5722 "X 9.4.

Ruhrchemie Aktiengesellschaft
Oberhousen-Hollen

345/- 30/5/01-19

Herrn Dr. E a 1 k .

Verwaltung I.
-10/14103-7855
Beantwortetom:

Ob.-Holten, den 2. Oktober 1941

BOH. Abt. DVA. Hr. VR.

Betr.: Binfluß des Insrtgehaltes im Synthesegns auf Unsats u. Verfillssigung bei der Rohlenenydhydrierung.

> In Bachfolge unseres Schreibens vom 24.9.41 möchten wir sum Punkt 3 und 4 die Eahlenbeispiele liefern.

Die Versuche wurden an einem Kobalt-Eisehkontekt normaler Susammensetzung von der Korngröße 2 - 3 mm durchgeführt. Das mit Kontakt gefüllte Ofenvolumen betrug 206 Liter. Die Ofenlänge war 2,5 m.

1. Baispiel entsprechend Punkt 3 des Schrb.v.24.9.41

Belast	mg -		0,81 Es	3 Sygns/	10 Ltr. 1	Contakt
			6,7 m	3 Sygne/	Ofen, St	
Topper	SUP	1	82°0_			
Synthes	erasdruc	7	A 40		de est de la rec	

The state of the s	Transcription		The state of the s	
		Bygas		B tgle
2000	\$C\$49869EB		13624.70.7	A. 81
002		20,1		36,2
O.B.		0,1		0.2
00		19,7	36.250	
ALE ACTION	2 04.5 427 13	-701	el la esta esta esta esta esta esta esta est	8,8
- B2	بناه فعدا المسيع وجنهم	-39, 7-	en en en en en en en en	15.9
CH.		4.5	Caldwin Who	11.0
12		15,9		27.8
H, 1 Q	D	2,01	1,2,000,200	1,85
全国的 国际的	32 m - 1	5.50(金色)。		1. 3 Care 11 11 11
Inertgeh	ll 3	40,6 9		75.3 \$
100 00 00 00 00 00 00 00 00 00 00 00 00	With the state of		***	

Kontraktion 43,6 5 Ausbente an filles.PP 50 + H₂-Ussats 76.5 ≤ , 116,0 g/km² 50 + H₂

Mir den 10 m - Ofen ergeben sich folgende Zahlenwerte:

Einsats an GO + H₂ 483 Em³/Std.
Umsats * GO + H₂ 369 * •

Prod.an fluss.EM 56 Eg/Btd.

Durchschrift

2. Beispiel entsprechend Punkt 3 des Schrb.v.24.9.41

,.	seelisistalii jiheli 2		
4	Bolastung	0.97 Es Sygns/10 Ltr. Konts	ak 2
	Temperatu	20,00 Em ³ Sygns/Ofen, Std. 182 ⁰ 0	स्य से इ इ.स.च्या
	Syntheseg	druck 7 atii	

19. 4×	907000 7 *** ****************************	الإماد المادي وليواها. يتولف للمادي وأنيانيا	Sy	380		Rept	ena-
	1000	100 mg 1 m	market and a sign	and a second se	ar and are	er en	
	02	的等待。	A	5,4		39	.5
	<i>.</i>),2		0	,1
	0		. 10	5,6	ur zedősü Velkesede	8	.7
	2		32	.8		14	.4
0	B ₄		9	,9		10	.1
y	2		16	,1		27	.1
H	60		. 1	,98	£ 1. 12.	. C	66
200	rtgeba			.6 \$	البهاد المحافظ المادية المحافظة المحافظة المحافظة		9 S
	-			<u> </u>	35 TO 15) J J

Kontraktion 34.0 ≤, Ausbeute an fillss.PP C0 + E2-Ussats 69.2 ≤, 105.1 g/Es 3 C0 + E2

Per den 10 m³-Ofen ergeben sich folgende Sehlenwerte:

Rinsats an GO + H₂ 479 Rm³/Std. Ussats * GO + H₂ 332 * . Prod. an files. EF 50,4 kg/Std.

3. Beispiel entsprechend Punkt 4 des Schrb. v. 24.9.41

Belestung		L,00 Em3 8	ygas/10 Ltr.	Kontakt
	20	0,6 Em ³ S	ygas/Ofen, St	
 Tesperator	1	18.5°0		
Syntheseges	druck 7	atil.		

Rührchemie Aktiengesellschaft Oberhausen-Holten

	Sygne	Zes'	1500
G0 2	26,2	4	0,3
Q.	0,1	var. Taliga (A. 1995) Gall San San San (Z. 1995)	0,1
GO	16,9 		3,3 3,4
CH ₄	5,5		0,5
2	18,2	2	7,3
H2 1 CO	1,96	14 7 15 1 F 4,000	L,63
Inortgohalt	50 s	7.7	3 , 2 %

Kontraktion 35.3 %. Ausboute an fitse. PP. $60 + E_2$ -Unsats 71.8 %, 100.5 % 100.5 %

网络欧洲市市西南州市(第7505、南山山山山山山

Pur den 10 m3-Ofen ergeben sich folgende Sehlenwerte:

Binsats an CO + H₂ 500 Em³/Std. Unsats • CO + H₂ 359 Em³/Std. Prod. an files.HF 50,3 kg/Std.

Vergleicht san die Sahlemerte aus diesen 3 Beispielen, so orkennt man die gute Wirkung einer Inerterminderung:

		3 1 2 1			Usats	
	87ges 8.3	Inert	gas C	0 + H ₂	60 + H ₂	fites.IV
Beisp. 1	810	327		483	369	56
2	970	491		479	332	50,4
• 3	1000	500		500	359	50,3

Die Etglichkeiten der Inertemminderung im Synthesegas sind vielgestaltig und können schon bei der Gesersengung, S.B. Sauerstoffdruckvergasung Vorgenommen werden. Ist für die

Synthese

Ruhrchemie Aktiengesellschaft Oberhausen-Holten

Synthese eine Konvertierung erforderlich, so wird sweckmäßig CO₂ an geeigneter Stelle herausgewaschen.

Die bei uns gemachten Versuche wurden inter Hitteldruck bei Betrieb in geraden Durchgang durchgeführt. Gleiche Erfolge sind bei Kreislaufführung zu erreichen. Die Anwendungsmöglichkeit besteht bei allen Kontakten, die bei der Kohlenckydhydrierung Verwendung finden.

Thy

Dår.: Ma.,/

Einflus des Inertgehaltes im Ausgangsgas auf Umsats und Verflüssigung bei der Bensinsynthese.

Im vorliegenden Versuch wurde, durch Fahren eines Ofens mit Synthesegasen von verschiedenem Inertgehalt und unter Berücksichtigung einiger Maßnahmen, die sich im Laufe des Versuches, Insbesondere im Himblick auf die Praxis, als folgerichtig und Eweckmäßig erkennen ließen, der Einfluß des Inertgehaltes im Sygas auf den Reaktionsverlauf bacbachtet.

Als Versuchsofen diente der Ofen 2, ein 34 mm Röhrenofen mit aternförmig eingesetzten Wärmeleitblechen. Er besitzt eine Gesamtkühlfläche von 0,377 m²/Ltr. Kontaktraum, wovon etwa 35 % wasserberührt sind. Sein verkleinertes Volumen beträgt 206 Ltr. Kontaktraum, die Normalbelastung also 20,6 Mm²/Std. Der Ofen Zeigte in früheren Versuchen ein ähnliches Verhalten wie ein normaler Doppelrohrofen und konnte daher ohne Bedenken für diesen Versuch, der ein für die Synthese gans allgemeines Bild bringen sollte, verwandt werden, sumal die angestellten Vergleiche in dem gleichen Ofen mit ein und derselben Kontaktfüllung erhalten wurden.

<u>Ringefüllt</u> war ein auf Röstgur gefällter, 2 - 3 mm <u>Hormal-Kobalt-Rischkontakt</u> der K.P. Der Co-Inhalt betrug bei 54,4 kg Gesamtkontaktmange 16,3 kg.

Als Sygas wurde ein Gas mit einem H₂: CO-VerhEltnis von 2: 1 gefahren, das bei der Fahrweise mit rd. 20 % Inertgehalt normales ND-Synthesegas der RB daretellte, in allen anderen Fällen aber aus Restgas der RB, einem N₂H₂-Gemisch der RCH und Vassergas bezw. ND-Sygas der RB zusammengesetst war.

Die festliegenden Betriebsbedingungen waren für den gesamten Versuch 7 atl Gasdruck und gerader Durchgang.

Versuchsergebnis:

Die Versuchszeit von 205 Tagen muß, entsprechend den Pahrweisen unter verschiedenen Verhältnissen, in 3 größere Versuchsfolgen unterteilt werden, die in einer systematischen Reihe liegen;

A. Wechselnder Inertgehalt bei normaler Ofenbelastung

Für diese erste Veräuchsfolge waren 3 verschieden inerthaltige Synthesegase vorgesehen, wobei die Reihenfolge wegen der bei höherem Inertgehalt überlegungsmäßigen geringeren Beanspruchung des Kontaktes folgende war:

1.) 50 % Inertgehalt,

3.) 20 \$

Machdem der Ofen mit Restgas RB angefahren und 9 Tage alt war wurde diesem Restges ein Teil ND-Sygas und H.H. zugemischt. godaß ein Gas mit 50 % Inertgehalt in den Ofen gelangte. Bei einer Temperatur, die anfänglich 172°C betrug, dann aber im Laufe dieses Versuchsabschnittes auf 176,5°C gesteigert werden muste und im f bei 174,500 lag, stellte sich ein 00 + H_-Umsatz von rd. 70 % ein. Der prakt. 00 + H,-Verfl.-Grad lag mit 51,6 % für Sygasbetrieb ($\mathbf{H}_2: 00 = 2.0$) nicht schlecht. Der Gehalt an CO + H, in Restgas betrug 20 - 22 % (vergl.anlieg.Tabelle). Die Fahrweise mit 40 % Inerte enthaltendem Sygas sollte sich derart gestalten, das die Betriebstemperatur zunächst nicht geändert werden sollts. Erst, wenn ein Abfall des sich unter diesen Bedingungen anfänglich einstellenden Umsatzes bemerkbar wurde, sollte die Temperatur erhöht werden, um den Umsetsungsgrad beizubehalten. Mur unter Berücksichtigung dieser Überlegungen war eine Beurteilung des Einflusses der Inertbestandteile auf den Umsatz möglich. In Laufe dieses Abschnittes war jedoch bei 176,5°C kein Abfall des CO + H.-Umsatzes, der im Ø 67 % betrug, bemerkbar. Der prakt. Verfl.-Grad lag gegenüber der Fahrweise mit 50 % Inertgehalt unverändert bei 51,5 %. Im Restgas waren noch 30 - 32 Vol. inichtungesetstes 00 + H, vorhanden (vergl.anlieg. Zabelle).

Pür den Versuchsabschnitt mit rd. 20 % Inerten galten die gleichen Überlegungen wie im vorigen Abschnitt. Auch hier seigte der Versuchsverlauf bei konstanter Temperatur (176,5° keinen Abfall in dem sich anfänglich, nach der Senkung des Inertgehaltes Inertgehaltes, einstellenden Umsatz, der bei 60 % lag. Der prakt. Verfl.-Grad war dabei auf 47,5 % gefallen. Das Restgas hatte noch etwa 56 - 58 % nichtungasetztes 00 + H₂.

Obgleich der Umsatz anhand der vorliegenden Zahlen mit sinkendem Inertgehalt als abfallend erschien, ergab eine genauere Betrachtung jedoch ein anderes Bild:

Zum Vergleich dieser drei Versuchsabschnitte wurden, unter Berücksichtigung der Belastung, aus den obigen Ergebnissen der Einsatz und der Umsatz an Em³ CO + H₂ in der Stunde für den normalen MD-Synthesegasofen mit einem Kontaktraum von 10 m³ errechnet:

		20 \$ 40 \$ 50 \$ Inerte Inerte
Beldetun	g Nm ³ Sygas/Std.	990 101 0 99 0
		780 590 487 471 398 346

Man erkennt in eindeutiger Weise den mengenmäßig höheren Umsatz bei niedrigem Inertgehalt im Sygas, wobsi allerdings zu berücksichtigen ist, daß mit fallendem Inertgehalt, unter (wie oben) gleichbleibender Belastung des Ofens mit Sygas, eine wesentlich größere Henge an $CO + H_2$ in den Ofen gelangt.

Aus diesen Zahlen war somit noch nicht erkenntlich, inwieweit die Inertenminderung an dem Anstieg des effektiven $CO + H_2 - COMMAN = 1000$ war somit noch nicht erkenntlich, inwieweit die Inertenminderung an dem Anstieg des effektiven $CO + H_2 - COMMAN = 1000$ war. Es mußte sich deshalb hieren folgerichtig eine weitere, neue Versuchsfolge, die den Einfluß der Ofenbelastung mit $CO + H_2$ auf den Umsatz festzustellen hatte, anschließen.

B. Konstanter Inertgehalt bei wechselnder Ofenbelastung.

Pür diese Versuchsfolge wurde ein Sygas-mit 40 % Inertgehalt
festgelegt. Die Ofentemperatur sollte so gefahren werden, daß
zunächst bei normaler Belastung ein CO + H2-Umsatz von rd.70 %
gegeben war und anschließend die gleichen Überlegungen wie unter
A galten. Für den zweiten Abschnitt war die Belastung mit 80 %
der Formaliast festgelegt.

(Ve

Das im Abschnitt mit normaler Belastung erzielts Ergebnis kam bezügl. des effektiven CO + lig-Umsatzes, dem Versuchsergebnis A 2 maturgemes gleich, im prakt. CO + Ha-Verfl.-Grad waren edoch, infolge des verschiedenen Ofenalters. Differenzen vorhanden. Ebenso leg die Ofentemperatur neuerdings mit 1790 böher. Im Durchschnitt wurde über diesen Abschnitt erhalten:

	•												1.		$\times 2$	1.								4
	Ŋθ	la	85	щ	g :		- 1-		1			٠,٠		1	O:	97	a .	in.	/ 38	hen	7.	,s	+1	123
-								7	111		7	-7-,	7							100	77			
-11	CC) +	H	_	Um	88	EZ.		4				4.	ent.	K۸	ĮĄ.		17.	17			5.4		
		0.1		4:	6.5	7.5					certain.	****	300	7		4								
7	ac	+	Ħ		Va.	-1		ď.	ro.	4		. I	4	1	A A		1	· ` .	2.5	77.	,	1		10
٠.				· ·							-	-			44			-			er eler	4.7		

Der Abschnitt 2. mit einer Ofenbelastung von 0.78 Am /Avol. Std (vergl.anlieg.fab.) wurde bei der gleichen Temperatur von 1790 gefahren, wobei der CO + H.-Umsatz im \$ 72,3 %, der prakt. 00 + Ho-Verfl.-Grad 44,2 % betrug.

Der Vergleich dieser beiden Abschnitte auf der Basis eines 10 m³-Normelofens ließ eindeutig die größere in der Zeiteinheit umgesetzte Menge an CO + H, bei höherer Belastung und somit hoherem CO + H,-Einsatz erkennen:

			12.0				3,47				1.1			100	f	1, 3,1				41
	Bal	881	une	P 171	l tail	27	OD	a 1	-	/q.	14			07	^		12	780	٠,	
		- 10 Live		-	3 F. (~,	۵.,			<i>,</i> .				97	U		21,000,0	101	J	ķ.
				10.00		11			4.71		~~~			_					5.0	
77	Ine	TIM	MAN	11.	7-1-1-1							7171	12.17.	AA	- 4		4.244		d.	÷
		-,	ohe	Top Constant							1		100	40		L.	: · · · · · · ·	O.	70.	
							1. 8.						200	111	2					4
	Mm-	- 62.0) +	н_	Иt	. L.	11.	****	-00				11.5	57	** 1	· 🔻				
17.7				~~?	,~ •				,00	•	1.30			57	100	14.5		156		
100	11.0		200		100	13.5	1.1	73. 13	1.16		e			200	1			100		٠.,
1.5	Nm -	CCC	•	н_	1/8	ŧ٨		71110	-					30						1
200		•			,,				-0	• 1.0	410.0			39	•			336		ũ
										1.15	1		, ,	10.11		31.				
	o 1 ∵	وينو	400		Po h	- 1	100				100									
	5	سبد	108		LOLD	• ' } .			2.75		10.00		1.5	<u> </u>			-			

Konnte nun bisher erkannt werden, daß einmal durch eine Inertenminderung ein Anstieg des effektiven Umsatzes zu erzielen war und ferner durch Senkung der Belastung dieser wieder zurückgeht. so sollte nunmehr eine neue Versuchsfolge zeigen, welche von den beiden Bedingungen auf den CO + H,-Umsatz von größerem Rinfluß war.

U. Wechselnder Inertgehalt bei wechselnder Cienbelastung.

Die sur Durchführung dieser Versuchsfolge, die gleichzeitig das Absohlußergebnis des gesamten Versuches bringen sollte, festgelegten Bedingungen waren zwei Versuchsabschnitte mit:

- 1.) 40 % Inertgehalt bei rd. 80 % der Normalbelastung
- 2.) 50 %

Nach den obigen Gesichtspunkten stellte daher 1 gegenüber 2 eine Inertensenkung, jedoch auch Belastungssenkung und demnach 2 gegenüber 1 eine Belastungssenöhung, jedoch auch Inertensenöhung dar. Durch diese Bedingungen war eine gleich große Beschickung des Ofens an CO + H₂ in der Zeiteinheit für beide Abschnitte gegeben. Zwecks Ausschaltung des verschiedenen Lebensalters bei hintereinanderfolgendem Betrieb wurde sunHohst der Abschnitt 1 über die Hälfte der vorgesehenen Zeit, dann der Abschnitt 2 (gleiche Betriebsdauer wie der ganze Abschnitt 1) und schließlich wieder die zweite Hälfte des Abschnittes 1 gefahren.

Als Betriebstemperatur wurde für beide Abschnitte die, sur Ersielung eines rd. 75 %igen CO + R2-Umsatzes bei 1, erforderliche Temperatur von 182°C konstant gefahren.

Der Abschnitt 1 brachts bei einem Umsatz von 76,5 % einen prakt. CO + H2-Verfl.-Grad von 48,2 %, der auch im Abschnitt 2 erzielt wurde, wobei jedoch der Umsatz mur 69,2 % betrug.

Das Restgas war in beiden Fällen gleich stark sufgearbeitet und enthielt etwa 23 - 25 % OO + H2.

Die Gegenüberstellung der für den Normalefen ermittelten Zahlen zeigt danach folgendes Bild:

1								1			1-12 yr			Miles No.	*****		14.				1.1						í.
		Be:	00	1900		. 37			-		In.				1 1	7.7											r
		v.	-					. J.	Y / C	ж.	<i>1</i> 3	τa		14		1		. 1		70			7.	81	n		::
							*****	100			11.	5.7			1"							24	1	-	•		÷
17. 43					-			2312	3.4			7.		و مرسه	Car .	100		Ć.	4.5		- 4						ø
		Inc	277	:2e	กด	7 T			50°	Y		500	16 .	/			1	3/64					7.36	• •	-0	3) 3.5	٠.
100			4.16	0.			1.72		111	100				- /		2 62			1.5	0	ъ.			40		1	11
			1.5	4 500	1.5	***					4.7	40		- /-	100		71.344						1)	
) :: (A.A		~~		Zo.		11				$-iH_{-}$					1								
1.47		Mm		UU		. 4	-1	<i>,</i> 0	GC.		311	72	88	- J ::					· Y	79		6	- 20	48	200		2
	Jan			117.5			2::		1.00					7.0	11.		1		*					40		3.3	
	1										177	1500	4.	V:		1. 44	11.7	7			3.5	100		1. 1.	500	-3-	٠
200	انتخا	Nm;		CO	_	$^{\sim}$ H		79.			. 227	200	•	7.2.													į.
757	7.1		-				211	(1)	•••		- 4	щ,	5 0/				1270		100				- 10	46	9 160		5
*****			V	47.	1.0										r		1.0				1						ä.
116 4	100	Koz	-	· -						1000	1.	2. 37.		27		1190	100			٠	-	4	1		1		Š.
	111	D'O'T	TOT	44		ОЦ					10.20	dia.						.773		4	77	•		13.	- 5	. 4	÷
			1.5	2000	1	500					1									₹.	•				• U.	79	2
1	ru.	-			72		200	- 2			1					116						1.0		1.0			Ü
		9 T E		ull	الم	OK.	-4	ω۵.			144.7		20.00	77		(157				25		200	- 13	r.
	45. TL				4. TO		11.00	200	2000								1								A 7. 20	,	

So konnte gezeigt werden, das durch Verminderung des Inertgehaltes um 10 % bez. auf das Gesamtgas eine Umsatzsteigerung
von rd. 10 % aufkam. Da der prakt. Verflüssigungsgrad keine
Anderung erfuhr, bedeutst diese Umsatzsteigerung gleichzeitig
eine ebenso hohe Produktionssteigerung. Das durch diese Maßnahme
erzielts Ergebnis konnte durch eine Temperaturerhöhung und unter
Beibehaltung des Inertgehaltes von 50 % insofern nicht erzielt
werden, als ein Anstieg des Umsatzes nur auf Kosten der Vergasung zu erreichen war:

	37.41.24	ACCESS A A ST. P. P. P. B. S. C.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1
			E insatz Umsat	2
11.00			Inertgas CO + H ₂ CO + Nm ³ Nm ³ Nm	H ₂ fluss. KW
	182,5	-40 810	327 483 369	56, 0
	182,5 188,5	50 970 50 1 000	491	

Trotz hoherem Umsatz (8 % effektiv) war bei 188,5°C die Produktion an flüss.KW die gleiche wie bei 182,5°C und 50 % Inertgehalt.

Zusammenfassend ergeben die drei angeführten Versuchsfolgen nachstehende Erkenntnisse grundsätzlicher Art:

- Wird der Inertgehalt im Sygas gesenkt, sodaß bei gleicher Belastung eine größere CO + H₂-Menge in den Ofen gelangt, so steigt der mengenmäßige CO + H₂-Umsatz, wobei der Verfl.-Grad abfällt.
- 2.) Wird bei gleichem Inertgehalt die Belastung gesenkt, so fällt der mengenmäßige CO + H2-Umsatz, wobei der Verfl.-Grad gleichbleibt.
- 3.) Werden Inertgehalt und entsprechend die Belestung gleichzeitig gesenkt, so-steigt der mengenmäßige CO + H2-Umsatz, wobei der Verfl.-Grad gleichbleibt

Voraussetzung für Punkt 1 - 3 ist eine konstante Betriebstemperatur.

Erwähnenswert ist noch, daß in der Betriebszeit von 190 Tagen eine hinreichend konstante Siedelage des Gesamtproduktes festgestellt werden konnte, wobei der Paraffingehalt selbst am Ende dieser Zeit noch verhältnismäßig hoch lag:

and the second s	a salada e rati te a la come formation	their designation of the second	Committee of the Commit
ofohol?	Pone		DONG SE GOT d
111111111111111111111111111111111111111	50		200 ⁰ C 38 Gew.#
		"是我们的人"。"这个人的人,我们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们	全型 向 医型位置的 2015年1915年1915年1915年1915年1915年1915年1915年1
(Engler-Ana	lvae) Ol	200 -	120 ⁰ C 27 - "
	T 100 100 100 100 100 100 100 100 100 10		Programme and the control of the con
"一位"。 "我们是一个"一个",	100		20°C 34 " .
The same was to be a second to the second	The second regret	LI. ODBra. :	2U-U-14

Erst die im letzten Abschnitt vorgenommene Temperaturerhöhung (in der Zeit vom 190. – 205. Betr.-Tag) brachte eine stärkere Verschiebung in der Siedelage des Gesamtproduktes:

transfer for the property of t	Benzin - 200°C -47 Gew.⊀
Without the Town	Daniel - Marie Marie 200 Comment Comment
(PDRTAL-WINTAGA)	Pauriu - 500 0 -41 aca-v
manufacture of the contraction o	la skilakeka 1901 sa kalakeka para 1904 ang kalakeka kanaka ka 1904 di kalaka ka ka da da da kalakeka ka ka ka
· 4500 (1996)	01 200 - 320°C 28 P Paraff. oberh. 320°C 24 P .
TOY IN	YA MARKANIN KUU KUU KUU KU KU KU KU KU KU KU KU KU
15 mg/2	
73,723	Paroff chart 320°C 24 P
(4)/19	

Die Auswertungemöglichkeiten, die sieh aus den vorstehenden Erkenntnissen für den jeweiligen Synthesefall ergeben, sind sehr vielseitig. Aus diesem Grunde sollten im Rahmen dieses Berichtes ausschließlich mur die Ergebnisse der tatsächlich durchgeführten Versuche behandelt werden.

强洲

g/m - Ng. einges. unges. 336 369 332 346 471 394 398 359 Ma 3 CO+H2 1m 479 200 487 590 780 456 577 483 Amsbeute 115,4 2,96 90,5 107,5 100,5 101,0 **116**0 44.4 prevertie 79.6 52.6 51.5 44,2 CO. CO+H, 47.5 44.9 48,2 48.0 74:3 80,1 75,8 68,2 75.4 69,3 71.4 SE too 67,4 71,0 60,4 68,3 69,2 71,8 72,3 76.5 H 62.0 73,2 6 64,3 70.3 71.0 69.3 73.9 68,0 T3.7 Umsate 00 66.5 62,6 57.1 74.6 #18 1,89 1,52 1,78 2.02 1,67 1.85 27,3 4,63 1,69 2,00 1.65 18,2 1,96 1,95 13,5 16,9 28,9 27,8 18,2 23,6 16,8 27.2 15,5 14.2 22,6 Z. 4.3 3 4.1 12,2 7.6 11,0 16,6 33,1 5,5 6.9 4.2 1.6 20,2|-39,4| 5,1 2012 8,3 (13,5 10,5 17,5 11,9 CH 16,9 33,1 36,9 11,7 19.5 15.9 19.7 39.7 8,5=12,9 39,7 nsetsung 90 17.0 11,5 20,7 8.8 19,9 10,6 19,8 2641 0.0 0.0 0.0 17:00 0,1 0 0.0 0,1 0,1 0,1 ٥,1 0.1 0.1 0,1 0.1 0 O.H.D ر 0 0,3 0,2 T.0 0,2 0.2 0.2 0.2 1.0 0,2 0.2 0 28,0 42,5 37.2 13,6 24.2 31,6 18,1 20,1 26,3 23,0 19,3 30,8 28.5 26,5 Kontr. CO2 36.2 45,7 35,9 35,3 41,2 43,6 Nm3/Nvol.b Belastung 0,97 66,0 66.0 1**.**00 1,01 0,78 0,81 0,97 128-143 und 175-188 12 E 71 b18 Betr. 93 b18 b18 125 Tag 189 518 205 Belastg. 80 % Inerts. 40 % Belastg. norm. Inerts. 40 % Insrig. 50 % Belastg. norm. Insrtg. 50 % Belastg. norm. Temp. 188,5°C Belastg. norm. Temp. 182 PC Belastg.norm Belastg. norm Temp. 176,5°C Inertg. 40 % Temp-176,500 Temp. 179 °C Temp . 182°C Inerts. 20 % Temp. 174,5°C Inerts. 50 % Temp. 179 °C Inertg. 40 % Belastg. 80% Bedingungen Vers.bachn. **4** ్రా

Einflüß des Insrtgehaltes im Ausgangsgas auf Umsatz und Verflüssigung bei der Synthese.

Ruhrchemie Aktiengesellschaft Oberhausen Holten

Obh.-Holten, den 18. November-1941. Abt.DVA. Pf./Wg.-

Notiz.

	The Control of the Co
海南部 经种价等的	: Verflüssigungsgrad bei verschiedenen
"Both"	**:Varfiliggigungsgrad (Del-Verschledenen ****
Denr.	effektiven CO + H ₂ -Umsätzen. und i.Krsif.
te promite the company	areartimen CO + H -Ilmgetzen
-	THE TER OT VEHI OUT IN OMDER VEHICLE OF THE PROPERTY OF THE PR
	Erkenntnisse aus Versuchen mit Sygas im geraden Durchgang
	January and one Commonohem wit Syrang im geraden Durchgang
	TELKGUIL CUTBBG STOP ACTED THE DARREST THE COLORS
	und-mit Wassergas im geraden Durchgang und im Kreislauf.)
	TO THE WASSELD SEE THE RESTRICT DUTIES OF SECTION AND ADDRESS OF THE PROPERTY

Die unter Punkt 2 in der Zusammenfassung des Berichtes:

"Einfluß des Inertgehaltes im Ausgangsgas auf Umsatz und Verflüssigung bei der Benzinsynthese"

vom November 1941 wiedergegebene Erkenntnis trifft genau nurfür Synthesegasbetrieb im geraden Durchgang zu.

Bei Kreislauf kommt durch die bei Belastungssenkung gegebene
Steigerung des Umsetzungsgrades eine, insbesondere bei
CO-reichen Gasen (Wassergas), mehr oder weniger starke
GO-Anreicherung im Ofeneintrittsgas auf. Da bekanntlich bei
CO-reichen Reaktionsgasen der Verflüssigungsgrad höher liegt,
bringt somit eine Belastungssenkung unter diesen Verhältnissen einen Anstieg des Verflüssigungsgrades.
Bezüglich des effektiven CO + H2-Umsatzes gilt das gleiche
wie für Synthesegasbetrieb im geraden Durchgang.

是不是1964年的