Klin

S0000959 Dr.Kaufmann Flugbenzin

durch katalytisches Kracken

Geheim!

- 1. Dies ist ein Staatsgeheimnis im Sinne des § 88 RSt&B.
- 2. Weitergabe nur verschlossen, bei Postbeforderung als "Einschreiben".
- 3. Aufbewahrung unter Derantwortung des Empfängers unter gesichertem Derschlus.

Dr.Kaufmann

Flugbenzin durch katalytisches Kracken

Inhaltsverzeichnis

	Seite
Einleitung	3
<u>Festbettverfahren</u>	3
Apparatur	
Kontakte	4
"Produktverteilung"	5
Qualität <u>des KK-</u> Benzins	7
Kontaktregeneration	
Schleuskontakt-Verfahren	8
Staubkontaktverfahren in der Gasphase	9.2
Staubkontaktverfahren in der Flüssigphase	10
Ausblick	10

Einleitung

Der vorliegende Bericht soll einen zusammenfassenden Überblick über die Entwicklungsarbeiten auf dem Gebiete des katalytischen Krackens im VersuchslaborLeuna während der letzten 2 Jahre geben und stellt eine Ergänzung des Berichtes
von Dr. Kaufmann und Dr. Woerner, "Über das katalytische Kracken von Kohlenwasserstoffölen" (März 1939), auf den heutigen Stand dar. X)

Zuvor soll kurz die Entwicklung des katalytischen Krackens in Amerika, wie sie uns bis jetzt bekannt geworden ist, skizziert werden.

In den USA wurde zunächst das Houdry-Verfahren, insbesondere zur Herstellung von Autobenzin aus Rohölen, entwickelt. Ein Arbeitscyclus von 30 - 36 Minuten teilt sich in eine Krack- und Kontaktregenerationsperiode von je 10 - 12 Minuten, dazwischen liegen zwei Spülperioden von je 5 - 6 Minuten. Ein technisches Charakteristikum ist die Art der Wärmeabfuhr bei der stark exothermen Kontakt-wiederbelebung durch direkte Kühlung mit einer umlaufenden Salzschmelze. Bis 1941 waren ungefähr 15 Anlagen mit einem Jahresdurchsatz von rund 6 1/2 Mill. Tonnen 01 in Betrieb genommen worden.

Einen technisch anderen Weg geht die Standard Oil-Gruppe. Produktionsanlagen sind noch nicht in Betrieb, zumal ihre ursprünglichen Konstruktionen, die auf Festbettkontakt basierten, ad acta gelegt wurden. Wie 1942 bekannt wurde, planen sie jetzt technische Anlagen, die die Anwendung von staubförmigem Kontakt als Grundlage haben. Irgend welche Einzelheiten über die hierbei zugrunde liegende Arbeitsweise sind uns nicht bekannt geworden.

In Leuna wurden die Arbeiten über das KK-Verfahren 1938 aufgenommen, und kurzvor Kriegsbeginn wurde ein eingehender Erfahrungsaustausch mit der Standard Oil und Kellogg Co. gepflogen. Seit Kriegsausbruch ist die Zielsetzung unserer Arbeiten auf die Anwendung des katalytischen Krackens zur Herstellung von Flugbenzin abgestellt.

Bis heute wurden 4 verschiedene Ausführungsformen des katalytischen Krackens bearbeitet, die durch die Art der Katalysatoranwendung gekennzeichnet sind:

- 1. Festbettverfahren
- 2. Schleusverfahren
- 3. Staubkontaktverfahren in der Gasphase
- 4. " " Flüssigphase

Die vier Verfahren, von denen das erste einen diskontinuierlichen Prozeß darstellt, die anderen drei kontinuierlich durchgeführt werden, werden im folgenden näher beschrieben.

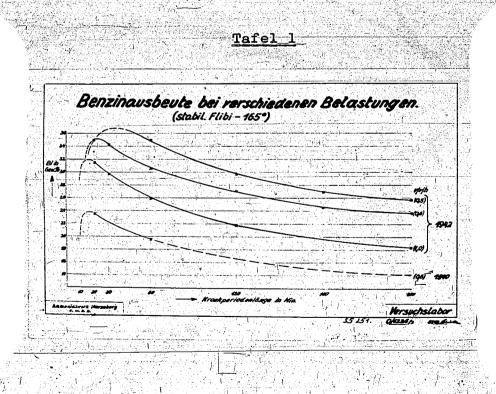
Festbettverfahren

Apparatur

Zur Durchführung der Versuche benutzten wir zunächst die in dem bereits zitierten Bericht ausführlich beschriebenen Apparaturen, die nur unwesentlich abgeändert bzw. verbessert zu werden brauchten. Darüber hinaus dienen unbeheizte Öfen von 10,50 und 100 1 Kontaktinhalt zur weiteren Entwicklung der Arbeitsweise,

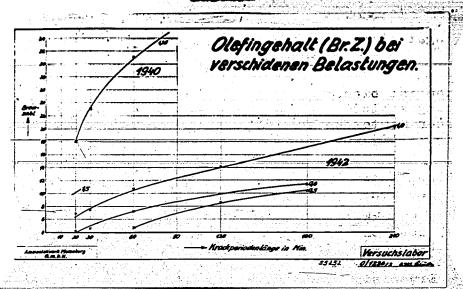
An der Durchführung der Arbeiten sind beteiligt:
Dr.Welz, Dr.Müller, Dr.Kosterhon (Kontaktherstellung), Dr.Hartmann,
Dr.Pobloth, Dr.Legutke

insbesondere sum Studium der wichtigen Kontaktwiederbelebung. Ein halbtechnisches 1 obm-Versuchsaggregat steht kurz vorm Anfahren.


Kontakte

Das Festbett-Kracken ist bisher am eingehendsten bearbeitet worden. Das Ziel der Flugbenzinherstellung schloß eine Anwendung von natürlichen, aktivierten Erden und von synthetischen Kontakten auf Basis Magnesiumsilikat aus. Es erwiesen sich lediglich reine Al203-Si02-Kontakte ohne Zusätze anderer Metalle oder deren Oxyde als geeignet.

Die sehr umfangreichen Entwicklungsarbeiten auf diesem Gebiet sind zu einem gewissen Abschluß gekommen.

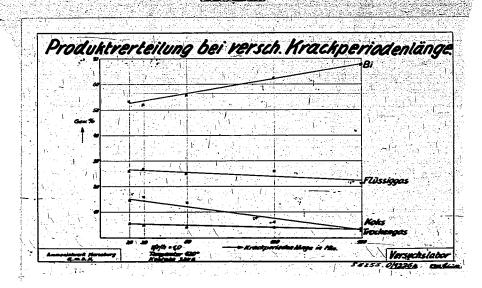

Der jetzt verwendete Krackkontakt liegt mit seinem Molverhältnis von Al203: Si02 wie 1: 9 außerhalb des von Houdry beanspruchten Bereiches und ist durch die Art seiner Herstellung besonders gekennzeichnet. Die Aktivität dieses Kontaktes konnte im Laufe des letzten Jahres ganz erheblich gesteigert werden. Im Gegensatz zu den natürlichen Erden sind die synthetis chen Aluminiumsilikat-Kontakte empfindlich gegen Wasserdampf, worauf in dem eingangs erwähnten Bericht bereits hingewiesen wird und worauf hier im Zusammenhang mit der Regeneration noch nüher eingegangen werden soll.

Den Fortschritt von 1940 auf den heutigen Stand durch die wesentliche Aktivitätssteigerung des Kontaktes zeigt Tafel 1.

Fahrweisen von 1 - 3 Stunden jetzt gegenüber 20 - 30 Minuten früher ergeben immer noch höhere Benzinausbeuten als damals. Gleichzeitig mit der Steigerung der Aktivität ist eine Verbesserung der Qualität des entstandenen Benzins verbunden, was durch Tafel 2 veranschaulicht wird.

Tafel '2

Die Benzinqualität, die hier lediglich durch die Bromzahl, entsprechend dem vorhandenen Olefingehalt, ausgedrückt ist, wurde dadurch erheblich verbessert, daß die Bromzahl auf einen Bruchteil von früher herabgesetzt werden konnte.


Die Kurven von Tafel 1 und 2 zeigen weiterhin deutlich den Einfluß der Periodenlänge und der Belastung sowohl auf Benzinbildung wie auf Qualität des Benzins: Verlängerung der Perioden und Erhöhung der Belastung wirken sich aus in Verminderung des Benzinumsatzes, Erhöhung des Olefingehaltes und selbstverständlich auf Art und Menge der übrigen entstehenden Reaktionsprodukte.

"Produktverteilung"

Die Krackreaktion ist schwach endotherm: etwa 20 - 30 Kalorien/kg Einsatzprodukt. Die niedrige Wärmetönung erlaubt eine leichte Durchführung in unbeheizten Ofeneinheiten. Maßgebend für die Art und Verteilung der insgesamt entstehenden Reaktionsprodukte ("Produktverteilung") ist die Wahl von Krackpericodenlänge (Tafel 3), Belastung (Tafel 4), Temperatur (Tafel 5) und Ausgangsöl.

Die entstehenden Reaktionsprodukte, wie stabilisiertes Bi (bis 165°), Flüssiggas, Trockengas und Koks, sind in den folgenden Tafeln 3 - 5 gleich 100 gesetzt.

Tafel 3

Tafel 4

Steigende Belastung und wachsende Krackperiodenlänge verbessern die Produktverteilung, während sie durch steigende Kracktemperatur verschlechtert wird. An dieser Stelle sei noch einmal darauf hingewiesen, daß, wie Tafel 1 zeigt, der absolute Umsatz mit steigender Belastung und wachsender Krackperiodenlänge fällt, bei steigender Temperatur sich jedoch erhöht.

Das Durchschreiten eines Minimums der Kokskurve in Tafel 5 läßt sich dadurch erklären, daß bei zu niedriger Temperatur noch nicht verdampfte Ölanteile auf den Kontakt gelangen und so zu einer höheren Koksabscheidung führen. Zwischen 380 und 420°, der optimalen Spalttemperatur, durchläuft die Kurve ihren niedrigsten Stand.

Welche Krackbedingungen im einzelnen Falle gewählt werden, hängt außerdem noch von der Art des Ausgangsöles ab und muß durch Versuche bestimmt werden. Am besten lassen sich mehr naphthenische Öle spalten, rein paraffinische geben schlechte Benzinausbeuten mit ungünstiger Produktverteilung.

Fahrweisen auf maximale Bi-Ausbeute. Ausgangsol: Rumanisches gemischtbasisches Gasol > 165° (d.20 - 0,860)

	<u>~</u>		7	20,	.,	T	
97	Trat	100 ti	2 - 2,	2,86-3	j	J	7
Yerbilt	Restul-Kennzahlan Kols zu Kontekt	Olefine Cetan-Anilin Dichte & Koko/ Gee	33.8 0,875 14,3-17,2 2 - 2,4	34,0 0,877 20,6-23,2 2,86-3,2	2 1 2 1 2 1 2 1 2 26.9 (0.729 35.0 5.0c 25.42 25.42 3.642	2. C. 10. O. 732 18.5 15.6 U. 663 27.9-31.6 3.9-6.5	
	len	Dichte	0,875	0,877	240,0	0.583	
	-Kennzah	Purkt	33,8	34.0	35,0	35.6	
	Restul	ceten- zahl	32,0	32,5	35.0	58.5	
1		Dichte	0,721	0,724	0.729	0.732	
-		Rest- Oktur- Bros- Ant- Olefine 61 w. Aromo-1650	24,4 0,721 32,0	25,3	26.9	8 96	<u>\$1</u>
	Bi Kennzehlen	Ani- lin Punkt	43,2	43,0	46.2		:
	i Ken	Bron- gal.]	6,5	6,8	6		0
	A	Ok teur- schl	78	78	7.8		5 -
		Rest-	46 - 50	4 - 4.5 46 - 50 78 6,8 45,0 25,3 0,724 52,5		**	oc C
		Koks+ Absohet- dungen	-2 5 - 6 746 - 50 78 6,5 43,2	2 - 4.5			2.1-3 2
	Gew.	Trooken- gas	1.5	^ -1		? •	2,17
	Aus beute in dew.	N	12 - 14	1.2.1		13,5=14,57 <,57	14 - 15 2,47
	14	Bi.bis 165 (Danpfdruck 0,4 atti)	02		2	30 -) S
		w/v/h truckperio Bibis 169 Fills-v/v/h to Manlange (Despraros sig-	- 00	7	oo (120 -	180
	Pahrbodinkunkan	Belastung v/v/h		3	9.0	5,5	2,0
	Sah	Temp.	0	020	20	2c _o	007
			1		1		7-

\$00000987

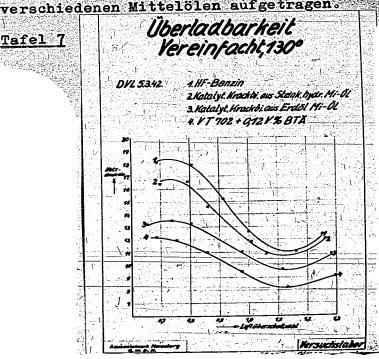
The Control of the Co

Die nebenstehende Tabelle zeigt nochmals-Produktverteilung und Qualitätsangaben der entstandenen flüssigen Reaktionsprodukte bei gleichhoher Benzinbildung/ Durchgang für verschiedene Belastungen und Periodenlängen. Man sieht z.B., daß eine Verlängerung der Krackperiode bei gleichzeitiger Senkung der Belastung ein Sinken der Koksbildung zur Folge hat, wodurch das wichtige Zeitenverhältnis Produktion: Nichtproduktion wesentlich günstiger wird. Auch sei noch auf das Ansteigen der Cetanzahl des Restöles hingewiesen, was für dessen Weiterverwendung als Dieselöl naturgemäß wichtig ist.

Die durchschnittliche Verteilung der einzelnen Kohlenwasserstoffe im Flüssig-+ Trockengas zeigt die folgende Tabelle.

H ₂ = 1 Gew. %	
CH4 = 2 " "	2 7
C2HA + C2H6 = 6 " "	-
C3H6 = 8 " ' "	
	-
C3H8 = 19 " "	
5 10 10	
n+i C4H8 = 5 " "	#35°
n C4H10 = 10 "	253
1 C4H10 = 49 " "	
100 Gew. %	***

Danach beträgt der Anteil der C1-C2-Kohlenwasserstoffe einschließlich Wasserstoff nur rund 10 % vom Gesamtgas.


Im Hinblick auf die Herstellung von Alkylathenzin ist wichtig, daß das i-Butan mit rund 50 % an der Zusammensetzung des Gesamtgases oder mit 77 % an der des Gesamtbutans beteiligt ist.

Qualität des KK-Benzins

Die Qualität des KK-Benzins wird, wie schon erwähnt, durch die Fahrbedingungen beeinflußt. Und zwar verschlechtern höherer Durchsatz, steigende Temperatur und längere Krackperiodendauer das Benzin. Für Benzin aus Erdöl liegt der Olefingehalt etwa zwischen 5 = 10 %. Die Lagerbeständigkeit ist gut. Der Aromatengehalt beträgt etwa 20 = 25 Vol. % und die OZ MM. 76 = 78, mit 0,12 % Blei etwa 90.

Für Benzineaus Braun- und Steinkohlenhydriermittelölen liegen die Aromatengehalte höher, bei 30 %, und die Olefingehalte niedriger, zwischen 2 = 5 %. Die Lagerbeständigkeit ist ebenfalls gut. Die Oktanzahlen liegen bis 3 Einheiten höher.

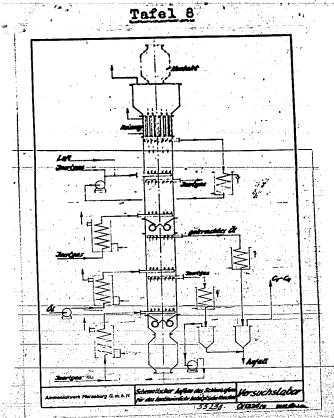
Zu der wichtigen Frage der Überladbarkeit sind auf der folgenden Tafel Klopfgrenzkurven für KK-Benzine aus zwei verschiedenen Mittelölen aufgetragen.

Zum Vergleich dienen ein HF-Benzin als Vertreter eines Hochleistungsbenzins und ein B4-Flugbenzin. Die Aromatengehalte dieser 4 Benzine sind folgende:

Kurve	7	ur_Ri		Aroma	Geb.	50 %
Knine	2	KK_Ri	aus Steinkohle- HydrMittelöl	n	•	30 %
n	3	KK-Bi	aus rum. Erdöl- Mittelöl		H	22 %
11 1	_4	VT70	The state of the s	1	19 6	~10 %

Die Kurven zeigen, daß der Aromatengehalt von ausschlaggebendem Einfluß auf die Lage der Klopfgrenzkurven ist, und daß man bei KK-Benzinen aus Steinkohlenhydr. Mittelöl Qualitäten erreicht, die denen von HF-Benzinen nahe kommen. Trotzdem das KK-Benzin aus rum. Erdöl einen doppelt so hohen Aromatengehalt hat wie das B4, ist KK-Benzin aus rum. Erdöl einen doppelt so hohen Aromatengehalt hat wie das B4, ist die Lage der Kurve 3 doch nur um wenig mehr als 1 Atm. besser. Zahlreiche weitere überlademäßig geprüfte KK-Benzine der verschiedensten Herkunft haben uns zu der überlademäßig geprüfte KK-Benzine der verschiedensten für das im Verhältnis zu seinem Ansicht gebracht, daß beim katalytischen Kracken für das im Verhältnis zu seinem gesättigten Charakter immerhin gute Klopfverhalten des Benzins im Überlademotor gesättigten Charakter immerhin gute Klopfverhalten des Benzins im Überlademotor weniger eine etwa besonders starke Verzweigung der paraffinischen Kohlenwasserweniger eine etwa besonders starke Verzweigung der paraffinischen Einführt etwa der Kohlenwasserweniger eine etwa besonders starke Verzweigung der paraffinischen Kracken für der Kohlenwasserweniger eine etwa beson

Kontaktregeneration


Das wichtige Verhältnis von Reaktionszeit: Regemerations- einschließlich Spülzeit wird bestimmt durch die Höhe der Koksabscheidungen auf dem Kontakt (s.a.Tab., Blatt 6) und die für die Regeneration selbst gewählten Bedingungen. Die Verbrennungswärme des Kokses wird bei unserer Arbeitsweise allein durch das Regenerationsgas abgeführt. Hierzu sind Gasmengen von 3000 - 5000 1 Gas/l Kontakt erforderlich. Die Höchsttemperatur des Kontaktes darf 550° nicht übersteigen, da sonst die Aktivität geschädigt wird. Konstruktiv führt die Anwendung so hoher Regenerationsgasmengen zu Mehrschichtenöfen. Die Kontaktschichten werden bei der Reaktion hintereinander und bei der Regeneration parallel geschaltet, um den Widerstand für das Gas zu erniedrigen. Nach Vorversuchen in einem 100 1 Ofen liegt das Verhältnis von Reaktions- : Wiederbelebungszeit zwischen 1 : 1 bis 1 : 3, je nach den Fahrbedingungen, die ihrerseits nach wirtschaftlichen Gesichtspunkten zu ermitteln sind.

Ein wichtiger Gesichtspunkt für die Regeneration ergibt sich aus der Wasserdampfempfindlichkeit des Kontaktes. Nach der ungefähren Zusammensetzung ClHi der koksartigen Abscheidungen entsteht bei der Regeneration Wasserdampf. Da andererseits
die hohen Regenerationsgasmengen eine Regeneration im Kreislauf erfordern, kann
ohne zwischengeschaltete Kondensation der Wassergehalt im Kreislaufgas bis rund
15 % ansteigen und die Aktivität des Kontaktes schädigen. Aus diesem Grunde ist
eine Abscheidung des Wasserdampfes durch Kühlung erforderlich, was die Regeneration
wirtschaftlich stark belastet.

Schleuskontakt-Verfahren_

Wie bereits erwähnt, war es gelungen, die Aktivität des Katalysators wesentlich zu steigern. Durch eine besondere Maßnahme bei seiner Herstellung wurde vor über einem Jahr eine unerwartet hohe mechanische Festigkeit dieser Katalysatoren erreicht. Außerdem konnten die Erfahrungen in der Verformung zu Kugeln von dem T 52-Verfahren her auf diese Katalysatormasse angewendet und so kleine regelmäßige Kontaktkugeln von außergewöhnlicher Abriebfestigkeit erhalten werden. Diese beiden notwendigen Voraussetzungen gaben uns Veranlassung, das schon immer interessierende kontinuierliche Kracken mit wanderndem Kontakt ernstlich ins Auge zu fassen. Für Versuche

nach diesem Prinzip wurde ein halbtechnischer Ofen entwickelt, den die folgende Zeichnung zeigt.

Die Kontaktkugeln durchlaufen nacheinander eine Regenerations-, Spül- und Reaktionszone. Der Regenerationszone ist ein Röhrenaufheizer vorgeschaltet, in dem der vom Ofenausgang kommende, inzwischen etwas abgekühlte Kontakt wieder auf Zündtemperatur aufgeheizt wird und in dem ein Teil der Verbrennung des Kokses Zündtemperatur aufgeheizt wird und in dem ein Teil der Verbrennung des Kokses zu altererst abbrennen, das aus dem Kreislauf der eigentlichen Regeneration heraus nach oben geleitet wird. Da die wasserstoffhaltigen Anteile des Nokses zu altererst abbrennen, würde somit eine Schädigung des Kontaktes durch Wasserdampf auch bei heißem Kreislaufgebläse nicht stattfinden. Nach durchlaufener Spülzone werden die Kontaktkugeln durch eine Doppelschleuse in den Reaktionsteil gefördert. Nachdem sie diesen durchwandert haben, werden anhaftende Olonsteil gefördert. Nachdem sie diesen durchwandert haben, werden anhaftende Olonsteil gefördert. Nachdem sie diesen durchwandert haben, werden anhaftende Olonsteil gefördert. Nachdem sie diesen durchwandert haben, werden anhaftende Olonsteil gefördert, daß die verschiedenen Gasströme ineinander geneinzelnen Zonen wird verhindert, daß die verschiedenen Gasströme ineinander geneinzelnen Zonen wird verhindert, daß die verschiedenen Gasströme ineinander geneinzelnen Der Versuchsofen ist seit über vier Monaten in Betrieb. Während dieser Zeit haben sich Störungen an den Schleusen nicht gezeigt.

In zahlreichen Versuchen wurde bestimmt, daß der Kontaktabrieb nur 2 - 3 kg Kontakt/to erzeugten Benzins beträgt.

Bei ungefähr gleichen Benzinausbeuten und gleicher Benzinqualität wie beim Festbettverfahren zeigt auch diese Arbeitsweise genügende Anpassungsfähigkeit an die bettverfahren zeigt auch diese Arbeitsweise genügende Anpassungsfähigkeit an die bettverfahren zeigt auch diese Arbeitsweise genügende Anpassungsfähigkeit an die verschiedene Ausgangsöle. Durch Veränderung der Dauer der Reaktionsperiode, verschiedene Ausgangsöle. Durch Veränderung der Durchschleusen des Kontaktes, sowie dene Kontakt abgeschiedurch verschieden hohe Belastung ist es möglich, die auf dem Kontakt abgeschiedene Koksmenge ungefähr gleichhoch zu halten, sodaß bei einer bestehenden Anlage dene Koksmenge ungefähr gleichhoch zu halten, sodaß bei einer bestehenden Anlage stets die gleichen Betriebsverhältnisse, namentlich hinsichtlich der Regeneration, aufrecht erhalten werden können. Das Schleusverfahren zeigt gegenüber dem Festbettverfahren den Vorteil der kontinuierlichen Fahrweise, sowie des Wegfallens sämtlicher heißen Umschaltventile und der zusätzlichen Apparatur zu deren automatischen Betätigung.

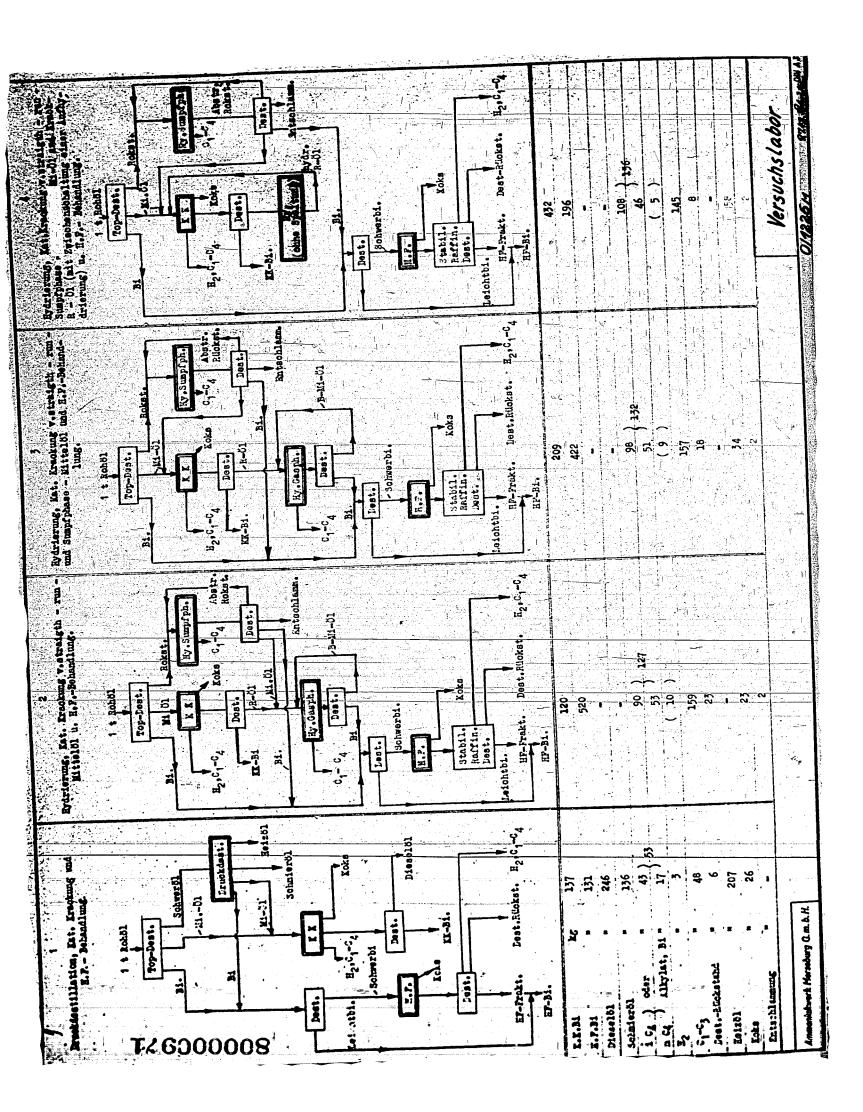
Staubkontaktverfahren in der Gasphase

In letzter Zeit wurden die Arbeiten zur Durchführung des katalytischen Krackens mit staubförmigem Kontakt in der Dampfphase wieder aufgenommen, nachdem es ge-

lungen war, die Arbeitsweise so zu gestalten, daß auch auf diesem Wege ein gutes Flugbenzin herstellbar ist, wenn eine genügend hohe Kontaktstaub-Konzentration im Reaktionsraum aufrecht erhalten wird. Der Anreiz zur intensiven Weiterbearbeitung des Staubverfahrens ist unbedingt gegeben durch die sicher erreichbare Vertung des Staubverfahrens ist unbedingt gegeben durch die sicher erreichbare Vertung des Staubverfahrens ist unbedingt gegeben durch die sicher erreichbare Vertung des Staubverfahrens ist unbedingt gegeben durch die sicher erreichbare Vertung des einfachung einer technischen Anlage. In letzter Zeit angestellte Versuche geben einfachung einer technischen Anlage. In letzter Zeit angestellte, Produkt-Verteilung und recht günstige Ergebnisse hinsichtlich Ausbeute, Qualität, Produkt-Verteilung und del. Jedoch sind wir apparativ noch zu weit entfernt von einer Übertragung in den großtechnischen Maßstab, so daß es verfrüht wäre, zur Zeit schon eingehende Angaben über diese Arbeitsweise zu machen.

Staubkontaktverfahren in der Flüssigphase

Über dieses Verfahren liegt ein abgeschlossener Bericht von Dr. Kaufmann und Dr. Welz vor x). Der Vollständigkeit halber sei hierzu nur zusammenfassend folgendes angeführt.


Bei diesem kontinuierlichen Verfahren wurde zum Aufheizen und als Reaktionsraum lediglich eine Druckschlange benutzt, deren Volumen infolge sehr hoher möglicher Durchsätze klein gehalten werden konnte. Das öl wurde mit 3 - 10 % Kontakt angeburchsätze klein gehalten werden konnte. Das öl wurde mit 3 - 10 % Kontakt angeburchseitet, bei etwa 450 - 500° und 40 - 100 Atm. Druck und einer Belastung von 20 - teigt, bei etwa 450 - 500° und 40 - 100 Atm. Druck und einer Belastung von 20 - teigt, bei etwa 450 - 500° und 40 - 100 Atm. Druck und einer Belastung von 20 - teigt, bei etwa 450 - 500° und 40 - 100 Atm. Druck und einer Belastung von 20 - teigt, bei etwa 450 - 500° und 40 - 100 Atm. Druck und einer findet hier kaum che Brden verwendet. Gegenüber dem krackverfahren findet hier kaum eine höhere Aufspaltung statt, wohl aber demgegenüber eine wesentliche Qualitätseine höhere Aufspaltung statt, wohl aber demgegenüber eine wesentliche Qualitätseine höhere Aufspaltung eine Spaltbenzins. Diese Arbeitsweise ist besonders geeignet verbesserung des erhaltenen Spaltbenzins. Diese Arbeitsweise verbesserung der Produktverteilung. Als hochwertige Flugbenzine kommen auf diese Weise hergestellte Produkte allerdings nicht in Frage, und deshalb ist auch das Interesse für diese Arbeitsweise zur Zeit zurückgedrängt.

Ausblick

Nachdem bisher eine Zusammenstellung der Versuchsergebnisse über das katalytische Kracken gegeben wurde, sollen im folgenden einige Möglichkeiten aufgezeigt werden, die sich z.B. für eine Erdölaufarbeitung bei Anwendung des katalytischen Krackens ergeben, wenn es gilt, ein möglichst hochwertiges Flugbenzin zu erzeugen. Die in den nebenstehenden 4 Schematas gebrachten Zahlen erheben keinen Anspruch auf absolute Genauigkeit, da sie zum Teil auf Schätzungen beruhen, zu denen jedoch umfangeriches Material aus zahlreichen Einzelversuchen herangezogen werden konntes

- 1. Rohölaufarbeitung durch Druckdestillation, katalytisches Kracken und HF-Behandlung. Neben Flugbenzin wird hierbei viel Dieselöl, Schmieröl und Heizöl erzeugt.
- 2. Rohölaufarbeitung durch Hydrierung, katalytisches Kracken von straight run-Mittelöl und HF-Behandlung. Als Hauptprodukt entsteht HF-Benzin.
- 3. Rohölaufarbeitung durch Hydrierung, katalytisches Kracken von straight run-, und Sumpfphase Mittelöl und HF-Behandlung.
 - Es wird wesentlich mehr katalytisches Krackbenzin bei noch reichlichen Mengen HF-Benzin erhalten.
- 4. Rohölaufarbeitung durch Hydrierung, katalytisches Kracken von straight run-Sumpfphase-Mittelöl- und Krack-R-Öl (mit Zwischenschaltung einer Aufhydrierung) und HF-Behandlung.
 - Diese Fahrweise erzeugt die größte Menge katalytisches Krackbenzin.

x) Dr.Kaufmann und Dr.Welz. Katalytisches Kracken mit staubförmigem Katalysator. in flüssiger Phase (Juli 1939)

Welche der 4 möglichen Kombinationen zur Anwendung kommen kann, hängt weitgehend von der gewünschten-Menge und Art der Endprodukte und von wirtschaftlichen Erwägungen ab, auf die hier nicht näher eingegangen werden soll.

Die Frage, welche der drei möglichen Arbeitsmethoden für das Kracken selbst zur Herstellung von Flugbenzin gewählt werden soll, - ob mit festangeordnetem, wanderndem oder staubförmigem Katalysator - müssen wir zur Zeit so beantworten: Für großtechnische Planungen haben wir für das Festbettverfahren genügende Unterlagen. Das uns vorteilhafter erscheinende Schleusverfahren konnten wir in der viel kürzeren Versuchszeit noch nicht bis zur Betriebsreife durchentwickeln. Wir glauben aber, daß wir in mehreren Monaten soweit sein werden, wenn wir in einem größeren Schleusofen-Aggregat (1 cbm-Krackraum) Versuche durchführen können. Die sehr aussichtsreiche Arbeitsweise mit staubförmigem Kontakt bedarf sicher noch längerer Zeit bis zur Durchentwicklung auf großtechnischen Stand.

Ø Herrn Dir Dr. Bütefisch

" Dir. Dr. v. Staden

Versuchslabor. 7 x 3. Korn fuumuu Reserve 3 x

Dir.Dr.Strombeck

Dr.Langheinrich
Dr.Ringer