3451-30/5.01-10

COBALT CATALYST REPORTS

MEDIUM PRESSURE

Obh.-Holten, den 27. August 1942 Abt. DVA. Hr./Wg.

Herrn Dr. Schuff.

Betr.: Paraffingehalt im ausgebrauchten Kobalt-Mischkontakt bei der Olefinsynthese (Wassergaskreislauf), entsprechend der Anfrage vom 27.8.42.

1. Ofen 10. 10. Fullg.

Laufzeit 170 Betr.-Tage Letzte Betr.-Temperatur 225°C.

Ofen wurde, ohne vorher extrahiert oder hydriert zu sein, in kürzester Zeit entleert.

Paraffingehalt:

Nach	Schüttgewicht		100	_Gew.%_1	bez.a.F	ischkonta	kt
11.	ausgebr.Menge	(gewichtsmaß	ig) 89	11	H H	11	
n n	Extraktion mit	Benzol	107	17	, 11 ::::::::::::::::::::::::::::::::::		

2. Ofen 10, 11.Füllg.

Laufzeit 204 Betr.-Tage Letzte Betr.-Temperatur 225°C

Ofen wurde, ohne vorher extrahiert oder hydriert zu sein, in kürzester Zeit entleert.

Paraffingehalt:

Nach Schüttgewicht	127 Gew.% bez.a.Frisol	akontakt
" ausgebr. Menge (gewichtsm	äßig) 125	y e de la companya
" Extraktion mit Benzol	103 " " "	P g + P

2. Ofen 10, 12.Fullg.

Laufzeit 94 Betr.-Tage Letzte Betr.-Temperatur 214°C

Ofen wurde vor der Entleerung bei 225°C mit N2H2 behandelt, wobei aber weder flüss. Produkte ausgetragen, noch eine Aufspaltung zu CH4 erfolgte. Die Entleerung wurde in kürsester Zeit durchgeführt.

Paraffingehalt:

Nach ausgebr. Menge (gewichtsmäßig) 119 Gew. % bez.a. Frischkontakt

Nach diesen Daten kann man sagen, daß weder der Kreislauf, noch die hohe Betr.-Temperatur eine Paraffinbeladung des Kontaktes verhindern und daß eine Behandlung mit H2N2, selbst bei um 11°C höher liegender Temperatur als zuletzt gefahren, zum Abbau der Paraffine am Kontakt nicht ausreicht. Eine Entparaffinierung des Kontaktes ist darum nur lurch die Extraktion möglich. Extraktionsversuche wurden bei uns nicht gemacht, da die oben beschriebenen Ofenfüllungen ohne eine Behandlung zum Zwecke der Entparaffinierung ausnahmslos gut zu entleeren waren.

Durchschrift

208

Herrn Direktor Dr. Hagemann.

Betr.: Wassergaskreislauf über Kobalt-Mischkontakt.

Für die Olefinsynthese sollte in Ofen 10 (Mannesmanndoppelrohr ofen) ein Wassergaskreislaufdauerversuch durchgeführt werden, bei dem die Belastung anfänglich hoch gehalten, dann aber im Laufe von 6 Monaten so gesenkt wird, daß die mittlere Belastung bei 1,17 nach Vol., d.h. 1170 Nm³ Wassergas/Großofen, Stde. beträgt.

Der im Januar aufgenommene Versuch wurde entgegen den früheren Versuchen nicht mit Restgas im Kreislauf (Ofen 10, 10., 11. u. 12.Füllg.), sondern direkt mit Wassergas im Kreislauf angefahren, wobei aber nach wenigen Tagen festgestellt wurde, daß die Vergasung ungewöhnlich stark und das H2/CO-Verbrauchsverhältnis bis auf 1,8 und darunter abgefallen war. Neben der durch den Abfall des H2/CO-Verbr.-Verhältnisses analytisch ausweisbaren Kohlenstoffabscheidung kam die für die Olefinsynthese erforderliche CO-Anreicherung im Ofeneintrittsgas (Frischgas + Rücklaufgas) nicht auf, wodurch eine Olefinsynthese mit den gewünschten Endprodukten unmöglich war. Der Ofen wurde abgestellt und konnte wegen der Kohlenstoffabscheidung nur schwierig entleert werden.

Eine Wiederholung dieses Versuches mit dem gleichen Kontekt (Ofen 10, 14. Füllg.) führte zu dem gleichen Ergebnis.

In beiden Fällen war ein täglich zunehmender Aktivitätsabfall festzustellen, der ohne Zweifel auf die Kohlenstoffabscheidung am Kontakt zurückzuführen war.

Der gleiche Ofen wurde dann mit dem gleichen Kontakt (Buscherhoff-Kieselgur) wie in den beiden vorhergehenden Versuchen (13. u. 14. Füllg.) gefüllt, jedoch, wie bei früheren Versuchen (Ofen 10, 10., 11. u. 12. Füllg.), mit Restgas im Kreislauf angefahren und nach 240 Betr.-Stunden auf Wassergas im Kreislauf umgestellt, wobei aber schon am ersten Betr.-Tag mit Wassergas bei Temperaturen zwischen 170 - 190°C und geringen Umsätzen von nur 31 % gemäß dem H₂/CO-Verbr.-Verhältnis und der verflüssigten H₂ und CO-Volumina Kohlenstoffebscheidung analyt. ausgewiesen wurde.

Ruhrchemie Aktiengesellschaft

Oberhäusen-Holten
Eine weitere Erhöhung der Temperatur bis auf 194°C brachte vorübergehend einen stärkeren Umsatz, der aber, bedingt durch den stetig
anwachsenden Aktivitätsabfall (bedingt durch C-Abscheidung), sehr
bald wieder abfiel.

Eine bei allen drei Versuchen vorübergehend durchgeführte Fahrweise mit Synthesegas im Kreislauf, das H₂ und CO im Verhältnis 2:1 enthielt, ließ das Verbr.-Verhältnis sofort von 1,7 - 1,8 auf 2,1 - 2,2 ansteigen, d.h. auf das für die Kitteldrucksynthese normale Verbr.-Verhältnis; außerdem wurde analytisch hierbei eine Kohlenstoffabscheidung nicht mehr festgestellt.

Durch diese drei Versuche dürften die im Monatsbericht Februar 1942 gestellten Fragen gelöst sein:

Nur die Zusammensetzung des Kontaktes, vielleicht schon die in alles drei Kontakten vorhandene, stark eisenhaltige <u>Buscherhoff</u> - <u>Kieselgur</u> kann, in Verbindung mit dem Wassergasbetrieb, die Ursachefür diese schlechten Ergebnisse sein.

Da diese Frage nach der Beschaffenheit des Kontaktes für den späteren Großbetrieb (Wassergaskreislauf) von größter Bedeutung 1st, werden wir durch weitere Versuche im gleichen Ofen mit anderen Kontakten von der Qualität wie Ofen 10, 10., 11. u. 12. Füllung die Angelegenheit weiter prüfen.

Die für die Wassergaskreislaufversuche verwendeten Kontakte waren:

	Ofen	Fullg.	Datum	K-Nr.	Emp f änger	Kiesel- gur	Ergeb- nis DVA
	10	10.	Aug. 40	570	Schaffgotsch	120	gut
:	10	11."	Febr.41	1286	Viktor	berohe	gut
ia ta	10	12.	Sept.41	2085	_Hoesch(berohe	sehr gut
	10	13.	Jan. 42	170	Krupp Buso	herhoff	schlecht
	10	14.	Febr.42	261		10/	"schlecht
	10	15.	März 42	353	Schaffgotsch	n -	schlecht

Ddr.: Ma.,

Durchschrift

The Mary

Betr.: Unterlagen zur Druck-Wassergne-Kraislauf-Synthese.

Diese auf die Erzeugung möglichst hoher Olefinanteile in den Primirpredukten gerichtete Fahrweise soll das Ausgangsmaterial schaffen für die:

- 1.) Erzeugung synthetischer Waschmittel über die Oxo-Synthese.
- 2.) Erzeugung von Flugkreitstorf, urspränglich auf dem Wege über die Arometisierung und katalytische Spaltung unter Einschluss der Polymerisation, neuerdings unter Ausschluß der Arometisierung.
- 3.) Erzeugung gräßerer Mengen Schmierel unter Einestz von Spaltolofinen sowie primären Olefinen, neuerdings von ausschlieselich primären Olefinen.

I.

_Folgende_Schaltungearten_weren_für_die_vorhendenen-Synthese-Anlagen in Betracht gezogen worden.

- 1.) Mittel- und Normildruck-Anlagen arbeiten vollkommen getreint. Der Wassergaskreislauf wird nur (ber die Stufe
 I Beider Anlagen gelegt. Die Aufarheitung der Endgese
 erfolt. mach Einstellung des H2/CO-Verhiltnisses auf
 2.00 durch Zusatz von Konvertgas im gerad n Durchgang in Stufe II und in der Mitteldruck-Anlage in einerweiteren Stufe III.
- 2.) u.3.) Mittel- oder Normeldruck-Anlage verarbeitet

 einen Teil des Wassergases einstufig im Kreislauf. Das
 jeweilige Endgas wird durch Konvertgaszusatz wieder auf
 das H2/CO-Verhältnis von Wassergas gebracht und in der
 anderen Anlage im Kreislauf in Stufe I und nach nochmaliger Konvertgaszugabe und Einstellung auf das H2/COVerhältnis 2,00 im geraden Durchgang in der Stufe II
 aufgearbeitet.
- 4.) Mittel- und Normaldruck-Anlage arbeiten hintereinander geschaltet. Dabei soll erstere einstufig das gesamte Mossergas im Kreislauf verarbeiten, während das Endgas wiederum nach Einstellung auf das H₂/CO-Verhältnis 2,00, nun aber mit einem aus dem Endgas selbst erhaltenen Konvertgas in der Normaldruck-Anlage im geraden Durchgang aufgearbeitet wird

Hinsichtlich der technischen Durchführbarkeit der genannten Falle ist f lgendes zu sagen. Geplant ist die Erstellung von 3 weiteren Generatoren, um die derzeitige Wassergas-Feistung unter Berücksichtung-der mitigen Reserve von etwa 62 ooo auf 75 ooo Am3/h su steigern. Die Forderung dieser erhöhten Mengen durch Grob- und Feinreinigung hindurch setzt voraus, daß die Gebläse nicht wie heute mit Unterdruck auf der Saugseite arbeiten. Soll aber das Wassergas ohne Vorschaltung der Grobreinigungs-Anlage wieder direkt aus dem Gasometer angesaugt werden; dann muss nach den früheren Erfahrungen eine Entstaubungs-Anlage erstellt werden. Von den 'Anlageteilen selbat durften Grobreinigung und Konvertierung ausreichend sein, während ein weiteres Feinreinigungssystem oder, wie neurdingsvorgeschen, zusätzlich ein Nachreiniger für des gesamte feingereinigte Wassergas erstellt werden muss. Soll das gesamte Wassergas wie in Fall 4-der Mitteldruck-Anlage zugeführt werden. dann muss ein weiterer Kompressor von zweckmässig 35 000 Nm /h beschafft werden. Zusammen mit den 4 vorhendenen Kompressoren zu je 20 - 22 000 Nm³/h ist ausreichende Reserve vorhanden.

inderungsarbeiten in den Synthese-Anlagen selbst betreffen im wesentlichen die Rohrleitungen. Der Kreislauf im Normaldruckteil erfordert derartig große Querschnitte, daß die Leitungen bei den gegebenen Verhältnissen im Ofenhaus nicht mehr unterzubringen and. Damit werden Pall 2-u-3-nicht-realisierbar. Auch Fall 1 ist im Normaldruckteil nur durchführbar, wenn die jetzige Austritteleitung der Stufe I von loos auf 1600 mm Ø erweitert wird, was auf grosse Schwierigkeiten stoßen dürfte. Fall 1 - 3 erfordern weiterhin für Normaldruck und Mitteldruck einschl. Reserve je 2 Kreislaufgebläse. Schliesslich bedeutet die Einstellung von 2 Endgasen auf das erforderliche H2/CO-Verhältnis durch Zusatz von Konvertgas teils drucklos, teils unter Druck eine gewisse Komplizierung.

Fir die nühere Betrachtung verbleibt daher der in vieler Hinsicht durch Vorteile ausgezeichnete Fall 4. übrig, wenn auch durch den Ausfall jeglichen Kreislaufs in der Normaldruck-Synthese als Nachteil eine geringere Olefinproduktion in Kaufgenommen werden muss. Es werden die günstigen Vorflüssigungs-

Verhältnisse des Wassergas-Synthesebetriebs voll ausgenutzt. Das erforderliche Konvertgas wird nicht aus Wassergas, sondern aus einem Teilstrom des eus dem Kreislauf austretenden Endgases hergestellt. Da dieses Endgas unter Druck steht, fallt die Dampfinjektorförderung in der Konvertierungsenlage weg. Die Umsetzung in der Konvertierung könnte mit billigerem Niederdruckdampf durchgeführt werden. Der Konvertgaszusatz erfolgt nur an einer Stelle, und drucklos vor der Normaldruck-Anlage. Einschl. Reserve werden nur 2 Kreislaufgebläse benötigt. Nicht ausreichend sind die Querschnitte der Ein- und Austrittsleitungen der Mitteldruck-Anlage. Die erforderlichen größer dimensionierten Leitungen sind aber ohne weiteres in dem zur Verfigung stehenden Raum unterzubringen. Ferner sind entaprechend den großen Umlaufgasmengen die Kondensationseinrichtungen einschl. der Neutralisation zu erweitern bzw. in anderer Ausführung zu erstellen. Da die Denzin- und Gasoldampfe ohne praktischen Machteil im Umlaufgas belassen werden können, ist eine Druckölwäsche bzw. eine Druckaktivko leanlage nur in den Gasteilstrom einzuschalten. der den Kreislauf verlässt. Fir die nachgeschaltete Normaldruck-Anlage sind keine grundsätzlichen Anderungen erforderlich. Die verhälnismässig großen Gasmengen werden hier won't nur eine einstufige Verarbeitung zulassen. Zur Verfigung stehen 3 Kondensationstirme und die beiden vorhandenen Aktiv-Konle-Anlagen.

II.

Als wesentliche-Rechnungsunterlagen gelten-die-Versuchsergebnisse von Ofen lo der Druck-Versuchs-Anlage, die von Herrn Hgger zur Verfügung gestellt, in den Anlagen 1 + 2 in Tabellenform beigefügt sind. Im einzelnen ist dazu folgendes zu bemerken.

Als die 4 Fälle der Synthesefahrweise Anfang Oktober durchgerechnet wurden, betrug die Laufzeit des Ofens lo etwa loco h, die Temperatur 197,5 - 199 und die Ausbeute bei normaler Belastung 95 g/Nm³ Wassergas. Die dammes errechneten Produkten- und Olefinmengen sind in Anlage 3 zusammengestellt.

Wesentlich für die Übertragung in die Großenlage war die Tatsache, daß der Ofen bereits nach so kurzer Laufzeit die für die vorhandenen Großöfen zulässige Temperatur von 200

erreicht natte. Anderungen in den Betriebsbedingungen, wie Erhöhung des Gasdruckes von 7 auf lo atu. Herabsetzung des Kreislaufes von 1 + 3 auf 1 + 2,5 oder Absenkung der Frischgasbelastung werden in der Temperaturführung keine Erleichterung, in der Produktenmenge unter u.U. auch in deren Qualität nur Nachteile bringer Nach nunmehr etwa 2000 h beträgt die Temperatur von Ofen lo bereits 206.20 und die Ausbeute bei normaler Belastung nur noch etwa 90%/ Nm Wassergas. An sich ist nun bekannt, daß der Wassergasbetrieb gegenüber dem Synthesegasbetrieb besonders bei Anwendung von Kreislauf wesentlich höhere Temperaturen erfordert. Der häufig zum Vergleich herangezogene Kreislaufofen der Hoesch-Benzin erbeitete über 3 Monate Laufzeit und mehr bei der konstanten Temperatur von 1950 und einem Kreislauf von 1 + 2 kg 1 + 2,5 und erst später von 1 + 3. Die günstige Temperaturlage ist offenbar allein durch das bei Synthesegaskreislauf günstigere H2/CO-Verhältnis von 1,47 gegen ber Wassergaskreislauf von 0,77 bedingt und weniger durch die Gehalte an CO+H2. die mit 42% bzw. 72% in umgekehrter Reihenfolge liegen.

Es wurden deher Anfang November Sofort die nötigen Schritte unternommen, um nach Rücksprache mit den Ofenbaufirmen auf dem Wege von Ausnahmegenehmigungen zu erreichen, den derzeitigen Großofen bis 225° entsprechend 25 atil ausfahren zu können. Dabei wurde erwogen, eine Verstärkung der öfen z.B. mittels Bendagen zu erreichen. Es mässen dann lediglich die Oberkessel und die Armaturen ausgewechselt werden.

Eine weschtliche Rolle spielt gerner die Ofenbelastung.

Der Ofen lo DVA ist entsprechend der engefüllten Co-Menge belastet.

Soll nun, wie im Fall 4, die gesamte Wassergasmgnge von 75 000

Nm /h zuerst einstufig in die Mitteldruck-Anlage eingesetzt werden, dann ergeben sich Frischgasbelastungen von 1100 - 1190 Nm /h,

denn man kann bei 71 vorhandenen Großöfen im günstigsten Falls

mit nur 68 (Block 22/3 Öfen ausser Betrieb), normaler Weise wahrscheinlich nur mit 63 Öfen (2 Blöcke zu je 4 Öfen ausser Betrieb)

in Betrieb rechnen. Mit Rücksicht auf das Kontektfassungsvermögen der Mitteldruck-Öfen und die bisherigen Ergebnisse im Großbetrieb sind nun bei Anwendung von Kreislauf und unter Berücksichtigung des bezgl. der Temperaturführung Gesagten solche Belastunger als zu hoch zu-bezeichnen. Der Ofen 10 wurde daher versuchshalber

Ruhrbenzin Aktionyssellschaft

fahren, wobei sich ein Ausbeuteabfall von damals 95 g auf 85 g/
Nm³ Wassergas ergab. Eine Absenkung der Belastung ist aber nur
durch Erstellung weiterer öfen zu erreichen. In der MitteldruckSyntheseanlage können noch 16 öfen aufgestellt werden. Von der
dann vorhandenen Ofenzahl von87 wird man nicht mehr als 79 in
Betrieb befindlich anschen dürfen. Damit ergibt sich immer noch
eine Belestung von 950 Nm³/h /ofen. Ob das bei Wassergaskreislauf
über lange Laufzeiten als Durchschnitt angenommen werden darf
muß dahingestellt bleiben.

III.

Durchrechnung von Fall 4. Entsprechend den Durchschnittsergebnissen von Ofen lo DVA vom loo sten - 104 ten Betriebstag ergibt sich:

	CO ₂	CO	H ₂		CH.		N.	
Wassergas	6,3	38,7	48,5		0.3		2- 6.4	Kontraktion
Endgas D	12,5	43,8	28,6		2,7			n.Menge u.
	Koco2	n ^{CO}	U _{H2}	Bildg	.bez	.e.Ucc	Kon	N2-Feinbot.
	49,6	43,7	70,6		6.2		48,4	50.2
Bei einer	Ausbeut	e von	raktise	h 90 a/	3	1 1		- - - -

Bei einer Ausbeute von raktisch 90 g/Nm³ Wassergas ergibt sicheine Produktion von 75 000 x 24 x 90 = 162 tato an flüssigen
Kohlenwasserstoffen und einschl. log Gasol 188 tato. Vorausgesetzt ist hierbei-eine-entsprechend der Co-Menge normale Ofenbelastung.

Die die Druck-Aktivkohle-Anlage verlassende Endgesmenge der Wassergaskreislauf-Synthese beträgt 37 500 Nm³/h. Sie geht nach Konvertierung eines entsprecchenden Teilstromes als Synthesegas mit einem H₂/CO-Verhältnis von 2,00 in die Normaldruck-Anlage.

Boi Konyertierung auf 5 % CO ergibt sich ein Konvertgas

CO ₂	CO	н	•	CH.	17	
36,1	5,0	47	,8	2,0	0 7	
Konwart's					394	

Der zur Konvertierung gehende Teilstrom errechnet sich zu 20 000 Nm³/h, die gesamte Synthesegasmenge für die Normaldruck-Anlage zu 45 000 Nm³/h bon folgender Zusemmensetzung:

A/5 25000 10 40 O 21600 17/0GO 2 CO H2 CH4 N2 26,8 20,2 40,3 2,3 10,4

- 6 -

Ruhrben jin Milionyoselbehaft

Enterrechend der heute durchschnittlich in Betrieb befindlichen Ofenzahl ergibt sich für die Normaldruck-Synthese eine
Ofenbelastung von praktisch looc Nm³/h. Unter den vorliegenden
Bedingungen von Belastung und Aktivengehalt kommt nur die einstufige Aufarbeitung dee Gases in Frage. Unterlagen hierfür
ergeben sich aus der Pahrweise unserer Normaldruck-Anlage in
der Zeit von Mürz bis August 1940, wo Stufe II mit einem aktivenreicheren Gas von praktisch der oben angegehenen Zusammensetzung gefahren wurde, Man wird dabei eine Kontraktion von
40% und einem CO-Umeatz von 70% erreichen. Setzt man für die
C1+2-Bildung 20% und für die C02-Bildung 7% vom CO-Umsatz ein,
dann-errechnet sich für die Normaldruck-Anlage eine Endgas-Anslyse von:

46.6	4-110,44-1-1-1-1-1	— H ⁵	<u>OH</u> 4	N2
	10,2	17,2	8,6	17,4
bei Annanne	einer Verfl	ssigung vo	n 60% ergibt	sich als Ausbeu
	SASER W MUC	eine Froduk	tion von 45.	
2 - 10.10 W	· * * * * * * * * * * * * * * * * * * *	COLLCOMESSON	ratoffen und	
CON GREEN ACT	LWA D/ Tato.	Die Endgass	ionge-hetra	+ 27 34
TITIES LING I CE	an zur Berech	inung finder	sich in An	1ege 4 - 1
Die Au	ifteilung der	-Produktion	-sowie-des-	Olefinanfall er-
eben sich v	vie folgt:	a di Taran da Taran Salam da Salam da Sa		oremusil er-
	Benzin bi	a 2000 n	. 200 - 320 ⁰	Paraffin
				Paratiin
<u>-</u>				
162 tato	50Gews. 609	<u>01f. 27g</u>	ew#. 42%01:	f. 230eπ.%
162 tato	50Gews. 605 81,0 4	6)1f. 27G 8,6 43	ews. 42%01.	f. 23Gew.% 37,3 tate
xxx58xxx	50Gews. 609 81,0 4 65Gews. 309	901f. 27G 8,6 43 901f. 30G	ew#. 42#01. .7 18.4 ew#. 12#01:	f. 23Gew.% 1 37,5 tato 1. 5Gew#.
xxx58xtets 58 tato	50Gew%. 60% 81,0 4 65Gew%. 30%	601f. 276 8,6 43 601f. 306 1.3 17	ew#. 42#01: .7 18.4 ew#. 12#01:	f. 23Gew.% 1 37,5 tato 1. 5Gew#.
xxx58xtatu 58 tato	50Gews. 609 81,0 4 65Gews. 309	601f. 276 8,6 43 601f. 306 1.3 17	ew#. 42#01: .7 18,4 ew#. 12#01: .4 2,1	f. 23Gew.\$ 37,3 tate 5Gew4. 2.9 tate

Bei der Durchrechnung von Fall 4 ergab sich, daß praktisch nur die einstufige Aufarbeitung des in die Normaldruck-Anlage eingesetzten Synthesegases in Frage kommt. Vorsichtshalber wurde bei einem Gehalt von 60% CO+H2 ein CO-Umsatz von 70% angenommen. Es ist zwar denkbar, daß die Aufarbeitung noch etwas weiter getrieben werden kann, wofir die Tatsache spricht, daß

Ruhrlenzin Aktionysellschaft

werk Schwarzheide bei einem wesentlich inertreicheren Gas in Stufe II nosh eine Aufarbeitung von etwa 60% und zwar von 12,5% auf 6,5% CO erreicht. Einstufig wird man das mit unserem Gas aber nur durch Anwendung höherer Synthesetemperaturen erzwingen können. Zweistufig bestände wohl die Möglichkeit hierzu, wenn die zu verarbeitenden Gusmengen geringer wären. Die einzige Möglichkeit, hier zu günstigeren Verhültnissen zu kommen, bestände in der Auswaschung von CO2 aus dem Konvertgas, die aber an den kostenmässigen Aufwendungen scheitert, die gemacht werden müssen, um das unter Normaldruck stehende Konvertgas zu komprimieren, zu waschen und wieder zu entspannen. Eine Waschung der noch unter Druck stehenden großen Endgasmen--gen_der_Mitteldruck-Anlage bei gleichzeitig sehr geringen CO2-Gehalten kommt praktisch nicht in Frage. Zu berücksichtigen ist dabei ferner, das das zur Konvertierung gehende Gas dann auch absolut frei von Kohlenwasserstoffen sein misste, die sonst in der Wasserwäsche zum Teil verloren gehen. Demit ergeben sich wiederum erhöhte Aufwendungen bei der Druck-Aktivkohleanlage zwecks restloser Herausnahme der Gasolkohlenwasserstoffe, was much unserer derzeitigen Kenntnis hinsichtlich der Konvertierung als solcher nicht erforderlich ist.

Es ist aber nicht uninteressant festzustellen, zu welchen Ergebnissen die Auswasehung-des-CO2-führen wirde, wenn man in einer Neuanlage anstelle der bei uns vorhandenen eine unter Druck arbeitende Konvertierungsanlage erstellen sowiedie Aufwendungen zur restlosen Herausnehme der Gasolkohlenwasseretoffe machen wirde. Das Endgas der Mitteldruck-Anlage bliebe dann unter vollem Druck über die AK-Anlage, Konvertierunge-Anlage und CO2-Wäsche und würde erst dann entspannt der Normaldruck-Anlage zugeleitet. Rechnet man mit einem Auswascheffekt von 80% bei CO2, wobei gleichzeitig von den übrigen Gasbestandteilen 2% mit zusgewaschen werden, dann ergibt sich folgende Verschiebung in den Mengen und Analysen der beteiligten Gase:

(Rechnungsunterlagen vergleiche Anlage V) - 8 -

	Nm ³ /h		Н,	CH ₄ N ₂
Konvertgas ohne Wasche	27 400	36-,1 5,0	47.8	2,0 9,1
Konvertges mit Wüsche Toilstrom Endgas D	TA T40	10,5 7.0	67.1	20 127
Sygas N ohne Wäsche	<u>+1 200</u>	12.5 43.8	28,6	2,7 12,4
Sygas N mit Wische	36 640	26,8 20,2 11,4 24,5	40,3 48,8	2,3 10,4 2,7 12,5

Die Anreicherung des Aktivengehaltes von 60% auf 73% würde bet der gleichzeitigen Senkung der Ofenbelastung von 980 auf 800 Nm³/h eine zweistufige und damit bessere Aufarbeitung des Gases ist der Normaldruck-Anlage ermöglichsen.

Ddr.: Alberta Heger Neweling Schaack Tremm.

Kontraktion

H2-Umsatz CO-Umsate

Temp. Oc Betr.-Tag

Vol.#0lefine

Gew. %Paraf.

Vol.%01efine

in Ofen 10 DVA	1n Ofen 10 DVA	VA		:.	
Betriebssbschnitt	30./31.8-3./4.9. 812-Tg.	1./2.106./7.10. 3944.Tg.	45./2629./30.10. 11./12.11-15./ 6165.18.	78.83.72	716.7./811./12
Freislauf 1+3	Mit Herausna	1 1		Ohne Herausnahme des Benzin	me des Benzir
200	6,4 14,5	7,1 16,7	6,6 14,5	6,7 14,3	6,3 12,5
Carin				₹ 0	2.0
00	38,5 43,8	37,6 41,5	38,4 42,6	8,0 41,5	38,7 43,7
H2	48,0 24,5	48,9 24,0	48,7 26,0	9,0 28,1	48,3 28,5
OH P	0,3 2,3	0,3 3,4	0,3 3,5	0,3 3,1	-0,3 2,7
E .	6,8 14,6	6,1 13,6	6,0 12,7	6,0 12,6	6,4 12,4
H2/C0	1,246	1,300	1,268 -	1,290	1.248

Übersicht über die 4 Schaltungsarten.

Fall 1. Kreislauf Stufe I N + D. Gerader Durchgung Stufe II N + D.

			Benzin	bie 200	01 200	-320°	<u>Paraffi</u>	<u>n</u>
rae mieros	ar Navannaa		51Gews	50%01f.	27Ge₩ %.	40%01f.	220ev%.	
	61,5	tato	31,4	15,7	16,6	6,6	13,5	and the second
DII			47Gen9	.13%01f.	_27Gew≴	8%01f.	26Gewy.	in the second of
D II	50.9	tato		3,1			13,2	
D	112,4	tato	and the second second second	.34%01f.			24Gew.র	
a sa			55,3	13,3	30,4.	7,7	26,7	tuto
.			_550cm%,	55%011.	300ew%.	40%01f.	15Gews.	
NI	43,5	tato	23,9	13,1	13,0	5,2	6,6	
			65Gew#	30%01f.	30Ge₩%.	12%01f.	5Gews.	
NII	44.4	tato	28,9	8,7	13.3	1,6	2,2	teto
	Salinea en Establica		60Ge17%		3oGev#		loGews.	
N	87,9	tato	52,8	21,8	26,3	6,8	3,8_	
			108,1		.56 ,7 ,	14,5	35.5	
	eritarion of francis				🗈 سازیدانسیندار و 🗈	25,6%0l£		A STATE OF THE STA

Fall 2. Teilstrom Wassergas Kreislauf Stufe I D.

Endgas D mit Konvertgasmisatz Kreislauf Stufe I N.

Endgas N Konvertgaszusatz gerader Durchgang Stufe II N.

	Benzin-bis-200			Peraffi	n
i de ser de la grapa de la La grapa de la grapa de la La grapa de la	50Gew% 50%01f.	3000w%.	40%01f.	20Gows.	A CONTRACTOR
DI 120,0 tato		36,0	14,4		teto
	55Gew% 50%011.		25%01f.	15Gew%.	and the second
N I 50,0 tato	27,5 _ 13,7		6,0	7,5	teto
	65Gew#.25#011.	30Gew%.	lo%01f.	5Gev%.	
N II 36.0 tato	23,4 5,8	10,8	1,1	1.8	tato
206,0 tato	110,9 49,5		21,5	33,3	tato
	= 44,7 ≴0	lf.	= 34,8 %0	lt.	

Ruhrbenzin Aktionysellschaft

Pall 3. Teilstrom Wassergas Stufe I N. Endgas mit Konvertgaszusatz Kreislauf Stufe I D. Endgas D Konvertgaszusatz gerader Durchgang Stufe II D.

	Benzin'	bis 200°	01 200	-320°	Paraffin
	60Gen∕≸.	63%01f.			loGew%.
N I lol, o tato	61,0		30,0	the state of the s	lo,o tato
	50Gev%.	50%011.	30Gows.	40%01f.	2oGew%.
DI 60,0 tato	and the second of the second		18,0		12,0 tato
	50Gews.	30%01f.	30Gew%.	-8701f.	20Ge 7%.
D II 47.0 tato	23.5	7.6	14,1	1,1	9.4 tato
D 208,0 tato	114.5	60.5	62.1	20.8	31,4 tato
		52 8 % 0:	12	33,5-%01	12,4 04.00

Fall 4. Gesemtes Wassergas Kreislauf einstufig D.

Sygas sus Endgas D Ther Konvertierung in geradem Durchgang ein- oder zweistufig in N.

	Benzin	bis 200	<u>01 200</u>	-320°	Paraffin
D I - 171,0 tato	51Gew%. 87,2 65Gew%.	50%01f. 43,6	27Gew\$. 46,2	40%01f. 18,5	22Gew%. 37,6 560%.
N I+II 47.6 tato 218,6 tato	30;9 118;1	9.3 52,9	14.3 60.5	20,2	2.4 40.0 tato
		44,8 %0	lf.	= 33,4 %011	

Durchrechnung von Fall 4.

1.) Konvertierung des Endgases aus dem Kreislauf der Mitteldruck-Anlage. Bei Konvertierung von 43,8% auf 5% CO im Konvertgas beträgt die Volumenvermehrung 1,438/1,05 = 1,37. Die Zusammensetzung des Konvertgases ergibt sich entsprechend der Umsete zungsgleichung: CO + H₂O = CO₂ + H₂ zu:

					<u>н</u> 2		<u> </u>
	Endgas : Konvert	D gas 5% CO	125,0	438,0 68.5	286,	0 27	124
					369	5	
	Konvert		494,5	68,5	655,	5 27	
_Zusamme	nse tzung	1n %	36,19	5,0	\$ 47,	3% 2.0	\$ 9.1\$

2.) Zusammensetzung des Synthesegases für die Normaldruck-Anlage. Vom Endgas der Mitteldruck-Anlage wird die Menge Eg2 zur Kon vertierung abgezweigt und als Konvertgasmenge Kg dem unveränderten Teilstrom Eg; des Endgases der Mitteldruck-Anlage, wieder zugesetzt. Entsprechend den Analysen des Endgases und Konvertgases:

da jiga ili gi kaybabasan s	<u> </u>	CO	Ho	CH	Ŋ,	
Endgas D	12,5	43,8	28.	6 2.	7 12	4
Konvertgas	36,1	5,0	47	B 2.	in Arman Santa	1
und dem H2/CO-	Verhältn	ls von 2.00	in	Svæs N	gelten fole	ende Be-
ziehungen.		a ∓	giga Sarai Sarai	7 2 M 7 F - 7		

Eg₁ x 28,6% H₂ + Kg x 47,8% H₂ = 2(Eg₁x43,8%CO+Kgx 5% CO) oder

Kg = 1,561 x Eg₁

sowie

Kg = 1,37 x Eg₂

und Hieraus folgen:

Eg₂= 20 000 Nm³/h Kg = 27 400 " Eg₁= 17 500 " Sygas N = 44 900 "

Eg, +Eg,= 37 500 Nm³/h

			co.	00		H ₂	CH,	1	ī.,	
		Im ³ /h	2 19	7 662	5	808	474	2	172 Nm	Zh :
Kg 2	7 400		9 890	1 370	13	100	55 o		49o •	
SG N 44		•	12 08	9 032	18	102 7	024		662	-
 Zusem	ense.	tzung	26,8%	20,29	6 4	0,3%	2,3%	lo	.4%	

Ruhrbenzin Aktiongesellschaft

5.) Unterlagen zur Gassufarbeitung der Stufe II RB in der Zeit von Marz bis August 1940.

and desired to the second of t	CO2	CO	н,	CH.	N-
Sygas II N	24.4	19.7	39 A	5.2	77 %
Endgas II N	42,8	8,6	17.9	13.0	17.7
to the superior of the superior of the superior	Koco,	υ _{CO}	$v_{\rm H_2}$		Ko _n
e eggen	43,0	72,2	71,1	-	36 . 2

Zu bemerken ist, daß der Unterschied zwischen der Kontraktion nach Rest-N2 und nach CO2 unwahrscheinlich hoch ist, wohl als Folge der Fehler, die der Rest- N2-Bestimmung anhaften. Als mittlere Werte wurden daher für die Durchrechnung von Fall 4 als Kontraktion 40% und als CO-Umsatz 70% eingesetzt.

4.) Analysendaten der Stufe II Werk Scharzheide in der Zeit von Juni bie August 1940. (Mittelwerte der Analysen vom 22.6./20.7./ 22.7/1.8./5.8. 1940)

_		CO	H ₂	Cr	<u></u>	N ₂	C, H
Sygas N II	39,3	12,5	24,9	14,	3	8.5	0.5
Endgas N II	50,4	ა,5	13,2	19.		9.8	
5.) <u>Ber</u>	echnung	der Endgasans	lyse de	r Norma	ldru	ck-Anla	
Umsatz CO	70≸		, Y	Н2_	69	60,6	
Bildung C1+2	20%	202,0		403,0		102,4	The second of the second
Bildung CO2	7%	141.4	رور در اور در اور اور اور اور اور اور اور اور اور او	300,6		25,8)	
Bildung-03+4	-18 %	———— 6 0, 6		102,4	, с ва	22.8	8.6%
Verflüssigung	60%	18% CH4: 25,5	x 3,0	= 76,5	COR	6 2.8)	an an an an an Salah Andria. Talah di Maraya Kababa
		2% C2H6: 2,8	x 2,5	= 7,0	CO	9.9)	
		7# co2:+ 9.9		- 9.9	CO	†268 ,0)=	46,6%
		38,2					17.4%
		141,4					100,0%
		38.2	_ Men	genkont	rakt	. 40.4%	ber.
		103,2			مسروه ومعوضات و	en de la companya de	ararah dan aranga
		ar Paris to	ang a star filipin	73,6			
				300,6	. "		

Ausbeuteberechnung:

60% Verfl.x 70% CO-Ums.x202% CO 1. Sygas x 14,2/22,4 = 53,7 g/Syg.x

x) bedeutet die schon im Sygss vorhandenen Mengen an CHA bzw. CO2.

die zu den neugebildeten Mengen hinzugezählt werden missen,um den
Gesamtgehalt im Endgas zu erhalten.

Wasserwäsche von Konvertgas.

Verschiebung in den Mengen und Analysen von Konvertgas und Synthesegas, falle die Konvertierung des Endgasteilstromee aus der Mitteldruck-Anlage nach praktisch restloser Herausnahme der Gasol-kohlenwasserstoffe in einer Druck-Konvertierungs-Anlage vorgenommen und das Konvertgas durch eine Wasserwäsche von CO₂ befreit werden kann. Der Auswascheffekt wird zu 80% angenommen, wobei von den übrigen Gasbestandteilen 2% als verloren angesehen werden sollten.

gen Gasbestandteil	on 2%	als verl	oren ang	eschen w	erden e	ollten.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CO ₂	CO	H ₂	CHA	N ₂	
Konvertgasanalyse		36,1	5,0	47,8	2,0	9,1	*
Konvertgesmenge 2	7 400	9 830	1 370	13 100	550	2 490	Nm ³ /h
Auswaschung		7 910	27	262	- 11	50	ئــــــــــــــــــــــــــــــــــــ
Konvertgasmenge 1 nach Ausweschung	9 140	1 980	1 343	12 838	539	2 440	•
Zusammensetzung	Samuel Albania (1995) Samuel Albania (1995) Samuel Albania (1995)			67,1			
Die Zusammen hergestellten Synth						nvertgal	
	-	CO2	CO	Н2	CH	N ₂	
Konvertgas 19	140	1 980	1 340	12 838	539	2 440	Sm ³ /h
Indges D 1	500	2 190	7 662	5 002	474	2 172	
Syges N 36	640	4 170	9 005	17 840	1013	4 612	

Obh.-Holten, den 11. MErz 1942.
Abt. DVA. Hr./Wg.-

206

Herren Prof. Dr. Martin,

Dir. "- Hagemann,
Al-berts,

je besonders.

Betr.: Spezielle Clefingynthese-Versuche.

Beiliegend übergebe ich den Bericht über einen Wassergaskreislaufversuch in einem typgerechten Mitteldruck-Syntheseofen (Ofen 10, 12. Füllg.).

Die-Versuchsreihe seigt, unter welchen Bedingungen optimale Ergebnisse ersielt werden; besonders ist die gute Wirkung einer verminderten Gasbelastung und eines hohen CO-Partialdruckes im Wassergas zu erkennen.

Durchschrift

Abt. Druckversuchsanlage.

Spezielle Clefinsynthese-Versuche Wassergaskreislauf über Kobaltmischkontakt.

Normal-Kobaltmischkontakt 2 - 3 mm (Röstgur) der K.F. in den Monaten Oktober 1941 - Januar 1942 eine Versuchsserie zur Olefinsynthese durchgeführt, über deren Ergebnis in den Monatsberichten bereits kurz gesprochen wurde.

Die verwendete Apparatur war wie bisher bei den Dauerversuchen mit der 10. und 11. Füllung die gleiche.

A.) Anfahren:

Der Ofen wurde wie die vorangegangenen Versuche (10. u.ll.Füllg) mit dem Restgas der RB im Kreislauf angefahren und nach 183 Betr.-Stdn. auf die normale Belastung mit Wassergas im Kreislauf 1 + 3 umgestellt, wobei die Temperatur 164,2°C betrug. Der nach 231 Betr.-Stdn. zunächst in kleinen Mengen anfallende Paraffingatäch war gelb-weiß, d.h. frei von allen Kontaktbestandteilen; der Umsatz betrug zu dieser Zeit 65 % des eingesetzten CC + H₂, die Temperatur lag bei 192,5°C.

Verflüssigungsgrad und Methanbildung ließen die bekannte gute Anfangsaktivität des Kontaktes unter Anfall olefinreicher Produkte erkennen.

B.) Einfluß der Belastung auf die Clefinsynthese:

In Spalte 1 - 2 - 3 der anliegenden Tabelle DVA Nr.91 wird die Steigerung des Olefingehaltes in den flüssigen Produkten durch Erniedrigung der Gasbelastung gezeigt. Die Temperatur und die Höhe des Kreislaufes blieb hierbei unverändert. Die verminderte Belastung bedingte eine Steigerung des CO + H2-Umsetzungsgrades (% CO + H2-Umsatz) - der effektive CC + H2-Umsatz ging naturgemäß entsprechend der Belastung zurück - wodurch das Verhältnis H2/CO im Ofeneintrittsgas (Frischgas + Rücklaufgas) mehr und mehr zum CO verschoben und so die Olefinbildung in

ويرين المستعددة

den flüss.PP begünstigt wurde. Auch ging erwartungsgemäß bei der Belastungserniedrigung der Benzinanteil zurück, während der Hartparaffinanteil anstieg und die Mittelprodukte Öl und Weichparaffin hinreichend unverändert blieben. Die genaue Betrachtung der Ergebnisse, noch stärker aber die graphische Darstellung der Daten, (vergl.beilieg. Kurvenblatt DVA Nr.92) läßt eindeutig erkennen, daß eine wesentliche Steigerung des Olefingehaltes in den flüssigen Produkten. - d.h. über rd. 70 Vol. % SPL im Bi - 200°C und " 50 " " 01 200 - 320°C hineus durch weitere Erniedrigung der Belastung unter 0,75 nicht zu erwarten ist, sodaß mit Recht von optimalen Ergebnissen bei 0,75-facher Belastung mit Wassergas (H2: CO = 1,20) gesprochen werden kann. Diese Tatsache wird außerdem durch die erzielten Ausbeuten erhärtet, besonders augenfällig durch die Ausbeute Maßzahl (Ausbeute/Umsatz).

in the second of		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Belastung	1,02	0,75	<u>.</u> .	0,49
CO + H2-Umsatz %	65,1	70,2	a pinamana (a pinamana).	77,2
Ausbeute an flüss.PP g/Nm ³ CC + H ₂	117,5	134,3		148,5
Ausbeute-Maßzahl (ohne Gasol)	180,5	191,5	المراجعة ا	196,5

C.) Einfluß des H₂/CO-Verhältnisses im Wassergas auf das H₂/CO-Verhältnis im Ofeneintrittsgas und damit auf die Olefinsynthese:

Spalte 4-5-6 zeigt den Betrieb des Cfens bei gleicher Temperatur wie zuvor unter Einsatz eines $\rm H_2$ -reicheren Wassergases und unter Anwendung eines Kreislaufes (1+2), wie Hoesch die Clefinsynthese zu betreiben beabsichtigte.

Ean erkennt eindeutig aus diesen Zahlen, daß unter normaler Belastung des Ofens die für die Weiterverarbeitung notwendigen Clefingehalte nicht erreicht werden, erst bei halber Relastung des Ofens wird produkten-qualitätsmäßig das erreicht, was unter Einsatz eines Wassergases mit H2/CO = 1,20 - 1,25 unter Anwendung eines dreifachen Kreislaufes zu bekommen is + /vergl.Spalte 1 und 6).

Der Einfluß des Kreislaufes und des H₂/CC-Verhältnisses im einzusetzenden Wassergas wird im beilieg. Kurvenbild DVA Nr.93 graphisch aufgezeigt: Höhe des Kreislaufes und CC-Gehalt im Wassergas bestimmen neben Belastung und Temperatur das die Olefinsynthese kennzeichnende und für sie maßgebende H₂/CO-Verhältnis im Ofeneintrittsgas (Wassergas + Rücklaufgas). Naturgemäß wird die Beschaffenheit des Kontaktes für die Olefinsynthese auch von großer Bedeutung sein, jedoch sollen die katalytisch bedingten Einflüsse im Rahmen dieses Berichtes unberücksichtigt bleiben. Unsere Beobachtungen wurden an einem Kobalt - Mischkontakt gemacht.

In Spalte 7 gegenüber Spalte 5 wird dann gezeigt, daß unter Einsatz H2-reicheren Wassergases durch Erhöhung des Kreis-laufes von 1 + 2 auf 1 + 3 das H2/CO-Verhältnis im Ofeneintrittsgas zum CO verschoben werden kann, wodurch dann (vergl. Spalte 5-u. 7) eine qualitative Verbesserung der Produkte im Hinblick auf die Weiterverarbeitung erzielt wird.

D.) Einfluß der Temperatur auf die Olefinsynthese: Der Versuch zur Steigerung des Olefingehaltes durch Steigerung der Temperatur - sie bedingt eine Umsatzsteigerung und damit eine wesentliche Verschiebung des Ho/CO-Verhältnisses im Ofeneintrittsgas zum CO - führte ebenso wie früher auch jetzt unter Einsatz Ho-reicheren Wassergases nicht zum Erfolg. Hier war, ebenso wie schon früher gezeigt, (vergl. Bericht Ofen 10, 11. Füllg. vom 1.11.41) mit steigender Temperatur eine stärker hydrierende Wirkung des Wasserstoffes festzustellen. Die Ergebnisse aus dieser Versuchsserie sind in Spalte-4-9-10 und in Spalte 7 - 8 der Anlage DVA, Nr. 91 festgelegt. Es gilt somit auch für die Olefinsynthese ganz allgemein: Je höher die Temperatur, um so stärker die Hydrierung, d.h. Vergasung steigt an und Olefingehalt in den flüss.PP geht zurück. Hiermit parallel läuft die Steigerung des Benzinanteils der flüss.PP, wobei der Hartparaffingehalt zurückgeht.

Nach dem augenblicklichen Stand der Mitteldruck-Synthese wird an den Kontakt die Forderung gestellt, pro m³ Kontakt in 6 Monaten 280.000 Nm³ CO + H₂ umzusetzen, d.h. pro Mitteldrucksyntheseofen 2,8 Mio Nm³ CO + H₂.

Der hier beschriebene Versuchsofen hatte nach Ablauf der Versuchsphase in Spalte 10 der Anlage DVA Nr.91 eine Kontaktleistung von

129.500 Nm3 CO + H2-Umsatz/m3 Kontakt,

d.h. 46,3 % der Leistung vollbracht, die der Ofen in 6 Monaten an CC + H2 umzusetzen hat.

Spalte ll zeigt den Ofen bei höherer Belastung. Sie lag bei 1,24, d.h. sie war um 24 % höher als normal und würde auf den RB-Ofen bezogen 1240 Nm³ Wassergas/Std. betragen. Hier sind die aus 10 Betr.-Tagen erzielten Ergebnisse aufgeführt. Sie alle, sowohl Ausbeute an flüss.PP als auch Qualität der Primärprodukte sind in jeder Hinsicht als vollbefriedigend zu bezeichnen.

Es muß aber besonders betont werden, daß die Ergebnisse gerade dieses Versuchsabschnittes nur als Hinweis zu bewerten sind keinesfalls als Maßstab für die Lebensdauer oder Leistung eines Ofens bei der Wassergaskreislaufsynthese ausgelegt werden können. Immerhin ist es aber interessant zu zeigen, daß selbst ein Ofen, mit dem zuvor die verschiedenen Versuche gefahren wurden, noch zu solcher Leistung imstande ist.

Allgemeines:

Nach den hier beschriebenen und schon früher bei uns durchgeführten Glefinsyntheseversuchen können wir sagen, daß die Glefinbildung in den Produkten bei der CO-Hydrierung unter Anwendung von Wassergas von folgenden Punkten abhängig ist:

- a.) H2: CO im Ofeneintrittsgas (Frischgas + Rücklaufgas)
- b.) H2 : CO im Frischgas (Wassergas)
 - c.) CO + H2-Umsatz
- /d.) CO + H2 im Frischgas (Wassergas)
- e.) Belastung
- f.) Kreislauf
 - g.) Temperatur
 - h.) Ofenalter (Kontaktleistung)
 - i.) Kontakt (katalytische Eigenschaften).

Alle die Punkte sind eng miteinander verbunden.

Eine Anderung der einen Bedingung kann gleich die Verschiebung in anderen Punkten zur Folge haben. Diese müssen optimal gewählt werden und führen dann zu den gewünschten Ergebnissen.

Zusammenfassung:_

Beim Wassergaskreislauf bringt die <u>Belastungsminderung</u> höhere Ausbeuten, weniger Benzin aber mehr Hartparaffin, höhere Olefin-gehalte im Benzin und Öl, spez.größere Schmierölausbeuten und bessere Viskositätspolhöhen (vergl.beilieg.Tabelle DVA Nr.91, Spalte 1, 2, 3 und 3, 4, 5. 6).

Geringer CO-Partialdruck im Wassergas bedingt geringere Ausbeuten, mehr Benzin weniger Hartparaffin, geringere Olefingehalte im Benzin u. Öl, spez.geringere Schmierölausbeuten, schlechtere VPH und selbst bei größeren Benzinmengen geringere Schmierölmengen (siehe beilieg. Tab. DVA Nr. 91, Spalte 2 u. 7).

Die Höhe des Kreislaufes bestimmt mit das H₂/CO-Verhältnis im Ofeneintrittsgas (Wassergas + Rücklaufgas) und beeinflußt ungünstigerweise die Olefinsynthese wesentlich dann, wenn der Kreislauf unter 1 + 3 abgesenkt wird (siehe beilieg. Tabelle DVA Nr.91, Spalte 5 u.7 und Kurvenbild DVA Nr.93).

Beide Maßnahmen zusammen angewendet, d.h. CO-Partialdruck - und Kreislauferniedrigung, bringen entsprechend größere Nachteile für die Olefinsynthese in jeder Hinsicht (siehe beilieg. Tabelle DVA Nr.91, Spalte 1, 2, 3 und Spalte 4, 5, 6).

Erhöhte Temperaturen wirken sich in jeder Hinsicht für die Olefinsynthese ungünstig aus (siehe beilieg. Tabelle DVA Nr.91, Spalte 4, 9, 10).

Die Anwendung des Kreislaufes 1 + 3 ist, wie aus der Krümmung der Kurvenschar (siehe beilieg Kurvenbild DVA Nr.93) ersichtlich als optimal anzusprechen.

	0.2	130	50.6			,0	4	9 72	87.8			240	2	65 67			3 6	050			7 7	400		189	0.58	0/43/	S	7	971		4.4	c,		2	# 3.		\$	
											4							7					† 			0.52 9									6.			
	200	P. 2. 4	3.5%	26.0		6.5	/9.0	23.7	\$. C			200		979		3	70	548			3.5	128.0	9	20.0	690	23.6/37.6		433	16.5))	7/2	8	Y	60.7	60-63		ģ	2
		77.5	**	0 777		70.7	20.0	9.67	50.2			7.24.2	* *	4:39			700	853			2.25	425.0	; ; ;	25.0	4.3	26.6/37.6		26.7	22		209	2		8	3 .		œ	
	78.5	7.58 7.68	46.2 2.6.2	6 9 7		10.7	78.4	5.2	52.0			37.50	2	3.3			770	655			8:65	128.4) ;	78.2	200	23.0 / 38.0		7.36	7.2.4	Y	206.2	\$, , , , , , , , , , , , , , , , , , ,	29			distriction for last classification from the last contract
	82	, , , , , , , , , , , , , , , , , , ,	74.0	720		7	22.7	19.5	50.4			2440		63.0			75.02	630			53.3	127.8		26.0	200	25.1/32.2		1,39	(4.9		200	0		440			*	
	3	6,68	40,0	7 20		3	2.3	9 77	7.74			1920	***	5.99			7,73	434			7:33	141.9		84.6	290	22.7.7.6		7.35	4.5		200	2		25.5			9	
47.0	3	7.62	200	9 97		\$ \$	20.2	2.5.4	î		2			67.0			0 60	626 626			2 X S	(32 €		922	0.22	26.0736.2		7.36	/6.6		2 2 2 2	3		52.0			'n	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	26.6	36.0		2	7.27	7.62	40.4		0	3774 0		58.3			103.2	592			55.2	726.0		72.3	6.39	2.90./8.97		6.36	1,5		200	7		460			•	
201	*	4.63	2.0	2 CS		7.9	20.7	22.8	70.7	200	2			7.66		-	63.2	#425 32.8			64.0	3.44		**	0.445	4.44/4.02		*			2 00	8		939	30-34		o;	
A Section American	*/	197	36.4	2.2		73.6	20.4	85.0	7.73	. */		792 9		86.03		1	588 €	29.4 462			50.7	734.3		70.2	0 497	7		877	72.3		0 20			2 2	7.	1:3	Ŋ	
- CF 19 -0			10/01					2.5.7				0.756		64.3			7044	578			7.5	4/25		159	0.64	Y		1,27	72.9		9	7)		3	35 - 39.	20 - 26	X	がない。大きない
5	Sopute %	J. Holl	30 303/	300000	2007-07	7 480,0	0.00	2007	300			30.00	2.0%	20 C	286		88	78.	State	206.7	M. Grad.	Lagas -	15 William 20	68 96	(autaus)	828	100	rgas	350rg@ 76		8	7		1207.1	0.	7		
Cab Dackies	Sthmieralausbeute % Des auf S. Foaute		Week Child	0-100-0	Smierol a		2	3 2	0, 00	Seguedage		Hichte 4. E-Proa	790	C. DOLLER	Tol % Cucture SPL		. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	22-11	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	COOK SIL	A COLUMN	9//w. //w. 8gas	75.0.77	COFF. Umsats	" (Ruchaudas)		W. W. C. Oronoralistic	Mar Hasserges	Unerte c. Hassargas %		Tengaratur "C	Meestauf		Belastung 1120	国際の公のの記	(executes xo)	20016	

Obh.-Holten, den 8. Mürs 1341. RCH.Abt.DVA. Hr./Wg.-

Herrn Professor Hartin.

In der Anlage eind die Versuchergebnisse aus Ofen verschiedener Equart zusenmengestellt.

Die Versuche wurden unter gleichen Bedingungen mit Wassergas

im Kreislauf 1 + 3 durchgeführt.

Veranlassung für die Versuche waren die unterschiedlichen Ergebnisse zwischen dem Ferschungelabor und uns bei den Versuchen mit Pe-Kontakten.

Hier sollte gezeigt werden, das der bisher den Versuchen mit Eiserkontakten dienende Ofen 11 in seiner Warmeleistung anderen erprobten Konstruktionen gleichkommt.

Bei dieser Gelegenheit konnte wieder einmal, wie schon be früheren Versuchen in Ufen 4, (vergl.Bericht Bahr - Heger vom 18.1.1939) gesoigt werden, inwisselt eine größere Wärmeleitfläc von gänztigen Einfluß für die Synthese ist.

Bicht der Abstand eines Kontaktkornes von seinem wärmenbführenden Blech oder Rohrwand ist maßgebend, sondern nur die dem Gesamt-Kontaktvolumen_sur_Verfügung-stehende-Wärmeleitfläche, wobei aber diese wiederum über den Inhalt des Ofens vollkommen gleichmüßig vorteilt sein muß.

Wonn die im beiliegenden Bericht aufgeführte Temperatur in Ofen 11 um 200 höher gelegen hat als bei Ofen 10, so ist dieses nur ein Boweis für das geringere Temporaturgefülle bei Ofen 11, was wiederum in der größeren Wärmeleitfläche dieses Ofens seine Ursache findet.

Absohließend kann darum gesagt werden, daß die in Ofen 11 durchgeführten Verauche mit Eisenkontakten nicht zu ungünstigen oder gar schlechten Ergebnissen geführt haten.

Dor in den nächeten Wochen mit Eisenkontakt in Betrieb kommende 4,5 m lange Drucklamellenofen wird zeigen, ob die bisher in Ofen 11 erzielten Ergebnisse reproduziert werden können.

odr.: Hg.,

He.

Obh.-Holton, den 6. HETZ 1941. ECH.Abt.DVA. P2./Hg.-

Pruckvorauchaanlage.

Vergleich des 14 mm - Rohrofens (11) mit einem normalen MD-Mannesmann-Doppelrohrofen (10).

Die 8. Füllung in Cfon 11 war ein normaler Kobalt-Mischkontakt 2 - 3 mm auf Rüstgur, Kenn-Br. 18/919.

Zwock des Versuches war es, festzustellen, ob der Ofen 11 in seinem Värnsableitungsvernögen und damit in seiner Leistung dem normalen Syntheseofen gleich ist.

Ofen 11 enthält 267 Rohre, deren Durchmesser innen 14 mm und außen 22 mm beträgt. Bei einer Länge von 3080 mm ergibt sich demnach ein Ofenvolumen von 127 Litern. Somit errechnet eich für 1 Liter Kontaktraum eine Kühlfläche von 0.286 m².

Ofen 10 enthält s. Et. 87 normale Doppelrohre, wie sie sich im Ofen der RB bofinden, wobei der innere ß des Außenrohres 44 mm, der Bußere ß des Innenrohres 24 mm beträgt. Bei der Länge von 4000 mm beträgt des Ofenvolumen 370 Liter. Für 1 Liter Kontaktraum stehen dementsprechend 0,201 m² Kühlfläche zur Verfügung.

Versuch in Ofen 10, 10. Füllung betrieben. Rach dem Anfahren mit Restgas RB (5 Betriebstage) wurde der Ofen 11 auf Wassergas-kreislauf 1 + 3 bei 175 °C umgeschaltet. Um einen rd. 65 Sigen CC + H2-Umsats su erhalten, mußte die Temperatur schnell auf 194 °C erhöht werden. Der über 31 Betriebstage ersielte CO + R2-Umsats von 63 \$ bedingte während dieser Zeit eine Temperaturerhöhung auf 200 °C, wobei die mittlere Temperatur bei 196,5 °C lag.

Die folgende Gegenüberstellung der Perioden von Ofen 10 aus dem ersten 12 und von Ofen 11 aus 31 Betriebstagen 183t erkennen, daß selbst über die 2½-fache Betriebsseit der Ofen 11 noch wesentlich besser. Der praktische Verflüssigungsgrad in Ofen 11 lag dem in Ofen 10 gegenüber (89,3 - 82,6) so günstig.

daß .

daß selbst bei einem um-] % niedriger liegenden Umsats in Ofen 11 eine noch höhere Ausbaute erzielt wurde. Parallel verläuft hiersit die Siedelage der Produkte (angeführt sind die Siedelanslysen nach Engler), denn mit steigender Vergasung konnte bisher immer eine Verschiebung der Siedelage nach unten festgestellt werden.

Ofen	75 ma 19 m n 4 7 n	31
	Doppelrobrofen der RB.	14 mm - Pohrofen
Betriebstage	_12	<u>u</u>
Temperatur ^O C	191 - 197 6 194,8	196 - 200 Ø 1965
CO + H2-Umusts	65,7	62 .7
CO + H2-Veril. analyt.	61,4	63,0
CO - Veril. prakt. Ausbeuto g/Km³ Kutzgos	82,6 115,8	69,3 117, 0
Produktes		
a.) Siedelage: - 2		29 Gaw.5
oterh.		46
b.) Clefingehalt:		Mark Mark Mark
Bensin - 2	70 Vol. 5	71 Vol.≶
51 200 - 3		55
Nach insgesamt 31 Betrieb Ofen 10 vorgenommenen Bel	satungserhöhung die Bel	lestung enf
1,20 Km ³ /Form. Vol., Std. das bessere Värmenbleitur		
	0fen 10	Ofen 11
Belastung	1,00 1,20	1,00 1,20
CO + HUnsatz in Em3	452 639	161 216
Produktion " kg	75,7 99,7	30,1 39,8
Diese Zahlen bedeuten, be	sogen auf die Normalbel	lestung, für
	Ofen 10	Ofen 11
eine Umsatssteigerung von		34,2 ≉
" Produktionseteig. "	31,7 \$	32,2 \$
rakua Climbort Monto raduuluu uulutti.		interior control in the control of t

Steigerung der Vergnaung

Aus der Gegenüberstellung geht hervor, daß die Vergasung in Ofen 11 trots eines Kehrumsatzes von 34 % GO + H2 gegenüber der normalen Fahrweise, mur in geringen Kaße anstieg. Die in Ofen 11 erreichte Kehrproduktion konnte daher in Ofen 10 nur boi einer um noch 7 % höher liegenden Umsatzsteigerung erzielt werden. Ebenfalls konnte erkannt werden, daß mit dem Anstieg der Vergasung in Ofen 10 die Produkte wesentlich leichter wurden, wührend durch die Erhöhung des Gesantumsatzes in Ofen 11 eine Verschiebung in der Biedelage der Produkte nicht auftrat:

	Ofen 10 Ofen 11
Felastung	0,98 1,20 1,01 1,18
_Sicdelage: - 2000	51 60 45 46 Gaw.\$
200 - 320° oberh. 320°	30 27 28 28 * 19 13 26 25 *
Olefingehalt:	
Bensin - 200°	
W1ttel81 200 - 3200	46 43 48 53

Es konnte also einwandfrei bewiesen werden, daß der Ofen 11 nicht nur einem normalen MD-Synthescofen in seinem Wärmeleitvormögen gleichkommt, sondern noch besser ist.

Display	Druckversu	nsanl	age ———			rroduki					.124940
Sy-W-Gas 302 Nm= /24 Stdn Resigns 143 Nm* /24 Stdn 6,0 Nm*/h 12,6 Nm*/h	Füllung: 🐒 👪		k	A	/	Gasdruck	nden	7	atü		
12,6 Nm*/h Kreislauf 1 + 3	Sy-W-Gas	302	Nm= /	/24 51		. ,,		143 6,	0	Nm³ Nm³/	/24 St
Analysen:	,	12,6	Nm³/h			Kreislaufgo Kreislauf	IS (1997)	906 1 + 3		Nm ⁵ /	/24 Std
Sygas 13,8 0,2 0,1 45,5 24,4 2,1 13,9 1,02 1,00	Belastung	,22			lm³/kg C	o, h	0,99	<u></u>	Nn	n³/Norm	Vol., h
Restgas 13,8 0,2 0,1 45,5 24,4 2,1 13,9 1,02 11,9 1,00	Analysen:	co,	_C _m H _n	Ο,	со	Н,	CH,	N,	C-Z	N ₂ -F	Litergowich
H ₁ : CO im Sygas	Restgas	13,8		0,1	45,5	24,4	2,1	13,9	1,02		
Verbrauch von H₂. CO 2,02 Durchschnittliche Kontraktion 53,4 % 9/n CO 9/n CO <td>_H,: CO_im_Sygas_</td> <td></td> <td>1,22</td> <td>ºja</td> <td></td> <td>Kontrakt</td> <td></td> <td> N,</td> <td><u> </u></td> <td>4,0</td> <td></td>	_H,: CO_im_Sygas_		1,22	ºja		Kontrakt		N,	<u> </u>	4,0	
umgesetzt 46,1 76,2 62,7 verflüssigt 42,3 37,6 39,5 VerflGrad A 91,7 48,6 63,0 P 89,3 44,3 59,3 CH, + +Cm Hn 5 € CO, D, & bezogen auf CO-Umsatz Produkte Gesamtprodukt Produkte Gesamtprodukt Produkte Coo. 44 Gew.# AK. Benzin % 200°. 44 Gew.# AK. Benzin % 200°. 44 Gew.# Sywasser kg = Xflüss. Produkte Olefine Vol.% > 320°. 33		co	2,02				nittliche K				100
Produkte Gesamtprodukt Paraffingatsch kg % SB Bngleranalyses Ol-Kondensat % -200° 44 Gew.\$ AK. Benzin % 200° 26 % Flüssige Prod. 30,82 /24 Stdn. 100 % 320° 33 % Sywasser kg = ×flüss. Produkte Olefine Vol.% -200°. 58 ; 200-320° 51 Ausbeute Flüssige Prod. 102,1 g/Nm² Sygas 117,0 g/Nm² Nutzgas g/Nm² Idealgas Gasol 4,4 5,0 " " Gesamt-Produkt 106,5 122,0 " Sywasser " " " Bemerkungen: Durchschnitt aus der Fahrperiode mit normaler	VerflGrad A		91,7 89,3		9		48,0 44,	5		63,0	
Paraffingatsch kg % % SB Rngleranalyse: Ol-Kondensat % % 200° 44 Gew. 6 A.K. Benzin % 200° 26 % Flüssige Prod. 30,82 %/24 Stdn. 100 % 320° 33 % Sywasser kg = ×flüss. Produkte Vol. % 200° 38 ; 200° 320° 51 Ausbeute Flüssige Prod. 102,1 g/Nm² Sygas 117,0 g/Nm² Nutzgas g/Nm² Idealgas Gasol 4,4 5,0 % Gesamt-Produkt 106,5 % 122,0 % Sywasser Bemerkungen: Durchschnitt aus der Fahrperiode mit normaler		٠, ٥, ٥	СС).	. 0	bezogen	auf CO-				
Ausbeute Flüssige Prod. 102,1 g/Nm² Sygas 117,0 g/Nm² Nutzgas g/Nm² Idealgas Gasol 4,4 " 5,0 " Gesamt-Produkt 106,5 " 122,0 " Sywasser " " " Bemerkungen: Durchschnitt aus der Fahrperiode mit normaler	Päraffingatsch OI-Kondensat AK. Benzin Flüssige Prod.	30,8	2	/2	4 sta	D. 100	% 201 % 201		14 G 26 33 Vol.º/	malys	
Gasol 4,4 5,0 Gesamt-Produkt 106,5 122,0 Sywasser Bemerkungen: Durchschnitt aus der Fahrperiode mit normaler	Ausbeute							200°!	58 ; 2	00-320°	<u>51 · </u>
Bemerkungen: Durchschnitt aus der Fahrperiode mit normaler	Gasol Gesamt-Produkt	106	,4 ,5	. " . "	•	5,0	,,	Jizgas 		g/Nm* Io	dealgas
···DATED ARTIR •··		Dur	hsohn	itt a	na de:	r Fahr	pe rl od	" le mit	norma	ler	
		DATE	m smR	• •							~

Druckversuchsan	lage		. 1	Produk	ionsbe	richt vo	r• .£•4 m	0 - 20	~-15 3 °
	7			-	 				<u>: </u>
Ofen-Nr. 11		B ')	Betriebsstu	nden		57. B	etrieb	stag
Füllung: 8.			/ - - 7	Gasdruck			atü	/ 1. a.p., ;	
Core Inhalt. 10,3	والمسييانة	kg		emperatu				211,4	
The state of the s	وسيره والمسترية	5/2000	0.0	بسساء وإدم فامرس				-2	
Sy-W-Gas 360	Nm ^a			Restgas		152		Nm²	
,	15 17 F		· - :					Nm²//	
, , , , , , , , , , , , , , , , , , ,			K	reislaufga	5	1077		Nm ^a	
15,0	Nm³/l	<u> </u>		reislauf			Analogie e		
Belastung 1,46			Nm ⁴ /kg ¹ Cc	, h	1,18		N	m³/Norm\	/ol., h
Analysen: CO,	C _m H _n	0,	CO -	- H.	CH,	Ň,	C-Z	N, F	Litergewid
Sygas 6,6	1	0.2	30 3	40.4					
Restgas 17,9	0,2	0,2	43,8	48,4					
Kralfgas 14.6	1, 100 11 111	0,1					1,01		经存货
			72,7	20,0		1491	1,01		
		edirect	-	3		1		1.4.50	1.11. 4.1
Gesamt-Inerte (Idealgas)	13,8			Kontrakt	ion nach	Menge.	- 5	7.8	
H₂: CO im Sygas	1,27			,,,		N,		8,4	14
H.: CO im Restgas	0,42		3	, ,,	,,	CO,		3,1	9/0
Verbrauch von H ₂ : CO	2,06			Durchsch	nittliche Ko	ontraktion	5	8,1	%
	% CC)		el esta de la companya de la company	^н . Н.		9/2	со+н,	
vmgesetzt	51,	7	 		83,8			69,7	
verflüssigt	45,				41,8	or of Standard Sta		43.7	A second
VerflGrad. A.	88,	7			49,8		. 	62,6	
,, ,, P	88,	0			42,7			57,6	
						<u></u>	. 'aja, i		** 1
CH, + +Cm Hn		D,	a marie en	bezogen	ant CO-f	Jmsatz	<u> </u>		
Produkte							esamt	produkt	
Paraffingatisch		-kg			″. SB	F- F-	nolev	inalys	
Ol-Kondensat			e nimmey,	Tree Total			46		
AK. Benzin							28		
lüssige Prod. 39.4	10	/24	Adu.	100	1000		28		
	(Q ==	7	s. Produkt			Olefine	Vol.º/		*
								° 00-320°	50
Ausbeute	*							-5 -20	
			V 1	_	• • • • • • • • • • • • • • • • • • • •			. **	
	4	J/Nmª Syg	as12	7,09	/Nm3: Nut	zgas		g/Nm* Id	ealgas
Sasol	· · · · · · · · · · · · · · · · · · ·	7 m - m		agina ang	" _		تأ وسماد والزج	54.5	
Sesamt-Produkt		,, ,,				9 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			,,
			. 4			3 Sec. 20		٠.	
ywasser					<u>"'</u> '	·			

î.

Herrn Professor Martin.

In der Anlage überreiche ich den Bericht über den Wassergaskreislaufversuch in einem typgerechten Mannesmann-Doppelrohrofen:

Ofen 10.

Zur analytischen Untersuchung der Produkte wurden wöchentlich Proben an das Betriebslabor II der RE, für die Schnierölsyntheseversuche ebensoviel Proben an das R.L. und große Eengen an Ölkondensat für die Oxosynthese an das F.L. gegeben.

Die fraktionierte Destillation des Gasols wurde vom H.L. ausgeführt.

Ddr. : Hg.

A.,

P.,

Roe.,

Tr.

٧.

Obh.-Holten, den 1. November 1941. Abt. DVA. Hr./Wg.-

Olefinsynthese

wassergaskreislauf über Kobalt - Mischkontakt .

Im Rahmen der Olefinsynthese wurde von Ende Februar 1941 bis Ende September 1941 ein weiterer Wassergaskreislaufversuch über Kobalt-Mischkontakt durchgeführt.

Die Versuchsbedingungen waren, vor Inbetriebnahme des Ofens, wie folgt festgelegt:

Belastung: 0,80 Nm³/Norm.-Vol.
entspr. " bei RB: 800 Nm³/Ofen, Std.
Gasdruck: 7 atü

Kreislauf: 1+3

Temperatur max.: 225°C = 25 Wasserdampfdruck
C0 + H₂-Umsatz: 70 %

Ofen: Mannesmann-Doppelrohr 4 m

Kontakt: Normal-Kobaltmischkontakt 2 - 3 mm

Der in den Monaten August 1940 bis Februar 1941 durchgeführte Wassergaskreislaufversuch-ließ-in-mancher Hinsicht optimale Betriebsbedingungen erkennen, unter welchen der hier beschriebene Versuch gefahren werden mußte:

So wurde darum für diesen Versuch die Belastung auf 80 % der Normal-Belastung festgelegt, die Temperatur von 225°C = 25 atü Dampfdruck nicht überschritten, und der Kreislauf bei 1 + 3 gehalten (1 Teil W-gas + 3 Teile Restgas).

Die gestellten Aufgaben waren:

I. Was für ein Ergebnis erzielt man unter den obigen

Bedingungen im Dauerbetrieb, wenn das <u>benzinfreie</u>

Restgas in den Kreislauf gebracht wird, d.h. das Rücklaufgas nach der Druck-A.K.-Anlage für den Kreislaufbetrieb
entnommen wird?

Wie sehen die hierbei erhaltenen Produkte im Hinblick

auf die Weiterverarbeitung aus ?

- II. Welche Veränderung erfahren die mit dem Endgas rück= geführten Benzine im Hinblick auf die Weiterverarbeitung und wie liegt überhaupt das Gesamtergebnis eines unter diesen Bedingungen -Benzin im Kreislauf- gefahrenen Ofens ? Ist z.B. die Vergasung höher ?
- III. Kann die Verschiebung des Ho/CO-Verhältnisses im Ofeneintrittsgas (Frischgas + Rücklanfgas) zum CO eine An= reicherung der Olefine in den Produkten herbeiführen, wenn die Verschiebung des Ho/CO durch eine Temperatur= steigerung - die hierdurch aufkommende Umsatzeteigerung zieht, eine Wasserstoffminderung nach sich - erzwungen
 - IV. Wie ist der Charakter der Gasole unter verschiedenen Pahrweisen
 - a) mit Benzin im Kreislauf.

 - V. Welche Temperaturen sind bei der Olefinsynthese zu fahren ? Wie groß muß die Belastung des Ofens sein ?

A.) Versuchsbericht.

1. Beschreibung der halbtechnischen Versuchsapparaturen:

a) Ofen:

Mannesmann-Doppelrohrofen, 4 m lang.

Robrdurchmesser 44 x 24 mm.

Rohrquerschnitt 10.67 cm²

Kontaktrauminhalt 372 Liter.

Wärmeleitfläche

0.211 m²/Liter Kontaktraum.

b) Kondensation:

Paraffinvorlage 3 m vom Ofen entfernt, luftgekühlt; Ölkondensation, bestehend aus 2 indirekt gekühlten Rohrkühlern, je 8 m² Kühlfläche, zusammen 16 m² Kühlfläche.

c) A.K.-Anlage, bestehend aus 2 Türmen:

Länge der Türme

200 cm 0

Querschnitt der Türme

0.126 m²

Fillung "

95 kg Supersorbon FS je Turm

d) Kompressor:

Zweistufig mit einer Ansaugeleistung von rd. 200 m³/std. bei einem Enddruck von 7 atü. Er komprimiert gleichzeitig die vor dem Kompressor entspannte Rücklaufgasmenge.

2.) Kontakt: .

Normal-Kobaltmischkontakt 2 - 3 mm, auf Röstgur. Kenn-Nr. 1286. aus der Katorfabrik.

Reduziert bei 425°C
Reduktionswert 62 %
Staub 4,4 %
Abrieb 9,3 %
Schüttgewicht 250 g/Liter.

Zusammensetzung: 100 Co, 5 ThO2, 8 MgO, 200 Kgr.

Zusammenstzung n.Analyse:

34,60 % Co = 100 1,57 % Tho₂ = >4,54 % v. Co 2,45 % MgO = 7,09 % v.Co 48,60 % Kgr. = 100 : 140 .

Eingefüllte Henge: 92,2 kg mit 32 kg Go.

3.) Anfahren:

Der Ofen wurde am 27.2.1941 bei einer Temperatur von 120°C mit Restgas RB im Kreislauf 1 + 3 angefahren und in den ersten 15 Betr.-Stunden in der Temperatur bis auf 165°C erhöht.

Nach 134-stündigem Restgas-Kreislaufbetrieb wurde er dann auf Wassergas im Kreislauf 1 + 3 umgestellt und in den nachfolgenden zwei Tagen in der Temperatur bis auf 190,7°C gefahren.

Der gewünschte CO + H₂-Umsatz von 70 ½ war erreicht, die Temperatur mußte jedoch schon bald wieder erhöht werden und erreichte am 14. Betr.-Tag 195,4°C, bei der dann der Ofen längere Zeit unter Beibehalten des CO + H₂-Umsatzes von rd. 70 % betrieben werden konnte.

Nach 275 Betr.-Stunden war die Absättigung des Kontaktes voll= zogen, der anfallende Paraffingatsch weiß und frei von Kontaktbestandteilen.

Eine Betriebsstörung (Kompressor defekt) erfordertenach der 493. Betr.-Stunde einen Stillstand von 4 Stunden zur Überholung

Uberholung der masonine; der Ofen wurde sofort entspanntund mit N₂ unter Atmosphärendruck beschickt, die Temperatur bei 192,5 °C gehalten. Nach Beseitigung der Störung wurde der Ofen bei 192,5 °C sofort mit Wassergas im Kreislauf wieder angefahren. Der daraufhin anfallende Paraffingatsch war zunächst schwach rosa, dann rosa-grau, dann grau, dann hell grau und schließlich (86 Betr.-Stunden nach dem Stillstand) wieder weiß gefärbt. Die Erscheinung des Austragens von Kontaktbestandteilen durch den Paraffingatsch bei Wiederanfahren nach einem Stillstand ist schon oft bei Wassergaskreislaufversuchen beobachtet worden und die Ursache hierfür im wesentlichen auch erkannt. Z.Zt. laufen bei uns Versuche, die nach praktischen Verfahren suchen, um diesem Übelstand entgegen zu wirken.

Wenn es auch bei diesem Stillstand nicht bis zurSchwarzfärbung des Paraffingatsches kam, so ist dieser Umstand einzig
und allein auf das Alter des Kontaktes (20 Betr.-Tage) zurückzuführen. Denn, wie von uns früher schon erkannt, ist die
Schädigung des Kontaktes durch Stillstand um so geringer,
je älter der Kontakt ist.

Die wesentliche Verschiebung der Siedelage des Gesamtproduktes zum Benzin und der Abfall des Verflüssigungsgrades wurde auch diesesmal wieder-beobachtet:

	Vor Nach	
ritaria de la composição de la <u>co</u> sta de la composição d	Stillstand Stillsta	ınd
Benzin - 200°C	32 Gew.% 42 Gew.%	
Öl 200 – 320°C	22 n 22 n	
Paraff. oberh. 320°C	46 " 36 "	١.
CO + H2-Umsatz	69,2 Vol.% 69,2 Vol.%	5.
Ausbeute an flüss.PP.		
g/Nm3 Nutzgas (CO+H2)	136,1	Anna a an

In diesem Fall sind 5.6 Gew. 11 flüss. PP. weniger nach dem Stillstand angefallen, obgleich der CO + H2-Umsatz unversändert geblieben ist.

4.) Versuchsperioden:

a) entsprechend der Aufgabe I

ohne Benzin im Kreislauf

Versuchsdauer:

120 Betr.-Tage.

Belastung:

0,80 Nm3/Norm.-Vol.

= 29,9 Nm³/Ofen, Std.

Gasdruck:

7 atii 1 + 3

Kreislauf: Temperatur:

190,7 - 209°0

= 1.0 201°C

CO + H_-Umsatz:

69,5 %

CO + H2-Verfl.-Grad:

60,3 % (einschl. Gasol)

Ausbeute

an flüss. PP.

124,7 g/Hm3 CO + Ha

" Gasol

8,1 g/Nm³ CO + H₂

gesamt 132,8 g/Nm³ CO +

Ausbeute-Maßzahl m.Gasol 191

CH4+ bez.auf CO-Umsatz 5,9 %

00₂ "" " " " " " "

0,6 %

Siedelage des Gesamtproduktes (flüssig)

(Widmerkolonne, ab 250°C im Vakuum.)

Benzin $-200^{\circ}C = 46$ $51 200 - 320^{\circ}C = 26$

Weichparaff. 320 - 460°C = 19

Hartparaff. oberh. 460° C = 9 "
Tafelparaff. aus $320 - 460^{\circ}$ C = 3 "

Olefine "SPL"

im Benzin

 -200° C = 65 Vol.% $200 - 320^{\circ}$ C = 45 "

Weitere Zahlen sind aus dem anliegenden Produktionsbericht A und dem Kurvenbild DVA Nr. 87 ersichtlich.

Zusammenfassend kann über diesen 4-monatigen Versuchsabschnitt gesagt werden, daß die hierbei erzielten Ergebnisse in jeder Hinsicht voll befriedigend sind.

Die Ursache für die gute Aufarbeitung in jeder Hinsicht

liegt

liegt <u>eindeutig</u> bei der niedrigen Belastung, wie dieses in den nachfolgenden Zahlen gezeigt wird:

Ofen 10	10. Fullg. 11. Fullg.
Belastung	1.00 0.80
CO + H2-Umsatz	62,7 \$ 69,5 \$
Ausbeute an flüss.pp.	
g/Nm3 co + H ₂	104,5
Ausbeuts-Maßzahl	<u>167</u> <u>179.5</u>
ohne Gasol	

b) entsprechend der Aufgabe II

Schon in früheren Versuchen ist der Einfluß des Benzinumfahrens nach verschiedenen Richtungen hin geprüft worden,
wobei aber stets das Hauptaugenmerk auf Verflüssigungsgrad
und Siedelage der Produkte gesetzt wurde. Diesesmal galt
es vornehmlich den Charakter der Produkte selbst auf ihre
Verwendbarkeit für die Weiterverarbeitung aus beiden Fahrweisen zu prüfen.

Der Versuch wurde vom 121. - 168. Betr.-Tag = 48 Betr.-Tage so durchgeführt, daß eine Woche mit Benzin und dann eine Woche ohne Benzin im Kreislauf gefahren wurde. Durch das wechselweise Fahren war der Einfluß des Kontaktalterns von vornherein bei den Durchschnittsergebnissen aus den beiden Fahrweisen ausgeschlossen:

Fahrweise	ohne Benzin	mit Benzin
Belastung	0,80	0,79
Temperatur °C	210	210
Kreislauf	3,0	3,0
CO + Ho-Umsatz	71,5	69,8
00 + H2-VerflGrad prakt. (einschl. Gasol)	58,4	58,6
CH4 bez. auf CO-Umsatz	8,4	7,8
CO2	2,2	3,0
<u>Ausbeute</u> an		
flues. PP. g/Km3 (CO+H2)	120,0	118,0 ^{x)}
	12,0	11,5
GesAusbeute g/Nm3 (CO+H2)	132,0	129,5
Ausbeute-Maßzahl m. Gasol	184,6	185,5
Siedelage (Widmer, ab 250°C i.Vakuu	m)	
Gew. % Bensin - 200°C	51	51
" 61 200 – 320°C	26 - 27	26 - 27
" Weichparaff. 320 - 460°C	15 - 16	15 - 16
" Hertparaff. oberh. 460°C	7	7
Tafelparaff.aus 320 - 460°C	2 - 3	2 - 3
Olefine "SPL"		
Vol.% i. Benzin - 200°C	- 61,8	57,4
" " 01 200 – 320°C	46,7	46,3

Weitere Daten siehe Anlage Prod.-Bericht B. u. C.

x) hier sind die 1,75 kg Tagesverlust berücksichtigt, die nachweislich mit dem Kompr.-Verlustgas über Kolbenringe und mit dem Kompr.-Sohmierel verloren gehen. Dieser Verlust machte s. 2t. 2,35 Gew. der Tagesproduktion aus.

Nach diesen Daten erkennt man, daß weder in der Ausbeute, noch in der Siedelage des Gesamtproduktes bei beiden Fahr= weisen Unterschiede bestehen. Der um 4 - 5 Punkte geringere

Olefingehalt

Olefingehalt im Benzindestillat hat sich hier, wie beim vorigen Wassergaskreislaufversuch, bestätigt. Weit bedeutender ist aber die Konstitutionsänderung der Olefine im Benzinbereich dergestalt, daß diese bei der Sohmierölpolymerisation

- a) geringere Schmierdlausbeuten und
- b) höhere Viskositätspolhöhen

ergeben.

		n -	Ö 1 200	0 °a
Fahrweise	Betr Tag	Ausbeute	7 ₅₀	VPH
ohne Bensin	119.	48.8	14.9	3.64
mit "	125. 132.	44,6 45.4	10,1 16,7	1,64 1,80 1,72
mit "	139. 146.	41,0	9,8	1,84
mit	153.	48,4 41,2	13,7 9,0	1,70 1,84
ohne "	160. —167.	48,8 36,4	14,2 9 . 9	1,74

(Zahlenwerte entstammen den Schmierölversuchen im H.L.)
(Vergl. Bericht Clar, vom 2.8.1941)
Außerdem ist zu erkennen, daß sowohl Außeute als VPH
(siehe Kurvenbild DVA Br.87) schon bei der ersten Rückkehr
auf die alte Fahrweise den alten Stand nicht wieder erreichen.
Der Kontakt hat anscheinend durch das "Benzin -im- Kreislauffahren" eine Schädigung erfahren, so daß die alte Qualität der
Olefine eben nicht mehr erreicht wird.

Nach diesen Zahlen scheint darum der Kreislaufbetrieb unter Einschluß der A.R.-Anlage unerläßlich.

Allerdings hat die Fahrweise "mit Benzin im Kreislauf" auch technische Vorteile:

So ist bei gleicher Produktion an flüss. Produkten, wie schon in früheren Versuchen, auch hier wieder ein größerer Anfall an Ölkondensat festzustellen, wodurch eine wesentliche Entlastung der Aktivkohle gegenüber der Fahrweise "ohne Benzin im Kreislauf" aufkommt.:

-	Pahrweise mit Benzin ohne Benzin Gew.# Gew.#
	Paraffingatson 15 16
	Ölkondensat6848A.KBenzin1736

e) enteprechend der Aufgabe III.

Es ist früher einmal beobachtet worden, daß mit einer Verschiebung des H2/Co-Verhältnisses im Kreislaufgas (Frischgas + Rücklaufgas) zum CO hin eine wesentliche Erhöhung des Olefingehaltes in den flüssigen Produkten zu erreichen ist. Diese Kohlenoxydanreicherung im Kreislaufgas ist durch eine Temperaturerhöhung zu erreichen; diese bedingt eine Steigerung des Umsatzes, wodurch der H2-Gehalt im Restgas ungleich stärker als der CO-Gehalt abfällt und so unter Beibehalten eines bestimmten Kreislaufgas die Verschiebung des H2/CO-Verhältnisses zum CO im Kreislaufgas - Ofeneintrittsgas - herbeiführt:

Versuchszeit BetrTag	169176.	177182.	185188
Belastung	0,80	0,80	0,80
Temperatur OC	211,4	218,6	225
CO + H2-Umsatz	68,7	74,6	77,5
H2 : CO i. Krelfgas	-0,64	0,60	0,505
SPL-Olefine			
i.Benzin - 200°C	_63_	_59_	61
1.01 200 - 320°0	45	42	43
CO bez auf CO-Umsatz	4,3	6,5	9,1
CHA " " "	8,1	11,5	15,5
H ₂ /CO - Verbrauch	1,93	1,89	1,85
Siedelage:			
Gew.% Benzin - 200°C	51	56,5	62
01 200- 320°C	27	26,0	- 25
"	16	14,0	1 0
H.P. oberh.460°C	6	3,5	3
Dichte d.flüss.Primär= produktes bei 2000	0,743	0,732	0,724

Man sieht aber eindeutig, daß die Verschiebung des H₂/CO-Verhältnisses im Kreislaufgas <u>nicht</u> von so starkem Einfluß für die gewünschte höhere Olefinbildung ist, wie die Ursache für das Ansteigen der Vergasung (erhöhte Beanspruchung des Ofens, größerer Umsatz, höhere Temperatur), die eine niedrigere Olefinbildung nach sich zieht. Dieses Versuchsergebnis zeigt, daß unter solchen Umständen der Olefingehalt nicht ansteigt, sondern noch abfällt. Die Reaktion läuft ganz in Richtung: mehr Vergasung - weniger Olefine.

Das unter diesen Umständen eine wesentliche Verschiebung der Siedelage des Gesamtproduktes aufkommen mußte, versteht sieh von selbst und geht aus den angeführten Zahlen eindeutig hervor.

Erwähnenswert erscheint auch hier wieder die Tatsache, daß die Kohlensäurebildung (Konvertierung) bei steigender Temperatur größer wird.

Wenn auch die Ergebnisse der Schmierölsynthese aus dieser letzten Versuchsperiode nicht voll befriedigen konnten, so ist das Gesamtergebnis dieses Abschnittes, besonders inbezug auf die Ausbeute, noch als hinreichend zu bezeichnen:

Versuchsseit	-183204BetrTag-		
Versuchsdauer	22 BetrTage		
Fahrweise	ohne Benzin im Kreislaui		
Belastung	0,805 Nm ³ /NormVol.		
	= 29,9 Nm ³ /Ofen, Std.		
Gasdruck	7 atti		
Kreislauf	1 + 2,9		
Temperatur	225 °C		
CO+Ho-Umsatz	78,0 ≸		
CO+H2-VerflGrad prakt. 2(einschl. Gasol)	-52 , 5 %		
Ausbeute			
an flüss. PP.	115,3 g/Nm ³ CO + H ₂		
" Gasol	14.0 g/Nm ³ CO + H ₂		
	129,3 g/Nm ³ CO + H ₂		
Ausbeute-Maßzahl m. Gasol CH ₄ bez. auf CO-Umsatz	166 14,7 %		
002 " " " "	8,8 %		

Siedelage des Gesamtproduktes (flüssig) (Widmerkolonne, ab 250°C im Vakuum)

Benzin - 200°C = 63,2 Gew.\$

Öl 200-320°C = 24,6 "

Weichparaff. 320-460°C = 9,2 "

Hartparaff. oberh. 460°C = 3,0 "

Tafelparaff. = 2 - 3 Gew.\$ v.Gesamtprodukt.

Olefine "SPL"

Weitere Daten siehe Anlage Prod.-Bericht E .

d) entsprechend der Aufgabe IV.

Im Hinblick auf die Weiterverarbeitung des Gasols war es von Interesse zu erfahren, wie sich das Gasol aus der Olefinsynthese zusammensetzt. Auch konnte durch die verschiedenen Fahrweisen "mit und ohne Benzin im Kreislauf" eine Änderung im Charakter des Gesamtgasbls erwartet werden. Ganz allgemein soll folgendes vorausgesagt werden: Mit Älterwerden eines Ofens und bei Steigerung des Umsatzes durch Temperaturerhöhung, steigt entsprechend der Siedelageverschiebung der flüssigen Produkte zur Benzinseite der Gasolgehalt, sowie die gasförmigen XW überhaupt, was durch die nachfolgenden Zahlen gezeigt wird:

Ofenalter (BetrTag)	139.	174,	190.
Belastung	0,80	0,80	0.80
Temperatur ^O C	209	211,4	225
CO + HUmsetz	70,3	68,5	76.2
% CH _A	6,66	8,20	15.14
≸ C ₂ , C ₃ , C ₄	10,94	11,10	12.76
% C ₅ u. höhere KW 8	82,40	8 0.70	72,10
Dichte bei 20°C d. flüss.Primär-Produkte	0,750	0,743	0,722
Gew. Benzin - 200°C	48	51 -	62

Die fraktionierte Destillation der gasförmigen KW nach Podbielniak aus den beiden Fahrweisen mit und ohne Bensin im Kreislauf" ließ für das Gasol interessante und aufschlußreiche Unterschiede erkennen:

Der durch die Zahlenwerte nachfolgende Vergleich zeigt, daß in beiden Pällen der Gesamtgehalt an Gasol (C₃ + C₄) hinreichend gleich bleibt. Innerhalb der Fraktionen macht sich jedoch eine Verschiebung bemerkbar. So wird bei der Fahrweise ohne Benzin im Kreislauf rd. 28 Gew. mehr C₄, im gleichen Maße aber bei der Fahrweise mit-Benzin im Kreislauf weniger C₄, hierfür aber 28 Gew. mehr C₃ gebildet. Das Verhältnis von ungesättigten zu gesättigten KW bleibt bei beiden Fahrweisen in der C₃-Fraktion unverändert. In der C₄-Praktion geht der Anteil der Ungesättigten bei der Fahrweise mit Benzin im Kreislauf um 50 Gew. sp. gegenüber der Fahrweise ohne Benzin im Kreislauf, zurück, während der Gesättigtenanteil hinreichend konstant bleibt.

Es ist im wesentlichen das ungesättigte C₄, welches bei der Fahrweise mit Bensin im Kreislauf zurückgeht. Im gleichen Maße steigen die C₃-KW, ohne Änderung des Verhältnisses C₃- : C₃₊, an:

Fahrweise	mit Bensin 1.Krelf.	ohne Benzin
Belastung	0.80	0.80
Temperatur ^O C	209	211,4
CO + H2-Umsatz	70.3	68.5
Fluss.PP. g/Hm3 CO+H,	111,5	105.0
Gasol C3 + CA g/Nm3 CO+H2	12,3	13,9
Gesamtausbeute	123,8	118,7
Ausbeute-Maßzahl	176	173
C2H4 g/Nm3 Nutsgas (CO+H2)	0,47	0.12
O3 H6 Gew.#	17.57 36	7,8) 37
C3 H8 - n_	31.0 64 >49	13.1 63 >21
C4 H8	28,97 56	58.37 -74
C4 H10 "	22,6 44 >51	20.8 26 79

Der Gehalt an Athylen lag in beiden Fällen unter 0,5 g/Nm3 Hutsg.
Durch die Ausbeute-Maßzahl wird auch hier wieder bestätigt,

daß der Verflüssigungsgrad bei beiden Fahrweisen der gleicne ist. Wenn bei der Fahrweise ohne Benzin im Kreislauf rd. 1,6 g mehr Gasol entstand, so ist dieser Umstand auf die um 2,4°C höhere Temperatur zurückzuführen. Es wurde darauf geachtet, daß die Gasolausbeute bei beiden Fahrweisen, besonders aber bei der Fahrweise "ohne Benzin im Kreislauf", 100 %ig war; denn nur so konnte man von der ursprünglichen Zusammensetzung der Gasole aus dem Wassergaskreislaufbetrieb sprechen und Vergleiche aufnehmen.

Ließ man nun die Gasolausbeute bei der Fahrweise ohne Benzin im Kreislauf auf 45 % abfallen, sodaß stets 55 % des Gesamt= gasols durch Kreislauf über den Kontakt rückgeführt wurden, so entstanden wieder aus dem ungesättigten Anteil der C_4 -Fraktion C_3 - KW, wobei das Verhältnis C_3 : C_3 + von 31 : 69 gefunden wurde. Der gesättigte C_4 -Anteil machte hier 22,1 Gew.% vom Gesamtgasol aus.

Hieraus erhellt allgemein die Tatsache, daß durch die Fahreweise "mit Benzin + Gasol im Kreislauf" stets nur der ungesättigts C_4 -Anteil zurückgeht, aus dem dann im gleichen Maße C_3 -KW entstehen, die C_3 - : C_{3+} im Verhältnis 1 : 2 enthalten.

e) entsprechend der Aufgabe V.

Die letzten Wassergaskreislaufversuche über Normal-Kobaltmischkontakt einschl. des hier beschriebenen Versuches gestatten, über die anzuwendenden Temperaturen einige Angaben zu machen:

Ein bei normaler Belastung gefahrener Doppelrohrofen mit Wassergas im Kreislauf 1 + 3 wird, unter Einhalten eines 63 £igen 00 + H2-Umsatzes, nach 6 Monaten 220°C erreicht haben; während ein mit nur 80 % der Normalbelastung betriebener Ofen nach 6 Monaten 214°C erreicht hat, wenn der C0 + H2-Umsatz mit 70 % über die Dauer der Laufzeit beibehalten wird. Die Ursache für die höhere Temperatur im Fall 1 ist selbstverständlich durch den höheren effekt. Umsatz bedingt:

	Pall		1	2	
Belast	ung	ı	000	800	100
CO + H	einges.	• 1 1	87 0	695	
CO + H	umges.	, j. !	546	486	

Wichtig für eine gute Ausbeute an flüss. Produkten mit guten Qualitäten ist beim Wassergaskreislauf die Frage der Belastung:

Belastung	1,00	0,80
Lebensdauer:	6 Monate	6 Monate
Anfangstemperatur:	191°0	190°C
Endtemperatur:	220°C	214°C
%-CO + H2-Umsatz	63	70
CO + H2-Umsatz effekt.	546	486
Ausbeute g/Nm3 Nutzgas	104,5 fluss.	124,7 flüss.
Benzin - 200°C Gew.%	51 - 53	46 - 48
Schmieröl (n-Öl bei 200°)	Action to the second of the second	
Ausbeute	42,0	48,0
v ₅₀	14,0	17,0
VPH	1,71	1.67

In diesen Zahlen findet man wiederum eine Bestätigung für die gute Wirkung der 80 %igen Belastung. Es besteht somit verfahrensmäßig Deim Wassergaskreislauf in der Belastungs – Erniedrigung eine Möglichkeit, die Qualität der Produkte zu steigern, womit dann gleichzeitig eine Ausbeutesteigerung verbunden ist. Sie gestattet geringer zu vergasen, darum auch mehr und qualitativ bessere Olefine zu bilden.

Wenn auch die Gesamtproduktion an flüss. Produkten bei der verminderten Belastung (80 %) um 14 % gegenüber der Normalbelastung geringer ist, so ist, wie der nachfolgende Vergleich zeigt, die Schmierölproduktion hierbei nicht wesentlich geringer, defür aber die Qualität besser:

⁺⁾ Belastung · Ausbeute · Benzinanteil · Schmierolausbeute.

5. Durchschnittsergebnis über

204 Betr.-Tage:

Wenn auch im vorbeschriebenen versuch die einzelnen Versuchsperioden zur Lösung der verschiedensten Fragen unter verschiedenen Bedingungen gefahren wurden, so lassen sich doch folgende Durchschnittswerte für den Gesamtversuch ermitteln:

Belastung	= 0,80 Nm ³ /NormVol.
The Committee of the Co	= 29,8 Nm ³ /Ofen, Std.
entspr. bei RB	= 800 Nm ³ /Ofen, Std.,
Temperatur	= 190 - 225°C, 1.Ø 207°C
	= 12 - 25 atu Wasserdampfdruck
Kreislauf	÷ = 1 + 3
CO+H2-Umsatz	= 70,7 \$
CO+H2-VerflGrad prakt.	= 58,9 % (einschl. Gasol)
CHA bez. auf CO-Umsatz	=-6,6 %
CO ₂ " " " "	= 2,2 %
Ausbeute an flüss. PP.	= 121,8 g/Nm ³ Nutzgas (CO+H ₂)
" Gasol	$= 9.9 \text{ g/Nm}^3 \text{ (")}$
	= 131,7 g/Nm ³ Nutzgas (CO+H ₂)
	2/-

Siedelage:

Benzin - 200°C = 49.7 Gew.%

Öl 200 - 320°C = 25.7 "

Weichparaff. 320 - 460°C = 17.0 "

Hartparaff. oberh. 460°C = 7.6 "

Tafelparaff.aus 320 - 460°C = 2.5 - 3.0 Gew.%.

Olefine "SPL"

1. Benzin -200° C = 63 Vol.% 1. \circ l $200 - 320^{\circ}$ C = 45

Weitere Daten siehe Anlage Prod .- Bericht F.

6. Sonstige Eigenschaften der Produkte:

a.) Sauren - Ester:

Die Bestimmung der FZ und VZ im Laufe des 204-tägigen Versuches ließ allgemein erkennen, daß diese Zahlen zunächst bei einem frischen Kontakt sehr niedrig sind und dann mit Alterwerden des Kontaktes, mit steigender Temperatur und steigendem Umsatz, immer größer werden:

				Bi -	200 ⁰ 0	Ö 1 2	00-320°C
	Betr Tag	Temp.	CO+H ₂ -	NZ	VZ.	NZ	٧z
		000					
1.		200	68	2.4	1 4 1 1 1 1 1	1,00	1,80
1	72.	203,4	7 0	0,40	0,99	1,10	1,83
İ	105.	206,2	6 9	0,58	0,80	1,42	2,04
	181.	218,6	75	0,86	1,28	2,65	2,65
4	194.	225,0	79	1,40	1,73	2,85	3,50
4.	201	225,0	80	1,47	1,94	3.20	3.60

Während hiernach der Säuregehalt mit Alterwerden ansteigt, geht der Estergehalt (VZ - NZ) im gleichen Zuge schwach zurück. Außerdem sieht man, daß der Säuregehalt im Mittelölbereich um 140 % höher liegt als im Benzinbereich, wohingegen der Estergehalt (VZ - NZ) im Mittelölbereich den im Benzinbereich nur um rd. 50 % übersteigt.

b.) Oktanzahl - Cetanzahl:

Die Bestimmung der Klopffestigkeit des unbehandelten Benzindestillates - 200°C im CFR-Motor ergab eine

0Z von rd. 44

bei der Fahrweise ohne Benzin im Kreislauf, die aber dann auf 40 und darunter abfiel, wenn das Benzin im Kreislauf belassen wurde.

Etwa vom 180. Betr.-Tage an, d.h. von der Zeit der plötzlichen Temperatursteigerung von 211,4° auf 225°C zur Steigerung des Umsatzes mit dem Ziele einer höheren Olefinbildung, die aber. wie weiter vorn im Bericht gezeigt wird, nicht erreicht wurde (siehe Seite 9, Aufgabe III), steigt die OZ bis auf 53 im unbehandelten Benzindestillat (-200°C) an.

In jedem Fall liegt aber die 0Z für Benzindestillate - 200°C nach der H.R. bei 60 - 66.

Die <u>Cetanzahl</u> des Öldestillates von 200 - 320°C lag über die Gesamtzeit des Versuches bei

cz = 76 - 79.

7. Entleerung:

Der Ofen wurde nach 204 Betr.-Tagen stillgesetzt.

Die Entleerung des Ofens konnte ohne Extraktion oder

Hydrierung des Kontaktes in kürzester Zeit durch Klopfen mit

Bleihämmern durchgeführt werden. Die in 3 Rohren verbleibenden Kontaktreste wurden unter Anwendung der üblichen

Entleerungsmethoden ohne Schwierigkeiten entfernt.

Der ausgebrauchte Kontakt war in seiner Form vollkommen
erhalten geblieben, zeigte keinerlei Kohlenstoffabscheidung
und enthielt 100 - 120 Gew. Paraffin, bezogen auf den eingefüllten Frischkontakt.

8. Gesamt-Ofenleistung:

Der Wassergaskreislaufversuch in <u>Ofen 10</u> (11. Füllung) wurde insgesamt 204 Betr.-Tage gefahren. In dieser Zeit wurden 15.300 kg flüss. Produkte + 1.240kg (msd) = 16.540 kg Gesamt-Produkt erzeugt.

Das Ofenvolumen ist 372 Ltr; mit der 11. Füllung besaß der Ofen einen Kobaltinhalt von 32 kg.

Es errechnet sich somit eine Leistung von

517 kg Gesamtprodukt/kg Co.

Hieraus ergibt sich für den MD-Syntheseofen bei RB eine Jahresleistung (330 Betr.-Tage) von

665 jato flüss.Produkte

+ 54 " Gasol, 🧠

wenn der Ofen mit 800 Nm³ Wassergas/Std. belastet und der CO + H₂-Umsatz bei 71 % gehalten wird. (Inertgehalt im Wassergas 14 %, 100 %ige Produktenerfassung vorausgesetzt).

9. Allgemeines:

So wie bei früheren Versuchen mit Wassergas im Kreislauf konnte auch jetzt wieder beobachtet werden, daß eine geringe Verschiebung des H₂/CO-Verhältnisses im Wassergas Änderungen im Reaktionsverlauf herbeiführen kann. So brachte im ersten Versuchsabschnitt (120 Tage) eine Verschiebung des H₂/CO-Verhältnisses zum H₂ ein Ansteigen des Umsatzes und der Vergasung. Es betrug beispielweise der prakt.

CO + H₂-Verfl.-Grad (ohne Gasol)

- a.) 57.8 % bei H₂/CO = 1,25 , wobei der CO + H₂-Umsatz 70,2 % betrug und
- b.) 53.9 % bei H₂/CO = 1,33 . wobei der CO + H₂-Umsatz 72,3 % war.

Hierzu muß noch bemerkt werden, daß die Temperatur über den vorstehenden mehrwöchigen Vergleich unverändert gehalten werden konnte (vom 54. - 104. Betr.-Tag: 203,4°C) und der Abschnitt b zeitlich dem Abschnitt a folgte, wodurch der Beweis erbracht ist, daß eben nur der höhere Ho-Gehalt im Wassergas die Ursache vorstehender Ergabnisse ist. Aber nicht mur gasaufarbeitungemäßig kam eine Änderung auf, auch in den Produkten wirkte sich der höhere H2-Gehalt im Wassergas naturgemäß für die Olefinsynthese nachteilig aus: Neben der Siedelageverschiebung zum Benzin war der Olefingehalt in der Benzin - u. Ölfraktion um einige Punkte geringer, der dann seinerseits wiederum eine geringere Schmierblausbeute mit sich brachte. Anderseits bedingt der Abfall des H2/CO -Verhältnisses im Wassergas von 1,25 auf 1,20 einmal Abfall des Umsatzes um rd. 2 %, wobel aber Verfl.-Grad und Olefingehalt in den Produkten um einige Punkte ansteigen. Im Gegensatz zum Verbrauchsverhältnis beim MD-Synthesebetrieb mit Synthesegas (CO: H2 = 1:2), das bei rd. 1:2,15

liegt.

findet man beim Wassergaskreislauf unter Mitteldruck ein H2/CO-Verbrauchsverhältnis von 1,85 - 2,00. Die Ursache hierfür ist mit Sicherheit

- a.) in der stärkeren Konvertierung des CO bei Wassergasbetrieb unter Neubildung von H₂,
- b.) in der geringeren Methanbildung und
- c.) im höheren Olefingehalt der Produkte gegenüber der MD-Synthese mit Sygas

zu euchen.

Zusammenfassung:

Im vorstehenden Bericht sind die Ergebnisse eines 204-tägigen Versuches mit Wassergas im Kreislauf 1 + 3 über Kobalt -Mischkontakt aufgeführt.

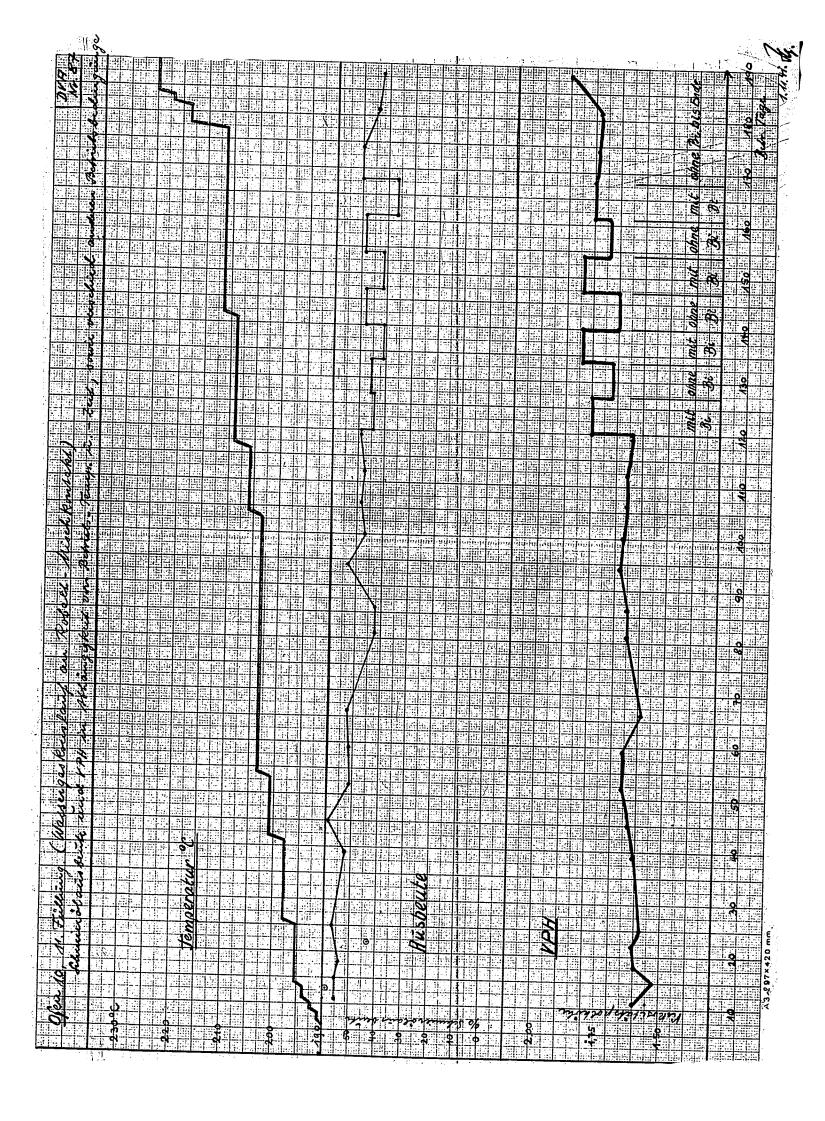
Es wird eingehend die Frage des Benzinumfahrens geprüft, die durch die verschiedene Belastung bedingte mehr oder weniger gute Aufarbeitung nach jeder Richtung dargelegt, das durch die Temperatur gesteuerte H₂/CO-Verhältnis im Kreislaufgas - Ofeneintrittsgas - auf seinen Enfluß bei der Bildung von Olefinen-untersucht, die Zusammensetzung des Gasols, sowie die durch verschiedene Fahrweise - mit oder ohne Benzin + Gasol im Kreislaufgas - bedingte Veränderung gezeigt.

Viele andere Fragen über die siedelagemäßige und qualitative Zusammensetzung der Produkte, sowie eine Reihe allgemeiner Synthesefragen des Wassergaskreislaufes, werden eingehend erörtert.

Anlagen: Kurvenbild DVA.Nr.87,
6 Prod.-Berichte A. -

Druckvers	vansani	age			Produktionsbericht vom 10.3 1.7994							
Ofen-Nr. 1	0		**		Betriebsstunden 275 2884.							
	1.			10 m	Betriebsstu	·	7	بشه مشهد		A		
Co-fa-Inhalt	32		t_		Gasdrudk			at ü 201	.0			
and grades			Kg .		Temperatur	·············· ·······················		otů	*c			
6/-w-Gas	718	N m³	/Tag	i y∭i!	lostgas		287 12		Ňm³			
	************	••••	atrai e ilia.	F :			· · · · · · · · · · · · · · · · · · ·		Nm²/	ħ.		
	29,9			1.	reislaufga:	-	2870		Nm *	***** ***		
Belastung	0,93	Nm³/h			reislauf	80	3.0					
Analysen:	CO.	C _m H _n	0,	kg.b CO	H _{2.5} .		N ₂	Nm³/N	N ₂ -F	Liter		
Wassergas	6,9		0,1				-	· · · · · · · · · · · · · · · · · · ·		- Siren		
37652	16,9	0,2	0,1	37,7		[6,5			
Rostgas Eroligas	14,4	0,2		43,4		3,1		1,01	15,5			
			0,1	42.0	27.4	2,4	+2.02	1.00	13,3			
Gesamt-Inerte (Id	eoloos)	14,0	· · · · · · · · · · · · · · · · · · ·	1 .	ontraktion				-	<u>. </u>		
H ₂ : CO im Sygas		1,28			oundation.		180	58,2				
H ₂ CO im Resigns		0,47	-		and al ,	" N,	•	-				
and the state of the state of the	The Street was a second	2,00	•••			. co		59,0	0	•••		
Verbrauch von Ha:	CO			I - D	urchschnittl	idis Kont	raktion .	22,00				
	وأتراهيها مالا	*/•CC			. 101		اداد الدائلة عوالي. الاداد الدائلة عوالي		о+н.	دو او ماغو ما الاهمار		
umgesetzt	<u>.</u>	52,		ار مرسوم محم م	82,			69,	*********			
verflüssigt		49,	-		37,	2		42,				
VerflGrad A		93,		an araba. Sa	45.	2		61,				
, P		85,	U				• •		5 (obi			
CH++ CmHa	5.9		0	6				60,	3 (m11	<u>: a</u>		
Produkte		CO:			bezogen e	ouf CO-I						
· -		per unit de la constante de la La constante de la constante d						esamış	produkt			
Paraffingatsch			kg			°′0	SB	•••••	•c			
Oi-Kondensat				••••••		0/0	— 100°		•1 6			
AK. Benzin	77,	00				"/•	— 200° .	••••	/ •I•			
Flüssige Prod		*****************************			100	•:6	<u> </u>		•/o	3.7.1		
Sywasser	k ₍	; = 	58 × Rű:	s. Produk	te		Olefine		Val. %			
Anaharra					To an	<u> </u>	– 200°	, 20	0-320.			
Ausboute		07 A	and to a real models	W-gas	7.64		e campana	· · · · · · · · · · · · · · · · · · ·				
Flüssige Prod.		07.0	g/Nm³\$		124,7	g/Nm³ N	lutzgas	00+H ₂) g/Nm³	decla		
Gasol		7,0		**			-					
Gesamt-Produkt		14.0	•	,,	132,8	•						
Sywasser			<u> </u>	,				ئىنى ئىلىنى <u>د</u> ئى		ر ا دران ا مو		
Bemerkungen	18				1		سور پاستان دخت	y je samaja	an gaireánaí rigi			
	An'	fang -	Pari	ode 11	ber 12	O Ret	r. Tos	20.2				
(H)	*****			L		~ ~~	- 4-4-6	, . .				

Druckversu	disani	age	•••• •••		Produkt	lonsbe	ri ckt vo	m. 9.7	1	2. B 94.
Ofen-Nr. 10 Füllung: 11.			«g		Betriabsstu Gasdruck Temperatur	7		otü		
s/-w-Gas	26	Nm '	Tag		Resigos		32		Nm³	
	9,8			1,	" (reislaufgas	280	13.7 50		Nm³	/ b
Belastung	0,93	Nm 1/h .			reislauf				•••••	
Analysen:	CO,	CmHn	Nm	² / kg,h	Q			Nm*/N		
Wassergas		CMITT		-		CH.	Ν,	C-Z	Ng-F	Litergewich
27,73	6,4		0,1	38,6		0,3	6,8		6,5	
Resigns Krsligas	17.3	0,3	0,1	43.2		4.3	16,2	1.00	16,2	
rechn.	4			41,7	25,3					
Gesamt-Inerte (Ide		3,6		· · · · · · · · · · · · · · · · · · ·		****	*			
		. 24		-K	entraktion	nach Men	80		0,6	
H ₁ 2CO Im Sygas	***********	•				" N ₂		5	9,8	
H ₂ CO im Restgas		.43	•	- - :::		со				
Verbrauch von Ha: C	O	,89	********	D	vrchschnittli	tie Kontr	aktion	6	0,2	••••••••••••••••••••••••••••••••••••••
umgesetzt		55,4		بولۇمۇرىي رەخكى دىرى	84,	5		71,)+H, 5	and the gap.
vorflüssigt		49,5			. 34,	7		41,	5	
VerfiGrad A		89,4			41,	3	الحرائب وروي	58,		
и п Р		76.4 84.5			**************************************			52.	9 (ob	ne Gaso È Gaso
CH14 + CmHn	8,4	CO,	2	,2	bezogen-a	ufsCO_U	,			0430
Produkto	د در		والمعارب والمعارب					related		er, out year and or
Paraffingatsch	1 	• • •	1. 1. 1.4					samtp		
Ol-Kondensat			· kg	• ••••••					۰°C	
V-K. Benzin		***********		······································		" . I	- 100°	9 4 4 10	•/e	
lüssige Prod	74,2	2					***	• • • • • • • • • • • • • • • • • • • •		
ywasser		_ 1,6	4		100	` 		1		
			× nuss	. Produkt	•	0	lefine		ol. %	
lusbouto						1	200°	; 200	320	
lüssige Prod.	103			-gas	120.0			00+H ₂)		N producti
osol	10	,4	/Nm* W]	12,0	i/Nm³ Nu	tzgas		g/Nm³ l	dealgas
iesamt-Produkt	114		• ,	,	132.0	,,	<i>*</i>			. [
ywasser				,	-56,0	e ••	"		• •	[
omerkungen:							~		. ,	.,
	10.00		1					,		1
(D)	Ver	euchs	period	le ohr	e Benz	in in	Kreis	lauf.		
I 164										


Druckversudisanlage	Produktionsbericht vom 2.7 19.8 - 1941
Ofen-Nr. 20	Betriobsstunden = 648 = 27 Tage
Füllung: 11.	The state of the s
Confo-Inhalt 32	Gasdruck
Corre-innair	Temperatur 18.4 of 210,0 °C
6/w-Gas 708 Nm / Tag	288
A)-W-GGS	Restgas Nm³
	randa Miranda Baraga Mangala Baraga Bara
29.5	Kreislaufgas 2830 Nm³
A 50	Kreislauf
Belastung Q492 Nm²/kg.h- Analysen: CO ₂ C _m H _n O ₄ CO	
VARRATGRA	
5,2 - 0,1 38,	6 48,2 0,3 6,6 - 6,42
Restges 16,6 0,2 0,1 44,	2 19,4 4,0 15,5 1,01 15,40
Krelfges 42.	3 26.4
reenn. 42,	8 26,6
Gesamt-Inorto (idealgas) 13,2	Kontraktion nach Menge 59.3
H _s : CO im Sygas1,25	, N, 58,3
H _z CO im Restgas	
1.07	and the second of the second o
	Durchschnittliche Kontraktion 70,0
"/•CO 52 ,9	%CO+H.
	83,4 69,8
rerflüssligt 47.2	37.6
Verfil-Grad A 89.2	46.9 60.0
- 79.4	53,6 (ohne Gas
87.0	58,6 (mit Gas
H ₁₊ + C _m H _n 7,8 CO, 3,0	bezogen auf CO-Umsatz
Produkte	Gesamtprodukt
araffingatschka	
araffingalsch kg	
L-K. Benzin	— 100°
70 DE . 3 7ET) - 60 C	200°
	100 % 320°
ywassor kg = 1,67 ×flüss. Produ	Ofoffine Vol. %
	— 200° 200 - 320°
lusboute	to the second of
Ussige Prod.	118,0 g/Nm' Nutzgas (CO+H2) g/Nm' Ideolgas
asol 10,0	11,5
esamt-Produkt	129,5
rwasser	
emorkungen:	<u> </u>
Varenchenew of a state	Benzin im Kreislauf.
(C) Actention BI	Paneth in Plaister.
(U.)	5

Druckverse	Jansan	age .			Produk	lionsbe	widht v	_{om} 20.	8 ;	2.9.194
Ofen-Nr. 10	_ = -	•		1/2		l _e ,	A DOR	۸.		
Füllung: 11	أنقل معيد								Zena.	14 Pag
Co-Fe-inhalt					Gasdruck					
20 ye-mindi)			ď		Temperatu	rio Taballo	19,5	oti 212	.2 ·c	
S/W-Gas-	716	Nm1/	Tag	- 	Restgas		290		Nm³	
	• • • • • • • • • • • • • • • • • • • •				. ,		12	,1 '	··· Nm³	
"		···· "	•		Creislaufga	B	2720		Nm³	" ", - .
	29,8	Nm³/ħ		K	reislauf .				····· Pum-	
	0.93		Nm		Q			Nm ³ /N	ormVol.	
Analysen	co.	CmHn	0,	co	H,	CH.	N ₂	C-Z	N ₂ -F	Utergewid
Wassergas	6,2		0,1	38.8	47.9	0,3	6 79	1. 1.		
Rostgas	17,7	0,2	0,1		18,4	• • • • • • • • • • • • • • • • • • • •			6.7	
Kreliges				41.7	26,8	4,7	10,2	1,02	15.9	
rechn.			. I. t. j., 2 j.,	41.6	26,2					
Gesamt-Inerte (ide	olonei I.	3.3			1.0.1					
Ha: CO im Syggs		,24	• T/• · · · · · · · · · · · · · · · · · · ·	. K	niraktion	nach Mer	ъge	59		0/0
		••••••	•			" N ₃		57	,9	01e
H ₂ CO im Restgas		43"	- 7	11/2		" co				9/p
-Verbrauch von Ha: C	0 4	90-		Du	ırchschnittii	the Kontr	aktion	58,	.7	
	أستعرضها	*/•CO		·- 3.			t diskuddi s	e jaranera	dane care	
umgesetzt		54,7			84	0 1		70.9)+H ₂	
verflüssigt		46.7			37					
VerflGrad A		85.4		April 19	and the second	.2		41,3		
" " P		74.0				ı		58,3		
			••••		***************************************	••••••				e Geso
CH++ CmHn	9,3	CO2***		. 3			Sarana	<u>55.0</u>	(mit	Gase
Produkte				tument is	bezogen a	ur co-u	msatz			<u>.</u>
ere ere ere ere ere							Ge	samipi	odukt	
Paraffingalsch			kg			, : s	В	3		
Ol-Kondensat			,							الم
AK. Benzin		· · · · · · · · · · · · · · · · · · ·		******			- 200°		-10	
Flüssige Prod				••••••	1GO •	1 1	i de la Carlo		•[e	
Sywasser	kg =	1,64	×flūss	Produkta		·	320 •		• 10	
<u> </u>			7	20010			lefino		ol. */•	
Ausboute	Alternative and a contract	G.			• • • • • • •		200*	200	- 320°	
Flüssige Prod.	99	3.		gas .	74.6				G. Gray. Trans	
Gasol		.4	Nm Car	.	10,9	/Nm³ Nu	tzgas (O	(2 Hz	g/Nm³ Id	lealgas
Gesamt-Produkt		.7							. "	.
Sywasser			,,,	4	25,5		"		١	
Bemerkungen:			" "	<u> </u>		11 - 1	<u>, , , , , , , , , , , , , , , , , , , </u>			
		7.		1		1	4 .	, .		"
	Versu	chaper	1ode	Yon 1	69. –	182.	Pa+-	Roa	g. g., inc. a. G.	376
(1))		-, r = - :				1	ma nt.	-rag.		
スシオ										

Drudevers	vdisan	ago	الموادلة الأواد • ما يا مجاد المريي		Produkt	ionsbe	richt vo	m 3.9 .	- 24	9.194
Ofen-Nr. 10)					(Constant		100 A	4 20 47
Füllung: 11		i formini. Trakego			Batriabsstu		4358	- 45	80. m	22 Ta
Co-Me-Inhalt					Gasdruck		7	atü	9. 74	
CO-ID-mnqif			kg :		Comperatur	2	5	atü 22	5 ·c	
S/-W-Gas	720_		/220	1	*					
		Nm'	0		lestgas		274		Nm³	
	- ' '				,,		11,		Nm*/1	,
	30				reislaufgas		2800		Nm *	
Belastung	94	···Nm¹/h			reislauf		2,9			<u> </u>
Analysen:	co.	CmHn	O	1 CO	Q.				ormVol., h	
Wassergas	6,8			 		CH4	N _e	C-Z_	N ₂ -F	Litergewick
Signature 1		~A P	0,1		47.5	0,3	7,3		7,13	
Resigns		0,5	0.1	30,5	10,7	8,4	15,7	1,10	18.50	
rechn.		•••••		38.4	19.7					
Gesamt-Inerte (Ide	ology) I	4.5				omonemum V				
Har CO Im Syggs		,25		Ko	ntraktion r	ach Men	ge	61,9		•/•
H ₂ CO im Restgas		,28		-		. N.	••••	61,5	35.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
			•			" co,				
Verbrauch von Ha:	O - mari	,00		Du	rchschnittlic	he Kontre	aktion	61,7		····•°/o
	ra katawa		وأنكسوه		•/oH ₁		San a la fabrica de	•/•CC	+ H.	i katan ya y
umgesetzt	a market and a second second	51,0			91,4	<u> </u>	eri in siriyi	78,		
verflüssigt	•	16,7			37.4	.		41.4	.	
VerflGrad A		76,5			40.	<u>. </u>		53,2		
. P		7.5							(ohne	Geno
CH + C H 3	4,7	co,	8,8	В			<u></u>	52,5	(m1+	Gago
Produkte	an also at more			<u>b</u>	ezogen-ou	f-CO-Ur				
Paraffingatsch				حاليا أواليا			Ge	samtpi	odokt	ar 7: 1
Ol-Kondensat		••••	kg	••••••	······································	SE	3	············	•c	
AK. Benzin	*** ***********************************	,, <u>a</u>	,) -	100•	!	9/0	1
	1,0				••••••••••	-	2009		•/•	
	kg =	1.7	,		100 %	- ==	320 •		•/6	
	×g =	=	×tiüss.	Produkte	1.1.		efine		1. %	
Ausbeute	or of the						200°	, 200	320•	
lüssige Prod.	98,	6	V~	gas ,	17E 2					
asol	12,		/Nm 700	B	14,0°	Nm³ Nut	zgas (C	O+H2)	g/Nm³ Ide	algas
esamt-Produkt	110,	_				,		a	7	
ywasser			• "		29,3		,	11		. [
emerkungen:			* *							
		l.	***							1
	ersuch	s - 8	oblus	eriod	O VOR	183.	- 204	Rot-	_ Pa	
			h.	1 225	0			44		` <u> </u>

-.- 2...

Druckversu	chsanl	d eo			roduki	ionsbe	richt vo	" 10.)	- 24.	1941
Ofen-Nr. 10				w.			4880		04 Bet	
Föllung: 11			<u>-</u>		etriebsstu			T	UM DOU	
Core-Inhalt					asdrude .				. An	fang 1
Coyre-Innair	34		kg	T	emperatur	and fig	3	dtg XXI	•c 3 7	40
\$ W-Gas	716	Nm	Tag	-	2. 2. 3.		286	, y	\$1.	**************************************
		I V III -			estgas	-		.9	Nm* ,	
		•	_	_ _	relslaviga		2860		Nm³/h	
	29,8	Nm³/h			reislauf				Nm³	
Belastung	0,93		Nm			0,80	1+3.		ormVol., h	• • • • • • • • • • • • • • • • • • •
Analysen	co,	CmHn	0,		∵Н₃ —	CH4	N,	C-Z	N ₁ -F	Mergenide
Vassorgas Eyek	6,7	-	0,1	38.0	48,0	0,3	6,9		6,80	
Restgas	17.6	0.2	0,1		19.0		1		16,50	
Kreliges					26,2		***	M. UV.	WO 124	
Ho 1-00 1.	rolig	16 =	0,63				A Profession	12.5%		
Gesamt-Inerto (Ide	algas)	14,0	9/0	l K	ntraktion	nach Me	100	60,	0	
HarCO im Sygas		1,26				A1		58.	7	
H _a CO im Restgas		0,44				"				•/•
Verbrouch von He:		1,96				<u>, co</u>		59,	3	
verbroudi von rige			een ook 1 gal Marii waxaa 200 oo	1 00	rchschnittl		raktion			⁰ /o
umgesetzt	-,,	%CO			*/•I	.0	ا الراب المحمول الما	70,	2+H,	والمراشي
verflüssigt	•	49,2				.7				
Verill-Grad A		91,2	erane i e te ea		eri er er i			42,		
Vont-Orga A	i de la ···································	80,5		-		.9		60.) } (ohne	
		87,2	••••••		***************************************				tes)	
CH2++CMH6	,6		2,	2		- (60			7 /22 0	VABO
Produkte	are. <u>S</u> eechille		et para nero e pose o	and the second	Dezogen	-1	4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
			· · · · · · · · · · · · · · · · · · ·		•			esamt	rodekt	
Paraffingand			kg		1	•/•	SB		•c	
Ol-Kondensat		<u></u>				•/•	— 100 •		910	
AK. Benzin	74.9					%~.	 200°	•••		· - [3]
flüssige Prod					1	1/0	<u> 320° </u>		•/•	
Sywasser	k ı	g 	×flüs	. Produkt	•	1 1	Oleline		Vol. %	(i. st
		<u> </u>			-		<u> </u>	20	0-320	
Ausbeute		\4 -	V.	gas						
lüssige Prod.		4.8	g/Nm 25]	96x	121,8	·g/Nm³ N	lutzgas (CO+H ₂)	g/Nm² ld	ealgas
Sasol		8,5	-		9,9		"			,
Sesamt-Produkt	1	3,3	•	,,	131,7	- "	"			
ywasser						,,	,,			
morkungen	}		/ /		promise and a					
	Durc	hachn	1 tt se2	gebni	s tiber	204	Betr.	-Tage.		
(-)		•				· • T - •	;			
5 N 1 - 1 1 1	<i>,</i> .									
										4

-Cherhadsen-Holten, der 29. April 1941 RCH. Abt. PVA Mr./Ce.

202

Herrn Professor M a r t i n .

Estr.: Clefinsynthese durch Gaserguskreislauf über Hobalt-Gischwentakt

In Mintlick auf die diterverarteitung von Primirprodukten aus der Kobalt-Synthese für die det u. Schmiersleichten wer die Aufgabe zur Erzeugung elefinreicher Produkte gestellt. Die in den letzten Jahren in der Druckversuchanlage durchgeführten Vernüche mit Wassergas unter verschiedenen Fahrbedingungen und mit verschiedenen Kontekten liesen mit ziemlicher Sicherheit die Tetriebabedingungen erkennen, mit Wilfe derer die gewünschter elefinreichen Primirprodukte zu gewinnen waren. Unter Sonick-michtigung der möglichen bertragung der halbtechnischen betrieben auf die TB und unter Zugrundelegung der Er elnisse aus den der Litteldrucksynthese folgendes festgelegt:

- 1.) Typgerochter Kannesmann-Doppelrongeren wie bei RD.
 - 2.) Comperaturen nicht über 225 °C
 - 3.) Teingereinigtes /casergas der ift mit
 - rd. 13 % Inerten und 00 ; E = 1 : 1,25.

 4.) Kreislauf aus wirzewirtschaftlichen Gründen nicht über 1 + 3
 - 5.) Sandruck wax. 10 atti
 - 6.) Die <u>Pelastung</u> war sundenst mit 1 Mm³ Inssergas/10 Liter Kentult fastgelegt, wurde aberdann spüter, mit Rücksicht auf die bei ha in Bussicht gestellte Belastung auf 1,2 Mm³/16 Lt. Kentukt erhöht.

Der diesen/Redingungen entsprechende Tausergaskreislaufversuch wurde in der DVA in <u>Ofen 10</u> Ende August 1940 angefahren und an 20. Februar 1941 abgebrochen. Der Ofen erreichte in dieser Zeit ein Alter von

170 Betriebutsken

und war in den Letzten Letriebstagen himsichtlich des Umsatzes

Ruhrchemie Aktiengesellschaft Oberhausen-Holten

und der Verflässigung immer noch so gut, wie ein in den ersten betriebstagen mit Sygas betriebener Mitteldrucksyntheseefen im geraden Lurchgung, wobei aber die Produkte aus dem Massergae-kreislauf gelbat in den letzten Jagen noch

rd. 55 Vol ; Olefine in der Tenzinfraktion(12804 • P205)

enthielter.

Joor die mit diesem Versuch erzielten Ergebnicso wurde laufend in den tägl. Produktionsberichten, in den Monafaberichten und in Eesprechungen berichtet.

Zum Zwecke der spesiellen anslytischen Untersuchung der Produkte wurden in regelnässigen Abständen Produkte dem Produktionsan-fall-entsprechend en das Betr.-Labor II der RB, zum Zwecke der Schwierölsynthese an das HL der RCE und die Schwierblanlage der RB, und für die Oxosynthese grosse-Wengen Gesantprodukt an das P.L. der RCH gegeben

Versuchsbericht :

1.) - Beschreibung der Versuchampparatur :

a) Ofen :

Manneamann-Doppelrohreden 4 m lang.

Rohrdurchmesser 44 x 24 mr.

Rohrquerschnitt 10,67 cm²

Kontaktrauminhelt 372 Liter.

Wärmeleitfläche 0.211 m²/Liter Kontaktraum

b) Kondensation :

Paraffinvorlage 3 m von Ofen entfernt, luftgekühlt; Olkondensation bestehend aus 2 indirekt gekühlten Echrkühlern je 9 m² Kühlfläche, susemmen 16 m² Kühlflüche.

o) A.E.-Anlage bertehend aus 2 Türmen : Länge der Türme 200 om Querschnitt der Türme 5,126 m²
Füllung " 95 kg Supersorbon FS jo Türm

d.) Kompressor:

Evelutuals mit einer Annaugelesmus von ri. 200 m3/std. bei einem Enddruck von 7 att. Er komprimiert gleichzeitig die vor dem Kompressor entapannte Micklaufgenenge.

2. / Lontakt:

Formal-Kobalt-Mischkontakt 2 - 3 mg, Kenn-Kr. 570, aus der Esterfabrik.

Redusiert bei 420 oc.

Reduktionswert 64 %

Staub 2,7 %,

Schuttgewicht 290-g/Liter.

Nucumensetzings 100 Co. 5 Tho2. 6 Mg0, 2 1 Rgr. Eingefüllte Honge: 113 kg.

Effektive Kanafullung: 38,6 Diter

(errechnet über-die Dichte der Kontaktbestendteile).

Freien Pesktionsvolumen 372 -38,6 = 333,4 Liter.

3.) Tersuchabedingung:

Synthesegaodruck /-attle

Treisland 1-43,

00 + Hg-Whoata ain. 63 %,

Delecting. 1 22 Tracergan/10 Ltr. Kontakt. Std.

Each 116 Detriobategen murle are Delastung auf

1,20 Ru3 Worsergas/10 Ltr. Zontaht, Std.

arthities.

Sur Unsetming kam der feingereinigte Vaccorgas der RE.

4.) Anidirmeit:

Ten for inte an 23.8.1340 wit don Restgas der 18 4 1 201 - 1911 1 + 2 engefahren und in der Temperaturbis auf 167.500 gebrecht. Been 80-ctündigen Rostwesbetrieb wurde er Jann euf wasserens in Ersislauf 1 + 3 ungestellt und in der Gesperaturin in der nachfolgenden 3 lugen weiter erhöht, bis er bei 19300

oimer

einen Cu + E2-Umsetz von 64 - 65 % erreichte.

Bach 188 Fetriebestunden - 19500 - errolgte der Faraffluturchbruch, welches vollkommen weiß und frei vom jeglichen Kontaktbestandteilen var.

In den machfolgenden Tagen, tis aus 116. Betriebetag, wurde unter Beibehalten der Borsalbelastung die Temperatur laufend erhöht, um so den als Eiel gesetzten CC + N2-Umsatz von 63 \$

s.) Tondervationsvilliger Anfall der Produkte bei hinreichend gleicher Tegeoproduktion und gleichen Gesmengen:

su lielten (eiele Kurvenblatt DVA Er. 85).

- Garaber die Größe der seu au erzichtenden A.K.-Anlage ein Meß on bekommen, wurde von 73. Ketr.-Tag das A.K.-Benwin mit dem greidanfgas über den fen golührt; d.h. der Areislaufstrom wurde mach der ülkondensation abgosweigt. Der Vergleich dieser bei an Fahraben
 - s) obne Bondin in Freiclaufgan,
 - ob) mit' " "

ersab miniontlich der Siedelege den Gesamtproduktes und der Ausboute kolne Unterschiede.

var gering and betrug 1 - 2 Vol. %. Er fiel von ro. 60 Vol. % our ro. 53 Vol. % ab (vergl. Hometakericht vom Love ber und Federber 1940).

Voli meit größerer Lodeutung ner die Verschiebung den kontenskiligen Anfalla der einselven Kontenskiligen Anfalla der einselven Kontenskiligen und die Größe der A.T.-Anlage. Pleus mengemaklige Texlagerung ist für die Aunlegung der Kontensationsvorlagen und die Größe der A.T.-Anlage von großer Lodeutung:

Fahrweise	ohno k in Kre	enzin ielauf	mit Bensin im Kreislauf			
Paraffinyatsch	14,6	Gew.%	15,5	ow.s		
S1edebeginn	250 ⁰ 0	ting and section of	207°0			
- 32¢°¢	10		10	n		
oberm.320°0	90		90	η		
<u>Ölkondenset</u>	53.7,	Gew.5	71,			
Siedebeginn	63°0	24,511.12				
- 320°0	89	ti.	91	n		
ocerh.320°C	11		9	n		
A.KBerzin	31-7	Gow.s	13.5	Gevr.%		
Siedebeginn	32°¢					
- 140°C	90	(1	96			
- 180°C	97	· · · · · · · · ·				

6.) Produktion:

tit Biokricht auf die s.Et. in Aussicht gestellten Bedingungen bei Er wul die gewünschte jato-Leistung an eleffrischem Produkt wurde der Ten nach 115 Betr.-Tagen wit Bernaler Selastung

in der Belastung un rd. 20 % erhöht,

wa hierdurch der Belastung zu genügen, die zach Ausbau-der RE durch Erstellung von 3 weiteren Generatoren demuchst in der HD-Anlage aufkomen wird.

7.) Ausbeute:

a.) Commt-Versuchsperiode ther 116 Tage bei normaler Belastung:

00 + E2-Umeats 62.7 5.

Ausbeute en Tlu. Prod. 104.5 g/Em3 Nuceges (Co+No)

CO + Ho-Verfl.-Grad 53 % (prakt.)

Weiters Daten siehe beilieg. Produktionsbericht A.

b.) Versuchaperiode Wher 33 Page bei norm. Beleatung vor dem Vacchelten auf die Dorbelastung:

00 + So-Usests 61,2 %,

-Ausboute an Ild. Prod. 102 g/Km3 Nutsges (00+Hz)

Co + Ep-Verfl.-Grad 53 % (prakt.)

Weitere Daten-ciebe beiling. Produktionsbericht B.

o) Versuchsperiode über 36 Tage

nach dem Umschelten zuf die Sterbelaginge

bei rd. 20 % Uberlast und 220 00 3

CO + H_-Umsats

67 5

Ausboute an flu. Prod. 101,3 g/km3 Mutagos (0:+E.)

CC + Ho-Verfl.-Grad

47,8 % (prakt.)

Weitere Datem Diehe beilieg. Produktionsbericht C.

d.) Versuche-Schluspericae über die letzten 12 Betr.-Tage

bei 20-5 Uberlast

und 225 % s

CO + H_-Umsatz - 64,5 %.

Ausbeute en flu. Fred. 94,4 g/mm3 Mutsgan (CO+Eg)

00 + Ep-Verfl.-Grad 46,4 % (probt.)

Weiters Daten ciche beilieg. Produktionobericht D.

Mach dem untor 7a - d euigoführten

CO + Eg-Umostz, ...

00 + -- erfl.-Grad,

- und der Ausbeute,

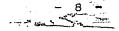
sowie den weiteren luten in den beiliegenden Produktionaberichten A - D geht eindeutig für die Jehrweice bei grösserer Felastung sine sturkere Vergaoung hervor.

eit deutlicher wird der Einfluse der höheren Belastung auf die Verflüssigung durch folgende Mahlen-:

Versuchsperiode B : 33 Tage vor dem Emschalten auf die berlantung von 20 %

Versuchsperiode C: 36 Tage mach dem Waschelten auf die Therlastung von 20 %

Versuchsperiode C	-: **
%_CC_+N ₂ -Umpats 61,2 67,0	
En CO + M2 ungesetst 1.d. Zeiteinheit 536 - 696	
kg flüzs. Produkte i.d. Zeiteinheit 89,5 105,0	
7 CO + E2-Umentsoteigerung 30	
roduktionssteigerung - 17.3	


"Ehrone bei der erhöhten Felentung der offektive Umgatz an CO + Ez ur 3 delegt, let for Produktioneguenche nur 17,3 %; d.h., die lifferens von 36 - 17.3 = 12.7.7 stellt die stärkere Vergaaung bei der Fehrweise mit erhöhter Belectung dar.

Wenn such mich liesen Daten der Umgetzungagrad (% 00 + Eg-Umsatz) boi der Tehryeise mit erhöhder belastung nicht der gleiche war, en der grandsätzlichen ett abhe einer stärkeren Vergesung bei Betrieb mit hüherer Belestung nichts geändert.

8.) Charakter der Produkte :

ie bei früheren Verauchen, so konnte auch hier wieder die Beobachtung gemacht werden, dass mit zunehmendem Kontaktalter die Siedelage des Gewantproduktes laufend eine

- Verschiebung

Vercehiebung zur Bensinseite hin erführt und erst mich rd.40 Betriebetagen = 1000 Betriebestanden eine hinreichend gleichmäßige Siedelsge erreicht, die dem im weiteren Betrieb beibehalten wird.

Dan Genamtprodukt wurde über eine Tidnerkolonne destilliert, wobei ab 250 °C im Vakaun gearbeitet wurde.

s.) You 40. - 116. Setricbotag, d.n. über die Zeit den ersten Versuchsabschmittes -

Fahrweise bei normaler Helastung

war die niedelagemikige Eusammensetzung den Gesantproduktes wie Yolgt:

faielpuraffin = 4.2 Ger. F v. Genantprodukt/50 °C.

Ortanzahl des Bensin - 200°C = 44 (original) = 66. (nach N.R.)

Getammahl des 61 200 - 320°C = 82

b.) Von 118. - 155. Petriabatag, d.h. fiber die Zelt bei rd. 20 5 Voerlaat und rd. 220 06

war die siedelsgebäßige Zusaumenaetsung des Geneartproduktes wie folgt:

Benzin - 200 °C = 60 @ev.%, 01 200 - 320 " = 25 " Velohpar. 320 - 460 " = 12,3 " Eartpar. oberh. 460 " = 2,7 "

```
12 31 200 - 320 6 = 41 m
    Tefelperaffin = 2.5 fow. E v. Geanstproduct / 50 Co
    Oktenzahl des Henzin
                              - 200 0 = 47 (original)
                                    = 66 (mach H.R.)
    Cetanganl des 31 200 - 320 0 = 79.
c) Fel weiterer Steigerung der Temperatur bis euf 225 °C;
    our Traielung des gewinschten CO + Eg-Umsatuss von min.
    5) % und unter Beibehalten der 20 %-igen Werlast kam
    eine noch volter sum Benzin hin vergohobene Siedelage auf
                   - 200 °C = 67,2 Gew. %.
       Pengin
                    200 - 320
         Weichper. 320 - 460 "
        Hartpar. oberh. 460 "
     loffine i. Sersin -- 200 °G = 56 Vol. 5 (F2-4 .
       P 31 31 200- 3207 - 40 P 25 (27)
    Refelperoffin = 2,5 lev. v. Reconstproduct / 50 °C
    ktroschl des Fersin
                           - 200 °C = 48 (original)
```

Aus diesen Zahlen erkennt man eindeutig die starke Verschiebung der Siedelage zum Kenzin boi Phühen der Belastung und 2 %, venn der Umsetzungsgrad an GO + R2 mindestens der gleiche bleibt. Die Umseche hierfür wird die Cemperaturerhöhung wein, die für die effektive Umsetzeteigerung notwendig wurde, in diesen Elke von 2.9 auf 220 - 225 °C.

Cetangehl des 31 - 2-5 - 320 °c -= 75.

Cherekteristisch ist uch hierbei wieder des Anstoigen des Tensinsfiniten zu Toston des Parefflichtville, im wesentlichen des Martparefflimmteils

Weichparuffin 2. 45 tiu 6.1

wobel der Anteil an OI 200 - 320 C zumschat mit 25 Gewarder gleiche bleibt, dem über bei nech btürkerer Verschienne

der Biodeinge zur Bonningeite, bis auf 20 Gew. Inbfellt.

dungerlon kann bei der erhöhten Bolsatung ein Abfall des
Befingehaltes Testgonteilt werden :

in Bonzin von 61 über 58 auf 56 Vol.

Pieser Clefinabfall etcht neturgembe mit der höheren.
Versasung in Verbindung.

9.) Gasol 1

Mie erzeugte Gasolmenge (03 + 04) betrug bei Kermalbeinstung | Wher Jie Zeit der ersten 116 Fetriebetage.

Highling der bei uns gemachten Versuche über decrytion von Benzin + Gasol mittels Aktivkohle (Vergl. Bericht Heger von 16. 2. 41), wird un bei gewünschter 95 %-iger Gasolausbeute

Tourinsusetabeladung van 5,2 Dev. mit offer Teeclamatabeladung 13,5 arbeiten Einnen.

Das Verhiltnis von C3 : C4 liest in den ersten Setriebewoohen bei 35 : 65. verschiebt sich ober mit Eltergerden
des Kontaktes entsprechend der Verschiebung der Siedelage
des Gesamtproduktes sur Bonsinselte und der demit verbundener
stürkeren Vergesung (Wethenbildung) mehr sum C3 hin. So war
bedepielweise nach 160 Betr.-Tagen das Verhaltnis von
C3 : C4 = 55 : 45.

Das Verhältnis der ungesättigten zu den gesättigten Bestandteilen ih den C - in ktionen ist aber unathängig von den Verhältnic C₃ : C₄ in Gebantgasol. Stett, findet men innerhalb der

 C_3 - Praktion mehr $C_3^{H_8}$ und in der C_4 - " $C_4^{H_8}$

In Mittel können wir folgende Verteilung angeben :

Ruhrchemie Aktiengesellschaft Oberhausen-Holten

10.) Wangorldeliche Produkte:

Die is Resktionsvacher gelösten Og-heltigen Produkte wurden witteld itherestration herousebracht und naher untersucht:

Aus 20 Liter Reaktionswauser = 140 g = 1.0 g/Um3 Wassergas

Siedeverlauf:	Deg.	65	°C
	70.°C.		0 VOL.5 -
· ·	80 8		Ç "
	LCCL*: -20-**	38, 63,	
<u> </u>	AC.	 -84	5
	5 େ "ା 8େ "	 . 90, 94.	
	90 "	95	5

And diener Dates erkebnt well, das es aich hier hauptekohlich an Akohole und Ester handelt.

11.) Gensat - Remleistung:

Der Baccergeskreislaufverbuch in efem 10 mit der 10. Füllung turde-inagement landversuon in dien 10 mit der 10. Millur turde-inagement 1/0 Betriebetage gefehren. In dieser Colt mirden 14000 kg flücsige Produkte ersougt. Bei fen Robelt. Takalt von 34 kg dieses Ofens (10. Füllung) errechnet sich eine beistag von

412 kg flike Prod./kg Cc.

Zumenteredenieum i

Wach den vorstehenden Jaten wird min mit Wesberges in Kreislauf 1 + 3 boi moraster Relactor, des Ofens -1 2m3/10 Liter Montalt in den Comperaturgrounen von 190 0, bio max. 225 °C und einem . The appendence von 7 oth. bel other Lebendhuer des Konteltes von 6 Ecripton, Rolgerlo Ergebricco ermielen:

Aughenta:

an 11thm. Prod. 88 - 90 g/mm3 Wannergan

Siedelage des Cenantprodukten:

Ruhrchemie Aktiengesellschaft Oberhausen-Holten

Allgemeines

Der Tassergaskreiclaufbetrieb bietet gegenüber den Sygasbetrieb in geraden Durchgang manchen Vorteil:

- 1.) Die Produkte eini wegen ihres hohen Gehalten an Olefinen für die Veiterverarbeitung wertvell.
- 2.) Bei gleichen effektiven Umstren an Co + 32 liegt die Verfliesigung um 10 % höher

In Laufe dieses-vorbeschriebener 170-tägigen Wassergankreiblanfversuches kounten manche interessente Beobachtungen gemacht verden:

in Vansergas von 1,25 auf 1,22 einmal Abfall den Unnatzes w 1 - 2 %, vobei aber der clefingehalt in den Produkten un 1 - anstleg. Eine Erhöhung des E2/CC-Verhültnissen von 1,25 auf 1,30 bedingte Einster eigszung, Lobei aber Verfüllseigungugnet und Clefingehalt um einige Punkte sank.

to excheint darum für den sputeren Großtetrieb bedeutend im fein, ein flicen H2/CC-Verhältnin im Vaunergan beizubehalten, was so micht dauernd diesen Reaktionschwenkungen zu unterliegen.

Besonders suffillig ist die Tatsache, daß mit Unsatsateigerung, unter Beibehalten des E2/CC-Verhültnisses in Kesserges und der Belastung, der Olefingehalt in den Produkten, bedingt durch die CC-Partialdruckerhöhung in Kreiplaufgas (Vessergas + Rücklaufgas austeigt. Unablässig ist aber auch hierbei die Einhaltung einer bestimmten Geschwindigkeit und Casverdünzung, herbeigeführtdurch den Kreislauf in der Größenordnung 1 + 3.

Betriebentilletände in den ersten 40 Betriebetagen, so beispielweise tel diesen Ofen an 13. Betriebetag, bedingten eine utsake Verschiebung der Siedelage des Gesamtproduktes sur Bensingelte.

Loiall

Ruhrchemie Aktiengesellschaft Oberhausen-Holten

Abfall der Ausbeute un 5 - 10 % und Schwarzfärbung des Paraffins.

Sine Enhandlung eines so durch Stillstand geschädigten. Kontaktes wit N2H2 beseitigt wohl die Schwarzfärbung der Faraffins, Siedelageverzehiebung und Ausbeuteminderung bleiben aber bestehen.

Disser Toelstand wurde bei anderen mit Kasserges im Kreis.

- lauf betriebenen öfen in den ersten Vochen ebenfalls beon-achtet und konnte surch sofortige Schandlung des Mann mit
En z.T. behoben werden.

The series durch enterpreciseds the tenath one Versuche alone Erocheleung demischet gerau profes und mach Mittelm nur Vermittung desen Belatendes puohen.

Obh.-Holten, Gen 29. April 1941 Druckversuchenlage.

Ddr.: Eg.,

1 ...

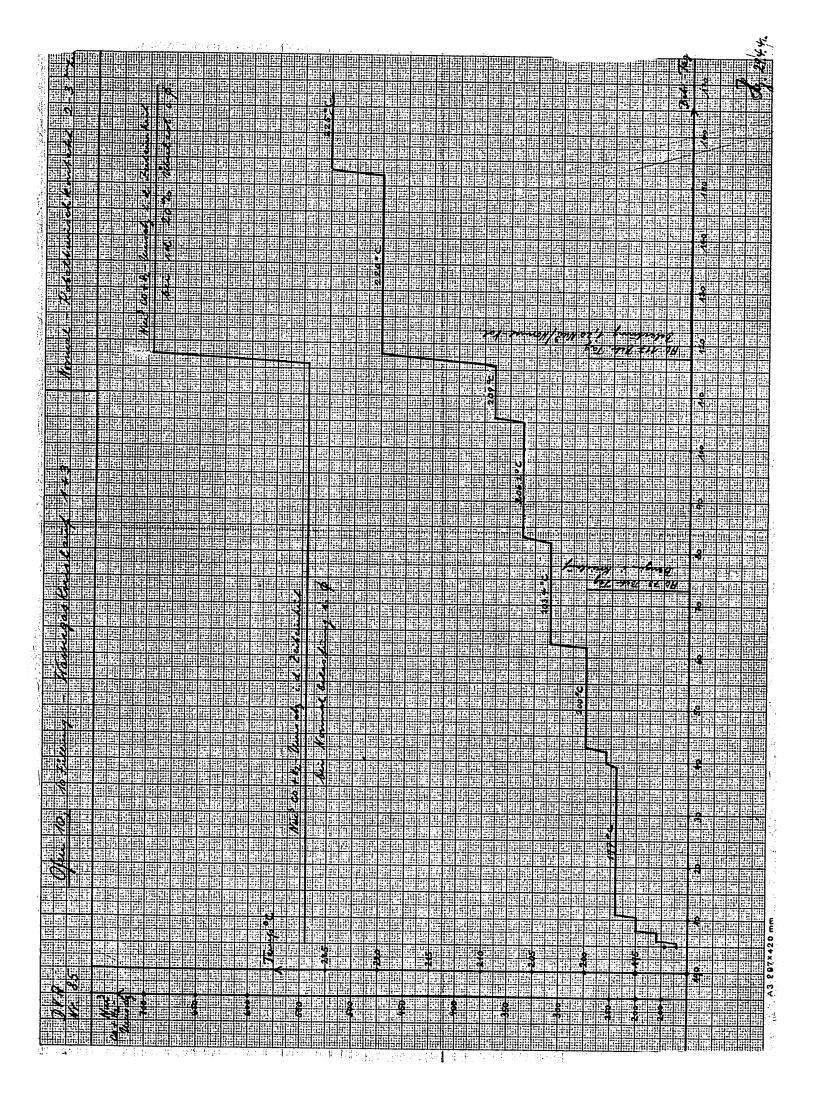
T . .

.......

Schu.

N.B. Betr.: Entleerung:

Der Gen wirde nach 175-tägigen Massergeskreinlaufbetrieb ohne vorher hydriert oder extrahiert zu sein durch Alopfen ohne Schwierigkeit entleert. Jung 35 % des Montakten kommten so hercungebrecht vorden, der Best in den oberen Bohrenden war durch Stochern und Bohren leicht herausubringen. Mohlenstoffab chei imm vurde nicht feltgestellt. Der sungebrouchte kontakt esthielt, errechnet über Folumen u. Gewicht und Fenschentraktion, rd. 1. Gewicht Berogen auf den eingefüllten Frischkontakt.


Druckversu	chsant	age :			Produki	ionsbe	richt vo	m 27.8) 24	.12194
	्राक्षरी १	17.7			J		2			
Ofen Nr. 10					Betriebsstu				-Tage	
Füllung: 10				- (Gasdruck	7		atü		
Co-F6-Inhalt. 34		,	g —						3 -	209
\$\\rightarrow \text{W-Gos.}		Nm²			empere lestgas	<u> </u>	.ø = 17,1	202	Nm²	
					reislaufga				Nm³/l Nm³ /	4
	37.2	Nm³/h			reislauf					
Belastung.	1,095								mª/Norm\	/ol., h
Analysen:	CO,	C _m H _n	0,	СО	Н,	СН,	N,	C-Z	N, F	Litergowic
Segrence -	6.7	• 	0,1	38.2	48,7	0.3	6,3			
Resigos	14,5				26.6			1,14		Assert of the control
Yrelfgas	13,4	0.5	C.1	40,8	31,4		11,3		[analy	tisch
odrata, teksteria			<u> </u>	_ 41 ,7	1-32,0-	<u> </u>	<u> </u>		(errec	hnet_
Gesamt-Inerte (Ide	1	3,1			· · · · · · · · · · · · · · · · · · ·				54.0	
H.: CO im Sygas		275	10		Konfraki	ion nach			52,8	%,
H ₁ : CO im Restgas		.620				·····	N, CO.		53.8	/•
Verbrauch von H.:					, , , , , , , , , , , , , , , , , , ,	nittliche K	•	and the second second		<u> %</u>
verbiadai von 11 ₂ :					Doraisa		Julianion		od daran	9/6
		% CO				°, H,			CO+H,	
umgesetzt		47,6				74,6			62,7	
verflüssigt		42.9				31.4			36,4	
VerflGrad A	1-	90,0				42,1			58,2	
, "Р	•	79,1				-			53.0	=
CH₄++C™Hn.	9,4		0, 0,6	5	bezogen	auf CO-	Jmsatz	her Merk	and a second	in the
Produkte								Sesamt	produk	
Paraffingotsch			kg			% SB	ina di kacamatan di Kacamatan di kacamatan di kacama	كست و أم معرف قارات	c	
Ol-Kondensot					dan dan Gana	7,	100°		%	international Literatura
AK. Benzin				· · · · · · · · · · · · · · · · · · ·	e la casa de la casa d La casa de la casa de l			ie in		
Flüssige Prod.					100	1 .				
Sywasser			3 1				.,,			
Sywosser	ad addada a saabii A	9==	×flüs	s. Produk	Te		Olefine	error and the second of	****	مسأوسيس والمساور
		<u> </u>		Tara a		. تالیت	<u> 200°</u>		200-320	
Ausbeute		de de servicione	15							
Flüssige Prod.	91,	o	9/Nm" 32 2	gas ₁₀	4,5	g/Nmª Nu	izgas	-	g/Nm² lo	lealgas
Gasol						-		<u> </u>		
Gesamt-Produkt	e se "									- ··· : 4
Sywasser	rin.									
C/ WUSSEL			M A	r garage garage Walter			<u> </u>		···	
D					the state of the same of	100 200 2			7	
Bemerkungen		9		. بد						1
Bemerkungen		amt -	Versu	ıchape	riode	bei N	ormali	elast	ung.	Ŋ
Bemerkungen		amt -	Versu	ıchape	ricde	bei N	orcall	elast	ung.	· · · · · · · · · · · · · · · · · · ·

Druckvorsu	chsant	age			Produk	tionsb	oricht vo	m 16.1	124	.12,94
Ofen-Nr. 10 Füllung: 10 Co-fe-Inhalt	•				Betriebsstu Gasdruck Temperatu			atű		209
							1.Ø			Tayo ya Taka
S/-W-Gas		Nm³			Resigas				Nm³	
, A	37.2	". ". 			", Kreislaufgo	1 5	1.7	9	Nm*/	ሳ ኒ
Belastung					Kreislauf		· +	3,08		
Analysen:	CO,	C _m H _n	0,	CO	o, h	Les Guerra	N,	Ni	nº/Norm	
Wesserges					1	Cn,	"N ₂	[:: C-Z -	N, F	Litergawi
STRUCK	6.1		0.1	38.9	48,8		-5,8	-		غ
Restgas		C.3	0,1	43,8	27,2		12.4			
Eralfgao	11.3.	0.3	_0,1		31.8	2.5	11.0	and it	(anal	ytiec
	-			ا و کوپ	32.4	<u> </u>	!	<u> </u>	(erre	chnet
Gesamt-Inerte (Ide	alaas)	12 2	07							
H.: CO im Sygas			10		Kontrakt	ron nach	Menge	Ś	52,0	
H _s : CO im Restgas							N ₂		-61	
Verbrouch von H.:					Durched		CO, ontraktion			
	<u> بسب</u>					29 F 1 B	Carron		52,0	/6
umgesetzt	in the state of th	% CO 46.0		ښدندوووو د رواووو		°, H ₁			со+н,	
verflüssigt		41.1	_	,		73,1			61,2	
Verfl. Grad A		89.4				31,8			36.0	
						43,5			58,8	
		79.0							53.C	
CH, + +Cm Hn	9,3	co	, 1	.3	bezogen	auf CO-	Umsatz			
Produkte								osame.	rodukt	- 12
Paraffingatsch								osamı	// GOOK	
	And the second						ha in th		: -	
Ol-Kondensof	*****		<i>•••••••••••••••••••••••••••••••••••••</i>			%	100°		%-	
AK. Benzin				ar in Alask		%	— 200°		e/	
Flüssige Prod					100	%	320°		of	
Sywasser	kg		×f (0ss.	Produki	• <u>'</u>		Ofefine	Vol.%		\$ 15 A
an exercise de entre alla ser		e e e alabari e pare t	والمرابع والمرابع			:#% E7	<u> </u>	, 2	00-320°	
Ausboute	ang malaya Mara		af silvayayi as Tarah					er fagyalar Of Mary		
Flüssige Prod.	89.	5 g/	W-1	188	02					
Gasol			- A10			∖∖⊿w, Mñ	izgas	روندون الداري الدار المراري الداري الد	g/Nm* Id	algas
	and the second		" "	andyan.		,	4			H / 13
Gesamt-Produkt			4	وأردواة المرام	androdona Table all a					و مستجرية بيان
Sywasser	سوناخت شدا								9 , 15,	36 ° (1967)
Bemerkungen	ng patakanan ara Kananan	an an arban am page	ورده خوارهه البينية دوات المحرار والتيار المراث	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 miles		and the second	ing Min	3.130
					L Horse					
Ъ.	33	Tege	yor de	ar Une	ohal to	mg-Bi	if die	bert	elasti	mg.
			1-32					Sarahan.		
				1.50			7.12	and the second		

Druckversu	hsanto	ige -	ايند اندون المارية	- j	rodukt	ionsbe	richt vo	m 27.]	23.	2.194	
Ofen-Nr. 10 Fullung: 10. Co-Fy-Inhall				· c	etriebsstu Pasdruck emperatui		.7	atū			.••
Sy-W-Gas	44,6	Mm³ " " Nm³/h		K	estgas ,, reislaufga reislauf				Nm²/ Nm²/ Nm²		
Belastung	1.31		1							Vol., h	
Analysen:	co,				н,		7				vicht
resporges Exper Resigns	16,2	0,2	0.1	41,7	48,0 22 ,5	5,0	14,3	1,03			•64
Kralfgna	14,7	0,7	0,1	39,8	27,8	4.3	12,6	1,20	(ana	lytis schmo	
H _i : CO im Restgas Verbrauch von H _i : umgesetzt verflüssigt Verfl. Grad 'A	co I)	•/ ₁	58,7 55,0 co+H, 67,0 37,0 55,1	·············/6.	
	939					· · · · · · · · · · · · · · · · · · ·		#	A-1.90		
CH. + +Cm Hn	11,6	;	0,2	•9	bezogen	auf CO-	Umsatz				:::
Produkte								Gesamt	produk	<u> </u>	
Paraffingatsch		. 14	kg			% SI	3		c _{' :}		. i.
Ol-Kondensot						%	— 100°.	yang dan salah	%		
AK. Benzin					إعرائكونين	%	- 200°		· %		
Hüssige Prod			, , , ,		100	%	— 320°.		. o/,	7.	
Sywasser	k	g =	×f10	ss. Produk	ta .	== []:	Olefine				
	pamuja maga gushiya ba	Carrier Style	and property	**************************************	2 may 10 may 2		<u> — 200° .</u>		200-320°	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ausbeute.						\cdot \cdot $+$ \cdot			ران دري او يها در د		
Flüssige Prod.	87.	5	g/Nm³ Sy	201 1 0	1.3	g/Nmª N	nizgas		g/Nm² i	dealgas	
Gasol	·						in the second				
Gesamt-Produkt			Ä,	<u>. 1</u>						•	-
Sywasser			N I				,			# ?	2
Bemerkungen			,						en e	X-187	
	Ve	rauch	speri	ode be	1 20 5	jter	last	umd 22	0.00.		ا مدين و المود
C.		A. D. Sana.	*								
		7. 17.									
					2.0			the state of the state of		10° 50° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	٠

Druckversuc	hsanla	90 .	eringi Kanta	P	rodukti	onsbei	richt vo	n 4.2.	- 19 .	2.194 1
Ofen-Nr. 10 Follong: 10. Co-96-Inhalt	34		g	G	atriebsstur asdruck amperatur		7	= 12 atū atū	Tege . 225	
A -W-Gas	45.3	Nm³		Kı Kı	estgas ,, reislaufga reislauf		21, 181 1 + 2,	94	Nm ^a /h Nm ^a /h	⁄h
Belastung	1,33		.,N	lm³/kg Co	, h	r*55	. 	Nr	n^/Norm\	
Analysen:	co,	C _m H _n	О,	СО	H ₂	CH,	N,	C-Z	N ₂ -F	Litergewicht
Yazaarga z Ejős Resigas Králfgaz	-6,7 15,5 11,6		0,1 0,1 0,1	38,1 40,2 39,3 39,6	23.5	0,3 5,8 4,5	14.6	1,04 1,18		risch)
		<u> </u>	ī		Y.	2				
Gesamt-Inerté (Ide H ₂ : CO im Sygas H ₂ : CO im Restgas Verbrauch von H ₂		14,0 1,26 0,58 1,95	010		-		Nenge N. CO. Kontraktio		52.0 56.8 52.0	% % % %
and provide a graph pain	tage production	% CC)	er out of	an Sain w	•• ₀ н,	a i a seperatio		, CO+H	eri dazi ba
umgesetzt verflüssigt Verflügrad A		49, 39,6 80,	5			76,4 28,8 37,7			64.5 33.6 52.1 46.4	
,, ,, ,, P 	16.0		<u> </u>	8	bezoge	n auf CC)-Umsatz		100000	
	ann area aire	er men er treet in a					in the second	Gasam	tprodul	et .
Produkte Paraffingatish Ol-Kondenset AK. Benzin Flüssige Prod.			kg.			% % % 10 . %	SB. 100 200 320		"/ ₆ , °/ ₆ , °/ ₆	
Sywasser		kg=::	×11	uss. Produ	kte		Olefin - 200		L% , 200-320	
Ausboute Hüssige Prod. Gasol		.2	g/Nm ²	-gaa ***	94,4	g/Nm²	Nutzgas		g/Nm²	ldealgas
Gesamt-Produkt Sywasser Bomorkunge									e produce de la composition della composition de	
Pomorvaile			speric	market of the p	مني مقاع وفالقرادي		and the second second			حفظول بالمجتجاع يتنمح

DVA/1.3000.O 20282/0802

Wassergaskreislauf mit verdünntem 201

Bei Frankfurter Versuchen der Lurgi hatte es sich gezeigt, dass beim Betrieb von Kobalt-Kontakten mit Wassergas im Kreialauf hocholefinische Produkte (Olefingehalt im Benzin über-60, im Oel über 50) erzielt werden können. Diese Olefinzahlen lagen auch erheblich über den mit Wassergas im geraden Durchgang erreichbaren, offenbar_weil_durch_den_Kreislauf-ein-Aufschaukeln-des überschüssigen Kohlenoxyds eintritt. Hierdurch gelangt im Kontaktofen dauernd viel Kohlenoxyd neben wenig Wasserstoff zur Reaktion, wodurch die Hydrierung zu gesättigten Produkten erschwert wird. Die Frankfurter Versuche zeigten ferner eine besonders niedrige Vergasung und: damit Erhöhung der Ausbeute. Aus diesem Grunde konnte ohne weiteres mit 1,5-facher Belastung, verglichen mit Normallast, gearbeitet werden. Der Benzinanteil in den Reaktionsprodukten ging zwar zurück, konnte aber durch inwendung verdünnter Kontakte auf über 50% gebracht werden. Wenn diese Resultate ins Grosse übertragen werden könnten, bestünde Hoffnung, ohne Krackanlage auszukommen, wenn das mit anfallende Öl und Paraffin direkt verwendet.

Zur Erprobung dieser Arbeitsweise wurde daher in der Druck-Versuchs-Anlage ein mehrmonatlicher Versuch wie folgt durchgeführt:

A.) Kontakt :

Es wurde ein den Frankfurter Versuchen entspre-

chender verdünnter Kontakt - Fadenkorn 2 mm - hergestellt, der folgende Zusammensetzung hatte:

100 Co 5 ThO₂ 10 MgO 600 Kieselgur

B.) versuchsanordnung:

Die Anordnung war die gleiche wie bei dem
Hochtemperaturkreislauf, der im Bericht v..... beschrieben ist. Um bei der vorgesehenen 1,5-fachen
Belastung einen 4fachen Kreislauf erzielen zu können,
musste mit Rücksicht auf die beschränkte Leistung des
Kompressors das vorhandene Ofenvolumen verkleinert
werden. Es wurden daher von 228 Rohren (mit Sterneinbauten) 127 durch eine aufgeschweisste 8 mm Eisenplatte
totgelegt, sodass nur noch 101 Rohre mit Kontakt gefüllt
werden konnten.Jedes Rohr wurde einzeln gefüllt. Das
Gesamtvolumen des Kontaktes betrug 205 Ltr., der Co-Gehalt
6,84 kg.

C.) Versuchsgang:

Per Kontaktofen wurde bei 200° aus einem Stickstof kreislauf heraus mit 30 Nm³ Wassergas / Std. langefahren.

Das Verhältnis Frischgas: Kreislaufgas betrug 1:5 und pendelte während der ganzen Versuchszeit zwischen 1:4 und 1:5. Die Belastung auf Ofenvolumen war 1,45-fach, auf Kobalt 4,4-fach. Da für den Versuch eine Reaktions-Temperatur von 210 - 220° benötigt wurde, wurde in den ersten Getriebsstunden ohne Kühlung gefahren; hierbei stieg die Temperatur durch die Reaktionswärme auf 213°. Das Ziel

war, einen möglichst 95%igen Wasserstoffumsatz zu erreichen. Im Mittel der ersten 4 Tage betrug der Wasserstoffumsatz jedoch nur 90%. Da überdies die Methanbildung mit 8%, bezogen auf das umgesetzte Kohlenoxyd, noch sehr gering war, wurde die Temperatur nach 4 Tagen endgültig auf 216,3° gebracht. Eine Umsatzsteigerung trat jedoch hierdurch nicht ein. Vielmehr wurde ein stetiges Absinken les Kohlenoxydumsatzes beobachtet. Nach 3 Wochen betrug der Umsatz 75%. Auf diesem Niveau blieb er mehrere-Wochenstehen. Im Mittel über die ersten 26 Betriebstaze war der Umsatz 79,8%. Die-Ausbeute, bezogen auf Idealgas, (H2 + H2) betrug im Mittel 137,5 g. Auf 95%igen Umsatz bezogen, würde dies 163,8 g ausmachen. Die Ausbeute ist also in Übereinstimmung mit der geringen Methanbildung fühlbar höher als bei Synthesegasverwendung.

Versuchsabschnitt 1: (v.27.8. - 3.10.38)

	Olefingehalt .
42-1200 gehen über 25,3 Vol.%	
42-2000 " " 51,0 "	63,2 Vol.%
200-320 ⁰ " " 30,5 "	57,3 "

Das Aktivkohle-Benzin und das -Ül wurden im Laboratorium Dr. Velde in verschiedenen Fraktionen rektifiziert. Der Dimpfdruck aller Benzinfraktionen bewegte sich zwischen 0,72 und 0,76, sodass eine Stabilisierung nicht not-wendig war. (Im Gegensatz hierzu hatten alle bisher mit Synthesegas erzeugten Produkte einen zu hohen Dampfdruck, sodass von den primär erzielten Ausbeuten noch gewisse Stabilisierverluste abgezogen werden müssen).

Die Oktanzahlen und die Dampfdrücke der geschnittenen Produkte betrugen :

Dampfdruck n.Reid: Oktanzahı:

Fraktion b	is 120 ⁰	0,76	70.5
n .	" 160 ⁰	0,76	61
	' 200 ⁰	. 0,78	53,5 .

Durch chemische Nachbehandlung konnte die Oktanzahl des Benzins bis 200° auf... gesteigert werden. Hieraus ergibt sich, dass bei chemischer Nachbehandlung des Wassergas-Kreislaufbenzins alle Produkte bis 200° siedend, (Dichte 0,70-) verwendbar sind, womit eine Krackanlage gespart wird, falls Öl und Paraffin direkten Absatz finden. Versuchsabschnitt 2:

Diese Periode umfasst eine Auswertung der letzten 3 Betriebstage im Versuchsabschnitt 1) (26.9.-3.10). Sie diente lediglich dem Vergleich mit den späteren Perioden. (Vergl. Anlage; Verflüssigungsgrad 87,2%).

H₂ - Umsatz 75,5% Ausbeute 138 g/Nm³ Idealgas

Versuchsabschnitt 3: (14.10.-17.10.38)

Am-3.10.38 erfolgte ein 11tägiger Stillstand durch einen Kompressofschaden (Einbau eines neuen Kolbens in den Kompressor. Bei dieser Gelegenheit Auswechselung eines undicht gewordenen Kühlers der Kondensation und Abdichten des Überströmventils).

Nach Wiederinbetriebnahme des Kontaktofens am 14.10.38 wies der Kontakt eine geringere Aktivität auf. Der Umsatz betrug nur noch 69,8%. Die zu diesem Umsatz ge hörende Ausbeute von 121,7 g/Nm³ Idealgas kann als gut

bezeichnet werden (Verflüssigungsgrad nach Analyse 85,3%, nach rodut 83%).

Zusammensetzung der Produkte:

Versuchsabschnitte 4 und 5: (27-28.10. und 2.-5.1138)

erneut über 9 Tage unterbrochen werden wegen Gasausfall in der Gross-Anlage. Beim Wiederan am 27.10.38 zeigte sich, dass die "eaktionswarme des Ofens nicht mehr ausreichte, um die Temperatur über 200° zu halten. Der Ofen wurde daher vorübergenend mit Synthesegas gefahren, wobei zwar die Temperatur anstieg, jedoch nach dem Umschalt auf "assergas nur kurze-Zeit-auf der gewünschten Höhe von 216,3° blieb. Es zeigte sich hierbei, dass der Gasumsatz nur noch 60,6% betrug. Es schien aussichtslos, in diesen Weise-weiter-zu fahren. Daher wurde eine Einrichtung zur Herstellung überhitzten Dampfes gebaut, mit deren Hilfe die Reaktionstemperatur aufrecht erhalten werden-konnte.

Bis zum Wiederanfahren des Ofens mit Dampfüberhitzer war der Kontakt erneut in seiner Aktivität stark gesunken. Es wurde ein Wasserstoffumsatz im Mittel von 52,9% und eine Ausbeute von 77 g/Nm³ Idealgas erreicht. Das Produkt war verhältnismässig leichtsiedend.

Zusammensetzung der Frodukte :

and a conservation of the control of			Olefing	ehalt:
31-120 siedend ging	en über 3	7,5 Vol.%	<u>-</u>	
31-2000 "		4,2 " ;-		Vol.%
200 – 320 ⁰ " "		5 2 / ii	36,9	

Am wurde der Versuch nach einer Gesamtdauer von Betriebstagen mit Stillstand abgebrochen, da die infolge der häufigen Stillstände aufgetretene Kontaktschädigung ein Weiterfahren nicht mehr besonders interessant erscheinen liess. Die Ursache der Kontaktschädigung in der Stillstandszeit ist noch nichtaufgeklärt. Es scheint jedoch verkehrt zu sein, den Kontaktofen unter Betriebsdruck und annahernder Betriebstemperatur tagelang stillstehen zu lassen.

Zusammenfassung:

- 1.)Es ist grundsätzlich möglich, im Wassergaskreislauf mit 50% Überlast zu fahren gegenüber dem normalen Synthesegasbetrieb.
- 2.) Die Ersparnis an Kobalt in der l.Stufe beträgt beim Arbeiten mit verdünntem Kontakt 77% und unter Berücksichtigung der Überlast 85%.
- 3.) Bei chemischer Nachbehandlung des erzeugten Benzins wird ein klopffestes Produkt mit einer Dichte von 0,7 erreicht, sodass bei direkter Verwendung des Öles und Paraffins die Krackung erspart werden kann.
- 4.) Der Übertragung des Versuchsergebnisses ins Grosse stehen einstweilen die Unklarheiten über die Kontakt-Lebensdauer entgegen. Soweit ruhige Betriebsperioden

vorliegen, kann hieraus geschlossen werden, dass bei einem Betrieb ohne Stillstände eine ausreichende Lebensdauer vorhanden wäre. Zwecks Klärung dieser Fragen sollte der Versuch möglichst bald wiederholt werden.

gez. Dr. Herbert.

'n		-		11	• ^ /				Ho	ah	tei	וסמ	gre	ztu	r K	rei	sle	ושב	1	וויי	1		Te	mp	erat	or.	2	63	C.
	wck							1	kol	155 16	ak l	gas (L	rna Irai	-V	ca ers	un uz	nca h)	m.	171.	SCZ	2.=	10	CU.	k . 57	20	10	Mal	600
). V	4	/V	1	5 7	1	H1.	-		26	en.	2		F	illy	ng	ĿĻ.		1		ļ		K	254	o,571	3.5	an	fade	rkac
11.11	nii e		+	+					ı		Ve	516 150	ci	ea Isa	ra l bsz	y a Inn	iti	Z	7	15		lin:		5	3-11	1		1	7:5
].	, .					1	,		;; ;!!!							-111		ļ.,			1:	Ţ			
	120 Fa	-	1:3	-	• : [11] [2]	بر	100	70	beg	'n	7:	3	5	C		. H.	+		-	1				1112		-		100	14
360			**-						no				37			- 0,			3 2										
	2.					+			00 20°		-			.? 5	Yal	- [-	- -	\ -			ļ.,							1
340				1		1	-	1	10	C	Ī	.	33 ,	2	4			بند اند مجارز	1,			1:1	,1						,
120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	11	1		-		·1	50°	T ()	1			3	- 1	+	4	-	1	1	-		-				-	./	i i
00			100					2.	60°	4	T	*	70	5	7			-		-	-	1:	-	13.5					(T.)
1.17.	1. 11.	1					-		00°		: : : : : : : : : : : : : : : : : : :	1	18) 79	5	,										14	1	-	. =	
80		-				+		3	100	C		= 6	76,	0	-		+	-	+						/	1			11.
00		1	1	Į.	1.	1		3	50	C		1 9	10,	5						ļ		Till:							
40			422	-	1	- -	بنات		-11.7	-	1124	-	π=	. H		-	- -	- VI :					-	/		-	****		
										7	1,,			4,14				alta arken				/						=	
20		-	111	+	1 1	-		-		-		 -	4	::1	+	<u>.: </u>	+	-1	-	/	/	•	_			ļ			
00	2157186		aria wa		11.4.51X		, 11752	-	1	-	i i				320 7				/			-			Sec. lead.				
100	1.1.	-		1.		-		-	sje Hyg	-					+		1			5 1500 Cl ()					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000 (1000) 1400	123 h
80	/1.23			1					J	H									1	e paren				7 5	Tare Control			4-1-1-1	
160		1	•	+		1		1		-	4	ا_	-			e de	1		-	4	-	1			*	_		-	11.
40				1		-	Ţ-,	-	11.7				-					· .		·			- 1					• •	
3:11		-	.;;;			1	Ę.		à.	/			2				1					ţ. ;			İ.				- 1-
30				=		+			•	-	1		17.75				-			23.00					1 1011.11			erry to	
00	- 1			F	4.		/	1		L	1						11	<u>. į</u>	-	- 1	_		_						
30	!	-			/						1			1			1	ij.									-		1.
																													5-1-
50		1	127	-		+	112	1		+	1				+	. *	+		-		-		_						
20		L	1	Ľ		L		1	4		11				_ _	1	1		<u> </u> .	1/17									
بننا		1	111	-		-		-	1. 1								- -	-	-		-	-			-	-	-		
20						İ.		1		1	<u> </u>				1			- 		i.	-	<u></u> .							
			1	+	1	1	*) -::-	+	1		+	[-			1	J.,	¥.				<u> </u>	r .							
() 	1-1	0			· .	30	1		<u>.</u> ع	70	1		4	0		٠,	50]		0			-3	Ø		8	0	
				-	-	20	-	-		1.		5,06		0e l		1	N		2.	ah	/		,		Oli	fi	ne		1
	7	. ,	. زید ز			ij,		100	.,		_			72					01	·				-	7-20	100	C	. 55	2%
		L	1	L	4	90	NZ	117	از از د غرف		F	0,	_	12 98		1	Ŧ	3,	74				2	00	-32	90	C:	· 38,	8%
277					2	2	<i>=</i> /	19	<u>550</u>	-	-	0,	7	10		<u>ا</u> ن	1 5	1,0	13			I			31				H.
10		_			, ,	Ţ	17.]_								di i		1				-			1111777	J	1-	1,1-	4
	l	Ļ	210	1	-	1	1	غيه	High	L	-			_ 1		۱,	عاد		L	<u> </u>	بنا	<u>l:' :</u>					10		かん

	D	rv	c/	4:	į	Л	Ė	26	25	e		Ľ	W	? ?	17 i 15 i	2		0£	ra	iti	(C	KI CC	d	ste in	au n E		Mi L	1	cl	5 _	1		p) rc		4	11	- 4	216 Z		1
)								: :		1	60	nl	α	KI		(1	v	9		1	rs I		h	<i>]</i> .		7	1		14	0	6		7	ħ	2,	0/1	94	
				:: 14		::	111	11	i	ñ	117				1	3	ik.	de	a	10	Zv	A.		Ţ	7	٠,		7-1	-		4			701				ra		3
				10					1				11.			25	844	44		26	5	1/1	24	144	4	54 F										 		1		
					+	-				Si	ea	e	62	9	in	72		4	,	C	11							Щ												
3	SO							171	L	16	Ø	C					Ï			18	و	Ko		9				H		7										
3	S		211 111						1	12 14	0	2					ļ.		K	15	3	10			4		4			15						- -		/		3)
3.	iet I		ii. III.		1		,		÷	16	O	6					•		5	8,	0				1		+	7.1			N.						1			111
- KILL			112				n.		42	?0 ?6	O.	1				-1			-0 6	1, 2,	0												1.7	1	/	•		:41		1:7
-34	Ø			1			1.1		ij	2	24	4	15						7	7	5			1					행.				-							ξij Δμ
28	0		7				151		3	4	99	\$							8	272	-4											/		177		ij.		ď		
- 20	ø							-1-	و	60		4				-14	-	ij	8	7, 2									ار. دا اد	/							-			Т
2		~	7	÷		-			1								1.1					1	ī _l					1		1-			13							
22		: Lu 							1											<u>.</u>				,	/	1		- -		=							. 7			
1	1			-									15 <u>1</u>					1		-1 - -1 -			/													1.	3		-	
20	0		- 1									H , d									-	•				H	-		<u>: 1'</u>			. Aday	: ::>	- 		100	+			
18	9-	-			1 15	+	7		1		-			1					1	1	-	-		-				-	+	1	· [_			100	-		1	
15	0	1					1	1	Ī	ij.				L		2				dr				·	Ė		İ		İ											
110	ار	1						ij	4	ï				1				j:	11					11.75	17		+	-			(1)							-	-	
12					-:		1			/					'n	=						- 1					11.	-	1		1.	أست		***	70	-		-		
		7		1.7					11	T	1			-	1			1		de.						-		-				-				in			+	4
104	1			/	•					+					+			<u> </u>	-	dr.						1	Ŀ				: 3		_					13.	-	
80	. F .	/					<u>.</u>			1::					<u>: .</u> ,	+		1	H	1.1. 1.	+					-	1	-	1	+	- 1			4		i i			-	+
6	1	4	+		_						1										1								4		117			i,	- - -					1
41	1		-								1	-	:::	1	1					Ť									İ		= -							1	-	ij
_2(1	1		-	-	i: 1		T.					-			-				-	** * 				<u> </u>		-	ŀ	-	7							15.		
-		-	-			.,	1		1-1						-					-		1										-				<u> </u>	•	1		1
2	T		10				Į.	20	7			_1.	3	0	1			4	0				3			%	-	50				2	0			3	Ō.			
tri s			+					+		12.		. !	144 14		1		!	ic.	13. 14.		-	1.	-	Yo	L	70				+	ļ	٠,	ef.		_			11:4	-	Alij del
-2-13-4		1	-	1	-			1		-	-				1	4	D	ez	6	21	1	1	N	P///	4	Za	61		L		1.75	. 1		- 1				7	1000	
77677		1.	1			-				9/	-			Ţ,	L		7	.8	16	7	L	1	Ì	1	_					2	00	-	3,	30	٥			63 57	ŝ	92
		<u> </u>	-	4	=	-4-			7/	Z/	n-			_	E		0	, 0	9	4		+	1	0,0	25	5			7	-	+	-		1			- 1	Ţ		
			-	١,			4	90	a	-/		253			٠.							Ţ		3,	34			11.7	17	1	1.		ŀ	ાં.		+ <i>H</i>		i i	1	j.
المنادند-		<u>. ۱۱۰</u>	٦.	. 24	5	- 2 :		نات		نب	يب	1.1.	0.11		1:12	نثلت	1	اعتنا	1	731	خخا		خك	, '1	- 6		4		hi.	٠١	110	1	-l-	44		1.19	11.	1111	1	11

Drucksynthese !	Hochtempe	raturkreisla	of mit	Temper	atur = 216,3°C
1	Idisarqus	und recdund LLurgi-Ver	ram Mira	N- Uruck	2 7. Oak
0 V.A. Nr. 36	Ujen_	Ge M. FUL	Luna.	100Co.	5 This DAGO.
	-Gasums	catz und Au	shaita	- Treserge	IF 25 mm Fackak
		5 Versuchsal	schou He		4 7
	- +				1111
	27/38.8	26./22	2.0- 46		II I
	23.10.19	8 200		15 10 - 27 1710 1939 15	138 + 15 17.15
Versuchsdauer in Stunde	n 624	1 / 20			90 1,95,71.1.
77		72		24_ 2	4 22
Versuchsdauer in Tagen	- 26	-3		3	1 3
Beaufschlagung m³/h	29.6	31,2	, ,		† - -
Temperatur °C /atii				1.0 32,	
and the second of the second o	(216,39)	21.0	2	-2	(1950)
Nm3 Wassergas ItgCo Ih.	-4.34	45		5 4,7	
Nm³ bez a Normalofenrou		1.50	, - - 	+++-	
Kreislauf				55 1,6	2 1,60
	4.92	3.7	4,	3 4,0	4.06
CO-Umsatz (Nutzbar)	79.8	75,9	8 69		
H2 - Umsatz	80,0		- 6		- 2
randa — <u>a mai la mai a mai a</u>	 	75,5	§ 69,	8 \$ 60,	0 36,6
CO+Hz Umsatz (Nutzgas	68,6	64,3	\$ 59,	9 3 50,5	35,0
CO-Verflüss n Analye	68.1	66.2	59,		
CO-Verflüss n. Produkt	65.2				-0-
		65.7	\$ 58,	0 8 43,6	5 8 20,1
CO-Verflüss.grad Analyse	85,4	87.2	₹ 85.	3 78.3	72.1
CO-Verflüss grad Produkt	81,6	86,4	83,	9 -	
9/Nm3 Wassergas	103,2		12		_\%
		103,0	95	8 69,6	36,4
Alkm³ Nutzgas	116,1	115,0		5 228	
INm3 Idealgas	137,5	138.0	3 /2/0		+
dealaushen to her and	163,8		7211	91.5	45,7
dealausbeutebezauf	100,0	173,0	164	9 143,5	129.2
	82	a de la se	- \$3	1	2.80
	12	Act a	123	2	0 2 N 8
	300	2222	26	2	10000
	Wasserga Lemperal	Suspass.	` * \$\$\$	49	20 X 8
	25	2828	Gemitte nachden stand	Mach de. Stand	27.67
A. A. This could be a second			727	21.11.	1 10 3º

	ru	Z/	5	'n	th	20	B	5	OC IAI	ht h	en M	90	en Is	yt.	ar di	K	rei	sl no	zu Le	m	n	ik	ß.		Ten On	7	er L	al	7/	, .	13	79	9
πĺά	l) /	! A	. A	Ir.	30		Ŕ	ON.	lai	4		על	ß	j.	Ve		erc I	h					1	10	4	5	7	3	D	lii Ngi aa	34	ş
7 10 311	11								141	f_i	2	'n.	di		131	./	4	h	7	-	í,					48		H,	20		90	7	
								14	14.		ec 	SU		瞬			7/	14	رن ح ا					ŀ	7					#		#	
		-			- 	51	ea	eb	ec	777	20		37	0	c													Ţij.		Ī			į
360					P			100		Π	ij	i	11	::77	1			i.	Ü	ΙÏ	7		ij					H	i.				
340			Ų.			 14.		10 12					3. 41		<i>y</i>	Vo	Ζ,	%			3											1	i
			1:					141 160				. 4	44 53	1.2		1	,									111				11		•	
320						1.41	•	301	2	3			68	7	- 1			inti Herri	1									1			7	ida Tur	
300			117			16.1 1945)		250 30			•		93 90			9		-			Ξ					117			ij	1			
290				- 1			•	321	74		•		93	0	H											i		ij	1				
260								36l			1	ĺ	25 77	7				H					T.						Įπ				
340		F									13				**											/							
		-			6-					ij.		Ţ													/					-			
220	, i								-	<u></u>						1.2			-1-					/_		124	etri	3		-:-	111		-
200			1.1.2		₹.a		4	e þr							= -						•	/		1111	rii :	TLE:	मा	F717	1111				
80	1.0			:([]; 															/	/				:::	7.		771					-	
60			77			- -		-			- -		#				1				-									13 m			
				- 1	-			- 4-							7	1.				-		.a.i		 	· ·							_ :	
90	1	7	1				-	1111		.,		-	1	<u>: !</u>				1	-	1. 1.		3/44 			-			-					_
30				. 5					١.	_		- ja	1 1	245 C ()			-	+	-	-11		-						7	7.11	7	7.72		İ
00				<u> </u>			4	+	1			1.			1	1	+					#				+		j					
30		71				i					1	di		1		- -	1	ij	-	Ť	- -	1.											111
50			Fri.		- -		1		-	1				-	Ŀ											· -	-		,				.i-
l				. 4, E11	-	- 1				-						- 1			1.				+		+			-				7	
0		1		1	+		1	15	+	1		Ţ,	Ė			1	+	<u> </u>	-	1			+			ا ا داری	1 1 2 1 1 2						
70	j.		+	(4) (4)	+	#-	+	1 () 1 ()	+		1		-	I,	Į.				1		-[-	1		1	4								
		2			30	- 1 -	ļ.			F					=	17		1		İ													Ti
				= -	30	i		· 4	0		-	410	50	1.	-		50				0		-		80	1			9	7			1
		-		Pa	ומו	ff	10	1.7	3	00	ž.	6	e H	<i>i</i> ,	-	11.		1:11	=	11.1		J.		0	le,	f;	20	•					1
			-	ŽĮ.		17.0		dirê jar			,	73	-		4	12.0		 			0	-					17	11/	3	2,	99	6	1
				e Re	4 <u>2</u> /	W		507				<u>70</u> 99			-		11:		-	20	20	•	3	30	20		=		2	7	99	6	
4 J			+			1.,		-		9.5									ļij,			ŢŢ.		Ė		t		T				Ti:	
				1		<u> </u>		-	-								-				-			(1) - []	110		4 ; (1)		1 3	4	- #	25	7

			the		1/1/0	isser.	ampe gas	und	Verd	iinnt	Am I	Yisch.	Dra	ick	tur	· · · · · 5	Oat
-D	VA	Nr	35		Ko	ntak	t (Ufen d	Lur	gi-Ke	rsug	<i>(1)</i>		1000	6.5	102,1	DHgU	60
						Koh	ten a	wdb	ilanz	600	ogel	7	Kies	etgur	2.5an	o hook	akaa
		7 3	Training Contract	1 1		aus	ومنع	اعدما	ztes	kahi	enog	vd.			1.77		
			9.	630	,		16.3°			200 2					: ::::::::::::::::::::::::::::::::::::		= 1
	0,			7			T.			76.3°			16,3°		7	990	
	100	2			:: i-												
	·		4 300		36.	15.17			121			1 1 1 1 1 1 1 1 1					
	<u></u>		COL	1560		1	2.5	3		11:15:	1	- 10 1 5 2 1 - 12 1 1 2 1		-	nidz. i	10 (12) 1 (2)	
	90	,	im K	estgas	ander.	7. milit		110	7 F1 F2	17.15					翻印		
			646.	2 16		i Hiz			Hinis Times							16.	_(4)
			1			242		1387	1-:	5 17		- 13 14 14 - 15 2 1-5		i de distri	35 (C) 37 (C)		
	80			鉪		HEEL	105					11,11				1.0	
			0003C					1111	1			110	-171-2	1	344.	in lies;	
		10.00	CO al	e •	1 1 1	11.11			1.15		1-5-1-1			111	11111	Hutas Taxo	<u> </u>
	20	,	LIBR	stgas					抓講						di C.	10.0173	
			Verl	1101							reni de-	44.57			-1211		
984 - 1.5 984 - 1427	120	==	TEF L	V24	100 H				3	12. 1.2		11.				H, E	17.
	-60			wite part		-, -			 		egen pro	- 11 m			77		
	- 00									4.		geta.					
		1		36 Dec					70 67			Parties	114		311	• 11/	
			GDa	76		- Lalain			1								1
	-00		flüss	iaes	0.00 L								2.7				4.1
			Proa	iges lukt			7										
							i pr										143
	40		- 1				7						11	-	571 m		
			e, de d	- 1					7,100								it:
				<u> </u>											. e. hy. z		
	-30							<u> </u>	-	100	7.7				4450	STP 2	, <u>, , , ,</u>
									11.					7			1
								42			3				3344	وساوس	
	20	\dashv	\dashv		4	<u> </u>				1.5		100 (100)				arabara Sanara	
				-													
																	<u>.</u>
\dashv	10	+		114												1	
											===					1	
									11-71-5								
			<u> </u>				1			2.17							
		,	7/28	e -	计计	25/2	20_		14/15	40		39 A			-		,
		٠				26/23			i			27/28 193	8.	/C	13.11		1
			3.10.7	1938		/3.10	1938		16/17	10.1934				4	15.11	1938.	
				1.1	- 1	i					PIT .	1 T # 1 1 h		- 1. IT.	-4.	T. 11.	24.1

ę	DI	ruck	synt	hes		H	cht	emp	eral	urk	reis	louf	m	2	,	Ten	700	rai	vr.	216	390
	D.	Y.A.	Nr.	34.		k	nto	kt_	CLU CLU CXYL Gesei	ra ri	erdi -Ver	SUCI	em/ 1).	71.SC	7-	Dr.	CO	.5	7.A	104	Pate
L					1 2 1 2 2	-	K	Ofe.	<u> 2.</u>		Fu	llui	g_			Kie	seL	qur	35	nnt	O, GO.
-				1 -	1-75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	au	l um	a esei	zorci Ez kei	anz Ka	peza hlen	igen orva		4	Line.	1	+			
-				2	16,30	-		216													
	::	9	6		T.	1		T.	3		 11	63° T		-	210	,J_	7.1		7	790	
. -		10	—פ	CO				**	~~										- 1		
			1	311.				"		- -	7.7								75	1	
j				CH4	<i>*</i>	1,22								15					1.1		
		90				1 1 1		. 5		-	+				-14			_		- 1237 - 1237 - 1237	
				.,							12.3	17.		- 11 (A)		T					
		80		Verl	ıst				-	-		: : : : : : : : : : : : : : : : : : :									
П												1		107.11	-		\dashv				:00 Per 20010040
-	\dashv		1121		: (j ir - 5 j :		71s.			-			1							17	
		- 70		flus	uoe I		مراجد درخارد						خيلية			\dashv					+14-
				Pool			- 1						1: ::				1	+		-:-	
					777	1	-	+	\vdash	+		15.7				17				4:	
-	1	-60					market.	la 7i.c.						- J	1						
, (j. 15 - 10)	-				-	+	200		12.7			144		-1	ļ.,						
-									+-	-		-			11:11		+	-			
	+	<i>∴50</i>															-				
	-											-		-	12.		1	-		154	
-			72	11												177	+	1.		1	
	+	40-			7		andraw		-			-	=							-	
1 1	1											1.50					- -	Fi			44
											- -										
	-	-30		1.1.			-	- 11 25 							1 1 1	-	╀			idi G	
	+		_																	-	
J	1	20	- <u> </u>					<u> </u>					-			<u> </u>		33			
	-	200															+		<u> </u>		i service
	-	-				_	++	12.47	11, 1	1911				11 F 4			L				
		-10									157	**	-	1-1	11	-	-	1	-		
	-		- -	+								_ _									
	1:					_			1.1				-			+	\vdash				
		+												oj ar			- 25			- -	
المورون المنتي. المراون المنتي			27	128	P. —	2	6.12	7.0.		14 H.	10			2 Æ		1		57			
		4.	شيسين بعديد	4.7	. 1	1	ti. H.	tiona's				•	_4	L [E] 193	<i>10</i>	+	- 1		3 15	1.	
	-	+	2./	3.10.1	918	2/	3.10	938	•••	16/17	OB	385			1			4/5.	# 19.	18	
		and the second	-+			- -			-67-		-		_ _	1. 1.					4-4	. 1	a.11

Herrn Prof.Dr. Hartin!

Betr. : Wassergasverouch.

Eachfolgender Versuch wurde im Druckversuchsofen 2 der Euhrbenzin Versuchsanlage ausgeführt. Er schloss sich an die Synthesegasversuche mit und ohne Kreislauf an. Der Ofen hatte zu Beginn der Enssergasversuche bereits eine Arbeitsseit von 3649 Etunden erreicht. Die Wassergasbeaufschlagung betrug 1 m³/kg Co in der Stunde, also rund 42 m³/h. Das bereits grobgereinigte Wassergas wurde in der Feinreinigung der Benzinversuchsanlage bis su einem Schwefelgehalt von max. 0,2 g/m³ gereinigt und dem Kompressor augeführt. Die Temperatur innerholb den Ofens ist so gewählt worden (200°), dass eine CO-Aufsrbeitung von rund 75 % ersielt wurde.

Allgomein soigt sich beim Arbeiten int Fansergas dass der erhöhte 00-Sebalt im Facsorgan (CO: N2 im Verhaltnis-1: 1,3) ein Ansteigen der Clofinzahlen bewirkte. In der Zeit ohne Ereislauf betrug der Clofingehalt im 4.K.-Benzin 49,9 %, im Kondonsatöl = 31,9 % mit Kreislauf A.K.-Benzin 61,2 % und Kondonsatöl 42,7 %.

Wan muse annother, dass der Unterschied im Olefingehalt bei beiden Fahrweisen noch grösser geworen ist, da
das Kreislauf-A.K.-Benzin durch die beim Ereislauf verknderten Kondensationsverhältnisse mehr hochsiedende olefinarms Bestandteile enthält als das Bichtkreislauf-A.K-Benzin. Durch eine technische Störung konnten geschnittene
Frodukte nicht mehr verglichen werden.

Obwohl die gefundenen Olefinsehlen weit höher lagen als bei Versuchen mit normalem Synthonogas, entsprachen sie noch nicht gans den nach Angabe der Lurgi in Frankfurter ver suchen erzielten Olefinsehlen von rd. 70-75. Dies kenn jedoch dem Alter des Kontaktes zugeschrieben werden, der vor dem Tassergasversuch schon 3649 Betra-Stunden mit normalem

Sygns bei häufig wechselnden versuchebedingunen hinter sich hatte. Eine Verschiebung der Biedelage der Fredukte durch den Arcislauf ist nur in gene geringen Basse eingetreten.

Den wurden s.B. orhalten an Benzin bis 195° siedend, ohne Kreislauf 42 Vol. mit Kreislauf 45 Vol. (vergl. graph. Darstellungen der Anlage!)

Coosmalypisch betrachtet seigte der Versuch mit greislauf eine 00-aufarbeitung von 74,95 und lieferte hierbei, berechnet auf eingesetztes Co. 7.8% CO als %cthen und 3,6 % 00 als 002, auf ungesetztes 00 borschnot = 11% Methon and 5% 00g. Der Versuch ohne greislauf brachte bei der gleichen temperatur von 200,40 einen Co-Umsatz von 77.9%; debei lieferte der Kontakt 11,2% 30 als zothen, 3,3% CO als CO, bezogen auf eingesetztes-und 14.5% bezw.4% bezogen auf ungesetztes CO. Shoohl die CC-Vzentse verschieden hoch waren, wurde in beiden Fallen die gleiche analytische Verflü-Bigung erzielt; d.h. beim Detrieb mit Ereislauf war die Sethenbildung geringer. Das praktische Ausbringen an Flü-Signrodukten war jedoch bei dem Betriebsabschnitt ohne Freislauf höher. (#14-Freislauf-115,0 g/nm Idealgas, ohne reislauf 125,2 g/mm3 Idealgas). Unter Idealgas 1st das inerticle Cas verstanden, webei der Co-Cherschuse über dan Verbrauchsverhültnis Kohlenexyd su Wasserstoff zu den Inerton gerechnet wird. Her CO-Sberschuss koun in einer 2. Stufe much @asserstoffbeimischung weiter nutzbar gemacht werden. Fin genauer Vergleich der Betriebsabschnitto mit und ohne Ercislauf ist leider night miglion, de die Apparatur bei den Versuchen nicht zu bekommen war. und diese Undichtheit besonders beim Betrieb mit Erciclouf stark in Frenheimung trat.

Die Gasolausbeute war beim Arbeiten mit und ohne Kreislauf praktisch gleich und baurug 4 - 5 g/Am Bacser-gas bezw. 6 - 6,5 g/Am Idealgas.

Der vorstehend beschriebene Versuch zwigt, dass es möglich ist, durch Verwendung von Bassergas zu elefinreiRuhrbenzin Aktiongoodlichaft....

chen Produkten zu gelangen. Das Arbeiten mit Kreislauf hat im vorliegenden Falle keine wesentliche Verschiebung der Frodukte gebracht jedoch die Olefinschlen des Bensins und Flos vesentlich erhöht.

Gegeniber normalem Synthesegas besteht der Emuptunterschied beim arbeiten mit Wassergas in den höheren olefinnahlen, während der Verflüssigungsgrad nicht wenentlich
gesteigert wurde. Vehrscheinlich wer der so lange mit Sygas
vertriebene Kontant nicht geeignet, um die Wirkung des
Wassergases voll konntlich zu machen, sodass die verliegenden Versuchsergebnisse zu einer grundestellichen Beurteilung
der Wahrweise mit Wassergas besw. mit Gasen die 60 im Wherschuse enthalten noch nicht ausreichen. Be eind noch weitere
Versuche in dieser Einzicht vorgesehen und swar sewohl mit
normalen als auch mit verdünnten Kontakten.

es seigte sich wehrend des Versuchsganges, dass die nach den verschiedenen Methoden bestimmten Contraktionen night befriedigend Ubereinstiamen. Awar weren die CO2-und Mengenkontraktionen annahernd gloich, jedoch lag die Stickstoffkontraktion um durchschnittlich 5 - 8 % tiefer. Auf Grund von cablreichen Kontrollanalysen bestand Grund su der Annabas, dass die Stickstoffkontraktion-als-die-richtigste annuschen war, ferner dass sich die höhere Kohlensaurskontraktion sus einer Kohlenssursbildung orklart, dass also die an hohe Mongenkontraktion auf Undichtigkeit der Apparatur suricksuführen war. Bolche Undichtheiten wurden tateschlich en den verwendeten Meunann-Luftkompressor fostgestellt. Die Tatsache, dass die Stickstoffkontraktion als richtig answeden war, wird noon durch folgenden Versuch erklart: Um die Stickstoffeinbestinnungen genauer zu gestalten, wurde dem Vassergas über swei Tage hindurch Stickstoff sugesetst bis su einem Gesantgehalt von rd. 11 %. Die auf, diese Voise recht genau ermittelte stickstoffkonRuhrbenzin Sktiengesellschaft

traktion stand in Speroinstimmung mit den vorher ermittelten Serton.

Son graphischen Sarstellungen der Anlage über die GO-Bilanzen des Wassergasversuches wurde aus den genonnten Gründen die Stickstoffkontraktion zu Grunde gelegt.

goz. Dr. Herbert

Pliff

Alberts
Hugemann
Heger
Horbert 2 x
Howeling
Roolen
Walbel

Wassergasversuch

Mit Kreislauf

Ohne Kreislauf

8				-	w	2		चा ।	0 0	Ī	. 3	-	Γ	T . I.	I					Tin	j. 11		.0	100	FEF.,	10.00	. 2. 2			og i
티	2007	98.2	8.77	200.4	9 19.3	o			3 45		17.	1.08	9.64	22.4	<u> </u>	0 0 2 0 0	68.0	542	81.2	8,00	45.4	30.2	1.2%	1.89	Ohne	7	24.0	5		3. Mai 3.
~				3.0	9	1			द्रेष	ო		-			_		3					7	+	+	0	7	7	2		E) S
%. Ⅲ. 38.	7001	59.2	8.07	200.4	6.61 9.3	1.0.F		7 9 0		0	m		80.6	107	2 Z	9.0	68.1	59.6	23.0 23.0	108.93	99,20	128.9	- 8 3%	-13.6%	Ohne	1: 1.96	25,8	24.7		DVA-
%. II.38	1772	58.9	46.1	200,4	6.2 14.0	7	0.1 0.2	• • •		11	98 167	1	8.86	2-1-2	Ţ	9.07	59.4	52.4	75.4 66.5	48.44	1.84	108.2	-8.9%	-10,6%	Ohne	: 2.05	23.6	27.9		
% III.38	510	50,7	49.3	200:4	5,9 13.9	70	0 1 0	77.66	10	23.6	1,25,22,80	1.29	76.5	23.5	r.	36.5	63.5	57.3	88.0 0.00	20.00		124.2	6,2%	- 8,39	Ohne	1: 2.02 1	23.0	30.4		
III. 38	625	49,7	50,3	200.4	_	90	10 .	24.6	7 77	220	0.9 2428	1.34	76.7	23.3	S- 6	 	61.2	57.3	7 9.90 74.60	8600	96.0	116.0	-39%	5,39	Ohne	2, 72	2.8			
3/4. III. 38 4/6.	227	55,2	44.8	200.4	0.	- 0	Ö	500 227	5,1	-	3.9 -8.7	1.15	79.5	20.5		(5) (5) (5)	64,2	96.9	80.7 06.7	69.24	113.7	154.9	+ 12,7%	18.119	Ohne	, 7-7-7-	23.4	26.6		
43 III 38 :	506	55.0	45.0	_ 4-00Z	_	-+	- C	29.0	4.2	3.9 8.6	-	1.13	16.4	23.6	70.77	35.4	9.49		3.5	105,23	98.70	125.0		- 8.10g +	: Ohne	2.16	23.7	25.1		
12. III. 38	428	52.9	43.7	200.4			0.10	2 17	7	_	383 9.10	1.42	80.0	20.0) n	3.76	68.7	54.6	85.8 68.3	85,62	82.8	709,8	-44.1%	24.49	1: 4.308.1	27.72	ਝਾਂ	24.6		
28/1. III. 38	731	53.5	46,5	200.4	68 18.7	+	0.1	21.0	7	4.1 8.8	3.9 8.38	1.17	77.4	22.6	- 0	36.6	63.4	63.4	82.0	82,75	94.40	23.6	% 00	8 0 0	4: 4.693	1: 2,24	22,8	26,2		ν.
0.16	404	6,88	43.1	1002	H9 99	7.0		28.5	78	4.0 9.0	3.74 8.68	. 1.13	76.0	24,0	7 0	30,8	69.2	47.2	27.7	70.32	24.40	-	- 22.0 % +	34.69	4: 4.472	Ŋ	24.9	71.1		J
6/27II.38	#8E	0.09	0,04	200,4		0	200	23.0	36	36 90	8.68	1.28	78.6	24.4	9 0	1,86	-976	58.2	0.72	93,73	97,60	125.0	%	22,29	1: 1,138	1.0.1	26.6	22.0	,	- 1
20 1.38	505	0'61	51,0	200,H	7.0 166	ō'	- 4	206	32		3.52 7.0	1.27	80.69	34.0	2 0	E 25.3	54.7	7.50	86.0	85,07	24°40	447,30,	- % Z F +	- 689 +	4: 0,984	7:222	23,0	56.3		
C-1/25 II 38/25	529	694	53,1	198,9°C	6,6 14.8	0 5	29 - 11111 301	50.3 206	0.3 3.1 0.4		395 744	1.11	% 6.89	34.8	200	4 6.2	53.8	37.8	84.5	80.54	- 1		-	-	-	1: 2,27	22,2%	27.5%		
Moscomoc	Aestos	NKente	to forte	3		5	ර් දි		3	%	Nr. Fain			9809	0000	Gesamt	Syarl: Amo	Sver Ho	Verlog Prod	Produkt kg	S/rim N-40S		4. Verlu≤ % 60	-	*Kneislauf	Verbr. Verhalt	9	Jnorte		

Property of the self-state of the latest than the self-state of th	
36	
No.	

				Of	len:	2	C	0 - 2	Bila	た	2	00,	4 ° C				
	4 1	F4.5					sser			<u>.</u>			1747		di Haii		
			<u> </u>			-		7							11.		
								ΤŒ	Ţ	15.151.		Τ			12-		
12211		muit			k// :		-					ומני/ב	157	6/5/	LUF		
			1:1	2		1.4.			ļ			1:1.					
IOD	11.00		g Chara				1 1 1 1		14-1-1		-	lao.	TELL TO	oreites.	1 (11/12)	11	1 - 1 - 1 - 1
		Linguis. La rei				<u> </u>				=15			J	7			
1		i intr	7-2-1	10	1				-	-		7:1-					
90		Cr. a	s Co	T.	1.4	7	1343	1.7			7	-		Ga	s C		
		Resto	a a									90	1311.5			1 100	1::-
1		tan ken		11. 5	1.1.									1) 63	995	1111	
			31. T						ļ,					1 117			
80	271 A	1231:7	100					ļ. <u></u>			 	86-				216	
				- 7							- 1		771	n sa i i e	7		1,42
1754		سبوت		v.						1.00			7	~~ ×	3 C		
170	15.5	o als	CHI	+							-	.			3 ~ !		
70		14.				74.8	9%	Co	llen	:013	77.9	70	/h	10.1		1-10	
D	7.	4 5	e e e									10.0					
12.1.				3132	 	25.	2%	Co-	Co	<u></u>	22,4	%		X-1/4			1
60	\h	erlu	S i			-9.	8/4	Co-	C#		1-1-2	60		/erlu	3.7		
							%	1 1 1	1	,.,,	3,3	1					1,12
1			iui				1%				3.4						5
-																	1
-56		3.1.3				the state of the state of	%	the second of the			0.7	1					
					8	4.7	2 % Vs	rllus	grd.	u. 8	1.4 %	1.		. j			1.7
								1.	1.55		• 114		7		1		
40-		-				5.7	<u>%</u>	4	$-arrho_{\ell}$	od. 7	8.0%	40	4	uss	Proc	115-6	
	711.1	65 1	rodi	14	i		اب اسا		4								
		- 4:		7		-1	1 -		32	i			17.		;		
-0-			3.7									3o-		- 1			
				771							-i						
Ī																	
20-		- 4								- [26	- :::::				
	2	. 11-11		: ::	_17 :	1 :										-4-1	
							 						311.7				117
		7				inte	"										
10					1.0			77	. 1			10	17 115			- 1	
			20.0							2,4	iyatlari T	-					
 						· } ·	1						11111111				
		إنت	`			1.11						7 H-		17			
			77		12.[7]	4				- 4-4	44				. ::		
				3		``					<u>;</u>						
		11.						in plant					-,				
						77		7							47		
			4					ĵ.			7	-		3	3	8 -	
		[[.]				() .	١ و			-		
				1	- ir			/ 1	3: /	-1-1	74	1	414	·*,	4	Fig	
					::: †/ (C				444		. 2	1	- <i> </i>	19	\mathcal{I}_{-}	Chis	91
] (4) . [7		11.5		41	***	1	49.1		1			11 11	100	21 11 1	: H :::::	: 51:11

Ofer	7 2	 Co	-B	ilanz

	Ofen 2			a contract
mit Kreislau		200,4°C	chne	Ž-eisloui
1 12		itz = 1009		
100				
đó cis	SH.			
				is Cu.
wer_ust			80 Vare	\$ \$204 18t
			éo .	
			c , c	
			So Puissig	
40			4	
36				
			20	
10			P	
- 924 Vertus				Verlust cus
Umgesalete	atil Vilaiti alikala			
Cingosa1272	s un estad		Umgesof	
				VA 434 3:8
			12 W 42	ta Thata
Late the state of	en an annoch	composition(Ca)		A. Blott IV

												;;								1					K		H							Ŀ	-				7	Ŧ				1
			1					Ī	1		1								Ţ	1	∦				ľ					ŀ		- 1			ľ				×	t	4	<u> </u>		j
			1				#	121		4				#	ī	11		e: [Ш						Į.				17	Ţ			<u> </u>			1	-		H.				4	Ę
			f		-		1			1							#			-				-					ļ-		-	<u>. </u>					-	2	ij					₹ 2-
							1	-			-				i.							Ē					-			1											0	3	3	
	H		3		E.			1		#	-	1		+	i.		li.			+	1				+	,	1	30		-	_	_			-	1			[-		5	-	ج.	<u> </u>
	E		3								Ų.		Ë	1			Ľ			ij.	Ė									1				ļ.:					1	F		1		
		4	3		::		+		7		3				/	7	-	-	7		7					3	1.	`			۶.	7		3	1	ļ	4	<u>:</u>			ŀ	#		
		-4	J.						46	? ? ?	530	000 W	1		9.0	2	ĺ		7.78	5	Š.	9	įΰ	 -	ľ	5 7.7		9	e C	,	ci ci	7	Ü	L V	;	ï		: :						
		46	-	_		ŀ	#	-1	2) 	o	€		-	-	44	-		7	5	Ÿ.	7		1	ļ.	-	,	.2.		+	C.	1	3	j c	1	+		-	1	-				
8			1				Ī		100	Ė				1		3	ä							-		ij,	2			1		*		1	ŀ	1		•		F		+		
Wossergase	1		-					ļ	1	L						-					:												Į,						À		4.			=
ð.	Ė	Ħ	Ŀ											Ť	1	"-	Ë					+								1		-	-	٠.	+		-	<u></u>		+		+		-
S	1		-	4	1		1	1		1				+	96	70	1							1.	Ŀ	J	:: ::	۲,				8	à	\$						L	1			
3	-			11			Ť.		t	, L	9	CVA	Ť	ŀ	54 E 96	ť		ī	67,C	i	3	7		1 -	1	٠ ۲		20 + 1	c lj	,	0,0	7	2	0							-			
	1			[-]			1		Ç	Į.	0	¢			Š	0		1	Q	ķ	7	ď			Ī	9	e.	3	ď	1	?	7	٧	0	1	1					Ï			
		1	1				H	-		H	12						12					+	=				S								H			<u>. </u>				+	: 	
		9	Ŋ.	ы 7			Ŀ		ij	Ľ.				1					11:					Ľ							Ī		Ī.	1.1	E				7		ľ			
		, ,		7	Ė				ر تع د		7	D. L. Fr.	Ė	-	Olehine Deman	~~		H	ದ	4		튑	. 1						ļ							i.					ŀ			-
		ξ					Ī		1	G	ř	d		ľ			i.			þ	\$ (ğ			7	ø		7000	10.7		o H	3	095											
							ì	-	Shoan	}	4		5	+	5		ŀ				+	1			τ	Space	7	7	-		Ţ	7	4	7	1		-				-	-	- 1	
	1						I		v	1	-	4		1	5				×			-		c	Ľ	+			-					į										
						:::		;		ŀ			ä	H	-	ή,	-		-		ŀ	-										:::		 	-							.	ļ.	
										Ì.					1										İ					1										ŀ		+	i	
										-					1	-					E				1		-				•	::			1	-	4		-		+	1		
	0		Ė	- [-					Ë	1				1			::		Í								t.					_			1			• •					
	31.50			+				1			-				1	-	1				i.				:					-			<u>.</u>			-	-						<u> </u>	
	i							1		ŀ		II		L	Ï	_		.,,		Ì	E						I	1					Ħ	Ī	Ť	- - -	1				1.			
III tomesto	in Joseph)	-		-	15. 2	-	+		#	ğ		\parallel	74		9	H		2	4	E		=	300			Щ	1		10			-		L	•	1		2		-	-		4
1	10			1		:::	ļ.,	1			1	11				ì			′-	Ť	L	1	=	(=		÷		\dagger		ľ		Ì	H			+		_			ļ	-	-	
			ŀ			-							::	ŀ	-1					1		1			ļ.,		-									1.	Ţ					1.		
				1	%		L				1				1							+		•			1			+			1.1	7	-		+				<u> </u>	#		
	10			. !:	0		-		.:				.1		1		Ŀ	T		. [-	-		1	Ŀ		1			Ľ				/	٠.					٠.				
5	15		Ŀ	Ť		177	H						ij		1	÷	11.	1		#	1		.11					r		Ė	-:					i i	-		_					
10			L				11	1						Ę				4		T				=				1							12.	1	1		;==: : ::;	: · ·	ļ.,	·I.	PT:	ा
Ohoe Krastauf	200	b	l:					1	i	#		ij		E	Ī			i		1	-	#	쁈				╢	+		1000							. 1:	-		-	1			الت
- 2	day			-			E	1	Ш	Ш	4	Ш	П	Ë	Į	1				L	F	#	-1		Ë			1	П	1	Ц	Ц	Ц		L	· ·	1	٠.	أنسا		*!-:			: 1
٠		-		-			ď			1	4			9	4				.9	-[ļ	þ			:		d		;	þ.		g		3		10	:							=