ORIGINS OF ASYMMETRIC STRESS-STRAIN RESPONSE IN
PHASE TRANSFORMATIONS

Huseyin Sehitoglu and Ken Gall

Department of Mechanical and Industrial Engineering
University of Illinois, Urbana, IL 61801, USA

ABSTRACT

It has been determined that the transformation stress-strain behavior of
CuZnAl and NiTi shape memory alloys is dependent on the applied stress state.
The uniaxial compressive stress necessary to macroscopically trigger the
transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the
required uniaxial tensile stress. For three dimensional stress states, the response
of either alloy system is dependent on the directions of the dominant principal

stresses along with the hydrostatic stress component of the stress state. The stress
state effects are dominated by the favored growth and nucleation of more
martensite plates in tension versus compression. The effect of different
hydrostatic pressure levels between stress states on martensite plates volume
change is considered small. .

INTRODUCTION

The purpose of this work is to determine the physical origins of the tension-compression
asymmetry and the hydrostatic stress effect with novel experiments and measurements in two
technologically important materials (CuZnAl and NiTi). Using unique equipment, considerable
sensitivity to hydrostatic stress state has been obtained experimentally for the first time. It
should be noted that there are currently no studies available in which both effective and
hydrostatic stresses were systematically changed. Since shape memory alloys (SMA) can store
large amounts of recoverable pseudo-elastic energy, they could be used in many applications
where large strains are essential, but permanent deformation and energy loss due to plastic
dissipation is undesirable. Additionally, SMA's have an advantage over traditional materials
since the large pseudo-elastic mechanical strains can be triggered thermally, electrically, or
mechanically.

SMA'’s owe their unique stress-strain behavior to a reversible thermoelastic martensitic
transformation. It is widely accepted that the stress-induced martensitic transformation produces
two unique macroscopic stress-strain responses, pseudoelasticity and the shape memory effect
[1, 2] Analogous to stress-strain curves in the plastic regime, pseudoelastic and shape memory
stress-strain curves demonstrate macroscopic yield points, hardening regions, and mechanical




hysteresis upon unloading. The primary difference between the three curves concemns the
mechanism of recoverable strain. Plastically deformed materials recover strains upon reverse
loading, pseudoelastic materials recover strains immediately upon unloading, and materials
exhibiting the shape memory effect recover strains after being subsequently heated. The
existence of one phenomenon over another in any given alloy system is a function of test
temperature, material composition, processing technique, and heat treatment.

Despite the wide ranging applicability of SMA's, there is a limited amount of
experimental work on the response of SMA's to stress states other than tension [1-3]. This gap
in research efforts is intriguing since the dependence of stress-induced martensitic
transformations on the applied stress state was observed some 40 years ago in steels [4]. With
this in mind, the purpose of the current study is to expose the issues related to the
transformation behavior of CuZnAl and NiTi shape memory alloys under different stress states.
More precisely, this work will focus on the dependence of the critical transformation stress level
on the applied stress state.

EXPERIMENTAL TECHNIQUES

Polycrystalline Cusg 1Znz70Al138 and NisgoTisoo weight percent alloys were
employed for the study. The normal to the habit plane and the twinning direction have the
direction cosines (.199, .6804, .705) and (.1817,-.7457,.6411) respectively. CuZnAl
demonstrates a small negative change (-0.3%) in volume upon transformation from the parent
phase to the martensitic phase. The habit plane normal and transformation direction are given as
(-.8889,.404,.215) and (.435,.7543,.4874) respectively for NiTi. This results in a small
positive volume change (.19%). The heat treatment in both cases consisted of a solution heat
treatment followed by an aging treatment. The treatment was performed to keep the martensite
start temperature, M;, at a reasonable level below room temperature. This assures that the
transformation will be stress-induced. On average, the NiTi M, was about -18 °C, while the
CuZnAl M; was about -10 °C. The tests in this study were conducted at room temperature
where the sample is fully austenitic (T > Ap). Details of the unique experimental equipment used
for the triaxial tests can be found in a recent publication [3] and are also summarized below.

In our work, a servohydraulic test machine fitted with a unique high pressure vessel is
used for triaxial testing of NiTi and CuZnAl specimens. The schematic of the test system is
provided in Figure 1. As Figure 1 indicates, axial stresses are applied to the specimen by the
servohydraulic actuator of the MTS test machine; diametral stresses are applied to the specimen
through the introduction of pressurized fluid into the pressure vessel. The axial stress is changed
by applying force in the longitudinal direction, and circumferential and radial stresses are related
to applied pressure (=-p). The ability of the present triaxial testing apparatus to simultaneously
ramp the lateral and axial stresses on the specimen represents one of its main advantages over
previous triaxial research efforts. In previous works, hydrostatic compression was typically
applied first and the uniaxial stress was increased in a secondary operation. The present scheme
circumvents any arguments regarding the role of initial hydrostatic compression on the material
behavior. A personal computer was used for all test definition, command generation, and data
acquisition tasks. More details of the pressure intensifier, load and strain measurements can be
found in a recent publication [3].

EXPERIMENTAL RESULTS

The effective stress-strain curves for the CuZnAl and NiTi are shown in Figures 2 and 3
respectively. Stress states #1 and #3 are simple uniaxial tension and compression. Stress state
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#2 has the following combination of principal stresses: 0, =2p, 0, =—-p, 0, =-p, while
stress state #5 is governed by: 0, =-2p, 0, =—p, 0; =—p. Several other triaxial stress states
were studied, and the results are discussed more thoroughly in two recent publications [13, 14].
The stress-strain curves are only shown up to 3% strain because strains much larger that this
introduce considerable plastic deformation and non-recoverability [13]. In general, the NiTi has
a much higher transformation yield point while the CuZnAl demonstrates a larger post-yield
hardening modulus. Although the difference in hardening behavior is not as drastic as Figures 1
and 2 might indicate (Figure 2 has a scale twice as large as Figure 1) the difference is still
notable. Both CuZnAl and NiTi show transformation yield points which are much higher in
compression than in tension. In addition, the yield point of the zero hydrostatic case lies close to
the yield point in pure tension for both materials. The yield point of CuZnAl under triaxial
compression lies in between the tension and compression yield points. However, in NiTi, the
yield point of the triaxial compression test lies considerably above both the tensile and
compressive yield points.

DISCUSSION

For the most part, the stress state effects in CuZnAl and NiTi can be directly linked to
micro-mechanical phenomenon. When a particular stress state is imposed on a SMA specimen,
transformation strains are accumulated through the nucleation and subsequent growth of several
preferred martensite plates (variants) [S]. Figures 4a and 4b show the typical arrangement and
number of martensite plates caused by an applied stress in CuZnAl. The first image (a) is a
magnified view of the plates in a single grain while the image (b) show the formation of
different plates in several grains. The purpose of the two images is simply to demonstrate that
two variants usually control the stress-induced transformation and that different grains favor the
formation of selected variants. Unfortunately, it is not trivial to compare Figures 2-4 and
completely understand the stress-state effects. To link the experimental behavior to the
microscopic observations, a micro-mechanical model must be incorporated [1,6].

Although the model will not be extensively discussed here, the predictions of the model
are a cornerstone in the understanding of stress-state effects in these alloys. As in a real material
the model has the possibility of forming 24 martensite variants per grain. However, consistent
with experimental observations, the model predicts that only 2 or 3 of these variants actually
control the transformation under an applied stress state [1]. The advantage of the model is that it
allows the “observation” of microscopic variables controlling the transformation which are not
easily observed experimentally. One of the key predictions of the model is that more variants
will activate under an applied tensile stress versus a compressive stress (Figures 5(a) and 5(b)).
Clearly, the favored activation of martensite variants between stress states is one cause of stress
state effects in these alloys. Simply stated, if a particular stress state has dominant principal
stresses in tension, more variants will activate, the transformation will microscopically proceed
quicker, and the macroscopic transformation yield stress will be lower.

Balancing the effect of the number of transforming variants is the relationship between
the volume change during transformation and the hydrostatic component of the applied stress
state. Thus, if the applied stress state has a negative hydrostatic component then the
transformation will be triggered at a lower effective stress for CuZnAl. Macroscopically, the
difference in the transformation yield point caused by differences in the hydrostatic stress
component between stress states is not visible unless the hydrostatic stress difference is
substantial. For example, the hydrostatic stress component due to pure compression is slightly
more negative than the hydrostatic stress component due to pure tension. However, from
Figures 2 and 3 it is clear that transformation in tension is favored over transformation in
compression. One would have expected compression to have a lower yield point since its
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hydrostatic stress component is compressing in the direction which the transformation wants to
proceed. Through Figure 5(a), the model demonstrates that the transformation is indeed
“microscopically triggered” at a lower effective stress in compression in the CuZnAl case (note
the very small offset in the number of transforming variants curve). However, this small offset
is quickly overshadowed when more variants begin contributing to the transformation. In the
case of NiTi the habit plane normal and the transformation direction lead to a positive volume
change, consequently, the effect of volume change and transforming variants are additive
leading to a higher sensitivity of the results to hydrostatic stress (Figure 5(b)).

Although the origin of stress state effects is clearly related to the microscopic aspects of
the transformation, there still exists some experimental phenomenon that are not completely
accounted for. The current theory of the authors is that texture is playing an intense role in the
3-D transformation behavior. At any rate, research is now in progress to experimentally view
microscopic martensite growth in situ to better understand the dependence of martensite growth
on the stress state.

CONCLUSIONS

(1) The uniaxial compressive stress necessary to macroscopically trigger the transformation
is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress.
For three dimensional stress states, the response of either alloy system is dependent on the
directions of the dominant principal stresses along with the hydrostatic stress component of the
stress state.

) Stress state effects in CuZnAl and NiTi alloys are a balance between the number of
transforming variants and the hydrostatic pressure (volume change) effect. The variant effects
are more pronounced when two stress states have a small difference in hydrostatic stress
components and the principal stresses are in different directions. The hydrostatic pressure
effects become evident when there are extremely large differences in hydrostatic pressures
between stress states.
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(a)

Figure 4. Scanning electron microscope image of martensite plates
(a) in a single grain and (b) in several grains of CuZnAl [1].
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ABSTRACT

Cutting states associated with the orthogonal cutting of stiff cylinders are
identified through an analysis of the singular values of a Toeplitz matrix of third
order cumulants of acceleration measurements. The ratio of the two pairs of largest
singular values is shown to differentiate between light cutting, medium cutting, pre-
chatter and chatter states. Sequences of cutting experiments were performed in
which either depth of cut or turning frequency was varied. Two sequences of
experiments with variable turning frequency and five with variable depth of cut, 42
cutting experiments in all, provided a database for the calculation of third order
cumulants. Ratios of singular values of cumulant matrices find application in the
analysis of control of orthogonal cutting

© 1997 Academic Press Limited

INTRODUCTION

The identification of cutting states, associated with the orthogonal cutting of stiff cylinders,
is realized in the following through an analysis of the behavior of the singular values of a Toeplitz
matrix of third order cumulants of acceleration measurements. A bispectral analysis of cutting tool
acceleration measurements has shown, [3], that the cutting process is quadratically phase coupled.
The determination of coefficients in an autoregressive approximation of the bispectrum, [20],
involves the construction of an unsymmetric Toeplitz matrix, R, of third order cumulants. It is
shown that the behavior of the dominant pairs of singular values of R provides a basis for the
identification of cutting states. In particular, the ratio of the two pairs of largest singular values, the
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R-ratio, is shown to differentiate between light cutting, medium cutting, pre-chatter and chatter
states. Sequences of cutting experiments were performed in which either depth of cut or turning
frequency was varied while all other cutting parameters were held constant. Two sequences of
experiments with variable turning frequency and five with variable depth of cut, a total of forty-two
cutting experiments, were studied. Results typical of the entire set are presented for a sequence of
variable cutting depth and a sequence of variable turning frequency. The R-ratio evaluated at maxlag
= 100, (4), is close to one for all cases of light cutting and two or greater for chatter. For
intermediate states the ratio increases as the chatter state is approached.

EXPERIMENTAL APPARATUS

A schematic diagram of the experimental apparatus employed is shown in Figure 1 and
consists of a Hardinge CNC lathe, a special force dynamometer (utilizing three Kistler 9068 force
transducers) and its associated electronics, and a digital spectrum analyzer (Hewlett Packard 3566A)
for data acquisition and real-time analysis.

Dynamometer plates
Cutting tool / ~ Turret
7

#h Forces Tnertial

force
compensation
| circuit

A3 - Center of mass
Force transducers X zZ accelerations [
Tool accelerometers I Y

Workpiece

Machine
controiler

Spindle Tool accelerations

HARDINGE lathe

Anti-aliasing
filters

I |
L.
 HP 3568A
Dell 333D digital spectrum
analyzer

Figure 1. The experimental system.

THIRD ORDER RECURSION

Let c;(t,, T,) = the third order cumulant of the real third order stationary random process
X(k), k=0, £1, £2. ... . If the mean of X(k) vanishes then c(t}, 1,) = m; (1,, T,) where m; (1, T,)
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= E(X(k), X(k+1,) X(k+7,)), E is the expected value, which may be estimated by

m3(tl,‘l'2) = (1/2n) kg X(k) X(k+1:]) X(k+1:2) @

where n—~ +e, The bispectrum of X(k), C;(w,, w,) is defined by

Cy(w,,w,) = Z E ¢5(7,,T,) exp [(0,T,+w,T,)] @)

1:—«:0 'tzz—oc

'

|C3(w,, wz)l = the bispectral index.
Consider an autoregressive, AR, estimation of the bispectrum, C;(w,, w,), (2) [16,17]. Ap -
th order AR process is described by

X(k) + i a(i) X(k-i) = W(k) 3

i=1

where it is assumed that W(k) is non-Gaussian, E(W(k)) = 0, E(W*(k)) = B. Multiplying through (3),
summing and noting (1) gives

c’;(-k,—l) + '{2 a(i) c’;(i—k, i-ly = B 8(k,D )

i=1

where k, 1 > 0. Letting k=l in the third order recursion equation, (4), with k =0, ..., p yields p+1
equations for the p+1 unknowns a(i) and B; p+1= maxlag. In matrix notation

Ra = b &)
where
g(0,0) g(1,1) --g(@.p)
-1,-1 , glp-1p-1
R:g( | ) g(0,0) g(p.p ) ©)
g(-p,-p) g(-p+1,-p+1) ...g(0,0)

g(i,j) = ¢;%(4), a = [1, a(1), ..., a(p)]"and b = [B, 0, ..., 0]". R is in general a nonsymmetric Toeplitz
matrix. A sufficient but not necessary condition for the representation in (5) to exist is the symmetry
and positive definiteness of R. A discussion of this and related conditions is given in [17]. The
bispectrum corresponding to (3) is given by, (4],
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C3(©,0,) = B H(®) Hw,) H (©+w)

4
Hw) = V(1 + Y. a() exp (- ® n))

n=1

and H'(w) = complex conjugate of H(w).

An estimate of the R matrix, (6), and bispectrum, (7), for a data set X(I), I=1,...,N may be
formed [16,17], as follows:
1. Segment the data set into K records of M samples each. Xi(k), k=1,2,...,M are data points
associated with the i-th record. ‘
2. Compute c5*,; (m,n) for the i-th record as

b
S = (UMY Y XOW) XO+m) XO+n)

l=a

where i = 1,2,...,K, a = max (1,1-m,1-n) and b= min(M, M-m, M-n).
3. Average c;*,; (m,n) over all K records,

) K
é,(m,n) = (1/K) Zl c;,i(m,n)

to yield the estimate ¢;(m,n) of ¢;(m,n). Form an estimated R matrix by replacing c,(m,n) by
&;(m,n) in (6). Estimated values of a follow from (5). These results implemented in [22] are
subsequently applied to orthogonal cutting data.

SINGULAR VALUE DECOMPOSITION

If A is a real mxn matrix then there exist orthogonal matrices U € R™™ and V € R™"such that

UTA V = diag.(ol”oq) € Rmxn (11)

where q = min(m,n), 6, > 6, > ... 2 ¢, 2 0 are the singular values and R™" denotes a real mxn
matrix. A criterion for selecting the autoregressive order, p, in (3) is given in [17,22]. p is chosen
to equal the number of singular values of the R matrix which are above the noise floor. Note that
ifo,2..>0,>0.,=..=0,=0thenrank (A) =r, [5,7].
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Relationships between phase coupled trigonometric functions and the singular values of the
corresponding R matrix were established through a study of three functions f(t) where

f,(H = cos (2T - 100t+d,) + cos (27 - 100+,)

+ 0.2 cos (27 - 200t +, +&,) 2)

() =09 cos 2T - 90!+(])1) + 1.0 cos (271 - 100t+<b2)

+ 0.2 cos 2w * 190t+d, +¢,) 3)

£, = 1.0 cos(2m90t+¢,) + 1.0 cos(2m-100s+,)
+ 1.0 cos(2m190¢+d, +b,) + 1.0 cos(2m100t+¢b,) (14)
+ 1.0 cos(2m-110¢+(,) + 0.5 cos(2m210t+,+d,)

and ¢, are mutually independent and uniformly distributed over [0, 2n]. The f(t) functions were
sampled at 1024 Hz over an interval of 10 sec. R matrices were evaluated for each f(t) by averaging
over 10 one sec. intervals, (6), (9).

fi(t), (12) is an example of the self phase coupling of a 100 Hz frequency component. In the
experimental data studied frequency components in the neighborhood of 100 and 200 Hz were
always observed in the power spectra of cutting states close to chatter. A peak with frequency
coordinates in the neighborhood of (100 Hz, 100 Hz), appeared in the bispectrum of cutting states
in the neighborhood of chatter. The ratio of the mean of the largest pair of singular values to the
mean of the second largest pair defines a non-dimensional ratio of invariants of R, the R-ratio. This
ratio is shown as a function of maxlag for f,(t) in Figure 2(c). R-ratio ~ 2.0 for maxlag > 30.

£,(t), (13), involves the phase coupling of 90 and 100 Hz components. A bispectral peak at
(100, 90) indicates phase coupling between the 90 and 100 Hz components. The mean of the first
pair of singular values is nearly equal to the mean of the second pair of singular values for maxlag
> 80. Note Figure 3(b) for maxlag > 90 for which 1.0 < R-ratio < 1.2.

£5(t), (14). is the sum of a phase coupled component at 100 Hz and 110 Hz and a phase
coupling of 90 and 100 Hz components. The bispectrum of f;(t) has peaks at (100, 110), (100, 90)
and (110, 100), (90, 100) because of symmetry. In Figure 4(b) the R-ratio is plotted as a function
of maxlag from which it is seen that R-ratio = 1.5 for maxlag > 80.

CUTTING STATE CHARACTERIZATION

Sequences of cutting experiments were performed in which either depth of cut or the turning
frequency was varied with all other cutting parameters held constant. Singular values of R, (6), were
computed for two sequences with variable turning frequency and five sequences with variable depth
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of cut over a turning frequency range of 290-852 rpm. Each variable cutting depth sequence ended
in chatter while each variable turning frequency sequence contained at least one chatter state. A total
of 42 cutting experiments were performed. Typical sequences have been selected from the set.

For sequence 1, s-1, the turning frequency = 460 rpm, rake angle = 5°, surface speed = 90
m/min, feed rate = .007 in/rev, resampling rate = 1024 Hz, frequency cut-off = 1100 Hz and the
depth of cut = 2.5, 2.6, 2.7 and 2.8 mm at which depth chatter was observed.

The R-ratio vs. maxlag is shown in Figure 5(b) for a depth of cut of 2.5 mm which
corresponds to light cutting. The R-ratio, Figure 5(b), is close to 1.0. For 70 < maxlag <100, 1.12
> R > 1.08. The behavior of the R-ratio as a function of maxlag has similarities with that of f,(t),
(13), Figure 3(b). f;(t) contains two phase coupled trigonometric functions of 90 and 100 Hz
which approximates phase coupling between the first natural frequency of the system at 98 Hz and
a lower frequency component of the sideband structure.

Chatter was observed for a depth of cut of 2.8 mm. The R-ratio vs. maxlag is shown in Figure
6(b). One pair of singular values is dominant. For 20 < maxlag < 100, 2.0 < R-ratio <2.4. The R-
ratio as a function of maxlag is similar to that of £ (t), (12), Figures 2(b) and 6(b), which represents
self phase coupling of the 100 Hz component. The presence of self-phase coupling in the time series
is confirmed by peaks in the power spectrum at 100 and 200 Hz and a peak in the bicoherence index
at (100, 100). These results are consistent across all sequences of experiments in which the depth
of cut varies. For increasing depth of cut the R-ratio clearly differentiates between light cutting and
chatter.

Two intermediate states with depths of cut of 2.6 and 2.7 mm complete the sequence s-1.
The R-ratio vs. maxlag is shown in Figure 7(b), for the 2.6 mm case. For 50 < maxlag <110 the R-
ratio = 1.6, Figure 7(b). There is a similarity between Figure 4(b), R-ratio for f;(t) and Figure 7(b).
The R-ratios are close to one another for 50 < maxlag < 110.

CONCLUSIONS

The ratio of the mean of the two dominant pairs of singular values, R-ratio, evaluated for
maxlag = 100, approximates one for light cutting, two or more for chatter and near chatter states and
takes intermediate values for intermediate states, increasing from one to two as chatter is approached.
This behavior was observed in an analysis of tool acceleration time series for five sequences of
cutting experiments with increasing depth of cut and two sequences with variable turning frequency.
For chatter and light and intermediate cutting the R-ratio is seen to be a constant or slowly changing
function of maxlag for maxlag > 40 (4), Figures 5(b), 6(b), and 7(b).
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MULTI-ROBOT MOTION CONTROL FOR COOPERATIVE OBSERVATION

Lynne E. Parker

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

ABSTRACT

An important issue that arises in the automation of many security, surveillance, and
reconnaissance tasks is that of monitoring (or observing) the movements of targets
navigating in a bounded area of interest. A key research issue in these problems is
that of sensor placement — determining where sensors should be located to maintain
the targets in view. In complex applications involving limited-range sensors, the use
of multiple sensors dynamically moving over time is required. In this paper, we
investigate the use of a cooperative team of autonomous sensor-based robots for
the observation of multiple moving targets. We focus primarily on developing the
distributed control strategies that allow the robot team to attempt to minimize the
total time in which targets escape observation by some robot team member in the
area of interest. This paper first formalizes the problem and discusses related work.
We then present a distributed approximate approach to solving this problem that
combines low-level multi-robot control with higher-level reasoning control based
on the ALLTANCE formalism. We analyze the effectiveness of our approach by
comparing it to three other feasible algorithms for cooperative control, showing the
superiority of our approach for a large class of problems.

INTRODUCTION

An important issue that arises in the automation of many security, surveillance, and reconnais-
sance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded
area of interest. A key research issue in these problems is that of sensor placement — determining
where sensors should be located to maintain the targets in view. In the simplest version of this
problem, the number of sensors and sensor placement can be fixed in advance to ensure adequate
sensory coverage of the area of interest. However, in more complex applications, a number of
factors may prevent fixed sensory placement in advance. For example, there may be little prior
information on the location of the area to be monitored, the area may be sufficiently large that
economics prohibit the placement of a large number of sensors, the available sensor range may be
limited, or the area may not be physically accessible in advance of the mission. In the general case,
the combined coverage capabilities of the available robot sensors will be insufficient to cover the
entire terrain of interest. Thus, the above constraints force the use of multiple sensors dynamically
moving over time.

In this paper, we investigate the use of a cooperative team of autonomous sensor-based robots
for applications in this domain. We focus primarily on developing the distributed control strategies
that allow the team to attempt to minimize the total time in which targets escape observation
by some robot team member in the area of interest. Of course, many variations of this dynamic,
distributed sensory coverage problem are possible. For example, the relative numbers and speeds
of the robots and the targets to be tracked can vary, the availability of inter-robot communication
can vary, the robots can differ in their sensing and movement capabilities, the terrain may be either

223




enclosed or have entrances that allow targets to enter and exit the area of interest, the terrain
may be either indoor (and thus largely planar) or outdoor (and thus 3D), and so forth. Many
other subproblems must also be addressed, including the physical tracking of targets (e.g. using
vision, sonar, IR, or laser range), prediction of target movements, multi-sensor fusion, and so forth.
Thus, while our ultimate goal is to develop distributed algorithms that address all of these problem
variations, we first focus on the aspects of distributed control in homogeneous robot teams with
equivalent sensing and movement capabilities working in an uncluttered, bounded area.

The following section defines the multitarget observation problem of interest in this paper, and
is followed by a discussion of related work. We then describe our approach, discussing each of the
subcomponents of the system. Next, we describe and analyze the results of our approach, compared
to three other feasible algorithms for cooperative motion control. Finally, we offer concluding
remarks.

PROBLEM DESCRIPTION

The problem of interest in this paper — the cooperative multi-robot observation of multiple
moving targets (or CMOMMT for short) — is defined as follows. Given:

S: a two-dimensional, bounded, enclosed spatial region, with entrances/exits
R: a team of m robots with 360° field of view observation sensors
that are noisy and of limited range
O(t) : a set of n targets o0;(t), such that In(o;(t),S) is true (where In{0;(t),S)
means that target o;(t) is located within region S at time t)

Define an m x n matrix A(t), where

() = 1 ifrobot r; is monitoring target o;(t) in S at time ¢
%ij\t) =1 0 otherwise

We further define the logical OR operator over a vector H as:

\I;/ b = 1 if there exists an ¢ such that h; =1
A t7 1 0 otherwise
1=

We say that a robot is monitoring a target when the target is within that robot’s observation
sensory field of view. Then, the goal is to maximize:

T n m
> 2. Vai®)

t=0 j=1 =1

over time steps At under the assumptions listed below. In other words, the goal of the robots is to
maximize the collective time during which targets in S are being monitored by at least one robot
during the mission from ¢ = 0 to t == T. Note that we do not assume that the membership of O(t)
is known in advance.

In addressing this problem, we assume the following: Define sensor_coverage(r;) as the area
visible to robot r;’s observation sensors, for r; € R. Then we assume that, in general,

U sensor_coverage(r;) K S.
rER

That is, the maximum area covered by the observation sensors of the robot team is much less than

the total area to be monitored. This implies that fixed robot sensing locations or sensing paths will

not be adequate in general, and that, instead, the robots must move dynamically as targets appear

in order to maintain observational contact with them and to maximize the coverage of the area S.
We further assume the following: ‘

224




The robots have a broadcast communication mechanism that allows them to send (receive)
messages to (from) each other within the area S.

For all r; € R and for all 0;(t) € O(t), mazv(r;) > maz_v(o;(t)), where maz_v(a) gives the
maximum possible velocity of entity a, for a € R U O(t).

Targets in O can enter and exit region & through distinct entrances/exits.

The robot team members share a known global coordinate system.

To somewhat simplify the problem initially, we report here the results of the case of an omni-
directional 2D sensory system (such as a ring of cameras or sonars), in which the robot sensory
system is of limited range, but is available for the entire 360° around the robot.

RELATED WORK

Research related to the multiple target observation problem can be found in a number of do-
mains, including art gallery and related problems, multitarget tracking, and multi-robot surveillance
tasks. While a complete review of these fields is not possible in a short paper, we will briefly outline
the previous work that is most closely related to the topic of this paper.

The work most closely related to the CMOMMT problem falls into the category of the art
gallery and related problems [1], which deal with issues related to polygon visibility. The basic art
gallery problem is to determine the minimum number of guards required to ensure the visibility of
an interior polygonal area. Variations on the problem include fixed point guards or mobile guards
that can patrol a line segment within the polygon. Most research in this area typically utilizes
centralized approaches to the placement of sensors, uses ideal sensors (noise-free and infinite range),
and assumes the availability of sufficient numbers of sensors to cover the entire area of interest.
Several authors have looked at the static placement of sensors for target tracking in known polygonal
environments (e.g. [2]). These works differ from the CMOMMT problem, in that our robots must
dynamically shift their positions over time to ensure that as many targets as possible remain under
surveillance, and their sensors are noisy and of limited range.

Sugihara et al. [3] address the searchlight scheduling problem, which involves searching for a
mobile “robber” (which we call target) in a simple polygon by a number of fixed searchlights,
regardless of the movement of the target. They develop certain necessary and sufficient conditions
for the existence of a search schedule in certain situations, under the assumption of a single target,
no entrances/exits to the polygon, and fixed searcher positions

Suzuki and Yamashita [4] address the polygon search problem, which deals with searching for
a mobile target in a simple polygon by a single mobile searcher. They examine two cases: one in
which the searcher’s visibility is restricted to k rays emanating from its position, and one in which
the searcher can see in all directions simultaneously. Their work assumes no entrances/exits to the
polygon and a single searcher.

LaValle et al. [5] introduces the visibility-based motion planning problem of locating an unpre-
dictable target in a workspace with one or more robots, regardless of the movements of the target.
They define a visibility region for each robot, with the goal of guaranteeing that the target will
eventually lie in at least one visibility region. In LaValle et al. [6], they address the related question
of maintaining the visibility of a moving target in a cluttered workspace by a single robot. They
are also able to optimize the path along additional criteria, such as the total distance traveled.
The problems they address in these papers are closely related to the problem of interest here. The
primary difference is that their work does not deal with multiple robots maintaining visibility of
multiple targets, nor a domain in which targets may enter and exit the area of interest.

Another large area of related research has addressed the problem of multitarget tracking (e.g.
Bar-Shalom [7, 8], Blackman [9], Fox et al. [10]). This problem is concerned with computing
the trajectories of multiple targets by associating observations of current target locations with
previously detected target locations. In the general case, the sensory input can come from multiple
sensory platforms. Qur task in this paper differs from this work in that our goal is not to calculate
the trajectories of the targets, but rather to find dynamic sensor placements that minimize the
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collective time that any target is not being monitored (or observed) by at least one of the mobile
Sensors.

APPROACH

Overview

Since the CMOMMT problem can be shown to be NP-complete, and thus intractable for com-
puting optimal solutions, we propose an approximate control mechanism that is shown to work well
in practice. This approximate control mechanism is based upon our previous work, described in
[11, 12], which defines a fully distributed, behavior-based software architecture called ALLIANCE
that enables fault tolerant, adaptive multi-robot action selection. This architecture is a hybrid
approach to robotic control that incorporates a distributed, real-time reasoning system utilizing
behavioral motivations above a layer of low-level, behavior-based control mechanisms. This archi-
tecture for cooperative control utilizes no centralized control; instead, it enables each individual
robot to select its current actions based upon its own capabilities, the capabilities of its teammates,
a previous history of interaction with particular team members, the current state of the environ-
ment, and the robot’s current sensory readings. ALLTANCE does not require any use of negotiation
among robots, but rather relies upon broadcast messages from robots to announce their current
activities. The ALLTANCE approach to communication and action selection results in multi-robot
cooperation that gracefully degrades and/or adapts to real-world problems, such as robot failures,
changes in the team mission, changes in the robot team, or failures or noise in the communication
system. This approach has been successfully applied to a variety of cooperative robot problems,
including mock hazardous waste cleanup, bounding overwatch, janitorial service, box pushing, and
cooperative manipulation, implemented on both physical and simulated robot teams.

Our proposed approach to the CMOMMT problem is based upon the same philosophy of control
that was utilized in ALLIANCE. In this approach, we enable each robot team member to make
its own action selections, without the need for any centralized control or negotiation. The low-
- level, behavior based control of each robot calculates local force vectors that attract the robot to
nearby targets and repel the robot from nearby teammates. Added above the low-level control is
a higher-level reasoning system that generates weights to be applied to the force vectors. These
weights are based upon previous experiences of the robot, and can be in the form of motivations
of behavior or rule-based heuristics. The high-level reasoning system of an individual robot is thus
able to influence the local, low-level control of that robot, with the aim of generating an improved
collective behavior across robots when utilized by all robot team members.

Target and robot detection

Ideally, robot team members would be able to passively observe nearby robots and targets
to ascertain their current positions and velocities. Research fields such as machine vision have
dealt extensively with this topic, and have developed algorithms for this type of passive position
calculation. However, since the physical tracking and 2D positioning of visual targets is not the
focus of this research, we instead assume that robots use a global positioning system (such as GPS
for outdoors, or the laser-based MTI indoor positioning system [13] that is in use at our CESAR
laboratory) to determine their own position and the position of targets within their sensing range,
and communicate this information to the robot team members within their communication range?.

For each robot 7;, we define the predictive tracking range as the range in which targets localized
by other robots ri # 7; can affect r;’s movements. Thus, a robot can know about two types
of targets: those that are directly sensed or those that are “virtually” sensed through predictive
tracking. When a robot receives a communicated message regarding the location and velocity
of a sighted target that is within its predictive tracking range, it begins a predictive tracking of
that target’s location, assuming that the target will continue linearly from its current state. We

!This approach to communication places an upper limit on the total allowable number of robots and targets at
about 400. Since the communication is O(nm), we compute this upper limit by assuming a 1.6 Mbps Proxim radio
ethernet system (such as the one in our laboratory) and assuming that messages of length 10 bytes per robot per
target are transmitted every 2 seconds. With these numbers, we find that nm must be less than 4 x 10* bps to avoid
saturation of the communication bandwidth.
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Figure 1: Functions defining the magnitude of the force vectors to nearby targets and robots.

assume that if the targets are dense enough that their position estimations do not supply enough
information to disambiguate distinct targets, then existing tracking approaches (e.g. Bar-Shalom
[8]) should be used to uniquely identify each target based upon likely trajectories.

Local force vector calculation

The local control of a robot team member is based upon a summation of force vectors which are
attractive for nearby targets and repulsive for nearby robots. The first function in figure 1 defines
the relative magnitude of the attractive forces of a target within the predictive tracking range of a
given robot. Note that to minimize the likelihood of collisions, the robot is repelled from a target if
it is too close to that target (distance < do1). The range between doy and dog defines the preferred
tracking range of a robot from an object. In practice, this range will be set according to the type
of tracking sensor used and its range for optimal tracking. The attraction to the object falls off
linearly as the distance to the object varies from dos. The attraction goes to 0 beyond the predicted
tracking range, indicating that this object is too far to have an effect on the robot’s movements,

The second function of figure 1 defines the magnitude of the repulsive forces between robots.
If the robots are too close together (distance < dri), they repel strongly. If the robots are far
enough apart (distance > drs), they have no effect upon each other in terms of the force vector
calculations. The magnitude scales linearly between these values.

One problem with using only force vectors, however, is that of local minima. As defined so
far, the force vector computation is equivalent for all targets, and for all robots. Thus, we need
to inject additional high-level reasoning control into the system to take into account more global
information. This reasoning is modeled as predictive weights that are factored into the force vector
calculation, and are described in the next subsection.

High-level reasoning control

To help resolve the problems of local minima, the higher-level reasoning control differentially
weights the contributions of each target’s force field on the total computed field. This higher-level
knowledge can express any information or heuristics that are known to result in more effective
global control when used by each robot team member locally. Our present approach expresses
this high-level knowledge in the form of two types of probabilities: the probability that a given
target actually exists, and the probability that no other robot is already monitoring a given target.
Combining these two probabilities helps reduce the overlap of robot sensory areas toward the goal
of minimizing the likelihood of a target escaping detection.

The probability that a target exists is modeled as a decay function based upon when the target
was most recently seen, and by whom. In general, the probability decreases inversely with distance
from the current robot. Beyond the predictive tracking range of the robot, the probability becomes
zero.

The probability that no other robot is already monitoring a nearby target is based upon the
target’s position and the location of nearby robots. If the target is in range of another robot, then
this probability is generally high. In the future, we plan to incorporate the ALLIANCE motivation
of “impatience”, if a nearby robot does not appear to be satisfactorily observing its local targets
(perhaps due to faulty sensors). This impatience will effectively reduces the probability that the
other robot is already monitoring nearby targets. In more complex versions of the CMOMMT
problem, robots could also learn about the viewing capabilities of their teammates, and discount
their teammates’ observations if that teammate has been unreliable in the past.
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The higher-level weight information is combined with the local force vectors to generate the
commanded direction of robot movement. This direction of movement is given by:

N M
S (FVO; x Plezists;) x P(NT;))+ »_ FVR;
i=0 j=0

where FV Oy, is the force vector attributed to target o, P(existsy) is the probability that target
oy exists, P(NT}) is the probability that target o is not already being tracked, and FV R; is the
force vector attributed to robot r;. This movement command is then sent to the robot actuators
to cause the appropriate robot movements. We also incorporate a low-level obstacle avoidance
behavior that overrides these movement commands if it would likely result in a collision.

EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the effectiveness of the algorithm we designed for the CMOMMT problem (which we
will refer to as A-CMOMMT, we conducted experiments both in simulation and on a team of mobile
robots. In the simulation studies, we compared four possible cooperative observation algorithms:
(1) A-CMOMMT (high-level plus local control), (2) Local control only, (3) Random/linear robot
movement, and (4) Fized robot positions.

In all of these experiments, targets moved according to a “random/linear” movement, which
causes the target to move in a straight-line until an obstacle is met, followed by random turns
until the target is able to again move forward without collision. The local control only algorithm
computed the motion of the robots by calculating the unweighted local force vectors between robots
and targets. This approach was studied to determine the effectiveness of the high-level reasoning
that is incorporated into the A-CMOMMT algorithm. The last two algorithms are control cases for
the purposes of comparison: the random/linear robot movement approach caused robots to move
according the the “random/linear” motion defined above, while the fized robot positions algorithms
distributed the robots uniformly over the area S, where they maintained fixed positions. In both of
these control approaches, robot movements were not dependent upon target locations or movements
(other than obstacle avoidance).

We compared these 4 approaches by measuring the average value of the A(¢) matrix (see PROB-
LEM DESCRIPTION section) during the execution of the algorithm. Since the algorithm perfor-
mance is expected to be a function f of the number of robots n, number of targets m, the range of
a given robot’s sensor r, and the relative size of the area S, we collected data for a wide range of
values of these variables. To simplify the analysis of our results, we defined the area S as the area
within a circle of radius R, fixed the range of robot sensing at 2,600 units of distance, and included
no obstacles within § (other than the robots and targets themselves, and the boundary of S).

We collected data by varying n from 1 to 10, m from 1 to 20, and R from 1,000 to 50,000
units. For each instantiation of variables n, m, and R, we computed the average A(t) value every
At = 2 seconds of a run of length 2 minutes; we then repeated this process for 250 runs for each
instantiation to derive an average A(t) value for the given values of n, m, and R. In all runs of all
4 algorithms, the targets were placed randomly at the center of & within a circle of radius 1,000.
In all runs of all algorithms (except for fized robot positions), the robots were also placed randomly
within the same area as the targets.

To analyze the results of these experiments, we speculated that the function f(n,m,r, R) would
be proportional to ratio of the total collective area that could be covered by the robot sensors

(i.e. nwr?) over the area that would be allotted to one target (call it a target slot), were S divided
2

T
equally over all targets (i.e. ——), we have:
m

TL’I’I"I"Q

TR T
m

j.(n7 m’ 7.7 R) =

Thus, this function was used to compare the similarity of experiments that varied in their
instantiations of n, m, and R.
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Since the optimum value of the average A(t) for a given experiment depends upon the value of
m (and, in fact, equals m), we normalized the experiments by plotting the average A(t)/m which
is the average percentage of targets that are within some robot’s view at a given instant of time.

Figure 2 gives the results of our experiments, plotting the average A(t)/m versus f(n,m,r, R)
for all of our experimental data. For each algorithm, we fit a curve to the data using the locally
weighted Least Squared error method. Since there is considerable deviation in the data points
for given values of f(n,m,r, R), we computed the statistical significance of the results using the
Student’s ¢ distribution, comparing the algorithms two at a time for all 6 possible pairings. In these
computations, we used the null hypothesis: Hg : p3 = po, and there is essentially no difference
between the two algorithms. Under hypothesis Hy:

T=-X=%X  yhere o= miSj+na§3
o /Ll ni+ng—2
V 71 T2

Then, on the basis of a two-tailed test at a 0.01 level of significance, we would reject Hy if T were
outside the range —t.gg95 to t.995, which for ny +ns — 2 = 2504+ 250 — 2 = 498 degrees of freedom, is
the range -2.58 to 2.58. For the data given in figure 2, we found that we could reject Hy at a 0.01
level of significance for all pairing of algorithms that show a visible difference in performance in
this figure. Thus, we can conclude that the variation in performance of the algorithms illustrated
by the fitted curves in figure 2 is significant.

We see from figure 2 that the A-CMOMMT and local control only algorithms perform better
than the two naive control algorithms, which is expected since the naive algorithms use no in-
formation about target positions. Note that all approaches improve as the value of f(n,m,r, R)
increases, corresponding to a higher level of robot coverage available per target. The random/linear
robot movement approach performed better than the fized robot positions, most likely due to the
proximity of the initial starting locations of the robots and objects in the random/linear robot
movement approach. This seems to suggest that much benefit can be gained by learning areas of
the environment & where targets are more likely to be found, and concentrate on locating robots
in those areas.
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Of more interest, we see that the A-CMOMMT approach is superior to the local control only
approach for values of f(n, m,r, R) greater than about 2; the local control only approach is slightly
better for f(n,m,r, R) less than 2. This means that when the fraction of robot coverage available
per target is low (< 2), relative to the size of S, then robots are better off not ignoring any tar-
gets, which is essentially what happens due to the high-level control of A-CMOMMT. Examples
of experimental scenarios where the local control only approach is better than the A-CMOMMT
approach are (n,m,R) = (2,1,5000-50000), (2,2,4000-50000), (3,1,5000-50000), (3,2,5000-50000),
(3,3,8000-50000), and (3,4,8000-50000). However, for more complex cases, where the number
of targets is much greater than the number of robots, and the environmental area is not “too
large”, we find that the higher-level reasoning provided by A-CMOMMT works better. Exam-
ples of scenarios where A-CMOMMT is better include (n,m, R) = (2,4,1000-5000), (2,6,1000-6000)
(2,20,1000-10000),(3,3,1000-5000), (3,4,1000-6000), (3,6, 1000-7000), and (3,12,1000-11000). Note
that A-CMOMMT approaches perfect performance as f(n,m,r, R) reaches 10, whereas the results
of the random/linear robot movement and local control only approaches begin to level off at around
85%. In continuing and future work, we are determining the impact of these results on multi-robot
cooperative algorithm design.

We have also implemented the A-CMOMMT algorithm on a team of a team of four Nomadic
Technologies robots to illustrate the feasibility of our approach for physical robot teams. We have
demonstrated a very simple case of cooperative tracking using these robots. Refer to [14] for
details.

CONCLUSIONS

Many real-world applications in security, surveillance, and reconnaissance tasks require multi-
ple targets to be monitored using mobile sensors. We have presented an approximate, distributed
approach based upon the philosophies of the ALLIANCE architecture and have illustrated its ef-
fectiveness in a wide range of cooperative observation scenarios. This approach is based upon

-a combination of high-level reasoning control and lower-level force vector control that is fully dis-

tributed across all robot team members and involves no centralized control. Empirical investigations
of our cooperative control approach have shown it to be effective at achieving the goal of maximiz-
ing target observation for most experimental scenarios, as compared to three other feasible control
algorithms.
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ABSTRACT

The accurate imaging of subsurface structures requires the fusion of data collected
from large arrays of seismic sensors. The fusion process is formulated as an
optimization problem and yields an extremely complex “energy surface”. Due
to the very large number of local minima to be explored and escaped from, the
seismic imaging problem has typically been tackled with stochastic optimization
methods based on Monte Carlo techniques. Unfortunately, these algorithms are
very cumbersome and computationally intensive. Here, we present TRUST - a
novel deterministic algorithm for global optimization that we apply to seismic
imaging. Our excellent results demonstrate that TRUST may provide the necessary
breakthrough to address major scientific and technological challenges in fields as
diverse as seismic modeling, process optimization, and protein engineering.

INTRODUCTION

In many geophysical tasks, seismic energy is detected by receivers which are regularly spaced
along a grid that covers the explored domain. A source is positioned at some grid node to produce
a shot. Time series data is collected from the detectors for each shot; then the source is moved to
another grid node for the next shot. A major degradation of seismic signals usually arises from near-
surface geologic irregularities [1, 2]. These include uneven soil densities, topography, and significant
lateral variations in the velocity of seismic waves. The most important consequence of such
irregularities is a distorted image of the subsurface structure, due to misalignment of signals caused
by unpredictable delays in recorded travel times of seismic waves in a vertical neighborhood of
every source and receiver. To improve the quality of the seismic analysis, timing adjustments (called
“statics corrections” ) must be performed. One typically distinguishes between “field statics”, which
correspond to corrections that can be derived directly from topographic and well measurements,

“and “residual statics”, which incorporate adjustments that must be inferred statistically from the
seismic data. The common occurrence of severe residual statics (where the dominant period of
the recorded data is significantly exceeded), and the significant noise contamination render the
automatic identification of large static shifts extraordinarily difficult. Thus, multisensor fusion
must be invoked [3]. This problem has generally been formulated in terms of global optimization
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and, to date, Monte-Carlo techniques (e.g., simulated annealing, genetic algorithms) have provided
the primary tools for seeking a potential solution.

The objective function associated with the task of fusing data from an array of seismic sensors
depends on a very large number of parameters. Finding the extrema and, in particular, the absolute
extremum of such a function turns out to be painstaking difficult. The primary difficulty stems
from the fact that the global extremum, say minimum, of a real function is - despite its name
- a local property. In other words, significant alteration of the location and magnitude of the
global minimum can be carried out without affecting at all the locations and magnitudes of the
other minima. Short of exhaustive search, it would then appear extraordinarily unlikely to design
unfallible methods to locate the absolute minimum for an arbitrary function. In recent years
there has been a remarkable surge of interest in global optimization [5 - 8]. Although significant
progress has been achieved in breaking new theoretical ground [9 - 19], the need for efficient and
reliable global optimization methods remains as urgent as ever. In particular, a major need exists
for a breakthrough paradigm which would enable the accurate and efficient solution of large-scale
problems. In response to that need, we have been focusing, at ORNL’s Center for Engineering
Systems Advanced Research (CESAR), on two innovative concepts, namely subenergy tunneling
and non-Lipschitzian terminal repellers, to ensure escape from local minima in a fast, reliable, and
computationally efficient manner. The generally applicable methodology is embodied in the TRUST
algorithm [4], which is deterministic, scalable, and easy to implement. Benchmark results show
that TRUST is considerably faster and more accurate than previously reported global optimization
techniques. Hence, TRUST may provide the enabling means for addressing major scientific and
technological challenges in fields as diverse as seismic modeling, process optimization, and protein
engineering.

The classical theory of optimization started to develop almost concomitantly with classical
mechanics by trying to find extremal values (minima or maxima) of certain functions that bear
special physical meaning and practical significance. For instance, Newton studied projectile
trajectories and obtained their maximum range by taking into account the friction with the
atmosphere. He was also interested in minimizing resistance by modifying the shape of an object
propelled through water. The Bernoulli brothers, who were active in Switzerland between 1670 and
1720, discovered that the shortest time of descent between two points under gravity is achieved not
on the straight line joining the two points, but on a convex curve, called brachistocrone. Another
famous optimization problem is to find the greatest area enclosed between a straight line and an
arbitrary curve of fixed length joining two points on the line. By Virgil’s account (Aeneid, Book I,
line 367), Queen Dido solved the problem by determining the shape of the curve and the position
of the points, thereby founding Carthage.

The completion of the main body of classical physics around the turn of the century came with
the realization that many natural processes take place according to extremal principles such as:
(i) the principle of stationary (minimum) action in mechanics and electrodynamics; (ii) the principle
of minimal potential energy in stable mechanical equilibrium states; (iii) the principle of maximal
entropy in isolated thermodynamic systems at equilibrium; and (iv) the principle of motion along
geodesics (Fermat’s principle in geometrical optics and Einstein’s principle in relativity theory).
Thenceforth extremal principles and, more generally, optimization problems have been perceived
as a systematic and elegant framework for addressing and solving more complex problems with
applications to economy, investment policies, and social or political negotiations. In these domains,
optimization is, in turn, used to determine “the best” model for a complex situation , to make “the
best” choice within a given model, and to solve the associated, purely technical, sub-problems that




occur in the mathematical analysis and implementation of the model. In this context, optimality
is, almost always, to be obtained under certain constraints and/or at the expense of a certain price.

The generic global optimization problem can be stated as follows. The overall performance
of a system is described by a multivariate function, called the objective function. Optimality of
the system is reached when the objective function attains its global extremum, which can be a
maximum or a minimum, depending on the problem under consideration. From an algorithmic
perspective, however, there is essentially no difference between the two.

THE TRUST ALGORITHM

We now define the global optimization problem considered in more rigorous terms. Let
f(x) : D — R be a function with a finite number of discontinuities, and x be an n-dimensional
state vector. At any discontinuity point, x°, the function f(-) is required to satisfy the inequality
lim, s inf f(x) > f(x®) (lower semicontinuity condition). Hereafter, f(x) will be referred to as
the objective function, and the set D as the set of feasible solutions (or the solution space). The
goal is to find location of the global minimum, i.e. the value x9™ of the state variables which
minimizes f(x),

f(x™) = min{f(x) | x € D} . (1)
Without loss of generality, we shall take D as the hyperparallelepiped
D={wz|ﬁ,—5$zﬁﬁz+, i=1,2;"'7n} . (2)

where ;" and ﬂl?*" denote, respectively, the lower and upper bound of the i th state variable.

We define the subenergy tunneling transformation of the function f(x) by the following nonlinear
monotonic mapping:

Esup(x, x*) = log(1/[1 + exp(=f(x) — a))) . (3)
In Eq. (3), f(x) = f(x) — f(x*), a is a constant that affects the asymptotic behavior, but not the
monotonicity, of the transformation, and x* is a fixed value of x, whose selection will be discussed

in the sequel. Whenever f is differentiable, the derivative of Egyu(x,x*) with respect to x is given
by

OB qup(x,x") /0x = (8f(x)/8%)(1/[L + exp(f(x) +a)]) , (4)
which yields
OEgup(x,x*)/0x=0 & 0f(x)/0x=0 . (5)

It is clear that Egu(x,x*) has the same discontinuity and critical points as f(x), and the same
relative ordering of the local and global minima. In other words, Egup(x,x*) is a transformation
of f(x) which preserves all properties relevant for optimization. In addition, this transformation
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Figure! . Operation of TRUST, illustrated on the function
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is designed to ensure that: (i) Esus(x,x") quickly approaches zero for large positive f(x); and
(i) Equp(x,x*) rapidly tends toward f(x), whenever f(x) < 0.

An equilibrium point x4 of the dynamical system % = g(x) is termed an attractor (repeller)
if no (at least one) eigenvalue of the n x n matrix M, M = 0g(x.q)/0x has a positive real part.
Typically, a certain amount of regularity (Lipschitz condition) is required to guarantee the existence
of a unique solution for each initial condition x(0) and, in those cases, the system’s relaxation time
to an attractor, or escape time from a repeller, is theoretically infinite. If the regularity condition
at equilibrium points is violated, singular solutions are induced, such that each solution approaches
a terminal attractor or escapes from a terminal repeller in finite time. The above concepts are
at the foundation of our Terminal Repeller Unconstrained Subenegy Tunneling (TRUST) global
optimization algorithm.

Let f(x) be a function one wishes to globally minimize over D. We define the TRUST virtual
objective function

E(x,x*) = log(1/[1+exp(~F(x) - a)]) - (3/4)p(x — x*)*/%6(f(x)) (6)
= Euup(X,x*) + Erep(x,x*).

In the above expression 8(-) denotes the Heaviside function, that is equal to one for positive values
of the argument and zero otherwise. The first term on the right-hand side of Eq. (6) corresponds to
the subenergy tunneling function; the second term is referred to as the repeller energy term. The
parameter p > 0 quantifies the strength of the repeller. Application of gradient descent to E(x, x*)
results in the dynamical system(i = 1,..n)

&i = —(0f(x)/0:)(1/[1 + exp(f (x) + a)]) + plai — 2})/*0(f()) - (7)

Figure 1 illustrates the main characteristics of TRUST for a one-dimensional problem objective
function E(z,z*). A schematical representation of a sufficiently smooth f(z) is shown, which has
three local minima, one of which is the global minimum. We assume that the solution flows in
the positive direction (i.e., away from the left boundary), and that the local minimum at z = Fx
is encountered by a local minimization method, gradient descent for example. The task under
consideration is to escape this local minimum, in order to reach the valley of another minimum
with a lower value. We set z* = Hz; then the objective function in Eq. (6) performs the following
transformation (see Figure 1):

e the offset function f(z) = f(z) — f(z*) creates the curve parallel to f(z), such that the local
minimum at z = z* intersects with the z-axis tangentially;

o the term E,(z, 2*) forms the portion of the thick line denoted by II (i.e., the lower valley)
as a result of the properties of the subenergy transformation;

e the repeller energy term Ey., (%, 2*) essentially constitutes the portion of the thick line denoted
by I

e finally, as the complete thick line (i.e., I and IT) shows, the virtual objective function E(z, z*),
which is a superposition of these two terms, creates a discontinuous but well-defined function
with a global mazimum located at the previously specified local minimum #z.
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To summarize, as seen in Figure 1, E(z,z*) of Eq. (7) transforms the current local minimum of
f(z) into a global maximum, but preserves all lower local minima. Thus, when gradient descent
is applied to the function E(z,z*), the new dynamics, initialized at a small perturbation from the
local minimum of f(z) (i.e., at x = 2*+d, with z* = #z), will escape this critical point (which is
also the global maximum of E(z,z*)) to a lower valley of f(z) with a lower local minimum. It is
important to note that the discontinuity of E(xz,z*) does not affect this desired operation, since
the flow of the gradient descent dynamics follows the gradient of E(z,z*), which is well-defined at
every point in the region. It is clear that if gradient descent were to be applied to the objective
function f(z) under the same conditions, escaping the local minimum at x = *z would not be
accomplished.

Hence, application of gradient descent to the function E{z,z*) as defined in Eq. (6), as opposed
to the original function f(z), results in a system that has a global descent property, i.e., the new
system escapes the encountered local minimum to another one with a lower functional value. This
is the main idea behind constructing the TRUST virtual objective function of Eq. (6). Additional
details and formal derivations can be found in [4, 15, 18].

BENCHMARKS AND COMPARISONS TO OTHER METHODS

This section presents results of benchmarks carried out to assess the TRUST algorithm using
several standard test functions taken from the literature. A description of each test function is
given in Table 1. In Tables 2-3, the performance of TRUST is compared to the best competing
global optimization methods, where the term “best” indicates the best widely reported reproducible
results the authors could find for the particular test function. The criterion for comparison is the
number of function evaluations.

One of the primary limitations of conventional global optimization algorithms is their lack
of stopping criteria. This limitation is circumvented in benchmark problems, where the value
and coordinates of the global minima are known in advance. The achievement of a desired
accurracy (e.g., € = 1075) is then considered as a suitable termination condition [6]. For consistent
comparisons, this condition has also been used in TRUST, rather than its general stopping criterion
described earlier. For each function, corners of the domain were taken as initial conditions; each
reported result then represents the average number of evaluations required for convergence to the
global minimum of the particular function. The TRUST calculations were performed using the value
a = 2, for which the subenergy tunneling transformation achieves its most desirable asymptotic
behavior [15]. The dynamical equations were integrated using an adapitive scheme, that, within
the basin of attraction of a local minimum, considers the local minimum as a terminal attractor.
Typical base values for the key parameters A; and p were 0.05 and 10., respectively.

In Table 2, the benchmark labels, i.e. BR (Branin), CA (Camelback), GP (Goldstein-Price),
RA (Rastrigin), SH (Shubert) and H3 (Hartman), refer to the test functions specified in Table 1.
The following abbreviations are also used: SDE is the stochastic method of Aluffi-Pentini [9]; EA
is the annealing evolution algorithms of Yong, Lishan, and Evans [17] and Schneider [19]; MLSL
is the multiple level single linkage method of Kan and Timmer [10]; IA is the interval arithmetic
technique of Ratschek and Rokne [19]; TUN is the tunneling method of Levy and Montalvo [11];
and TS refers to the Taboo Search scheme of Cvijovic and Klinowski [16]. The results demonstrate
that TRUST is substantially faster than these state-of-the-art methods.




Table 1. Standard Test Functions used for global optimization benchmarks.

Name Definition Domain
Branin F0O = [ — (5.1/472)22 + (5/7)wy — 6]2 + 10(1 — 1/87) cos z1 + 10 -5. < ;1 < +10.
0. <z < +15.
Camelback FO) = [4 = 2.122 + (3/3)] 22 + @122 + (~4 + 422)2] -3. <z < +3.
—2. < Ty < +2.
Goldstein-Price FGO =11 4 (21 + w2 + 1)? (19 — 14z + 322 — 142y + 62125 + 302)] 2. < g; < +2.
X[30 4 (2x1 — 3232)2 (18 — 3221 + 1227 + 48w — 36z122 + 2722)]
R,astrlgln f(x)= zf + mg — cos(18z1) — cos(18x2) -1. S I; < +1.
Shubert» Ff(x) = {E?:l icos[(i + )=y + 1}} {Zf:l i cos{(i + Lzg + z]} —-10. < Ty S +10.
Hartman* 169 = 3171 e exnl = 307 ety — i) 0.<z; <1
Styblinski and Tang f =3 E:? (=} - 1627 + 52;) + E:Z (z: — 1)2 —46<x; <+4.6

(*)The values of the parameters are given in ( [6], p. 185).

Table 2. Number of function evaluations required by different methods to reach a global minimum
of Standard Test Functions.

Method BR CA GP RA SH H3
SDE 2700 10822 5439 - 241215 3416
EA 430 - 460 5917 ~ -
MLSL 206 - 148 - - 197
1A 1354 326 - - 7424 -
TUN - 1469 - - 12160 -
TS 492 - 486 540 727 508
TRUST 55 31 103 59 72 58

Table 8. Number of function evaluations and precision for Styblinski and Tang function. Global
minimum FSA and SAS results taken from Ref. [13].

Method FSA SAS TRUST Exact
Cost 100,000 3,710 89 n/a
1 -2.702844 -2.903506 -2.90353 -2.903534
T -3.148829 -2.903527 - 2.90353 -2.903534

T3 1.099552 1.000241 1.00004 1.

T4 1.355916 0.999855 0.99997 1.

5 1.485936 1.000194 0.99997 1.
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In Table 3, FSA is the fast simulated annealing algorithm of Szu [12], and SAS denotes the
stochastic approximation paradigm of Styblinski and Tang [13]. As can be observed, TRUST is
not only much faster, but produces very consistent and accurate results. Therefore, it seemed the
ideal candidate for the solution of the notoriously difficult problem of multisensor fusion for seismic
imaging, formulated as residual statics optimiation.

RESIDUAL STATICS CORRECTIONS FOR SEISMIC DATA

Statics optimization is typically done in a surface consistent manner to seismic traces corrected
for normal moveout (3]; consequently, the correction time shifts depend only on the shot and
receiver positions, and not on the ray path from shot to receiver. Shot corrections S correspond to
wave propagation times from the shot locations to a reference plane, while the receiver corrections
R are propagation times from the reference plane to receiver locations. From an operational
perspective, data Dy, are provided by trace (t = 1,... N;), and sorted to midpoint offset coordinates
(common midpoint stacking). For each trace, the data consist of the complex Fourier components
(f =1,...Ny) of the collected time series. Each trace ¢ corresponds to seismic energy travel from
a source s; to a receiver r; via a midpoint k;. Assuming the availability of N common midpoints,
we seek statics corrections S and R that maximize the total power F in the stacked data:

E=3_3 1> explamif(Ss, + Rr.)|Dsebir,)” - (8)
k f t

The above expression highlights the multimodal nature of E which, even for relatively low
dimensional S and R, exhibits a very large number of local minima. This is illustrated in Figure 2.

To assess the performance of TRUST, we considered a problem involving 77 shots and 77
receivers. A dataset consisting of 1462 synthetic seismic traces folded over 133 common midpoint
gathers was obtained from CogniSeis Corporation (J. DuBose). It uses 49 Fourier components for
data representation. Even though this set is somewhat smaller than typical collections obtained
during seismic surveys by the oil industry, it is representative of the extreme complexity underlying
residual statics problems. To derive a quantitative estimate of TRUST’s impact, let Ej denote the
total contribution to the stack power arising from midpoint k, and let By, refer to the upper bound
of Ey in terms of S and R. Using a polar coordinates representation for the trace data Dy, i.e.,
writing Dy; = oy exp(iwy:), we can prove that

Br=>_ (> apbum) . 9)

ot

The TRUST results, illustrated in Figure 3, show the dramatic improvement in the coherence
factor of each common gather. This factor is defined as the ratio x; = Ej /By, and characterizes
the overall quality of the seismic image.

CONCLUSIONS

TRUST is a novel methodology for unconstrained global function optimization, that combines
the concepts of subenergy tunneling and non-Lipschitzian “terminal repellers.” The evolution of a
deterministic nonlinear dynamical system incorporating these concepts provides the computational
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Figure 2. One-dimensional slice through a 154-dimensional objective function associated with a
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Figure 3. The coherence factors, i.e., the dimensionless ratios E, /B,, are plotted for each common
gather using the initial and the optimal time shifts (“residual statics™). Ideally, at the global
optimum, these ratios should be equal to one.
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mechanism for reaching the global minima. The benchmark results demonstrate that TRUST
is substantially faster, as measured by the number of function evaluations, than other global
optimization techniques for which reproducible results have been published in the open literature.
The application of TRUST to the problem of multisensor fusion for accurate seismic imaging
(residual statics corrections) proves that the method is not a mere academic exercise for toy
problems, but has the robustness and consistency required by large-scale, real-life applications.
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ALGORITHMS FOR FUSION OF MULTIPLE SENSORS HAVING
UNKNOWN ERROR DISTRIBUTIONS
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ABSTRACT

The sensor S;, i = 1,2..., N, of a multiple sensor system outputs Y® € ®
in response to input X € R according to an unknown probability distribution
Py x. For a fusion rule f : RN — R the expected square error is given by
I{(f) = E[(X = f(Y))*. When only a training sample is available, f* that
minimizes I(.) over a family of functions F cannot be computed since the
underlying distributions are unknown. We consider methods to compute an
estimator f such that I(f) — I(f*) < e with probability 1 — §, for any ¢ > 0
and 0 < 6 < 1. We present a general method based on the scale-sensitive
dimension of F. We then review two computational methods based on the
Nadaraya-Watson estimator, and the finite dimensional vector spaces.

INTRODUCTION

In a number of engineering applications, there has been an increased need for solving
difficult sensor fusion problems. The fuser is very critical in these problems since an inap-
propriate fuser can render the system worse than the worst individual sensor. Additionally,
the fuser must be efliciently computable in order to be of practical use. Early sensor fusion
methods require either independence of sensor errors or closed-form analytical expressions
for error densities. Under the first condition a general majority rule suffices, while under the
second condition the Bayesian methods can be used to design the fuser. Furthermore, there
have been only a limited number of studies on the computational aspects of sensor fusion
problems. In practical applications, however, independence can seldom be assured and, in
fact, may not be satisfied. The fusion rules are typically obtained from a specific function
class which can be chosen to make the estimation problem simple, while the underlying
distributions cannot be so chosen since they depend on the sensors. As a result, the prob-
lem of obtaining the probability densities required by the Bayesian methods can be more
difficult than the fusion problem itself (in an information theoretic sense). When sensors
are available for operation, one can collect “empirical data” by sensing objects with known
parameters. Such data can then be exploited to solve the fusion rule estimation problems
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under very general conditions as shown in [1]. In this paper, we generalize the results of [1]
in terms of function classes by using the scale-sensitive dimension [2], and also by removing
the requirement of sensor error densities.

Consider a system of N sensors such that corresponding to input X € R, the sensor S;, 7 =
1,2,..., N, outputs Y € R according to an unknown distribution Py x. Anindependently
and identically distributed (iid) training n-sample (X1, Y3),(X3,Y2),...,(X,,Y,) is given
where Y; = (Yi(l), Yi(z), e Y;(N)) and Y;-(j) is the output of S; in response to input X;. We
consider the expected square error

1() = [IX = f(Y)PdPrs, (1)

where Y = (Y Y@ ' YIM) to be minimized over a family of fusion rules F, based on
the given n-sample. In general, the expected best fusion rule f* that minimizes I(.) over F
cannot be computed since the underlying distributions are unknown. We consider conditions
under which, based on a sufficiently large sample, an estimator f can be computed such that

PU(f)~I(f) > ¢ < é, (1.2)

where ¢ > 0 and 0 < § < 1. Informally, Eq. (1.2) states that the “error” of f is within € of
the optimal error (of f*) with arbitrary high probability 1 — é, irrespective of the underlying
sensor distributions.

The sensor fusion problem (1.1) is solved under the criteria (1.2) in [1] using empirical
estimation methods of Vapnik [3] when F has a finite capacity. The computational problems
associated with this approach are intractable even for simple function classes. Under addi-
tional conditions, the stochastic approximation algorithms are shown to solve this problem
[4], but, these conditions are hard to verify in practical cases. Sample size estimates to ensure
the criterion (1.2) using feedforward sigmoidal neural networks are derived in [5] based on
three different properties. A polynomial-time solution is obtained in [6] using the classical
Nadaraya-Watson estimator when: (a) the densities corresponding to Py x exist and are
smooth, and (b) the function class itself is smooth. When the function class F forms a finite
dimensional vector space, finite sample results as well as polynomial-time computation are
obtained in [7]. A review of the last two methods will be presented in this paper.

PRELIMINARIES

Let S be a set equipped with a pseuodometric v. The covering number N(e,v,S) is
defined as the smallest number of closed balls of radius €, and centers in S, whose union
covers S. Let d7 be a specific pseudometric defined on [0, 1]™ such that for a, b € [0,1]™, we
have d7(a,b) = max la; — b;| where a = (a1,0a3,...,am) and b= (by,bs,...,by).

Let F be a class of [0, 1]-valued functions on some domain set D and let p be a positive
real number. We say that F P,-shatters a set A C D if there exists a function s : A — [0,1]
such that for every £ C A there exists some fg € F satisfying: for every z € A — E,
fe(z) < s(z) — p, and for every z € E, fg(z) > s(z) + p. Let the P,-dimension of F,
denoted by P,-dim (F), be the maximal cardinality of a set A C D that is P,-shattered by
F.




Let @ denote the unit cube [0,1]" and C(Q) denote the set of all continuous functions
defined on Q). The modulus of smoothness of f € C(@)) is defined as

weo(f57) = sup |f(y) — f(2)]

”y_ZHOO <r, y,ZEQ

where || ¥ — 2z [|oo= max ly; — 2] For m = 0,1,..., let Q,, denote a family of diadic cubes
(Haar system) such that Q= U J,JnJ =0 for J#J, and the N-dimensional volume
JEQm

of J, denoted by |J|, is 27V™. Let 1;(y) denote the indicator function of J € Q,.: 15(y) =1
ify € J,and 1;(y) = 0 otherwise. For given m, we define the map P, on C(Q) as follows: for
f € C(Q), we have P, (f) = P, f defined by P, f(y) = T«lf_lfJ f(z)dz fory € J and J € @Qm
[8]. Note that P, f : ¢ — [0,1] is a discontinuous (in general) function which takes constant
values on each J € @Q,,,. The Haar kernel is given by

Pa(y, ) = ﬁJz 1(y)Ls(2)

€Qm

for y,z € Q.

GENERAL SOLUTIONS FOR FUSER DESIGN

In this section, we consider conditions for solving the general sensor fusion problem in
(1.1} under the criterion (1.2). Consider the empirical error of f € F given by

1 n
Long () = 7 3016 = FV)P (3.1)

1=1
based on the sample (X1, Y1), (X2,Y2),...,(Xx,Ys). To approximate f* € F that minimizes
the expected error in (1.1), we minimize instead the empirical error in (3.1) to obtain the
empirical best fusion rule f. The following theorem presents an estimate of the sample size
to ensure the condition (1.2) when F has finite scale-sensitive dimension [2] and X € [0, 1].

Theorem 1 Let f* andf denotes the expected best and empirical best fusion rules chosen
from a function class F with range [0,1]. Given an iid sample of size

2040

€2

max {d In2 == 50d 48 }

"
where d = P,.j4-dim (F), we have P[I(f )= I(f*) > € <

Proof: From Vapnik [9] we have P{I(f) —I(f*) > 6} < P {ilelg emp(f) — I()] > 6/2} ,
where G = {(z — f(y))*: f € F}.
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Let Gon = {9(X1,Y1),9(X2,Y3),. .., 9(Xan, You)|g € G} C [0,1]**, based on an iid sample

of size 2n. From Lemma 3.3 and 3.4 of [2], we have.

geG

P{Sﬂplfemp(f)—f(f)|>e/2} < 24nExen[N(e/12,d%, Gy)]e ™ /144

< a8n (4608‘”) dlog, (96en/(de)) e—e2n/144

€2
where d = P./4-dim (F). By equating the right hand side to 4, we obtain our sample size
estimate. The derivation closely follows that of Theorem 1 of [2]. O

The result of Theorem 1 is more general than that in [1] which is based on the capacity
of F [9] in that finiteness of capacity implies that of scale-sensitive dimension but not vice
versa. This theorem can be generalized in a straight forward manner to handle the cases: (a)
Y is a multi-dimensional vector from ¢, and/or (b) X € [0,7], 7 > 0. The cost function
can also be generalized to Lipschitz cost functions with an appropriate change in the sample
size (see [10]).

The sample bound of Theorem 1 is based on uniform convergence of empirical means to
their expectations for function classes, which are available from the empirical process theory
[11, 12] and its applications to machine learning [3, 13]. Results of this kind are available
based on a number of characterizations of F such as pseudo-dimension [11], fat VC-dimension
[14], scale-sensitive dimension [2], graph dimension [15}, and Euclidean parameters [12],
which can be used to obtain sample size estimates along the lines of Theorem 1. Finiteness
of these parameters is only sufficient for the “learnability” of bounded functions, while that
of the scale sensitive dimension is both necessary and sufficient [2]. Moreover, the latter is
only such deterministic quantity known to us, while other similar quantities are based on
expected capacity or entropy [3]. )

A solution based on Theorem 1 simply requires that f minimize the empirical error,
and does not specify methods to compute it. The problem of computing f in this general
framework is intractable; for example in the special case that F is set of feedforward neural
networks with threshold hidden units, this problem is NP-complete even for simple archi-
tectures. In the next sections, we consider more restrictive cases where F is chosen to be a
special class to make the computational problems easier.

FUSERS BASED ON NADARAYA-WATSON ESTIMATOR

We now present a polynomial-time (in sample size n) computable estimator which guar-
antees the criterion (1.2) under additional smoothness conditions. Given an n-sample, the
Nadaraya-Watson estimator based on Haar kernels is defined by

. £ XiPrly, Y5) > X
Jmnly) = =

YjeJ

Xn: Pm(yay‘) ) YZE:J 1J(Yj)
=1 !

for y € J [16] (see also Engel [17]). The second expression indicates that Fmn(y) is the mean
of the function values corresponding to Y;’s in J that contains y. This property is the key
to efficient computation of the estimate [18].
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Theorem 2 [6] Consider a family of functions F C C(Q) with range [0, 1] such that we(f;r)
< kr for some 0 < k < co. We assume that: (i) there exists a family of densities P C C(Q);
(ii) for each p € P, we(p;r) < kr; and (iii) there exists u > 0 such that for each p € P,
p(y) > p for all y € [0,1]. Suppose that the sample size, n, is larger than

22m+4 k,zm k2m N-1 o 22m+6
o (G AN IR

where €, = e(u—e)/4,0 < B < mﬂm, m = [&287] gnd A = b (%)1/N+1—1/2,8+b (%)1/N+1—1/2ﬁ'
Then for any f € F, we have P [I(fm,n) - I(f*)| > 6] < 6.

The value of fmn(y) can be computed in O((logn)") time after a preprocessing step in
O(n(log n)¥ 1) time (see [18]). The smoothness conditions required in Theorem 2 are not
very easy to verify in practice. However, this estimators is found to perform well in a number
of applications including those that do not have smoothness properties.

VECTOR SPACE METHODS

We now consider the case when F forms a finite dimensional vector space. The advantages
of vector space methods over the existing methods are three-fold: (a) the sample size estimate
is a simple function of the dimensionality of F, (b) the estimate can be easily computed by
well-known least square methods in polynomial time, and (c) no smoothness conditions are
required on the functions or distributions.

Theorem 3 [7] Let f* andf denote the ezpected best and empirical best fusion functions
chosen from a vector space F of dimension dv and range [0,1]. Given an iid sample of size

512 [dv In (% +1n %> + 1n(8/6)] )
€ €

€2

~

we have P[I(f)— I(f*) > €] < 6.

d
Let {f1, f2y---, fa, } be a basis of F such that f € F can be written as f(y) = EV a; fi(y)
=1

. dy
for a; € R. Then consider f = Y a;fi(y) such that & = (a4, as,...,aq, ) minimizes the cost
=1

expressed as (with abuse of notation)

2
1 n dv
Iemp(a) = ; Z (Xk - Za,f,()’}g)) ;
k=1 =1
where a = (a4, a2, ...,a4, ). Now I.n,(a) can be written in the quadratic form a¥Ca +a? D,

where C = [c;;] is a positive definite symmetric matrix, and D is a vector. This problem can
be solved in polynomial-time using quadratic programming methods [19].
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The potential functions of Aizerman et al. [20], where fi(y) is of the form ezp((y —a)?/8)
for suitably chosen constants « and J3, constitute an example of the vector space methods.
Note that the above sample size is valid only for the method that minimizes Iomy(.) and is
not valid for the original incremental algorithm of the potential functions.

The two-layer sigmoidal networks of Kurkova [21], where the unknown weights are only
in the output layer, constitute another example for the vector space methods. The specific

dy
form of these networks enables us to express each network in the form Y a;n;(y) where
k—.

n:(.)’s are universal.

APPLICATION

We consider the problem of recognizing a door (an opening) wide enough for a mobile
robot to move through. The mobile robot (TRC Labmate) is equipped with an array of
four ultrasonic and four infrared Boolean sensors on each of four sides as shown in Figure
1. The sensors are periodically polled while the robot is in motion. This example deals
with only the problem of detecting a wide enough door when the sensor array of any side
is facing it. The ultrasonic sensors return a measurement corresponding to distance to
an object within a certain cone as illustrated in Figure 1. The infrared sensors return
Boolean value based on the light reflected by an object in the line-of-sight of the sensor;
white smooth objects are detected due to high reflectivity, while objects with black or rough
surface are generally not detected. Both ultrasonic and infrared sensors are unreliable. It
is very difficult to derive accurate probabilistic models for these sensors since it requires a
detailed knowledge of the physics and engineering of the device as well as a priori statistical
information. Thus a Bayesian solution to this problem is very hard to implement. We employ
the Nadaraya-Watson estimator to derive a non-linear relationship between the width of the
door and the sensor readings. Here the training sample is generated by actually recording the
measurements while the sensor system is facing the door. Positive examples are generated if
the door is wide enough for the robot, and the sensory system is facing the door. Negative
examples are generated when the door is not wide enough or the sensory system is not
correctly facing a door (wide enough or not). The robot is manually located in various
positions to generate the data. Consider the sensor array of a particular side of the mobile
robot. Here Y}, Y3, Y3,Y, correspond to the normalized distance measurements from the four
ultrasonic sensors, and Ys, Y, Y7, ¥5 correspond to the Boolean measurements of the infrared
sensors. X is 1 if the sensor system is correctly facing a wide enough door, and is 0 otherwise.
The training data included 6 positive examples and 12 negative examples. The test data
included 3 positive examples and 7 negative examples. The Nadaraya-Watson estimator
predicted the correct output in all examples of test data.

CONCLUSIONS

We presented recent results on a general sensor fusion problem, where the underlying
sensor error distributions are not known, but a sample is available. We presented a general
method for obtaining a fusion rule based on scale-sensitive dimension of the function class.
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TRC Labmate Mobile Robot

uitrasonic

mobile
platform

infrared

Figure 1: Schematic of sensory system (only the side sensor arrays are shown for simplicity).

Two computationally viable methods are reviewed based on the Nadaraya-Watson estimator,
and the finite dimensional vector spaces.

Several computational issues of the fusion rule estimation are open problems. It would
be interesting to obtain necessary and sufficient conditions under which polynomial-time
algorithms can be used to solve the fusion rule estimation problem under the criterion (1.2).
Also, conditions under which the composite system is “significantly” better than best sensor
would be extremely useful. Finally, lower bound estimates for various sample sizes will be
very important in judging the optimality of sample size estimates.

ACKNOWLEDGEMENTS

This research is sponsored by the Engineering Research Program of the Office of Basic En-
ergy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC05-960R22464
with Lockheed Martin Energy Research Corp., and by the Office of Naval Research under
order N00014-96-F-0415.

REFERENCES

[1] N. S. V. Rao. Fusion methods for multiple sensor systems with unknown error densities.
Journal of Franklin Institute, 331B(5):509-530, 1994.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Hausler. Scale-sensitive dimensions, uniform
convergence, and learnability. In Proc. of 1993 IEEE Symp. on Foundations of Computer
Science, 1993.

[3] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

247




[4] N. S. V. Rao. Fusion rule estimation in multiple sensor systems using training. In H. Bunke,
T. Kanade, and H. Noltemeier, editors, Modelling and Planning for Sensor Based Intelligent
Robot Systems, pages 179-190. World Scientific Pub., 1995.

[5] N. S. V. Rao. Fusion methods in multiple sensor systems using feedforward neural networks.
Intelligent Automation and Soft Computing, 1996. submitted.

[6] N. S. V. Rao. Nadaraya-Watson estimator for sensor fusion. Optical Engineering, 36(3):642—
647, 1997.

/[7] N. S. V. Rao. Fusion rule estimation using vector space methods. In Proceedings of SPIE
Conference on Sensor Fusion: Architecture and Applications. 1997.

[8] Z. Ciesielski. Haar system and nonparametric density estimation in several variables. Proba-
bility and Mathematical Statistics, 9:1-11, 1988.

[9] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New York,
1982.

[10] N. S. V. Rao and V. Protopopescu. Function estimation by feedforward sigmoidal networks
with bounded weights. 1997. manuscript, submitted for publication.

[11] D. Pollard. Empirical Processes: Theory and Applications. Institute of Mathematical Statis-
tics, Haywood, California, 1990.

[12] M. Talagrand. Sharper bounds for Gaussian and empirical processes. Annals of Probability,
22(1):28-76, 1994.

[13] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and Computation, 100:78-150, 1992.

[14] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts.
Journal Computer and Systems Sciences, 48(3):464—, 1994.

[15] R. Dudley. Universal Donsker classes and metric entropy. Annals of Probability, 15:1306-1326,
1987.

[16] B. L. S. Prakasa Rao. Nonparametric Functional Estimation. Academic Press, New York,
1983.

[17] J. Engel. A simple wavelet approach to nonparametric regression from recursive partitioning
schemes. Journal of Multivariate Analysis, 49:242-254, 1994,

[18] N. S. V. Rao and V. Protopopescu. On PAC learning of functions with smoothness properties
using feedforward sigmoidal networks. Proceedings of the IEEFE, 84(10):1562-1569, 1996.

[19] S. A. Vavasis. Nonlinear Optimization. Oxford University Press, New York, 1991.

[20] M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Frtrapolative problems in automatic
control and method of potential functions, volume 87 of American Mathematical Society Trans-
lations, pages 281-303. 1970.

[21] V. Kurkova. Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5:501—-
506, 1992.




AN ALGORITHM FOR NOISY IMAGE
SEGMENTATION

(Extended Abstract)

Ying Xu, Victor Olman, and Edward C. Uberbacher
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

Abstract

This paper presents a segmentation algorithm for gray-level images and addresses issues
related to its performance on noisy images. It formulates an image segmentation problem as a
partition of an image into (arbitrarily-shaped) connected regions to minimize the sum of gray-
level variations over all partitioned regions, under the constraints that (1) each partitioned region
has at least a specified number of pixels, and (2) two adjacent regions have significantly different
“average” gray-levels. To overcome the computational difficulty of directly solving this problem,
a minimum spanning tree representation of a gray-level image has been developed. With this
tree representation, an image segmentation problem is effectively reduced to a tree partitioning
problem, which can be solved efficiently. To evaluate the algorithm, we have studied how noise
affects the performance of the algorithm. Two types of noise, transmission noise and Gaussian
additive noise, are considered, and their effects on both phases of the algorithm, construction
of a tree representation and partition of a tree, are studied. Evaluation results have shown that
the algorithm is stable and robust in the presence of these types of noise.

1 Introduction

Image segmentation is one of the most fundamental problems in low-level image processing. The
problem is to partition (segment) an image into connected regions of similar textures or similar
colors/gray-levels, with adjacent regions having significant dissimilarity. Many algorithms have been
proposed to solve this problem (see surveys [1, 2]). Most of these algorithms fit into two categories:
(1) boundary detection-based approaches, which partition an image by discovering closed boundary
contours, and (2) region clustering-based approaches, which group “similar” neighboring pixels
into clusters. Rigorous mathematical solutions to the image segmentation problems are generally
difficult to achieve due to their (intrinsic) computational complexity. Hence many researchers
have exploited either probabilistic/stochastic methods, which guarantee only asymptotic results,
or heuristic methods while sacrificing the mathematical rigor.

In this paper, we present an efficient region-based segmentation algorithm. We formulate an
image segmentation problem as a partition of an image into a number (not predetermined) of
arbitrarily-shaped connected regions to minimize the sum of gray-level variations over all par-
titioned regions under the constraints that (1) each partitioned region has at least a specified
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number of pixels, and (2) two adjacent regions have significantly different “average” gray-levels.
To overcome the computational difficulty of directly solving this problem, we have developed a
minimum spanning tree representation of an image. The minimum spanning tree representation,
though simple, captures the essential information of an image for the purpose of segmentation, and
it facilitates a fast segmentation algorithm. The technical contribution of our approach includes
(1) a new spanning tree representation of an image that captures all the key information for the
purpose of segmentation, and (2) a fast and mathematically rigorous tree partitioning algorithm.

To evaluate the algorithm, we have studied how two types of noise, transmission noise and
Gaussian additive noise, affect the performance of the algorithm. We have shown, both analytically
and experimentally, that (1) both types of noise have very little effect on the minimum spanning
tree construction algorithm, i.e., the property that an originally homogeneous region corresponds
to one subtree of the spanning tree will generally not be affected by noise; (2) transmission noise,
in general, has less effect on the performance of our tree-partitioning algorithm than Gaussian
additive noise does.

2 Image Segmentation: the problem formulation

Consider a gray-level image I. Each pixel z of I has a gray level G(z) € [0,K]. An image segmen-
tation problem can be naturally formulated as follows: find a partition {/, ..., It} of I with each I;
being a connected region of I, such that

minimize Sy Yl (average(l;) — g(xf))z

subject to: (1) ||| > L, for each I,
(2) |average(I;) — average(Iy)| > D, for all adjacent I; and I;.

where || - || denotes the cardinality of a set, average([;) denotes the average gray-level of region I;,
and L and D are two (apphca,tlon dependent) parameters.

Though this formulation captures the intuition of segmenting an image it is computatmna,]ly
difficult to solve due to two reasons: (1) segmenting a 2-D object to optimize some non-trivial
function is always difficult, and (2) explicit calculation of averages implicitly requires to consider
all the possible partitions. Two strategies have been developed to overcome these difficulties: a tree
representation of an image, and an approximation scheme to avoid explicit calculation of averages.

2.1 Spanning tree representation of an image

For a given image I, we define a weighted (undirected) planar graph G(I) = (V, E) as follows: The
vertex set V = { all pixels of I } and the edge set E = {(u,v)|u,v € V and distance(u,v) < 2 },
with distance(u,v) representing the Euclidean distance in terms of the coordinates of the image
array; Each edge (u,v) € E has a weight w(u,v) = |G(u) — G(v)].

A spanning tree T of a connected graph G([I) (note that G(I) is connected) is a connected
subgraph of G(I) such that (1) T contains every vertex of G(I), and (2) T’ does not contain cycles.
A minimum spanning tree is a spanning tree with a minimum total weight.

A minimum spanning tree of a weighted graph can be found using greedy methods, like in
the classical Kruskal’s algorithm [3]: the initial solution is a singleton set containing an edge with
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the smallest weight, and then the current partial solution is repeatedly expanded by adding the
next smallest weighted edge (from the unconsidered edges) under the constraint that no cycles are
formed until no more edges can be added. For the above defined planar graph G(I), 2 minimum
spanning tree can be constructed in O(||V||log(||V||)) time and in O(|}V]|) space.

A key property of a minimum spanning tree representation obtained by Kruskal’s algorithm is
that pizels of a homogeneous region are connected in the tree structure only through pizels of this
region, i.e., pixels of a homogeneous region form a (connected) subtree of the minimum spanning
tree. The following theorem formalizes this statement.

Consider an object A in a given image I. Let G(I) be the planar graph representation of I
and 7 be its minimum spanning tree obtained by Kruskal’s algorithm. A is called T-connected if
every pair of pixels of A are connected in T only through pixels of A. We use G(A) to denote the
subgraph of G(I) induced by the pixels of A. A set of edges C of G(A) is called a cutset if deleting
C divides G(A) into two unconnected parts.

Theorem 1 A is not T-connected if and only if there exists a cutset C of G(A) and a path P in
G(I) that has its two end vertices on two sides of the cut of G(A) and has its remaining vertices
outside of G(A) such that every edge of P has smaller* weight than every edge of C. O

2.2 An approximation scheme

To formulate the image segmentation problem in a natural and intuitive way, we have explicitly
used the average gray-levels of a region in the problem formulation, which makes the computation
difficult. This subsection presents an approximation scheme to avoid the explicit calculation of
averages.

Consider the following formulation of an image segmentation problem. Given an image I and
two parameters D and L, find a partition {1, ..., Iz} of I with each I; being a connected region of
I, and a g; € R (real value) for each I;, such that

minimize i1 Trep, (0~ G(2))?

subject to: (1) |Z:|| = L, for each I,
(2) lg; — gi| > D, for all adjacent I; and .

The relationship between this formulation, which does not involve explicit calculation of aver-
ages, and the original one can be intuitively described as follows: if a solution to this formulation is
stable around the given parameter D, then the two formulations are equivalent. This can be stated
more rigorously as in the following theorem. Let

k .
F(k,I,9)= 3" 3 (9i = (=],
=laler

and

R(D,L) = {(k,I,g)| which satisfies constraints (1) and (2)},

1We ignore the case of equality for the simplicity of discussion.
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where I = Ui-;l I; and g = (g1, ..., 9%). Hence the above formulation can be rewritten as
min{F(k,I,9)|(k, T, 9) € B(D, L)}

Theorem 2 For the given parameters D and L, if there is an € > 0 such that

-‘g}}g{l*”(k,f,g)l(k,f, 9)€ R(d, L)} = Fy (1)

for some constant Fy, for all d € [D,D + €], then any minimum solution I* = {If,...,I}} and
g* = {93, ..., 95} toming 1 { F(k,1,9)|(k,I,9) € R(D+e,L)} has g7 = average(I?), for alli € [1,k].
O

Note that g¢;’s, as defined above, are real values € [0,K]. To facilitate a fast algorithm, we
restrict g;’s to integer values € [0, K]. Now we can give the tree-based image segmentation problem
as follows. Given a minimum spanning tree representation T of an image and two parameters D
and L, find a partition {74, ..., T%} of T with each T; being a connected subtree of T, and an integer
g; € [0,K] for each T;, such that

minimize zi?:l in eT.'(gi - G(z]))?

(P)
subject to: (1) |73 > L, for each T3,
(2) |g;: — gir| > D, for all adjacent T; and Tj.

To estimate how close the approximation problem is to the original problem, we have the
following result:

By [ Tilaverage(T) — ) -
B(Thy X yscploverage(z)) - G(aD)®) =

which indicates the minimum value of the approximation problem is fairly close to the minimum
value of the original optimization problem, where E() represents the mathematical expectation.

3 A Tree-based Image Segmentation Algorithm

A dynamic programming algorithm is developed to solve the optimization problem (P). The algo-
rithm first converts the given tree into a rooted tree by selecting an arbitrary vertex as the root.
Hence the parent-children relation is defined. We assume that the vertices of T are labeled consec-
utively from 1 to ||T|| with the tree root labeled as 1. We use T* to denote the subtree rooted at
vertex 7. For each tree vertex ¢, the dynamic programming algorithm solves a number of constraint
version of the problem (P) on T* by combining solutions to the “corresponding” problems on 77’s,
with j’s being #’s children. It does this repeatedly in such a bottom-up fashion and stops when it
reaches the tree root.

Let score(i, k, g) denote the minimum value of (P) on T, under the additional constraint that
the partitioned subtree of T containing i has at least k vertices and is mapped to a fixed value
g, for k € [0,L] and g € [0,K]. These quantities can be efficiently calculated using the following
lemma and can be used to construct an optimum partition of 7.
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Lemma 1 (a) If iy,1s,..., 1, are the children of vertez i, n < 8 and 1 < k < L, we have

score(i, k,g) = min Y 7_, score(ij, k;, 9) + (9 — G(1))?,
Jork = E?:l kj,k:j >0, when ”TZ“ > L
scores(i,k,g)={ Erer (9= S0 “Tz'” ’
| ¥ Il # ¢
when (|T"|| < L

where D(7) is the set of all i’s descendants, 1 is defined to be € D(7) and score(i;,0,g) is defined to
be
min _score(i;, L, ¢").
o Zaap 7 L)

(b) ming score(1, L, g) is a minimum solution of (P), where 1 represents the tree root. O

Based on Lemma 1, we can solve the optimization problem (P) by calculating score() for each
tree vertex in a bottom-up fashion using the recurrence from Lemma 1(a), and stopping at the tree
ToOt.

Theorem 3 ming score(1, L, g) can be correctly calculated by the above algorithm in O(max{(]|T||
~L), 1}K(log(K) + L?)) time and in O(||T||LK) space. O

4 Algorithm Evaluation on Noisy Images

Potentially noise affects the algorithm’s performance in both stages of the algorithm: spanning tree
construction and tree partitioning. We will show that noise has greater effects on the performance
in the tree partitioning stage than in the spanning tree construction stage. In this study, we consider
two types of noise: transmission noise and Gaussian additive noise.

The model for generating transmission noise is defined as follows: each pixel of the image
has a probability P to keep its original gray level during transmission and the probability 1 —
P to randomly change to arbitrary gray level € [0,K]. Gaussian additive noise adds to each
pixel independently a random normal value (using the floor function for real-to-integer conversion)
according to a normal distribution N(0,0?) censored to [-X/2,K/2].

4.1 Effect of noise on tree representation

One basic premise for our image segmentation algorithm to be effective is that each object, given as
a homogeneous region in an image, is represented as one subtree of the spanning tree representation.
In the following, we show how noise affects this property. Theorem 1 provides the basic framework
for such a study.

To estimate how probable the if-and-only-if condition in Theorem 1 is we have conducted the
following computer simulation. The experiment is done on a 256-gray-level image I having one
object A in the center of the image. I is a 256 x 256 image and A is a 30 x 30 square. The
background has a uniform gray level 100 and A has a uniform gray level 150. We add transmission
noise and Gaussian additive noise, respectively, to I as follows. When adding transmission noise,
each pixel of I has a probability 0.3 to keep its original gray level and the probability 0.7 to
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randomly and uniformly change to arbitrary gray level € [0,255]. When adding Gaussian additive
noise, each pixel of I is added by a value |6 + 1/2| (modulo 256), where § is random number
generated according to the normal distribution N(0,0?) censored to [-128, 128] with ¢ = 50.

For each type of noise, we estimated the probability that there exist a path P connecting two
pixels ¢ and b, and a cutset C' of A separating a and b such that every edge of P has smaller weight
than every edge of C, where @ and b are two randomly chosen pixels both of which are 5-pixels
from the left boundary of A and are at least 5 pixels from the lower and upper boundaries of A,
and P has at least 20 edges.

We have observed, for this particular experiment, that the probability that there exist such a
P and a cutset C is very small (< 1073), for both types of noise. This experiment suggested that
both types of noise have very little effect on the property that a homogeneous region corresponds
to one subtree of the minimum spanning tree constructed by Kruskal’s algorithm.

4.2 Effect of noise on tree partitioning

Though both types of noise have little effect on the property that a homogeneous region corresponds
to one subtree of the spanning tree representation they could affect the tree partitioning result in
a form we call corrosions. Consider an object A in a given image and its representing subtree T4.
With noise, T4 may contain a subtree (or subtrees) that has a (significantly) different average gray
level than the rest of T4, and contains more than enough vertices (> L) to be partitioned into a
separate region. This subsection presents a comparative study on how the two types of noise affect
the formation of corrosions.

Let g(A) be the (uniform) gray level of A before noise is added. We compare the probabilities, P;
and P, that a connected region A’ of A will have its gray level changed to the same value g(A) + k&,
for any k£ # 0, when transmission noise and Gaussian additive noise are added, respectively. Let
pi, denote the probability that one pixel of A’ changes its gray level from g(A) to g(A) + k when
Gaussian additive noise is added. For the simplicity of discussion, we assume that g(A) = 0, hence
k € [1,K]. Recall P denotes the probability that a pixel keeps its original gray level in the presence
of transmission noise. It can be shown by a simple calculation that

n X
) (K-1), and P= sz,
k=1

where n = ||A’|| (note that P, = Y&, p} is true for any type of independent noise). Theorem 4
shows the relationship between P; and P, which can be proved using Jensen’s inequality [5] (page
433).

Theorem 4 For any N € [2,K] and n > 0, when Zﬁfzo pr =1 and pg = P,

N
Vo [1=P\"

k=1

Theorem 4 implies that transmission noise is the least possible to form corrosions among all
possible forms of noises (including Gaussian additive noise) when P or pg is fixed.
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4.3 Tests on noisy images

This subsection presents a case-study on an aerial image of 202x503 pixels and with 256 gray
levels, and on how noise of different types affects the performance of the segmentation algorithm.
Throughout this study, the same set of parameters D and L are used. Segmentation on each image
takes less than 1 CPU minute on a SPARC-20 workstation. Figure 1 gives the test examples on
the image with noise added. For each figure, the image on the left is the original image with added
noise and the one on the right represents the segmentation results.

Table 1 summarizes the performance of algorithm and the effect of the averaging operation on
the two types of noise. Each entry of the first row represents the correlational coefficient between
the original image and the image with noise, and each entry of the second row represents the
correlational coefficient between the segmentation result of the original image and the segmentation
of the noisy image.

Table 1: Performance summary of segmentations

Transmission noise Gaussian additive noise
P=01|P=03|P=05|{P=0T7|0c=40|0c=60|0c=80|0=100
noisy image 0.86 0.62 0.41 0.24 0.82 0.69 0.57 0.47
segmentation 0.95 0.89 0.80 0.70 0.87 0.84 0.81 0.76

Acknowledgements

This research was supported by the United States Department of Energy, under contract DE-
ACO05-840R21400 with Lockheed Martin Energy Systems, Inc. The authors would like to thank
Dr. Reinhold C. Mann for many helpful discussions related to the work presented in this paper.

References

[1}] N. Pal and S. Pal, “A review on image segmentation techniques”, Pattern Recognition, Vol.
26, No. 9, pp. 1277 - 1294, 1993.

(2] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques”, Computer Vision, Graph-
ics, and Image Processing, Vol. 29, pp. 100 - 132, 1982.

[3] J. B. Jr. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem”, Proc. Amer. Math Soc, Vol. 7, No. 1, pp. 48 - 50, 1956.

[4] Y. Xu and E. C. Uberbacher, “2-D Image Segmentation Using Minimum Spanning Trees”,
Image and Vision Computing, Vol. 15 pp. 47 - 57, 1997.

[5] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics,
Holden-Day Inc., 1977.

255




R

Figure 1: (b) Aerial image with added transmission noise and P = 0.7.
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ABSTRACT

‘We present an optimization-based adaptive controller design for nonlinear systems exhibiting
parametric as well as functional uncertainty. The approach involves the formulation of an
appropriate cost functional that places positive weight on deviations from the achievement
of desired objectives (such as tracking of a reference trajectory while the system exhibits
good transient performance) and negative weight on the energy of the uncertainty. This
cost functional also translates into a disturbance attenuation inequality which quantifies
the effect of the presence of uncertainty on the desired objective, which in turn yields an
interpretation for the optimizing control as one that optimally attenuates the disturbance,
viewed as the collection of unknown parameters and unknown signals entering the system
dynamics. In addition to this disturbance attenuation property, the controllers obtained also
feature adaptation in the sense that they help with identification of the unknown parameters,
even though this has not been set as the primary goal of the design. In spite of this
adaptation/identification role, the controllers obtained are not of certainty-equivalent type,
which means that the identification and the control phases of the design are not decoupled.

INTRODUCTION AND PROBLEM DESCRIPTION

We consider in this paper the problem of control of partially unknown, uncertain nonlinear systems so
that the system output tracks (at least asymptotically) a given reference trajectory while all internal states
remain bounded and the system exhibits acceptable transient performance. The uncertainty is due to the
presence of unknown deterministic signals entering the system dynamics, and unknown (and unmeasurable)
noise in the measurements. To capture the presence of all these factors that impact the overall performance
of the system, and to quantify various tradeoffs that exist, we base our control design on the minimization of
a carefully selected cost functional, which leads to a systematic construction of robust adaptive controllers
that attenuate the disturbances optimally. These adaptive controllers have distinguishable identifier and
control dynamics, which however are not decoupled, and hence the controllers are not certainty equivalent
— in contrast to many existing designs in the literature. This “noncertainty equivalence” structure, which
comes about naturally as a result of the optimization procedure, brings with it many appealing features such
as robustness to unmodeled dynamics, attenuation of disturbances, and excellent transient performance.
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To introduce the approach adopted in this paper in general terms, consider the n-dimensional dynamic
system described by

T = f(z,0)+G(z,0)u+o(z)w, z(0)=ux (1)

where 8 is a p-dimensional unknown parameter vector, z is the n-dimensional state, u is an r-dimensional
control, w is a g-dimensional unknown disturbance, f, G and o are appropriate dimensional vectors and
matrices, continuous in x, and with f and G linear in 8. Let us assume for the moment that the control
uses state feedback with memory, that is for some measurable function g,

u(t) = plt,zpg), (2)

and that the objective is for an m-dimensional (m < n) output of the system,

h(z), ®3)

to track a given m-dimensional reference trajectory, z., in spite of the presence of the disturbance w, and
regardless of what the true value of 8 is. Hence, what is being sought is a controller that achieves the desired
objective (of tracking) while attenuating the disturbances at the output of the error systems, which is the
tracking error, and at the same time keeping all internal states of the system bounded. A criterion that
captures this objective is now given in the following.

Let us first introduce the notation

Wi = [ woPar WG = v,

for any vector-valued L, function y, where / stands for transpose of a vector (or a matrix), the latter is
the square of a weighted Euclidean norm of y(7), where @ is a positive definite weighting matrix, and the
former is the square of the £ norm of the function y(r) restricted to interval [0,¢]. Then, consider for each
t >0,

lz - zli7 + Et(m{o 4 ¥0,4])
T = — > — 4
W) = P 16— 0%, + (20,0 —0) )

as the performance index to be minimized by the controller u for each ¢t > 0. Here

t
i, = /E(.’L'[O,T];’U,(T),T)dT
0

is a nonnegative integral cost on the state and the control, z — z, is the tracking error, 8 is an initial estimate
for 8, Qo is a positive definite matrix, and £y is a nonnegative cost on zo and # — @, vanishing at zg = 0
and 6 = §. Note that Z; involves a maximization operation with respect to the unknowns, w, 6 and =z,
and hence characterizes a worst case scenario. By minimizing this index with respect to u we would be
minimizing the worst-case effect of w, 8 and £y on the tracking error z — z,., the state z and the control .
Now let

2

inf Z(p) = %, t>0,

and pick v > 0 such that v >« for all ¢ > 0. Let 1, be a controller that achieves a better (lower) level of
disturbance attenuation than ~ for all £ > 0, that is

L(py) < 7% (5)

Then, (4) implies that for all w € £2]0,0), 8 € R?, zp € R", the following dissipation inequality holds, for
allt > 0, with u = u(-):

Th(psw) = N1z = 2|7 + &lzo,05 upo,) — ¥ llwllf —°16 — 013, —7* bo(z0,6 —8) < o. (6)
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Denote the left hand side of this inequality for an arbitrary p and w := (w, 6, zo) by I,ty(u; w). Then, clearly,
a u. satisfying (5) can be obtained by solving the minmax problem:

inf sup J& (u;w), t>0 (7
Eow

This can be viewed as a zero-sum differential game between two players [2], with the minimizer choosing p
and the maximizer w, and the quantity in (7) is the upper value of such a game. Note that whenever this
value is bounded, it has to be zero, since by picking w = 0, = 8 and zy = 0 the maximizer can force it to
be nonnegative, and on the other hand we know from inequality (5) that it cannot be positive.

OQur approach to this problem is based on the recognition that the supremization part of (7) can be
broken into two sequential supremizations,

sup Ji(p;w) = sup sup  Jr(mw) (8)
W

6,210,151 (W[o0,00)|%10,61,8)

where the inner supremization is over all disturbance trajectories consistent with the observed state trajec-
tory xo,y) and for a fixed value of the parameter vector 6, and the outer supremization is over all possible
values of # € R and all continuous state trajectories xjg ;. If the controller did not have access to full state
measurements, but only to partial measurements, possibly corrupted with (unknown) noise, such as

y(t) = h{z,0)+n(z)w

where A and n are continuous functions of their arguments, then (8) would be replaced by the more general
relationship

supJy(w;w) = sup sup Ta (15 w) (9)
w 0,71,y[0,5] (%0, W[0,00) ¥[0,1].0,2(t)=21)

with the inner and outer supremizations interpreted in a similar way (as in (8)). Now, this splitting of
ny into two parts leads to a sequential design procedure that generates worst-case identifiers and robust
adaptive controllers. The inner supremization (maximization) is the worst-case identification step which can
be solved using the recently developed tool of cost-to-come function [4,5] which leads for some important
classes of problems (as to be discussed shortly) to closed-form expressions for an identifter for the unknown
parameters and an estimator for the unmeasured states. During this identification step the control ug 4,
generated by u, can be regarded as an open-loop time function since it is merely a causal function of the given
output waveform y[g ¢ (or of the state zo 4, if state measurements are available). After thus completing the
inner supremization, we then proceed with the outer supremization of Jf, over all measurement waveforms
Y[o,¢], berminal states x; and parameter values 6, while structuring the control in such a way that Jf, remains
nonpositive. This is the control design step which leads to a robust disturbance attenuating controller.

The problem just formulated above can also be viewed as a nonlinear H* control problem with partial
state information [1], by adjoining to the system dynamics (1) the natural parameter dynamics

=0, 6(0)=46 (10)

where now 6y is the unknown parameter vector. This H control problem is one with partial state informa-
tion even if full state measurements are available, because 8 is now considered a part of the extended system
dynamics, which is not measured directly. Nonlinear H* control problems with partial state information are
known to be inherently difficult to solve, and generally they do not admit finite-dimensional solutions [1,3].
It turns out, however, that (as shown in our recent research [9,10]) for some special subclasses of the robust
adaptive control problems formulated above, finite-dimensional closed-form solutions do exist; this will be
discussed also in the following sections.

Our approach to robust adaptive control as delineated above is inherently different from other existing
approaches which are either Lyapunov-based or estimation-based. The former places restrictions on the
selection of parameter update laws, whereas the latter {which generally makes use of the “certainty equiva-
lent” principle) uses a wide variety of estimation/identification tools, among which are the standard gradient
and least-squares algorithms. Any stabilizing controller can in fact be combined with any such identifier,
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as long as the identifier guarantees certain boundedness properties independently of the controller module.
This modularity feature has made estimation-based schemes more popular in linear adaptive control than
their Lyapunov-based counterparts, but efforts to extend this to nonlinear systems have failed to a large
extent. The source of this failure is mainly the fact that nonlinear systems exhibit different instability
characteristics (than linear systems) such as finite escape. Various measures have been taken to overcome
this difficulty [6,7,8], but the designs have involved certainty-equivalent controllers, which are known to
have weaknesses in the framework of nonlinear systems, in particular as regards robustness against model
uncertainty and external disturbance inputs.

The approach presented above, and discussed in some detail (as length restrictions permit) in the fol-
lowing sections, is a direct optimization-based approach that brings in robustness as an essential component
of the design procedure. To carry out the details of the two-step procedure outlined above, and to obtain
explicit expressions for the optimally disturbance attenuating controllers, we focus on a special, but impor-
tant, class of systems where the dynamics (1) are in triangular form, the control is of dimension one, and
the system output is the first component of the state. Such systems are called “systems in parametric strict
feedback form,” and one of their appealing features is that a recursive technique called backstepping can
be used to construct an optimizing controller. Formulation of this specific problem is provided in the next
section, followed by presentation of some explicit results.

SYSTEMS IN PARAMETRIC-STRICT-FEEDBACK FORM

In view of the discussion above, consider now the class of single input-single output (SISO) nonlinear
systems described by (as a special case of (1}, and by a possible abuse of notation):

&1 = zo+ filzr) + ¢y {z1)01 + o1 (z1)ws

jf'n—-l Tp + .fn—l(xly s ,J;n—l) + ¢;7,—1(-7317 e ;xn—l)an—l
4'0;1——1(3711 R 7xn—-1)wn—1
Zn = falT1,e o, Zn) F O (X1, Tn)Pn + 021, -y Ta)u + op(T1, ., Tn)Wwp
z = .

where w := (wf,...,w,) is the ¢-dimensional disturbance input, where w; is of dimension ¢;, i =1,...,n;
8 = (6},...,8,) is the p-dimensional vector of unknown parameters, where ; is of dimension p;, i = 1,...,n;
z is the scalar output; and the nonlinear functions f;, ¢, 0;, ¢ = 1,...,n, are known and satisfy the triangular
structure depicted above. We assume that

Al fi, s, 05 €C i i=1,...,n;beC, (1/b) € CL.

A2 ol(z)oi(z) > ¢, Vz e R", i =1,...,n, for some ¢ > 0.

A3 The reference trajectory z,. € C®, and both z. and its first n derivatives are uniformly bounded on
[0, 00).

Let us first endow the controller (2) with also the derivative of the state, £, under which the inner
maximization of (8) can be performed to yield [5] the identifier dynamics (for 6):

b; = Sipi(ojoi) HE — X - ¢i8:);  6:(0) =6 (12)
¥ = —Bi(¢iloo) T el — Qi) Z3(0) = Qg;" (13)

i 1,...,n

Xi = fi+$i+la i:l,...,n—l; Xn = fn+bu (14)

and Q;, Qo; are positive-definite matrices constituting the i-th diagonal blocks of Q and Q,;, respectively.
The identifier 6;, i = 1, ..., n, above is asymptotically convergent to the true value of the parameter vector 8
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provided that ¥;(t) > 0 V¢t € [0,00), i = 1,...,n, which is a persistency of excitation condition, that can be
guaranteed by restricting the disturbance inputs to a particular set [5]. This set can be made unconstrained,
and equal to £, by choosing the design matrix @; as

Qi = cidi(oio) e, cel0,1), i=1,...,n (15)
The identification error 6 := 6 — § satisfies:
b = ~5¢i(olos) Lol i=1,...,n (16)
where
v = w;+oi(ole) T e, i=1,...,n (17)

is a transformed disturbance input. This converts the original attenuation problem with respect to w to a
new (but equivalent) attenuation problem with respect to v, with dynamics described by (in place of (11)):

B = Xi+¢bi+oly, i=1,....n (18)
b = Sigilojoi) o, i=1,...,n (19)

along with (13). Note that there is no parametric uncertainty here, and hence the problem has been
converted to one with perfect state measurements, where z;, éi and ¥;, ¢ = 1,...,n, constitute the new
states. This new nonlinear H control problem (with perfect state measurements) corresponds to the outer
maximization problem in (8), where the cost to be maximized is

/ ((z )+ L) - S i, —72Ivf2) dr =723 10(t) 2rgy —ola(©),0-8)  (20)
i=1 i=1

=

where we have dropped the control dependence in £, and have absorbed 42 in £.

This is now the control design step, which we carry out under assumptions A1-A3. The design procedure
here is backstepping, which proceeds as follows: We first consider the first subsystem (i = 1), and treat
To as an input to this system. Introducing the transformed variable y; := 1 — z,, one can show that this
decoupled scalar system with x5 as an input can be made to achieve arbitrarily small levels of disturbance
attenuation by picking x» appropriately. A corresponding value function for (20) for only this subsystem is
Vi(yy) = %y% However, since x2 is not a control input this is not exact, and hence we proceed to the next
subsystem (¢ = 2} and choose x3 as the new control input, where the dynamics for x5 are now replaced
by the dynamics of ys, which stands for the difference between x5 and its ideal value, had it been the
control variable at step 1. At this step, again there exist choices for 3 that make the attenuation level
arbitrarily close to zero, with a corresponding value function being V, = %(y% + y2). Again z3 is not the
true control and hence this result is not exact ....... Proceeding in this manner, we arrive at step n at
the last subsystem where the real control appears, a proper choice for which makes the overall attenuation
level again arbitrarily small. Because of space limitations, expressions for the construction of this controller
(which are quite lengthy) are not given here; they can be found in an internal report available from the
author. These steps now lead us to the following theorem.

Theorem 1. Consider the nonlinear system described by (11) and with the performance index (4) where
£; does not depend on u. Let assumptions A1-A3 hold, and disturbances belong to a set (say W) that

makes ¥;(t) positive definite for allt > 0,4 = 1,...,n. Finally, let the derivative of x also be available for
feedback. Then:

(i) The control law generated by the backstepping procedure outlined above achieves asymptotic tracking
with an arbitrarily small level of disturbance attenuation, -, for all w € W.

(i) For any wip,c0) € Loo, z(0), 6 and t > 0, if the covariance matrices ©;’s are uniformly upper bounded

on [0,t], then the expanded state vector ¢ (consisting of z, 6 and %) is uniformly bounded on [0,¢],
and ¥;’s are further uniformly bounded from below by some positive-definite matrices.
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(iii) For any uncertainty triple in the set W such that Wio,00) = 0, if the covariance matrices ¥;,i =1,...,n,
become uniformly upper bounded on [0, c0), then the parameter estimates are uniformly bounded and
the transformed state variable y := (y1,...,y,)’ converges to zero as t — oo; if, in addition, the
reference signal z, is persistently exciting, i.e., lim¢—,o0 Amax2i = 0, ¢ = 1,...,n, then { converges to
zero as t — oo.

Remark 1. The controller above is not a certainty equivalent controller, that is it does not correspond to
the controller obtained by assuming full knowledge of parameter values and then replacing the true values of
the parameters by their estimates. It is, however, asymptotically certain equivalent, as ¥; —» 0,i=1,...,n,
under a specified choice of the design parameters. o

A disadvantage of the controller presented above is that it depends (through the identifier dynamics)
on the derivative of the state, which may not be available. To remove this dependence, so as to obtain a
controller under the original measurement scheme (2}, we first consider a noise-perturbed measurement:

u(t) = pt (),  y(t) =z(t) +ev(?),

where ¢ is a small positive parameter and v is an unknown disturbance. The identifier dynamics corre-
sponding to this measurement (as the counterpart of (12)-(13)), and after v is set equal to zero are [5]:

Eid’i(az{ai)_l/z%(xz‘ — i;); 6:(0)=48; (21)
—Si(di(ojos) T, — Q)% Ti(0) = Qg (22)
Xi + ¢i0; + %(0401‘)1/2(%' =) #(0) = zi(0) (23)
1,...,n

where we now have additional dynamics representing the estimate for . An appropriate choice for the
design matrix @; in this case turns out to be

Qi = T7AZSTI Qs A kol (24)
for some symmetric matrices A; and Q;. Now, introducing
e = z)/e

whose i-th component is e; = (z; — &;)/€, we can equivalently write (21)-(22) as (using also the specific
choice made for @Q;):

b; = Sipi(oioi)" Ve, (25)
N o= —Ni(gilolo) ¢~ Q)T + A (26)
€e; = —(0’;0’1‘)1/267; + (b;éz + agwi, 27)

which involves singularly perturbed dynamics. It should be noted that formally setting ¢ = 0 in (27) and
substituting the resulting expression for e; into (25) yields precisely the identifier dynamics (19). Using
this limiting relationship (which can be made precise using singular perturbations analysis), and the same
backstepping design tool as in the earlier case, we obtain a robust disturbance attenuating controller in
exactly the same form as in Theorem 1 but with the identifier now generated by (25)-(27). For a precise
statement of this result, which would be the counterpart of Theorem 1 here, we first introduce a class
of admissible uncertainties, Wc, as the counterpart of W introduced in Theorem 1. For some arbitrary
positive constant C, let

We = {(a:(O), 0, w[o,oo)) : Amaxzi(t) < Ca |.’L’(0)| < 07 |9| < C7 ,w(t)l < C’Vt € [0,00),V’i =1,... ’n}28)




Theorem 2. Consider the nonlinear system described by (11) with perfect state (but not derivative)
information, and with performance index (4) where ¢; does not depend on v and is positive definite. Let
assumptions A1-A3 hold, Q; be given by (24), and W¢ be as defined by (28). Then:

(i) There exists a positive scalar €9 > 0 such that for all € € (0,€), the control law of Theorem 1,
with identifier (25)-(27), achieves asymptotic tracking with disturbance attenuation level v for any
uncertainty triple in the set W¢. Furthermore, the closed-loop signals generated by the overall system
are uniformly bounded on [0, c0).

(i) For any uncertainty triple in the set W¢ such that wig o) = 0, the expanded state vector, including
the system state, and both slow and fast parameter errors, converges to 0 ast — oo for any € € (0, €g}.

Remark 2. The passage from Theorem 1 to Theorem 2 has involved (in order to avoid the use of derivative
information, and singularity in the optimization problem under pure state measurements) the introduction
of small noise in the measurement equation, obtaining a controller along with a worst-case identifier under
this noise-perturbed measurement, and then setting the disturbance (noise) entering the measurement
equation to zero. The resulting identifier dynamics still depend on the small parameter ¢ multiplying
the measurement disturbance even after the disturbance has been eliminated. This way, any performance
achieved under derivative information can be achieved by using only state information. We should also note
that in this case, due to the requirement that the error covariance matrices be bounded away from zero,
the robust adaptive controller will ot be certainty equivalent, even asymptotically. <

THE CASE OF OUTPUT MEASUREMENTS

Let us now turn to the case of output measurements, that is the case when not all state variables but
only a subset of them is available for control purposes. In particular, let us consider in the context of the
parametric strict feedback form (11) only the output, z, to be available. As in the previous section, let us
first assume that the derivative of z is also measurable and is available for control purposes. Then, the first
subsystem of (11) serves as the measurement equation:

2—f1(z) = z+ ¢1(2)81 + o1(2)wy, (29)

through which noisy information is available on z2 and §; — with the noise being due to the presence of
the disturbance w;. Denote the remaining components of z by zp, and let £ denote the extended state
(6", z'%)", which satisfies an equation of the form

§ = At+f+Hw, &0)=(9,2r(0)) (30)

with obvious definitions for A, f and H. It should be noted that A depends on u (linearly) , and the
dependence of f on zp is in a lower triangular form. In terms of this notation, (29) can be rewritten as

F-fi(z) = CURE+0l (2w (31)

where again the definition of C should be obvious.

Now, with (30) serving as a state equation and (31) as the measurement equation, the inner supremization
of (9) becomes an H™ filtering problem which can be solved using the theory of [1, chapter 7], leading to
the following optimal (worst-case) observer and error covariance equations:

§ = A+ i+ RO+ DNG-fi-0d), &0 =( 2 ) @
5 = (A-LNC)E+5(A- LNCY - S(2CNC' - Q)5 +y~%(HH' — LNL),
£(0) = y%blockdiag(Xo o) (33)

where 6y and #p, denote the initial (a priori) estimates for 8 and zr(0), respectively, L := Hoy, N :=
(0101)71, and Q is a nonnegative-definite matrix, serving as a Euclidean weighting on the estimation error
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¢ — £, which is a part of 4 in (4) (or equivalently (6)). To ensure boundedness of parameter error, it is
generally useful to add to the right hand side of (32) a smooth function that forces the parameter estimate
(the first p components of £) to stay within an a priori known set 6 (where all the parameters lie); see {10]
for details. This then completes the design of the identifier /estimator, and brings us to the control design
stage (i.e., the outer maximization in (9)). The combined state, estimator and error covariance dynamics
are again in strict feedback form, which makes it possible to apply the backstepping tool of the previous
sections; the details are lengthy and have not been included here due to page limitations.

The procedure outlined above leads to a controller that depends not only on z but also on 2. To remove
the dependence on # we again follow a procedure similar to that carried out in the previous section, to go
from derivative measurements to the state measurement case. We introduce a new measurement, y, which
is a noise-perturbed version of z: y = z + ev, where v is a scalar unknown disturbance, and ¢ is a small
positive parameter. The inner maximization problem of (9} can be solved as in the derivative measurement
case, to which we subsequently apply singular perturbations analysis to obtain estimators that are well-
defined when v = 0 and ¢ is small. Then, the solution of the outer maximization problem again involves
backstepping, leading to a robust adaptive controller which uses only the given scalar output measurement.
Under some technical conditions, one can then prove a result similar to Theorem 2, assuring asymptotic
tracking property of the derived controller for sufficiently small € > 0, with an arbitrary level of disturbance
attenuation, and for all uncertainty belonging to a given set. Furthermore, all closed-loop signals remain
bounded for all time.
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USE OF LASER DIODES IN CAVITY RING-DOWN SPECTROSCOPY

R. N. Zare, B. A. Paldus, Y. Ma, and J. Xie

Department of Chemistry, Stanford University
Stanford, CA 94305-5080, USA

ABSTRACT

We have demonstrated that cavity ring-down spectroscopy (CRDS), a highly sensitive absorption
technique, is versatile enough to serve as a complete diagnostic for materials process control. In
particular, we have used CRDS in the ultraviolet to determine the concentration profile of methyl
radicals in a hot-filament diamond reactor; we have applied CRDS in the mid-infrared to detect 50
ppb of methane in a N, environment; and, we have extended CRDS so that we can use continuous-
wave diode laser sources. Using a laser diode at 810 nm, we were able to achieve a sensitivity of
2 x 10® cm™. Thus, CRDS can be used not only as an in situ diagnostic for investigating the
chemistry of diamond film deposition, but it can also be used as a gas purity diagnostic for any
chemical vapor deposition system.

INTRODUCTION

Present-day technology is dominated by the synthesis of materials, ranging from biocompatible
plastics, to metal-semiconductor heterostructures for lasers used in telecommunications, to silicon
oxides and nitrides that provide the backbone of the electronics industry. Materials process control
is rapidly becoming more important in industry, and is triggering fundamental research of materials
and their chemistries.

Diamond films, because of their mechanical hardness, high thermal conductivity, and excellent
optical properties are commercially important in a wide set of applications, ranging from the more
traditional tool coating to integrated circuit fabrication to even modern sound system
manufacturing. Diamond deposition by plasma, oxy-acetylene flame, and hot-filament chemical
vapor deposition is a rapidly gtowing technology. Intense interest exists in the study of the basic
reaction mechanisms in both the gas-phase and surface chemistries, because presently diamond
synthesis remains more an art than an empirical process. New laser diagnostics developed during
this study are being directly applied to various diamond deposition environments, such as
inductively coupled plasma torch and hot-filament chemical vapor deposition, under the continuing
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collaboration with the nonequilibrium plasma chemistry program of Prof. Charles H. Kruger at the
High Temperature Gas Dynamics Laboratory, Stanford University.

Our principal diagnostic tool is based on cavity ring-down spectroscopy (CRDS). CRDS is a
high-sensitivity absorptlon technique with potential for absolute concentration measurements of
trace gases and impurities’. CRDS is usually practiced by coupling a pulsed laser source into a
high-finesse optical resonator (Fabry-Perot cavity) that encloses the sample of interest, and
detecting the decay of light in the resonator. Under many conditions, the decay i is exponential, and
a plot of the ring-down lifetime versus frequency gives the absorption spectrum’. The ring-down
lifetime is controlled by the resonator finesse, and changes wherever the sample absorbs the
wavelength of the incident radiation.

Most diagnostics used in research, however, tend to rely on expensive equipment that is difficult to
maintain. To increase the utility of our diagnostics, we have begun to investigate practical schemes
for CRDS. In particular, laser diodes, owing to their small size, low cost and relative ease of use,
have begun to play a more dominant role in our research, and will open the possibility of portable
diagnostics.

A MODEL SYSTEM: DIAMOND FILM GROWTH

A particularly suitable system for study of energy-related phenomena is the diamond film reactor,
where the growth mechanism directly involves plasma chemistry. Two of the commonly used
diamond film deposition methods are a CVD reactor using hot-filament chemical vapor deposition
(HFCVD) or an inductively coupled atmospheric plasma torch. Both techniques are already under
investigation at the Stanford High Temperature Gas Dynamics Laboratory. In order to understand
the elementary growth mechanisms involved in diamond deposition, data bases of information
about the numerous radicals present (e.g., hydrocarbon radicals as CH3, CH2, CH, C2H, Ca,
etc., or atomic hydrogen) are being compiled and will be used in future computer modeling, and
subsequent numerical simulation of the complex plasma chemistry (e.g., gas-phase reactions of
atomic hydrogen with hydrocarbon radicals or diamond interface reactions of atomic hydrogen
selectively with graphite).

A CRDS setup has been demgned to measure trace radical species generated in a hot-filament

reactor for diamond deposition’. The methyl (CH3) radical is an important free radical present
during the initial stages of hydrocarbon combustion: it is believed to be a precursor for diamond
growth by CVD. In siru measurements of methyl radical concentratlons (cf. schematic diagram of
reactor in figure 1a) have been carried out under various conditions**. Typically, a mixture of Hp

of CHg4 is flowed through the previously evacuated reactor. A tungsten filament is positioned

vertically inside the reactor chamber and is resistively heated to a specified brightness temperature.
Methyl rad1cal absorption is observed near 216 nm, where feature lines are a few nm wide (cf.
figure 1b)®. It is also important that the ground-state population of the absorber molecule is not
significantly depleted by excitation during the time the laser pulse is circulating inside the optical
cavity. In our experiment, for 216 nm light pulse of energy about 0.2 mJ and TEMgQ mode radius

w = 250 mm, for mirrors reflectivity R = 0.991, and for CH3 absorption cross-section s < 10-17

cm? / molecule, the fraction of molecules excited by the laser pulse inside the cavity is less than
3x10-3, which is sufficient for accurate CRDS measurements.

A profile of CH3 absolute concentration near the hot filament has been determined by CRDS using
a topological method - Abel inversion of the spatial profile of CH3 absorbance (cf. figure 1¢)**’.




This approach allowed us to estimate the uncertainty in the inverted profile. The error bars
represent one standard deviation. The shaded part of the figure indicates radial distances from the
filament where the gas temperature is between 1250 K and 2000 K. Based on a hydrogen
diffusion model, methyl concentration should peak at the filament. It was unexpectedly observed,

however, to peak about 5 mm from the filament. This behavior can 4;;ossibly be explained by the

Soret effect or dissociation of methyl near the filament (cf. figure 1d)
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Figure 1: (a) CRDS setup for radical concentration measurements, (b) spectrum of methyl
absorption at 216 nm, (c) radial distribution of CH,, and (d) spatial profiles of the measured
number density within the hot-filament reactor at two different substrate temperatures.

EXTENSIONS TO THE MID-INFRARED

The 1.5 to 10 um region of the electromagnetic spectrum is rich in rovibrational transitions forming
molecular "fingerprints” that are well known to be a means for identifying and characterizing
specific species. This region is therefore rather ideal for mapping species concentration or
temperature gradients in hot-filament reactors and arc jets. We have begun to exploit the high
sensitivity, linearity, and simplicity in quantifying number densities provided by CRDS in the mid-
infrared.

The application of CRDS to a problem presupposes the existence and availability of suitable light
sources and cavity mirrors. With the advent of nonlinear optical devices, it has recently become
possible to obtain tunable coherent light sources in the mid-infrared based on optical parametric
oscillators (OPO)>. Simultaneously, highly reflecting mirrors with only minute scattering and
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absorption losses have become available for wavelengths in the visible and the near infrared
regions.

Our light source is a Nd:YAG laser-pumped OPO system (Continuum Mirage 3000) that can
generate nearly Fourier transform-limited nanosecond Gaussian pulses with a manufacturer-
specified bandwidth of 500 MHz (0.017 cm'!) at a repetition rate of 10 Hz?. The wavelength can
be tuned continuously from 1.5 to 4.0 pm, with the pulse energy decreasing from 8 mJ to 1 mJ,
respectively. The OPO system architecture is shown in figure 2a”.
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Figure 2: (a) Continuum Mirage 3000 OPO system diagram, and (b) absorption spectrum of a 100
ppm CH, in N, mixture at 50 Torr pressure.

We are currently pursuing CRDS studies of the well-known methane fundamental C-H stretching
mode (n3), that occurs around 3.17 mm, and should serve as a good reference for future

calibrating purposes. A typical absorption spectrum is given in figure 2b. All recorded spectra
showed a very strong absorption, allowing us to record methane lines below 10® Torr partial
pressure in N,.

We have also applied our OPO system to the measurement of water vapor in various types of
flames, to demonstrate the effectiveness of CRDS as a diagnostic tool for hostile environments
such as flames, discharges, flashes, or plasmas A strong need exists for spectroscopic methods
that can serve as remote dlagnostncs in these environments because they remain difficult to
characterize, owing to their wide range of extreme physical conditions: high temperatures and
consequently strong luminous background, sharp gradients in both temperature and density, and a
reactive medium with ions, electrons and a variety of free radicals or intermediate states. CRDS, a
laser-based spectroscopy, which is noninvasive, species specific, and spatially resolved, is ideally
suited for probing environments like these.

We have measured the spectrum of water vapor in air from 810 to 820 nm, from atmospheric
pressure to 20 mTorr, with a resolution of 0.001 nm ( 0.015 cm™). This demonstrates a nominal

measurement sensitivity (with R=99.99% mirrors) to absorption coefficients as low as 1.7 x 107

cm®. We have also been able to extract accurate species partial pressure measurements of water

vapor in a regulated cell (figure 3)°. We have subsequently measured a similar spectra of water
vapor generated at the tip of a propane torch flame (T = 2000 K), and at various heights above a
controlled plane methane-air burner®. By using the HITEMP database, we can extract rotational
temperatures of water vapor at different heights above the plane burner surface. Figure 4 compares
spectra of water vapor at room temperature to those in the propane flame, while figure 5 illustrates
changes in the water spectrum, caused by the decreasing temperature gradient in a controlled flame.
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Figure 3: (a) Absorption spectra of water vapor at various cell pressures, and (b) variation of
linewidth with pressure.

16
T 1a2f 0 - 2
£%
=" o8| 1954
L 15
x
[X]g il | ;E %199 i 3
b’ “ 1
S L 10
— 40 - _:_185. g
wE
. é »E 180, L 5
e wf L
ui o i .{..Ih “Ll”u I | L | L! l.} o 1i5 0
y Y v Y g ’ ' t - g . 3 -
s12 14 816 818 820 nz a4 " :6 o 8 i
Wavelength (nm) avelength
(@) (b)

Figure 4: Absorption spectra of water vapor at (a) room temperature, and (b) at the tip of a propane
torch. Measured spectra are at the top, while spectra from HITRAN96 are on the bottom.
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Figure 5: Absorption spectra of water vapor at various heights in a controlled methane burner.
MINIATURIZATION WITH LASER DIODE SOURCES

Much of current ring-down spectroscopy still relies on fairly costly laser sources. As solid state
lasers (e.g., Ti:Sapphire lasers, Nd:Yag-pumped OPOs, and ECDLs) have gained in reliability,
tuning range, and output power, they have started to replace the more traditional tunable dye lasers,
although they are no less expensive. Simultaneously, semiconductor laser diodes (LDs) have also
been improving in power, wavelength coverage, and reliability. The rapid growth of the
communications industry in recent years has resulted in the availability of tunable UV-, near- and
mid-infrared LDs at a rapidly diminishing cost ( < $2000). In fact, owing to their compactness,
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low cost, durability, high wallplug efficiency, and compatibility with both fiber and silicon
technologies, infrared laser diodes seem to be an ideal light source for realizing practical CRDS
systems.

Early attempts demonstrated difficulties in applying LD sources to CRDS: whenever a LD beam is
reflected directly back into the laser, as is inevitable in a linear cavity configuration, even under
optical isolation, the optical feedback results in phase fluctuations and mode hopping of the LD. In
fact, at higher feedback levels, a wide variety of effects ranging from linewidth broadening to
complete “coherence collapse' (linewidth > 10 GHz) is often observed and is illustrated in figure
6a’. The inherent problem is the formation of “external cavities' by reflective optics with the back
facet of the LD that affect both the gain and phase relations of the LD. Thus, whenever back
reflection is allowed, the lasing characteristics of the become highly dependent on uncontrollable
experimental parameters, most notably the external cavity length.

Several solutions exist to this coupling problem. A LD with a high quality (but expensive) AR
coated output facet can function as a gain medium in an external cavity; the feedback from a linear
cavity configuration can be completely eliminated by using a ring resonator structure, as will be
investigated in the future; or, the external cavity effect can be controlled by placing an acousto-optic
modulator (AOM) inside the external cavity, thereby stabilizing the time-averaged behavior of the
LD. The last approach, first demonstrated by Martin et al.” as a useful scheme for stabilizing LDs
in the presence of direct back reflections, was the point of departure for our LD research.

By placing an AOM between the laser diode and the input mirror of the ring-down cavity, the AOM
can be used not only to switch the CW beam into and out off the first order diffraction, but
simultaneously control LD linewidth. The AOM driving power determines the diffraction
efficiency and hence the amount of feedback to the LD. The external cavity length fixes the
maximum achievable linewidth for each feedback level (cf. figure 6b). The first order diffraction

feedback drives the LD phase and stabilizes linewidth. Finally, the linewidth can be further
enhanced by introducing nonfrequency-shifted that cyclically chirps the LD output through multiple
external cavity modes, at twice the AOM driver frequency (cf. figure 6¢)®. The flexibility in
achievable LD linewidth in turn enables many different CRDS applications.

Using the AOM stabilization scheme for a laser diode source, shown in figure 7, we were able to
perform CRDS on water vapor present in ambient air or in an evacuated optical cavity®. LD
linewidth control was performed with feedback from both first and zeroth orders. Spectra of water
vapor in room air and at 5 Torr are given in figure 8%. Spectra were obtained in one continuous
scan. Spectra at ambient pressure used maximum zeroth order feedback (47.6 dB) to achieve the
largest possible linewidth (240 - 500 MHz) and cavity coupling. Spectra at low pressures ( < 100
Torr) used less zeroth order coupling ( 58 dB) to achieve a narrower laser linewidth (180 - 240
MHz) and to avoid convolution of the laser line with the absorption line. Scan step size in both
cases remained limited to 0.001 nm resolution by the current step resolution (0.1 mA) of the LD
driver. No baseline adjustments have been made, and the overall baseline noise results from the
excitation of multiple transverse modes in the cavity, which were used to improve light throughput.
Nonetheless, our detection limit of 2 x 10® cm™ remains quite respectable for an inexpensive LD
source, especially when compared to pulsed CRDS.
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Figure 6: (a) Linewidth for a frce-runr(ung LD (sohd) and for a LD under feedback (dashed). (b)
LD linewidth as a function of external cavity length for only first order feedback: L, =215 cm

(solid), L, =100 cm (dashed), and L, =215 cm (dash-dotted), (c) LD linewidth for only first order

feedback (solid) and both first and zeroth order feedback (dashed).
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Figure 7: Laser diode CRDS setup using AOM feedback stabilization.
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Figure 8: Spectrum of (a) water vapor in room air and (b) 5 Torr water vapor in a cell previously
evacuated below 1 mTorr. Spectra based on HITRAN96 are shown as dashed lines.

CONCLUSIONS

CRDS has been applied for quantitative diagnostic study of methyl radicals in a hot-filament reactor
used for diamond film synthesis. The methyl radical concentration was found to peak at several
mm away from the filament surface, and is attributed to the effect of Soret diffusion. We have
extended the diagnostic capabilities of our OPO laser from near-infrared studies of water vapor in
harsh environments, such as flaroes, to mid-infrared studies of the C-H stretch in methane. This
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will allow us to perform highly sensitive CRDS diagnostics of an arc-jet torch used for diamond
synthesis.

Simultaneously, we have demonstrated that it is possible to not only stabilize a free-running laser
diode in the presence of strong reflections from a ring-down cavity, but also control the linewidth
of the laser diode. The laser diode can also be stabilized to only several MHz, if high resolution is
required. We have performed CW-CRDS with ring-down repetition rates of 10-50 kHz, and have
achieved a noise level of 2 x 10® cm™, comparable to pulsed CRDS.
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