wave propagation phenomenon. These filters have the feature that their poles and zeros are
complex conjugate of one another. Stability requirements are satisfied provided R(p;) < 0 where p; are the zeros
appearing in the expression for the transfer function,

Hap(s) = (3 +ﬁl)(8 +52) e '(3 +ﬁn)

. 28
(s+p1)(s+p2)...(s+pa) (28)
The phase spectrum corresponding to the all pass filter can be evaluated using the following expression,
_,[3Dw)
tan(f(w)) = 2 [?R D)) * (29)

where D(w) is the complex denominator in the expression for the transfer function. The filter coefficients are
evaluated to approximate the phase of the desired transfer function. This is a significant departure from the more
common problem of matching the magnitude of the transfer function. The determination of the coefficients based
on this criterion involves a nonlinear optimization problem which can best be solved using the Levenberg-Marquardt
algorithm. As an example, the transfer function of a second order all pass filter is given by the equation,

(B = w?) = (2wl
HW) = G =on T 7(2tao)a *

where wy, {, and w represent the natural frequency, the critical damping, and the independent frequency variable,
respectively.

(30)
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The phase of this second order system can be expressed as,

6(w) = —2tan" [—25%’—] : (31)
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The target phase, based on the transfer function for the horizontal propagation is given by,

6:(w) = —x(W)Az , (32)

where x(w) is a frequency dependent wave number. Thus the optimization problem involves computing the filters
coefficients so as to minimize the error given by the following expression,

_ _ 1| 2€wow
¢ = k(w)Az — 2tan [w% —wz] . (33)

A number of properties of this procedure are notable. In particular, the distance over which the filter can
successfully propagate the wave kinematics depends on the filter order. An nt? order oscillator model can feature a
phase shift of up to nx. Thus the maximum phase shift attainable by the filter imposes limitations on the distance
through which the propagation can be carried out. Also, for a given wind velocity, the maximum propagation
distance is restricted since the product xAz must lie within the maximum phase delay of the filter, and the value of
« is dependent on the wind velocity. Figure (4) shows the matching between the target and the approximate phase
response for a typical set of parameter values.

STOCHASTIC DYNAMIC ANALYSIS OF A GUYED TOWER

It has been shown in the preceding section, that both magnitude and phase characteristics of wave kinematics
spectra can be captured by filters. If only magnitude characteristics are important, the analog filters, such as the
ones associated with equations (4) and (15) can be useful for expeditious studies of offshore structures. This point
will be addressed in this section by considering the dynamic response of a guyed tower to random waves.

The governing equation of motion of the guyed tower considers its rigid body motions about the base hinge. The
motion in a plane can be obtained by taking equilibrium about the base. Thus, the governing equation is (8],

Job + cd?6 + Reozea + (Fyzp — Wzeg — Ry2es) 8 = F(t)h. (34)

In the above equation, Jo denotes the mass moment of inertia of the platform about the base, including the added
mass effects, d is half the depth of the idealized tower, W denotes the combined weight of the platform deck and
of the tower. Also, F; denotes the buoyancy of the platform, z., and z; denote the distance from the base of the
centers of gravity and buoyancy of the tower alone without the deck, and z., denotes the distance from the base of
the attachement point of the cables. All of the above distances are measured parallel to the tower centerline. The
symbol F(2) denotes the total wave force acting on the tower and h is the center of action of this force. Furthermore,
R. and R, denote the horizontal and vertical restoring forces, and are given by

R:=c10+ 6293 (35)

R, = & + 0%, (36)

where 6 denotes the rigid body rotation angle of the tower. Substituting the above expressions results in the following
equation of motion,

Job + cd?6 + (zeats — Wzeg — zeaés + F323) 0 + 2eq (c2 — 2) 8% = F(t)h . (37)

The above equation of motion is simplified using the technique of equivalent linearization [5,6], and is rewritten in a
non-dimensional form as

0 + 2Bowob +wi.0 = M(t) , (38)

where wq. denotes the natural frequency of the equivalent linear system. The wave elevation is considered to be
a random process, stationary in time and homogeneous in space. In addition, it is considered to be a zero-mean,
Gaussian process, specified by the Pierson-Moskowitz spectrum. The wave field kinematics are assumed to follow
the linear wave theory. The force on the structure is estimated by the use of the Morison equation. Using all of the
above assumptions and the equivalent linearization technique for the non-linear drag term, an approximate model
for the spectrum of the wave-induced moment M(t) about the base can be obtained as [8],

. Gow?
Sum = 7 Cid (39)

w? — Ko)? + (Cow)? '

where the coefficients Gy, K, and Cp are obtained through least-squares approximation to the Pierson-Moskowitz
spectrum as discussed by {5]. It can be shown that a process whose spectral density function is a rational function
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can be realized as the output of a linear system of appropriate order excited by a generalized derivative of white
noise. In this case, the process M(t) is the solution to the following equation, where W (¢) denotes a white noise

process,

M + CoM + KoM = \/GoW(2) . (40)

Differentiating the equation of motion twice with respect to time, the equation (40) can be incorporated into equation
(38) yielding the following fourth order equation,

07V + as0"7 4 a30™ + az0” + 018 = VGoW () , (41)
where the various coefficients are given by the following equations,
vay = Kowl,
a2 = 2BfwoKo+ CO“’%e
a3 = wj, + Ko+ 2Bowe.Co
ay = 2fowo+Co . (42)

The above formalism involves the derivative of a white noise process, a quantity that is defined in a generalized sense.
From an engineering perspective, the parameter 6 is merely the derivative of the response of a fourth order linear
system' with characteristic equation in the Laplace domain given by

A(s) = s* +azs® +azs® + a5+ ao (43)

and excited by a white noise process with constant power spectrum equal to Go. Thus, the variance 02 can be

determined by the equation

2 / T Gedw
05 = ————Godw , (44)
* 7 Jewo |AG)P
where i = v/—1, and |.| denotes the modulus of a complex function. Clearly, the power spectrum of 8 is
_ Go(dz
50) = [, =2y + @Bon) 1 (Ko = w2V + (Cow)] (45)
from which its variance can be calculated to be
<oi>= 7Gods > (46)

@2a3a4 — a% — a1a%

The analytical form of the integral in equation (44) belongs to the class of integrals which can be calculated
analytically as described in [9]; particular attention for its application in offshore engineering has been called in [5).

NUMERICAL EXAMPLE

The approach described in the previous section is applied to an example featuring an idealized guyed tower. The
details of the specific values of the various parameters used can be found in [7]. The details of the regression analysis
to obtain the polynomial representation for the restoring forces can also be found in that reference. The physical
set-up is shown in Figure (5). Table (1) shows the standard deviation at the deck-level of the guy tower for a number
of wind speed and associated wave height.

Flo. s Mode! of {dexrilzed Guysd Towsr
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Wind (ft/s) | H, (ft) | Ko | C3 | Go (10*) | ox, (ft)

30 581 |0.84 ]| 0.11 0.44 1.45
40 10.38 | 0.52 ; 0.88 1.68 4.45
70 31.84 | 0.20 | 0.062 1.41 29.73
80 41.58 | 0.16 | 0.041 1.55 39.02

Table 1: Filter Parameters and Response Statistics

CONCLUSIONS

The problem of wave kinematics propagation was reviewed and new related concepts were introduced. Specifi-
cally, it was shown that causal filters cannot be effectively used to model the vertical propagation of water particle
kinematics. Moving average filters are found to be quite efficient for this situation. Filters were developed for the
propagation of both horizontal and vertical kinematics along a vertical line into the water. The horizontal propaga-
tion problem is complicated by the dispersive nature of gravity waves. This dependence on frequency of the velocity
of the waves was adequately modeled using an all pass filter. This filter featured non-attenuation of magnitude
while providing a nonlinear phase to represent the nondispersive nature. The filter was designed so that its phase
matches the theoretical phase of the kinematics propagation. The ease with which the various filters introduced can
be implemented was demonstrated in conjunction with the dynamic analysis of a simple model of a guyed tower.
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INTELLIGENT SENSING AND CONTROL OF GAS METAL ARC WELDING
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ABSTRACT

Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing
capability, knowledge of process physics, control capability, and welding engineering into the welding
system such that the welding machine is aware of the state of the weld and knows how to make a good weld.
The sensing and control technology should reduce the burden on the welder and welding engineer while
providing the great adaptability needed to accommodate the variability found in the production world.

This approach, accomplished with application of AI techniques, breaks the tradition of separate
development of procedure and control technology.

INTRODUCTION

Conventional, automated processing generally involves sophisticated sensing and control techniques
applied to various processing parameters. In arc welding, for example, these parameters may include
current, voltage, welding speed, and various other factors deemed important to process reproducibility. The
attributes actually desired in the product, such as properties and quality, are normally controlled by some
form of statistical process control. Thus, we can think of conventional practice in terms of real control
(implemented by hardware-based systems) applied to the process, and virtual control (implemented by
people/paper systems) applied to the product.

The prime objective of intelligent sensing and control is to make a good product the first time. The
approach involves integrating off-line inspection into the process via sensors for both process and product
state, in combination with appropriate control technology to drive the product state to the desired point. Of
course, the objective is the same as for existing conventional technology; the difference is that the time
constant of a real control loop should be orders of magnitude shorter than that of a virtual loop. Thus, fewer
rejects should be produced. In addition, intelligent sensing and control should be less expensive, mainly due
to reduced labor cost.

We can now examine the tools necessary to implement intelligent sensing and control. These include (in
no particular order) control theory, process modeling, sensing, and artificial intelligence, in addition to the
normal tools of welding engineering and materials science.

Control Theory provides a formal means of developing a strategy to obtain the desired product state and
suitable process dynamics. The foundation of control theory is a body of techniques that allow convergence,
stability, robustness, frequency response, and other factors to be predicted and obtained. Thus, design of a
controller has a mathematical engineering basis.

Process Modeling provides a means of incorporating both first principal and empirical information into a
control strategy. Models may be used off-line to evaluate and tune a controller in a simulation. They may
also be used to develop transfer functions of a process for use in formal controller design, or to provide maps
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between input and output parameters. Process models are an important bridge between what is known and
what is desired.

Process Sensing is the necessary means of identifying the state of both the process and the product.
Controllers operate by comparing actual process output (in terms, for example, of product attributes) to the
desired output. The difference or error is used to calculate the appropriate control input to the process. Thus
sensors are normally needed for each of the various parameters or attributes chosen as system outputs in the
design of the controller.

Artificial Intelligence (AI) is a body of techniques that attempts to mimic biological intelligence. These
various techniques, including expert systems, artificial neural networks, and fuzzy logic, are used for a
variety of interesting applications including image and signal processing, selection of nominal parameters,
and dynamic control. More is said about this topic in the next section.

Intelligent sensing and control involves application of all of the above tools to control of both the desired
operation of a process and the attributes of the product of that process.

THE ROLE OF Al TECHNIQUES

Before turning to the question of what this means to welding, we believe it is worth while to comment on
some of the Al techniques mentioned above. Although a well balanced paper would expound on all four of
the above tools, we have selected Al techniques for comment because we believe that some simple
observations are of sufficient value to include in this short paper. We apologize for the fact that what follows
is in no way a comprehensive review of this vast field; there is a story to tell, and we have selected references
accordingly.

Papers and presentations on Al methods and applications generally discuss the nuts and bolts of the
machine, but gloss over what it is that the machine does. Consider, for example, artificial neural networks.
Anderson and Rosenfeld [1] and more recently Simpson [2] provide excellent starting places for the study of
artificial neural networks, while MacGregor presents an excellent overview of biological neurons and neural
networks [3]. Anderson and Rosenfeld provide an historical view, and Simpson gives possibly the best
presentation now available of the most important algorithms being used, based on classification into four
groups in terms of feed forward and recursive network structures and supervised and unsupervised learning
methods.

Perhaps the most popular algorithm for artificial neural networks is the feed forward network using
backpropagation for learning of the interconnection weights. In one of their introductory papers on
backpropagation, Rumelhart et al. [4] employ the XOR Boolean logic problem as a test case. In this
problem, there are two binary inputs and one binary output; if the inputs are both s or Os, the output will be
0 and if the two inputs are not both the same (i.e.. 1,0 or 0,1) the output is 1. A feed forward network
having two binary inputs (X1 and X2), three artificial neurons in the hidden layer, and one output neuron,
where all neurons include the nonlinear sigmoid activation function, is taught the XOR problem. This
network is able to learn a good solution to the problem in several hundred iterations of supervised learning.
The neural network output OUT in the above example may be calculated algebraically from:

OUT = f(VIH(X1*W11 + X2*W12) + V2f(X1*W2] + X2*¥*W22)) (1
where f is the sigmoid function operator.

The resulting output is plotted as a function of X1 and X2 in Figure I, a plot of the input to output
mapping function learned by the network. The function is continuous and is a good solution for binary
inputs, but a poor solution for intermediate inputs. The main point to be made is that an artificial neural
network is a mechanism for generating an input to output mapping function, given a set of discrete (not
necessarily binary) data points. This point is discussed by Gallant and White [5] and more recently
Cardaliaguet and Euvrard [6]. As is noted below, fuzzy logic systems are also mechanisms for generating an
input to output mapping function, and a strong argument may be made that expert systems are also such
mechanisms, though in this latter case the mapping function is not continuous.
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Expert systems and fuzzy logic systems both differ from artificial neural networks in that they use
conditional logic statements as the input data. The difference between the two methods is that expert systems
normally give yes/no or black/white types of output, whereas fuzzy logic systems admit degrees of maybe or
levels of gray as inputs and outputs.

Consider the XOR problem discussed above. The conditional logic statements were stated as: if the
inputs are both 1s or Os, then the output will be 0; and if the two inputs are not both the same (i.e.. 1,0 or
0,1), then the output is 1. A fuzzy logic solution [7] is shown in Figure 2. This solution has the interesting
features that completely ambiguous inputs (X=0.5, Y=0.5) give an ambiguous output (Z=0.5), and the plot
is symmetrical. This is a much more logical answer than that-obtained by the artificial neural network above.
Indeed, it is an enlightening exercise to attempt to reproduce the symmetry of the fuzzy logic solution with an
artificial neural network (but one that we will leave to the reader).

At least two additional observations may be made about the above example. One, that method of
evaluating fuzzy logic allows one to write the solution as an algebraic function, in the same manner as was
possible for the artificial neural network solution. (This is not possible for the standard fuzzy logic paradigm
[8], which requires some scheme of defuzzification to calculate a solution. The conventional approach
normally generates non-continuous functional solutions.) For this reason, this new method is called
"continuous fuzzy logic" to differentiate it from the more standard paradigm.. Two, the solution to
continuous fuzzy logic may be represented in a network form, Figure 3, in which the inputs X and Y and the
output Z are as discussed above. The elements in the network hidden layer are directly associated with the
mathematical evaluation of the individual if conditions. The hidden elements-to-output element weights are
directly associated with the action to be taken. The output element contains a summation operator. (The
reader may want to compare this network with the corresponding structure for conventional fuzzy logic
shown in Kosko, figure 11.8, p. 392 [8].) It is probably not appropriate to call this a neural network, but it
is proper to refer to it as a connectionist network, thus recognizing that it belongs to a superset that contains
artificial neural networks.

In the case of an artificial feed forward neural network, the number of elements required in the hidden
layer(s) is determined by the number of degrees of freedom required to adequately map the control law.
Determining the actual number required is generally accomplished on a trial and error basis. For a fuzzy

Figure 1. Plot of functional input-to-output
mapping learned by feed forward neural network as Figure 2. Continuous fuzzy logic solution to the
solution to XOR problem. XOR problem.




network, a hidden layer element is associated with each conditional logic rule, so establishing the number of
hidden layer elements is no problem.

By now you realize that the fuzzy logic XOR solution is 2 mapping function. An expert system solution
is also easily generated, consisting either of isolated 'peaks and holes' or of a stepped surface, depending
upon how you go about it. So we see that all three methods discussed are, in fact, mapping function
generators.

The next logic step involves recognition that input to output mapping functions are in fact the same as
transfer functions. Transfer function based analysis and design methods form a major portion of dynamic
systems analysis [9], signal analysis [10], and control theory; thus, the route to formal integration of Al
techniques into these other disciplines is available, but unfortunately few have attempted to exploit it.
Fortunately, Ydstie [11], and especially Narendra [12] have, and the reader may start with them to explore
this interesting topic.

It may be noted that the mapping function generated by the fuzzy logic system, Figure 2, lacks the faceted
appearance normally seen in such functions, for example Kosko figure 9.4a, p. 343 [8]. Figure 2 was
generated using a continuous fuzzy logic algorithm [13] that is not normally seen, but which has apparently
been derived at least three times by various workers. Continuous fuzzy logic readily allows generation of
continuous mapping functions, at least in part, by elimination of the defuzzification step required by the more
standard algorithms [8]. An important side benefit is a significant reduction in the amount of computer code
required for implementation. But more important from a control standpoint is the effect of using a continuous
function as a control law.

Figure 4 shows a mapping function generated using continuous fuzzy logic that describs the control law
for a one-dimensional tracking problem similar to seam tracking in welding. The logic used to generate the
mapping function is based on the input X being the tracking error, the input Y being the first derivative with
respect to time of the tracking error, and the output Z being the control input to the system. Thus, this
controller operates as a proportional-derivative controller.

Next, we will examine control of the tracking problem using continuous fuzzy logic.

By making changing the mapping function, the
resulting controlled system dynamics may be tuned in
a manner that is equivalent to a conventional
controller. For example, Figure 5 shows tracking
error (gap) as a function of time. As the function's
partial derivative with respect to X is increased, the

logic rules
action constants

Figure 3. Network representation of continuous  Figure 4. Control law for one-dimensional tracking
fuzzy logic. generated using continuous fuzzy logic.
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convergence rate increases. The effect is to increase the time for convergence until overshoot is obtained as
shown in Figure 5. Figure 6 shows the steady state solution obtained (in this problem a small positive error
(gap) is desired); the steady state value may be varied as the amplitude of the mapping function value is
changed for X =Y =0.

There are lessons to be learned from this simple example. One, all controllers need to be properly tuned,
even intelligent ones. There has been considerable hype in the popular press to the effect that fuzzy logic
controllers are the panacea for applications where the system transfer functions are not readily available, but
"expert” knowledge is available. A recent IEEE video tape on fuzzy logic [14] disclosed that a certain
commuter train in Japan that uses a fuzzy logic controller required approximately eight years of controller
development including some 350,000 computer simulations for proper tuning. This situation would not be
tolerated by industry in this country; the solution is development of engineering tools for controller tuning
applicable to fuzzy logic and other Al-based controllers. Two, the partial derivatives of the mapping function
with respect to the inputs are equivalent to the gains in a conventional controller. Mapping functions should
thus be continuous. Considerable care must be exercised with conventional fuzzy logic controllers to obtain
continuous mapping functions. Three, most learning methods for artificial neural networks teach the network
the amplitude of the mapping function at a given coordinate. Methods to teach control laws should also be
capable of teaching mapping function partial derivatives with respect to inputs at a given coordinate.

This discussion of applying artificial neural networks or fuzzy logic systems as controllers is now
summarized. Consider a more generalized formulation of the controller transfer function as:

G(s) = K1(..)1 + K2(...)2 + K3(...)3 +... + Kn(...)n )

Replacing such a controller by a connectionist network may be accomplished by formulating a network
having an input dimension, D, associated with each of the above n gains. Also associated with each input
will be a signal preprocessor (...)n. Using such a formulation, given linear activation or membership
functions, the derivatives of the network mapping function, F ,with respect to the network input dimensions
D are:

dF/oDn = Kp 3)

where K, is the local*gain associated with the nth input dimension. The connectionist network will have an
output dimension assqciated with each of the conventional controller outputs.
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Figure 5 Tracking error (gap) showing overshoot Figure 6 Tracking error (gap) showing small steady
for a high value of mapping function derivative with ~ state gap for a low value of mapping function
respect to error input. amplitude for inputs of zero.
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APPLICATION TO WELDING

Recent examples of applications to welding cover the fine technical details [15,16]. We will look instead
at what we consider the global problems to be, and speculate on a possible solution.

Typically, welding systems either allow the welder access to process parameters at the expense of placing
a significant burden on the welder to program the system, or the system is very easy to program but the
welder has limited access to the process parameters. This creates one of two problems. If the welder has
easy access to the process parameters, the assumption is made that he/she has the knowledge about the
physics of welding necessary to make changes to those parameters during welding to correct an undesirable
situation; this is generally not true. On the other hand, systems that are easy to program generally do not
provide the adaptability necessary to correct an undesirable situation during welding. The solution to both
problems is identical. Do not allow the welder to change anything, but use an off-line statistical process
control program to modify machine settings. Which is exactly where this paper started! Now let us suggest
an altemmative.

The objective may now be restated as that of developing a welding system that is very easy for the welder
to program, but which has considerable adaptability to allow in-process corrections to be made for
undesirable situations. (More to the point, the system should be able to predict and prevent undesirable
situations.)

The alternativee approach is novel, and perhaps disturbing, for the first thing we need to do is to throw
away welding procedures.

Consider the approach to development of a welding procedure. If we were doing it for the first time, we
would probably want to review fundamental knowledge about the physics of heat and mass transfer in
welding, microstructural development during solidification and solid state transformations, effect of thermal
gradients and phase transformations on residual stresses and distortion, and also general knowledge about
welding processes. From this set of data we could presumably derive a set of conditional logic statements
that would at least define the qualitative characteristics of the procedure. We could also develop models
describing the physics of the process. If we were able to build these rules and models into the control logic,
and we can do so using fuzzy logic and artificial neural networks, then perhaps the welding machine could
use this knowledge to actually develop the procedure as the weld was being made.

In order to accomplish the type of control we have been discussing, it is necessary to have a variety of
sensors on the welding machine. Selection of the sensors should take into account the source of heat and
mass transferred to the base metal -- melting of the base metal, dilution of the filler metal, solidification of the
weld bead, microstructural development in the weld bead and heat affected zone, physical properties
development, and thermomechanical distortion and residual stresses in the weldment all follow from the heat
and mass transferred by the process to the weld.

Unfortunately, with few exceptions, sensors do not exist to detect weld microstructure and properties.
This lack is a limit on the ultimate capabilities of sensing and control of arc welding, even for conventional
control approaches. The development of advanced sensors is a significant research opportunity.

EXAMPLE

Consider the application in Einerson's paper [16]. For reasons related to the specific end product
involved, it is desired to control the weld cooling rate and fill of the weld joint. The conditional logic rules
are simple:

If the reinforcement is too low, then increase the ratio of electrode speed to welding speed.
If the reinforcement is too high, then decrease the ratio of electrode speed to welding speed.
If the cooling rate is too low, then decrease the heat transfer rate to the weld.

If the cooling rate is too high, then increase the heat transfer rate to the weld.

0N =
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It may be shown [17] that the weld bead reinforcement (G), defined as the transverse cross-sectional area
added to the weld bead by the addition of filler metal, is given by G = tdS/4R where d is electrode diameter,
S is electrode speed, and R is welding speed, for 100% deposition efficiency. The amount of heat

transferred to the weld per unit length (H) is given by H = nEI/R where 7 is the heat transfer efficiency, E is
voltage and I is current.

The sensing requirements are defined by the logic of the problem. Two sensors are required, one to
measure the transverse cross-sectional area of the weld joint and a second to measure the cooling rate of the
weld bead. It is also necessary to know the welding speed, electrode speed, current, and voltage, the values
of which are normally readily available in an automated arc welding system.

The difficult aspect of this example is that reinforcement and heat transfer rates are both functions of
welding speed and, in gas metal arc welding, current is a function of voltage and electrode speed. This
problem may be handled by deriving a model of these relationships [17], by teaching them to an artificial
neural network [16], by using a look-up table, or perhaps other means. We may comment that the
relationships between conventional parameters and heat and mass transfer rates are not obvious to the average
welder or welding engineer. This is exactly the kind of problem that prevents the welder from adjusting heat
input to the weld while maintaining constant fill rate,
for example. In this work, the relationships have

been used as the training set for a feedforward Analyze
artificial neural network. point
Image
The resulting controller is shown in Figure 9, . L
from [16]. The fuzzy logic controller contains simple Rate s Fuzzy Logic =G=| Neural >
rules that specify engineering practice. The resulting Se:posz—' Controller [=p™| Network =
control law is tuned, as was discussed above. The v
artificial neural network contains (experimental) Cooling Cooling
knowledge about the physics of heat and mass Rate ";";;:

transfer in the process. The resulting mapping

function effectively linearizes the process with respect
to heat and mass transfer rates to the base metal. This
system requires only that the welder set the desired

Figure 9. Process control scheme block diagram,
where G is the reinforcement, H is heat input, S is
electrode speed, and R is travel speed.

weld bead cooling rate. The sensors measure the

weld joint ahead of the torch and the weld bead cooling rate behind the weld pool, and the system responds to
the measurement as governed by the conditional logic rules given above. This is a simple example in which
knowledge of both process physics and engineering practice have been used to develop a control law and
linearize a process, but the concept can be extended to include other factors.

CONCLUSIONS

There is much more to this story. However, we will summrize by saying that what is needed is sensing
and control technology that reduces the burden on the welder and welding engineer while providing the great
adaptability needed to accommodate the variability found in the production world. Conventional approaches
to automation of welding have been reasonably successful, but there are still significant opportunities for
additional development.

It may be time to consider breaking the traditional approach that separates procedure development
methods from control technology. A marriage of these two topics, accomplished with application of Al
techniques, may be in order.

Finally, advanced sensor development is still needed for control of weld microstructure and properties.
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Abstract

The Gas Metal Arc Welding Process is characterized by many important process outputs, all of which should
be controlled to ensure consistent high performance joints. However, application of multivariable control
methods is confounded by the strong physical coupling of typical outputs of bead shape and thermal
properties. This coupling arises form he three dimensional thermal diffusion processes inherent in welding,
and cannot be overcome without significant process modification. This paper presents data on the extent of
coupling of the process, and proposes process changes to overcome such strong output coupling. Work in
rapid torch vibration to change the heat input distribution is detailed, and methods for changing the heat balance
between base and fill material heat are described.

Introduction

The application of control methods to welding has a long and successful history, yet the development of a fully
autonomous welding process that can consistently maintain high quality welding has not been achieved. More
importantly, the use of such control methods has not advanced the quality of welding through better process
regulation. This failure is linked both to inadequate control approaches and to basic process limitations that
control alone cannot overcome.

Welding is actually a locally applied reprocessing of the base material with some new alloying elements added
through the wire feed. As such it is a process dominated by thermal processes. A highly diffuse energy
transport, best represented by a distributed parameter model, characterizes these thermal processes. However,
for the purposes of applying feedback control to the process, specific spatially distinct outputs must be
identified for measurement, and these can be broken down into geometric and thermal history features as
shown in Fig. 1. For example, note that the width, depth and height (W, D and H) of a bead cross section are
a parametric description of a general cross-section, and the choice of these measurements is made assuming a
well-behaved cross section shape. Likewise the thermal features of heat-affected zone width (HZ) are chosen
assuming that its extent in the cross section is well reflected by the width on the surface. Finally, the centerline
cooling rate, key to control of thermally activated processes in many material and post weld stress
concentrations, is only examined at one point, which is assumed to be the critical region.

With any manufacturing process it is apparent that control can be exerted in several places, depending upon the
availability of measurements and the nature of the available process inputs. The most common form of process
control is in fact simply machine control, which can be defined as feedback control of any machine
characteristic. Mechanical power, in the form of force or displacement control, is among the most common of
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these and is particularly effective for serial processes where the process trajectory is a primary determinant of
output geometry.

In welding, many methods of machine control have been employed, including current-controlled power
supplies, automatic voltage control for Gas Tungsten Arc Welding (GTAW), servo-controller wirefeed velocity
in Gas Metal Arc Welding (GMAW), and torch trajectory control. In fact, the canonical welding robot is the
culmination of efforts to achieve a high level of certainty in the welding machine characteristics.

DESIAED
ATTRIBUTES I
1<

WELDING [ weloinG
m”—“l—’ EQUIPMENT ¥| proCESS

\4

wxith
- IMAGE measurements
height ANALYSIS W

HAZ I‘_.L__.—.
HAZ T >
R | %mc@m I moeasurements o

depth

Estimator

Fig. 1 The Welding MIMO Diagram and Associated Weld Cross Section

When one encounters the entire process output control problem, which can be defined as shown in Fig. 1,
several problems appear. The lack of sufficient inputs in Fig. 1 becomes immediately evident. Fig. 2 also
indicates that direct measurement of the outputs is often difficult, particularly with regard to the weld depth.
Thus when approaching process control instead of machine or equipment control, several new problems arise,
typically involving process coupling and inaccessible measurements. The problem of measurement has been
well documented and researched, and various techniques for video (e.g. Richardson and Gutow, 1986),
thermal imaging, (Kahn et al., 1986) and ultrasonic measurement (Lott, 1984; Hardt and Katz, 1984) have
been proposed and executed to some degree of success. In addition, the use of on-line calibrated estimators
(Song, 1992) has shown acceptable output “measurement” to be permissible. Even with such
accomplishments, however, the input-output coupling inherent in this process constrains the total process
control problem, and so we introduce an approach to solving this problem below.

Output Coupling in Welding

The outputs shown in Fig. 1 include the bead geometry and the thermal effects of passing a concentrated heat
source past the weld joint. All five of these outputs are determined by the heat and mass transfer from the weld
torch to the plate. In fact, as a first approximation it is evident that the temperature distribution set up in the
weldment by the heat source determines all of these outputs.

Let us consider the simplest model of welding where no mass transfer occurs and the welding torch is modeled
as the simple point source welding model first proposed by Rosenthal (1941). This model assumes pure heat
conduction and a point source moving at a constant velocity. The solution of this problem takes the form
(Carslaw and Jaeger, 1959):

1= - 2 2 2
T(x,y,2,t)-T, = ‘ ng CXP( e }” (1)

=0 pc(4an)*?(t—r)*? 4a(t-r)
where
T= temperature in the material  Tg= - initial temperature 1 = heat source efficiency
o= thermal diffusivity p=  density v=  source velocity

x,y,z= Cartesian coordinates, centered on the point source, with x in the direction of travel
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Assuming for the moment no phase transformation in the weldment, this source sets up a set of isotherms in
the weldment, that, when viewed in the reference from of the torch, resemble those shown in Fig. 3. Further
examination of this model reveals that the point source mandates that (for example) pool half-width and depth
will always be the same for a semi-infinite plate. A thinner plate can change this relationship, but no manner of
torch modulation can. In other words, the pool geometry simply scales with heat input, but the aspect ratio of
the pool cannot be controlled independently.

Point Source Gaussian Source

| =

Fig 3. Isotherms Predicted by Eqn 1 (point source) and Eqn 2 (Gaussian source)

If the source is instead modeled as a distributed heat flux

2 2
q(x,y)= —%—;CXP(‘ xzz,zy )

a solution similar to that of Eqn 1 can be found (Tsai, 1983; Song, 1992):

7 =f___TQ x-ve)Y+y? 2
Teuy.2.0) T°—-,[7rpc(2az+ol)exP( dai+20°  dar)

In this case the pool aspect ratio is now changed, as shown in Fig 3. However, the aspect ratio is still fixed for
a given heat source distribution function .

Despite the approximate nature of the above solutions, this strong output coupling is evident in experimental
results for several different welding situations. Doumanidis and Hardt (1990a, b, ¢), in attempting to control
the Heat-Affected Zone width (HZ) and maximum cooling rate (CR) of a weld, found that the basic input-
output map of the process showed very little reachability as the inputs were varied. In fact, HZ and CR were
shown to be so strongly coupled as to be uncontrollable.

Again the classical thermal conduction model provides a useful tool for examining sensitivity and
decoupledness. Under the assumptions of an infinite plate geometry—homogeneous, isotropic, temperature-
invariant material properties with no phase transformations-and conductive heat flow with no surface losses,
the steady-state temperature field developed by either a line or point moving source can be solved for the
maximum width of the Ty, and T}, isotherms and centerline cooling rate at Tc. This yields the following

expressions of the welding outputs as functions of the heat input Q, torch velocity v and preheat temperature

To:
eyl Y
bz=o[37) [(n—n) 7T, ®

~(n+1)
Y )"" 1
R=c,| = 4
c c,(v, (T -7;) @
where :

Q7 = heat rate input for torch 1
Q> =heatrate for torch 2
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v = travel speed

Tm = melting temperature

Th = HZ critical temperature

T¢ = cooling rate critical temperature
To = Ambient Weldment Temperature
f=NB - (np-n3) ! (n3-n3) =1,

The coefficients ¢, ¢2, ¢3 and the exponents ny, np, ne depend on the geometry and material of the plates as
well as on the specific environmental and process conditions.

Equations 3 and 4 show that HZ and CR both strongly depend upon the factor '3 the “heat per unit length”.

Accordingly, if only Q and v are available as inputs (which is typically the case), HZ and CR cannot be
independently modulated.

In the case of geometric outputs, such simple conduction solutions are less illustrative, but empirical data is no
less compelling. In an investigation of input-output modeling for Gas Metal Arc Welding, Hale and Hardt
(1990a) demonstrated that the reachability of the process was very small when torch speed v and wirefeed rate
(essentially Q) are inputs and when pool width, W, depth, D, or reinforcement height, H, are outputs. As
shown in Fig. 4, which is based on empirical data, the input-output map for GMAW shows a very narrow
range of operation when pool width and reinforcement height are considered. A similar map exists for width
and depth as outputs. Notice also that the figure shows a non-unique input output mapping over a large range
of operation. Finally, if we consider the process outputs to be the pool width and the heat affected zone,
empirical evidence again indicates little process latitude, as shown in Fig. 5.

0.25 |
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(in)
03
3
0.15 P
2 06+
s
g
T
f= wirefeed 04
v=23.6 rate
0.05 v=travel speed |
0.2 0.6 1.0 1.4
Width 02 r r v . r r r
(in) 02 04 06 03 10
Width (in)
Fig. 4 Steady State Input - Output Map
Fig. 5 Input - Output Mapping for Width
for Gas Metal Arc Welding (From Hale and Hardt, 1990a) and Heat Affected Zone in GMAW (Hale, 1990)

Process Control

Despite this strong coupling, some measure of multivariable feedback control can be achieved. For example,
Hale and Hardt (1990b) and Song and Hardt (1992) have shown that simultaneous control of W and H and W
and D can be achieved., as shown in Figs. 6 and 7.

However, the limited reachability of the process severely limits the range of operations. More importantly, it
makes parameter disturbances in the process nearly impossible to elirninate. This happens because a parameter
change has the effect of shifting the range of operation to a new location of the output plane. If this moves the
range outside the change, as Fig. 8 shows schematically, then when a simple disturbance is introduced (in this
case welding over a small void, simulating a “fill” disturbance), the closed-loop system is unable to reach
equilibrium, as Fig. 9 shows, since the desired operating point is no longer in the reachable range.
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Process Modification for Improved Reachability

These results indicate that while the process of welding as currently practiced can benefit from the application
of advanced feedback control methods, the true power of multivariable/ adaptive methods cannot be realized
because of the highly coupled nature of the process outputs. As the brief discussion above indicated, this
coupling directly results from the basic heat diffusion physics of the process. For the case of manual welding,
such coupling may in fact be advantageous, since it reduces the demands on the operator. However, for truly
improved process control, it is necessary to change the basic design of the process. This could be as exotic as
totally separating heat source and mass transfer, as suggested by Singer(1985), or by far more straightforward
methods, as suggested by the heat transfer analysis presented above.

As that simple discussion made evident, the pool geometry (or more correctly the weldment isotherms) are of a
fixed geometry for a given plate material and a given heat source. However, the shift from a point source to a
Gaussian-distributed source does have the effect of altering the isotherm aspect ratio. In turn this implies that
the heat input distribution can be arbitrarily varied in real-time, and that a greater variety of temperature
distributions can be achieved in the weldment. The implication follows that the pool shape and pool-heat-
affected zone relationship can be modified.

Case I Gaining Independence of the HZ and CR

As discussed earlier, if no changes are made the cooling rate (CR) and heat-affected zone (HZ) are so closely
linked as to be uncontrollable in a MIMO sense. However, it has been shown (Doumanidis and Hardt, 1989)
that by adding additional heat sources trailing the “primary” torch, a measure of decoupling can be achieved.
While the details are omitted here, the effect is evident from examination of Eqns 2 and 3. In these, the
ambient temperature Tq plays a different role in the two equations. This implies that if T can be modulated, a
new control input will be achieved. The additional source or sources trailing the torch play this role, by
effectively using the primary torch (which creates the molten zone) as a “pre-heating” source of the secondary,
trailing source (See Fig. 9). This same effect can be achieved by using a heat distribution that can be varied to
the rear of the weld location, as shown in Fig. 9. This is essentially an infinite set of trailing torches, and
provides the maximum range of independent modulation of the HZ and CR.

When this two torch scheme was implemented, the new inputs to the process became Q; and Q.. A new
input-output map could then be created, which Fig. 9 shows. Although some range of independent operation
is now apparent with the two-torch method, the reachability is still quite limited.

Tmelt -20
—_ Q_=3250W
CR '
(°K/s)
) l <200
20 6.0 10.0
Hz(mm)

Fig. 9 Schematic of Two Source Heat Input.
The Bead size (T isotherm) and the HZ (T isotherm)
are completely determined by Q1, while Qg is used to
respond the preheat provided by Q1 to modulate the CR.

Fig. 10 Reachability for HZ and CR When a Two Source
System is Used.

Note that this data was gained by having two distinct torches but also by using the concept of “mechanical
multiplexing,” wherein a single torch is moved rapidly between the Q; location and the Q location. The
residence time in each, integrated over time, equates to a relative heat input, provided that the traverse rates and
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dwell times are considerably faster than the characteristic heat diffusion times of the weldment. As discussed
in Doumanidis and Hardt (1989), this range can be improved by going to a continuously variable source
distribution to the rear. Such a distribution could, in fact be attained by either magnetic deflection of an
autogemous arc, or through rapid mechanical scanning of a concentrated source, such as a laser or plasma arc.

II: ining In ndence of HZ

A desirable condition for control of welding would be to independently regulate the width of the weld bead and
the attendant heat affected zone. However, as Fig. 3 points out, the W and HZ are simply different isotherms
within the same temperature field. Thus they cannot be expected to be decoupled unless the distribution of heat
input is varied. That this is the case is illustrated by data obtained from GMA welding tests (see Hale, 1990)
where both W and HZ were measured by etching transverse cross sections. Note here the nearly compete
coupling of outputs over a large range of heat input (f) and travel speed (v).

To overcome this problem, the concept of a variable heat input distribution can again be exploited. As
discussed in Masmoudi and Hardt (1992), for this problem, it entails a high frequency (~ 6 Hz) rransverse
oscillation of the heat source while the torch progresses along the weld line. Although similar to the common
practice of weaving, this action is intended not to weld wide joints, but rather to add variable transverse
distribution to the heat source. The results of GTAW experiments (Masmoudi and Hardt, 1992) indicate that
this can effectively decouple W and HZ. The change in the surface isotherm with and without weaving is
shown in Fig. 11, and the increase in reachability of the process is illustrated in Fig. 12.

Discussion

It is clear that GMAW, while a productive process, is not well designed for used in a multivariable control
setting, owing to the highly coupled nature of the heat and mass transfer involved. In the above three cases,
the process has been modified incrementally to allow some greater range of temperature distribution variation
and to afford some measure of control of the mass transfer independent of the heat input. Both of these
problems can be generalized and separated if one departs from the conventional GMAW process. In our
current work we are exploring just such options along several fronts:

* Active control of three-dimensional temperature distribution with a scanned point heat source: Exploration of
the general distributed parameter thermal control problem, but with system identification and control methods
borrowed from self-tuning control theory

* Development of spray or stream welding for independent mass transfer control: Independent creation of the
liquid filler material, but at a precisely controlled mass and enthalpy rate.

» High frequency vibration of the electrode to control droplet detachment: Partial decoupling of the droplet
volume and heat content from the arc heat through precise timing and feedback control of droplet detachment.

These three methods will then be exploited to create a welding process with far greater reachability and
controllability than conventional processes.

Conclusions

Welding is a process that is amenable to numerous forms of feedback control. However, when one
concentrates on the Process Control, one must deal with the multivariable, non-linear, highly coupled
nature of the process. Simple single variable control designs can perform well, especially when adaptive
techniques are used to deal with the non-linear behavior, (e.g. Suzuki and Hardt, 1990). However, as detailed
above, the coupling present in the existing processes, and in particular, GTAW and GMAW, precludes
exploiting multivariable control to its fullest.

The origin of this problem is traced here as a one of an uncontrolled temperature distribution in the weldment.
No manner of feedback can overcome this basic physical process; however, rather simple process
modifications have been shown to greatly increase the process latitude. In their generalized form, they involve
providing a controlled heat flux distribution into the weldment, and also perhaps, a controlled mass and
heat flux from filler material.
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