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Introduction

The major technological problems of Fischer-Tropsch processes arefthe rapid and
efficient removal of the reaction heat to avoid local overheating of the ,
catalyst (and hence excessive methane formation), and the ability to operate
with synthesis gas having low Hp-to-CO ratio to reduce cost and increase thermal
efficiency of. production, without leading to excessive carbon formation. This
paper briefly reviews the various reactor types that have been developed to solve
these problems, compares some of the key features of the three major reactor

technélogies, and focuses.on the.ability of slurry-phase operation to handle low -

Hp-to-C0 feed ratios (Table 1). Although s]urry-ﬁhase operation appears

- attractive, commercialization of slurry bubble column reactors still awaits

reliable scale-up and design rules. There is limited knowledge of the factors

_that influence the flow regime, the degree of mixing in both 1iquid and gas

phase, and the design parameters in slurry bubble column reactors.

Reactor Developments

To solve the problems associated with Fischer-Tropsch synthEsis, various types of
reactors were developed, differing mainly:fn the way heat is removed and gas and
catalyst are contacted. A classification based on catalyst mobility and number
of phases in the process is shown in Table 2. While some of these reactor
technologies soon appeared unsatisfactory (the lamellar and concentric tube
reactor [1] and the trickle bed reactor [2]) or tco expensive (the tube wall

reactor [3]), other technologies were not given the opportunity to demonstrate

.their eventual competitiveness, often because of the unfavorabie economics of the
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coal liquefaction route at the time they were developed.

technologies deserve reconsideration.

However, an objective assessment of their relative merits is extremely delicate,

These alternative

tecause such an assessment mainly depends on the basis for comparison. While
some authors compare reactor technologies at identical operating conditions

[1,4], always 1limited by the range of the least flexible technology and sometimes
even including identical catalyst particle sizes [4], others prefer to optimize

each technology separately to meet a given productivity [3].

Recognizing that
these different approaches might result in conflicting conclusions, an attempt

has been made to compare the three major reactor techno1ogigs-—entrained
fluidized bed, tubular fixed bed, and the developing slurry-phase operation--in T

the most general terms (Tables 3.A and B), as distilled from a survey of several
sources [1,3-12]. -The general conclusion from this comparison is that slurry-

phase operation definitely appears to be a most attractive alternative to the
existing technologies, especially when compared to the tubular fixed-bed

technology.

Hydrogen-to-Carbon Monoxide Ratio in Slurry-phase Operation

The ability of slurry-phase reactors to accept syngas of low Hp-to-CO ratio, as
supplied by so-called “second generation" coal gasifiers (Texaco, Shell-Kappers,
'BGC Lurgi [11]), is basically due to the intrinsic water-gas shift activity of
the catalysts used, the high degree of backmixing in the 1iquid phase, and the
differences in diffusivities and solubilities of the reactants in wax media [13,

14].

The necessity of high activity toward the water-gas shift, which essentially - ]]
translates into low usage ratios, is best understood in the relationships between 1)
the feed (I), usage (U) and exit (E) Hp-to-CO ratios, and the hydrogen (Xy )}, 18
carbon monoxide (Xco), and syngas (Xco + H ) conversions (Table 4). The set of. :il

Equations 1 to 3, or its equivalent 1' to 3', readily combines into Equation 4

which expresses the exit Hp-to-CO ratio solely as a function of the syngas
conversion and the feed and usage ratios. A comparison of the nominator and
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denominator in this expression then leads to the conclusions (5), which
essentially state that the exit ratio will exceed the feed ratio whenever the
usage ratio is lower than the feed ratio. "This observation, reported by
Satterfield and Huff [13] in different terms, has been illustrated in Figure 1
for several values of the usage ratio at a feed ratio of 1.5 {note that [ = E at
ch:‘... Hy, = 0)-

It should be emphasized that Relations 1 through 5 generally apply to the gas-
phase effluent of any type of reactor, provided an "overall" usage ratio has been
calculated, e.g. from the exit conversions. Local values of the usage ratio may
differ, however, depending upon local temperatures and concentrations; and
Relation 5b, if valid at the reactor ocutlet, may not be met thrdughout the
reactor. The high degree of mixing usually obtained in the 1iqyid phase of
slurry reactors, however, allows the assumption of uniform conditions in the
Tiquid phase,'and hence of a constant value for the usage ratio thoughout the
reactor. If mass {and heat) transfer limitations-are negligible, the 1iquid
phase concentrations furthermore correspond to saturation at the exit gas-phase
concentrations [13]. It may therefore be stated that in Fischer-Tropsch slurry °
reactors, with. sufficient l{quid mixing and negligible mass transfer limitations,
the actual Hp-to-CO ratio in the 1liquid phase will exceed the feed ratio (hence
decreasing the risk of possible carbon formation) whenever U is lower than I.
The latter condition was indeed fulfilled for the catalysts used in sTurry
Fischer-Tropsch synthesis (Table 5). ) - -

Even when resistance to mass transfer is considered, the statement still holds,
because of the higher diffusivity and solubility of hydrogen (as compared to
carbon monoxide) in wax media. This has been extensively discussed by Stern aﬁd
co-workers [14] for the methanation reaction: o

-~

2Hp + 2C0 —eCHg + CO2 (6) ,

in slurry phése, as illuystrated in Figure 2. Similar considerations are believed
to hold for slurry-phase methanol synthesis.
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Identification of Scale-up Problems

Flow Regimes -

One of the major reasons why slurry-phase operation of Fischer-Tropsch synthesis
has not yet been commercialized is the limited knowledge of the factors that
determine the flow regime. An approach to characterize the various flow regimes
in two~phase bubble column reactors as a function of superficial gas velocity and
reactor diameter has been presented by:Deckwer and co-workers [20] (Figure 3),
who claim its applicability to three—phése systems for suvficiently small
catalyst loads (<16 wt%) and particle sizes (dp < 50 ym). The transi;ion range _l
in this representation is believed to additionally depend on the dispersion
height, the gas distributor, the 1iquid velocity, and the physicochemic¢al
propeéties of the slurry (1iquid) phase. Figure 3 also illustrates the
operational ranges (vertical lines and dots) of the slurry phase studies
summarized in Table 6. Although most studies apparently pertain to the 4
homogeneous flow regime. "excessive foaming” and “gas bubble slugging" were —
observed by Mobil workers [13] in a 5.2-cm diameter column at gas velocities

above 0.4, resp. 1.5 an/sec (asterisk in Figure 3), hence revoking the general
reliability of Deckwers' representation. '

1

Koibel and Ralek [7], on the other hand, tried to characterize the flow regimes ']
as a function of the solid content of the slurry phase, Cs, as represenied in” -
Figure 4 together with the operational data from Table 6. No mention was made of -
the reactor geometry and gas distributor used, but if their tefmino1ogy is "j
properly understood, the upper region of "big bubble formation® probably .
~coincides with Deckwers“heterogeneous flow regime. The observation .that the ‘,J
homogeneous flow ‘regime, considered to be the region between the shaded areas, o
.narrows with increasing solid concentrations is important. On the other hand, -]
tha minimal superficial gas velocity required for catalyst fluidization éppears
uncertain, as British researchers found that a gas velocity of 2.75 on/sec is
insufficient to maintain effective fluidization at a solid Toad of ~5.3 wt% [25].-j1

If it is true that industrial applications (high Ug and dg desired for high ]
capacity) imply operation at churn-turbulent conditions, it is important “to




i

realize thaﬁ most correlations for important design parameters have been derived
only under bubble-flow conditions. ’

Baclonizing

Another source of uncertainly in predicting large-scale operation is the extent
to which backmixing needs to be taken into account. Although there is general
agreement on the plug flow behavior of the gas phase in bubble columns,
controversy still exists regarding the degree of backmixing in both 1liquid and
solid phase, despite their recognized importance in predicting reactor
performances--especially at high conversions [26,27]. Bukur [28] emphasizes that
the degree of mixing in the liquid phase depends on the magnitude of'the axial
mixing parameter: a

D, E
N = kL (7)

i

in which the axial disperéion coefficient for the 1iquid phase, D, may be
estimated from [20,29]: )

= 0.32, 1.34
DL = 3.676 UG dR - (§)
to yield: _
0.32, 1.34
_ 3.676 Ug dR EL (9)
L ulL
G

It can be conceived from Equation (9) how dramatic the impact of the L/dp_ ratio
is on the liquid phase (and related solid phase) mixing. The considerable range
of L/dp_ratios used in Fischer-Tropsch investigations (see Table & for Lp/dp_
values) therefore partially accounts for observed divergencies in selectivity.
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Design Parameters and Phusicochemical Properties

Apart from the inevitable shortcomings of the kinetic models app1ied; remaining ~
uncertainties in scale-up arise mainly from the limited availability,

applicability, and/or reliability of correlations about some essential

parameters, such as gas hold-up, diffusion, solubility, mass transfer (ki a), and
" dispersion coefficients. Correlations pertaining to these parameters often apply
only to the specific range of operational conditions (such as reactor geometry,

gas distributor, 1iquid medium, solid concentration, temperature) for which they

were derived. Considerable inaccuracy might resuit upon extrapolation to other
conditions; Figure 5 illustrates this for gas hold-up correlations and values
obtained at different conditions in bubble columns. /

The Timited reliability of some other parameter correlations is probably most
revealing in the case of diffusion coefficient estimations. The two diffusivity
correlations usually recommended [20,30]--the Sovova equation and the Wilke-Chang
correlation--indeed predict values which, under typical Fischer-Tropsch
conditions, may differ as much as 120% [12], obviously also affecting S
diffusivity-dependent paraméters such as k_ [20]. The limited availability of
data appears especially crucial when estimating solubiiities, though essential in
determining the 1iquid phase concentration of the reactants. SoTubility
coefficients for hydrogen and carbon monoxide are most often estimated from the
data of Peter and Weinert [30] in molten paraffin. The composition of the "wax" -
media used in slurry-phase reactors may differ considerably, however, depending 'T
on the operating conditions and time onstream [4,6,15]. It has not been - E]
investigated how this affects the gas solubilities.

Cﬁnciusions , : . : f}

The slurry-phase bubble column reactor undoubtedly appears o be an attractive :]
reactor technology for Fischer-Tropsch processing, considering its favorable
economics. and ability to ‘solve the major problems (temperature control, low
Hz-to-CO ratios) associated with Fischer-Tropsch synthesis. Its ability to :l
handle low Hpo-to-Co ratios depends; among other factors, on the intrinsic

i
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water-gas shift activity of the catalyst used; an elucidation of the synthesis
mechanism can only contribute to a'better understanding of the factors that
influence the Hy-to-CO usage ratio.

However, a better understanding of the reactor hydrodynamics is required to
establish sound scale-up and design rules. The flow regimes, although dependent
upon dispersion height, gas sparger, and liquid medium, have not been studied in
terms of their dependency on these paramefers. There is still a considerable
disagreement concerning the degree of mixing in both 1iquid and solid phases, to
which the reactor geometry (L/dp) appears of essential importance. More reliable
data are needed on essential design parameters (gas hold-up, bubble size) and on
the physical properties (diffusivity, solubility) of the liquid ﬁedia usgd.

i
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List of Symbols

specific gas-1iquid interfacial area [cm@/em3g]

solids concentration [wt% of slurry]

catalyst particle size [ym]

reactor diameter [am] :

axial dispersion coefficient for the liquid phase [cmz/s]
gas ho1d~up

liquid hold-up

H2/C0 ratio at reactor outlet

Ho/CO feed ratio

liguid-side mass transfer coefficient [am/s]

volumetric gas-liquid mass transfer coefficient [s-1]
dihension]ess axial distance in reactor

expanded height of slurry [cm]

reactor height [cm]

axial mixing parameter, given by Equation (7)
dimensionless gas-phase concentration of component i
dimensionless liquid-phase concentration of component i

- density of the Tiquid phase [g/cw3]

gas space time [s]

Tiquid space time [s] ) .
Ha/C0 usage ratio [moles Hp consumed/moles CO consumed]
superficial gas velocity [am/s] :

superficial gas ve1ocif} at reactor inlet [an/s]

carbon monoxide conversion

hydrogen conversion

XC0+H2 syngas conversijon
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~ BRIEF REVIEW OF THE DIFFERENT REACTOR TECHNOLOGIES APPLIED
SO FAR TO THE FISCHER-TROPSCH SYNTHESIS.

~ COMPARISON OF THE INDIVIDUAL MERITS OF THREE MAJOR TECHNOLOGIES:
- FLUIDIZED BED WITH CATALYST ENTRAINMENT
~ TUBULAR FIXED BED

- SLURRY PHASE BUBBLE COLUMN OPERATION ;
- ELABORATION ON THE ABILITY OF SLURRY PHASE OPERATION TOJHANDLE
LOW Hy/CO - SYNTHESIS GAS.

- IDENTIFICATION OF THE DIFFICULTIES ENCOUNTERED IN SCALING-UP
SLURRY PHASE BUBBLE COLUMN REACTORS, WITH RESPECT TO:

FLOWREGIMES

DEGREE OF BACKMIXING

DESIGN PARAMETERS

PHYSICAL PROPERTIES

- RECOMMENDATIONS AMD CONCLUSIONS

TABLE 1. OUTLINE
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Reactors With Stationary Cgtalyst: .

Two-Phase: - lamellar reactor ]
| - tubular reactors: ) ' '}
- concentric tube reactor
- tube wall reactor (PETC) }
- fixed bed reactor (Ruhrchemie/Lurgi: ARGF) “}
f
|
|

Three-Phase: - trickle bed reactor (BASF, U.S. Bureau of Mines)

Reactors With Mobile Catalyst:

Two-Phgse: - fluidized bed reactor: , o '._I
- without catalyst entrainment (HRI: Hycrocol)
- With catalyst entrainment (Kellog: Synthol)

1
[

Ihree-Phase: - slurry reactor: .
- bubble column reactor (K&lbel)
- continuous stirred tank reactor ‘
- ebullated bed reactor (U.S. Bureau of Mines)

! s
esimernnd cv— "

1
A

TABLE 2. Reactor technologies applied to Fischer-Tropsch synthesis.
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Xco + IX :'
Ko = co* Dy, ! _L-¢
CO+Hp 1+1 b i Yoy
1
i
N @ | nye E(E
Xco !
. ;
(1 - Xy,) '
E=1 o (3 | X, = oD Qe
(1 - Xcp) ; (U-E) (1+1D

|} ) .
1+V -7 A+ D Xy, ‘

LW - A+ D Xepuy

‘E A as x¢O+H2/ if U< e X4, ¢ Xcost, < Xco

E X\ as XCo+H, # if U > 1 = X4, > Xcow, > Xco

TABLE 4, Some useful reiagtions between the feed (I), usage

(U) and exit (E) H,/CO - ratio, and the hvdrogen

X »)._carbon monoxide (Xcol-and svngas (XCO+H21
conversion.
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7 (1): Akitg and Yoshida (1973)

0.11 (2): Calderbank et al. (1963)
/ (%): Deckwer et cl. (1980)
5 / (4): Quicker and Deckwer (1981)
/ (5): Mobil run CT-256-1 (1982)
0.5¢4 / (*): Farley and Ray (1964)
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FIGYRE 5. Gas holdur gs. g fur_tion of the suverficial_gas

velocity.accordingwto"sévercl.authors.
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