Hauptlaboratorium,

14. MHrs 1940.

Bestimmung der Kohlenwesserstoffe mit 1 - 5 C-Atomen und den Isomeren des Butans und Butylens durch fraktionierte Feindestilletfon.

Für die Durchführung der verschiedensten Kohlenwasserstoffarbeiten ist es zwecks Auswertung der erhaltenen Ergebnisse notwendig, eine Methode der Kohlenwasserstoff-Untersuchung zu beherrschen, die die Unterscheidung der verschiedenen Isomeren, hauptsächlich niederen Kohlenwasserstofffraktionen im Bereiche der C4- und C5-Kohlenwasserstoffe ermöglicht. Als Grundlage für derartige Untersuchungen gilt bekanntlich die Aufteilung der vorliegenden Kohlenwasserstoffe in möglichst scharf geschnittene Siedefraktionen. Die Methoden der Feindestillation sind besonders von Podbielniak beschrieben worden. In Anlehnung an diese Arbeiten von Podbielniak haben wir eine Apparatur entwickelt, die weitgehend automatisiert ist und sehr gute Destillationsergebnisse liefert. Gegenüber den von Podbielniak beschriebenen Apparaturen sind in der von uns entwickelten Apparatur insofern wesentliche Verbessemmen enthalten, als bei unserer Apparatur die Kondensationstemperatur automatisch konstant gehalten wird. Bei Einstellung einer bestimmten Heizung der Kolonne ist also das Rücklaufverhältnis lediglich abhängig von der Abnahmegeschwindigkeit, die wiederum sehr genau einstellbar ist, so daß mit sehr hohen Rücklauferbiltnissen gearbeitet werden kann. Bekanntlich ist aber gerade das bei den meisten sonst gebräuchlichen Laboratoriums-Apparaturen nicht sehr einfach. Eine weitere Verbesserung gegenüber der Podbielniak-Apparatur sehen wir in der von uns angewendeten Heizung durch einen direkten Tauchsieder, ferner in der Verbesserung des Vakuums in dem Vakuum-Schutzmantel der Kolonne durch Anbringung eines Ausfriergefäßes, das mit aktiver Kohle gefüllt ist, die bei der Temperatur der flüssigen Luft alle Gasreste, die sich im

Kolonnenmantel hauptsächlich aus dem als Strählungsschutz verwendeten Aluminiumblech entwickeln können, absorbiert. Ferner erscheint wichtig die im Anschluß an die Feindestillation entwickelte Untersuchung des Kolonnenrückstandes, der die C5-Fraktion enthält. Eine weitere wichtige Verbesserung, die eine gewisse generelle Bedeutung hat, besteht darin, daß die für die Messung der Siedetemperaturverwendeten Thermo-Elemente mit ihrer 2. Lötstelle in siedendem Wasser gehalten werden anstelle des sonst üblichen Eises, Da die Siedepunkterhöhung des Wassers durch Barometerstandsänderung praktisch genau gleich den Änderungen der Kehlenwasserstoffe sind, gelingt durch die Anordnung der 2. Lötstellen im siedenden Wasser eine vollkommene Kompensierung der Barometertemperatur für die Siedepunkte. Voraussetzung ist dabei allerdings, daß, wie das bei unserer Apparatur der Fall ist, die Destillation bei Atmosphärendruck stattfindet. Als ganz wesentlicher Punkt sei noch auf die Kollonnen füllung durch eine besonders gearbeitete Spirale hingewiesen, die im Bericht näher beschrieben ist. Es sei noch erwähnt, daß eine ähnliche Apparatur für die Untersuchung höher siedender Benzine in Entwicklung ist.

Apparatur.: (s.Zeichnung, Schema I).

Die Feinfraktionierkolonne (1) (Schema I und II) besteht aus dem Vakuummantel (a) mit dem angeschmolzenen A-Kohlegefäß (b). Der Vakuummantel ist am oberen Teil dewargefäßähnlich erweitert. In dem Vakuummantel befindet sich ein Reflektor (c) (Sch.II) aus poliertem Aluminiumblech.

Zur Erreichung eines absoluten Vakuums wird das A.K.-Gefäß (b) erhitzt, wobei der Mantel und die Aktiv-Kohle durch eine Vakuumpumpe auf das höchst erreichbare Vakuum ausgepumpt wird.

Die letzten Gasspuren werden dann durch ein zwischen dem AK-Gefäß (b) und der Vakuumpumpe eingeschaltetes tiefgekühltes AK-Gefäß entfernt und das AK-Gefäß (b) an der kapillar ausgezogenen Stelle (d) zugeschmolzen. Das AK-Gefäß

(b) wird während des Arbeitens der Kolonne mit flüssiger Luft gekühlt, so das alle später von den Glaswänden abgegebenen Gasspuren adsorbiert werden und demit etets ein höchstes Vakuum gewährleistet ist.

Diese Vakuumisolierung ist ein wesentlicher Faktor für eine gute Trennschärfe der Kolonne.

Das eigentliche Destillationsrohr (2) (Sch.I u.II) besteht aus einem Präzisionsrohr von 3,8 mm 1.W. und 1 m Länge. In dem Rohr ist eine Spirale besonderer Konstruktion angeordnet, und zwar wird um einen Stahldraht von 0,5 bis 0,6 mm Ø ein Aluminiumdraht von 1,7 mm Ø auf der Drehbank fest aufgewickelt. Der Gesamtdurchmesser der dabei entstehenden Spirale beträgt 3,9 bis 4 mm, ist also etwas größer als der in dem Durchmesser des Präzisionsglasrohres. Man schmirgelt nunmehr vorsichtig, möglichst auch an der Drehbank, von der Spirale soviel ab, daß sie genau schließend in das Glasrohr past. Die Windungen werden so gewickelt, das 226 Windungen pro 1 m genommen werden. Beim Einsatz der Spirale in das Präzisionsglasrohr bildet sich eine Wendel. In den kapillaren Räumen zwischen Glaswand und Aluminiumdraht fließt der Rückfluß nach unten und wird in ausgezeichneter Weise mit dem aufsteigenden Gas in Berührung gebracht.

Das Destillationsrohr endigt unten in einem Schliffkonus, der an der einen Seite eine stäbchenartige Verlängerung und auf der gegenüberliegenden Seite eine Öffnung von ca. 3 mm Ø aufweist.

Die Verlängerung gestattet eine gute Beobachtung der Rückflußgeschwindigkeit, während die seitliche Öffnung die aufsteigenden Dämpfe ungehindert in das Destillations-rohr eintreten lassen. Mit dem Destillationsrohr (2) ist das Destillationskölbehen (3) (Sch.II) mittels Schliff verbunden. Die Verbindung von dem Kölbehen (3) zum Destillationsrohr (2) ist möglichst kurz gehalten und liegt in der unteren Erweiterung des Vakuummantels. Der verbleibende Zwischenraum wird mit einem Wattebausch verschlossen. An dem Kölbehen (3) befinden sich eine Zuführungskapillare (a) und ein Einführungsstutzen (b). Das Kölbehen endigt in einer Verlängerung

(c) von ca. 2 cm länge und 10 mm l.W. Daselbst wird ein Tauchsieder eingeführt. Er besteht aus einem Gekas-Draht von 10 cm Länge und $\frac{1}{10}$ mm \emptyset . Der Draht ist auf einem Isolierröhrchen gewickelt (s.Sch.II). Der Tauchsieder_(d) ist in dem Einführungssutzen (b) mittels Bunastopfen eingesetzt und mit Picein eingedichtet. Es ist darauf zu achten, daß die Heizwicklung in die Verlängerung (c) des Kölbohens (3) hineinragt, dadurch wird erreicht; daß die kleinsten Rückstände noch erfaßt werden können. Die Zuführungsenden des Tauchsieders sind mit einer Schwachstromquelle von 8 Volt verbunden unter Zwischenschaltung eines Schiebe- oder Drekwiderstandes von 25 Ω und eines Multavi-Ampermeters (Sch.I). An der Zuführungskapillare (a) schligsmesich das AK-Gefäß (4), Trockenrohr (5) und Manometer (5) an. In der oberen dewargefäßähnlichen Erweiterung des Vakuummantels (1) ist der Dephlegmator (7) (Sch.III) eingesetzt.

Prinzipiell ist der Dephlegmator folgendermaßen konstruiert:

Er besteht aus einem mit Einbauten versehenen Metallhomlzylinder, durch den zur Kühlung ein tiefgekühltes Gas geleitet wird, und zwar haben wir Stickstoff gewählt, der in einer waschflaschenähnlichen Anordnung durch flüssige Luft gedrückt und so gekühlt wird. Wie schon einleitend _erwähnt,_wird_der_Dephlegmetor-automatisch-gesteuert, und zwar geschieht die Steuerung vom Druck der Destillationseinrichtung. Durch den Tauchsieder werden in dem Kolben (3) Dampfe entwickelt, die im Dephlegmator gekühlt und kondensiert werden und dadurch den für die Fraktionierung notwendigen Rückfluß erzeugen. Ein kleiner Teil der Dämpfe wird aber über das Ventil (17) in die Vorlagen abgenommen. Wie gleichfalls vorher erwähnt, herrscht in der Apparatur immer genguer Barometerdruck. Das wird dadurch erreicht, daß eine in dem Manometer (11) befindliche Quecksilbersäule über 2 Kontaktstellen die Kühlluft zu dem Dephlegmator ein- und ausschaltet. Die eine Kontaktstelle liegt am tiefsten Punkt des Manometers, die andere Kontaktstelle ist so einstellbar angeordnet, daß der Kontakt genau bei Erreichung des

äußeren Luftdruckes geschlossen und bei Unterschreitung entsprechend geöffnet wird. Wird also in der Destillationskolonne der äußere Luftdruck überschritten, so schließt sich der Kontakt und entsprechend wird über ein Relais (10) und ein Magnetventil (9) Stifkstoff durch das Kühlgefäß (8) in den Kondensator (13) geblasen und die Kühlung verstärkt. Bei Unterschreiten des Luftdruckes schaltet sich die Kühlung aus. Die Schaltung ist äußerst empfindlich und arbeitet bei Druckschwankungen von etwa 1/10 - 2/10 mm. (Es sei noch an dieser Stelle eingefügt, daß die eigenartige Konstruktion dieses Dephlegmators es auch ermöglicht, die Apparatur für Dampfdruckmessungen zu verwenden. Man hat lediglich nötig, den beweglichen Kontakt nicht auf Gleichdruck, sondern auf Unter- oder Überdruck in der Apparatur einzustellen. Entsprechend stellt sich dann automatisch die Temperatur des Kondensators ein und es ist jetzt nur nötig, die zusammengehörigen Temperaturdruckpunkte zu notieren. Besonders vorteilhaft bei dieser Art der Dampfdruckmessungen ist, daß man sie in siedenden Flüssigkeiten durchführen kann und infolgedessen die Möglichkeit der Beeinflussung durch fremde Gase klein ist, weil man laufend die Reinheit der zu messenden Substanz durch Abnahme kleiner Mengen über das Ventil (17) aufrecht erhalten kann) Der Dephlegmator-ruht-unten auf einem-Wattepolster und ist oben gleichfalls mit Watte abgedeckt. An dem Dephlegmator schließt sich die Thermosflasche (8) an. Die Thermosflasche wird mit flüssiger Luf beschickt. Das Zu- und Ableitungsrohr ist mittels Gummistopfen in den Kopf der Verschlußkapsel eingesetzt, wobei der Gummistopfen so eingepaßt wird, daß der Rand der Thermosflasche beim Aufschrauben der Verschlußkapsel gegen den Gummistopfen drückt und dadurch einersichere Abdichtung ermöglicht. Es ist widhtig, daß das Ableitungsrohr bis in die Flasche hineinragt, da sonst eine Vereisung des Gummistopfens und der Kapsel erfolgt und damit Undichtigkeit und Verstopfung zur Folge hat. Die Stickstoffzuleitung zur Thermosflasche ist an einem Magnetentil (9) angeschlossen,

das speziell fürüns von der Firma Hasge, Mülheim, entwickel wurde, das die Schaltung des Stickstoffstromes ausführt. Das Hasge-Ventil wird durch ein Relais (10) gesteuert, das wie oben beschrieben mit dem Kontaktmanometer (11) in Verbindung steht. Die zugeführte W2-Menge wird durch einen Strömungsmesser (12) angezeigt.

In dem Destillationsrohr (2) ist ein Eisenkonstan! tanclement (13) bis in die Mitte des Dephlegmators eingesetzt. Das Thermoelement ist in dem Einführungsstutzen der Ableitungskapillare (14) mittels Bunastopfen und Picein eingedichtet. Die Verbindungstellen zwischen Thermoelement und Zuleitungsdrähten werden in dem elektrisch geheizten Dewargefäß (15), das mit der Atmosphäre in Druckausgleich steht, auf +100°C gehalten. Die Anwendung siedenden Wassers hat, wie einleitend erwähnt, den Vorteil, daß damit automatisch eine Korrektur der Siedepunkte der einzelnen Gase bei wechselndem Barometerstand_erfolgt. Die Siedetemperaturen werden durch Ablesung der m.V. am Millivoltmeter (16) aus der Temperaturkurve^I des Thermoelementes entnommen (s. Kurvenblatt 1). Die Ableitungskapillare (14) ist mit Bunaschlauch mit dem Destielationsrohr (2) dem Kontaktmanometer (11) und Hoferventil (17) verbunden. An dem Hofer-Ventil schließt sich ein Vakuummeter (18) an. Eine Abzweigung oberhalb des Vakuummeters (18) -stellt eine Verbindung zu den Gassammelflaschen (19 u.20) und der Vakuumpumpe her. Der sonst abgeschlossene Schenkel des Vakuummeters (18) ist mit einem AK-Gefäß (21) verbunden, das durch Tiefkühlen mit flüssiger Luft stets auf höchstem Vakuum gehalten werden kann. Das AK-Gefäß (22) dient zum Entfernen der letzten Gasreste aus den mittels Vakuumpumpe evakuierten Flaschen (19 und 20). Die Gassammelflaschen (19 und 20) sind genau auf 2000, 1000 bzw. auf 750 und 500 cm3 ausgemessen, und zwar so, das in den Flaschen je nach dem werlangten Inhalgenau gemessene Mengen Wasser hereingegeben und der verbleibende Raum durch Zugabe von Glasperlen bis zum Stopfen ausgefüllt wird. Der Inhalt der zur Verwendung kommenden Ausgangagasflasche (23) ist gleichfalls genau zu bestimmen.

Die Flaschen mit den Glaskugeln werden nach vollständiger Trocknung durch einen mit Picein eingedichteten Gummistopfen oder zweckmäßiger mit Schliffstopfen verschlossen. Das Hofer-Ventil (17) ist gegen Undichtigkeit, die durch die Stopfbüchse entstehen kann, durch einen, die gesamte Stopfbüchse umfassenden Mentel mit Ölfüllung gesichert.

Vorbereitung der Apparatur.

Vor Inbetriebnahme sind sämtliche Hähne und Schliffe gut zu entfetten und mit einem guten Hochvakuumfett schlierenfrei abzudichten. Für alle Schlauchverbindungen ist straff schließender Buna-Schlauch zu verwenden.

Die A.K.-Gefässe (21 und 22) sind bei 300°C -mittels Vakuumpumpe zu entgasen (ca. 42 Std.). Dann werden beide Gefässe abgeschlossen und mit flüssiger Luft gekühlt. Das Vakuummeter (18) wird durch die Vakuumpumpe weitgehend evakuiert und dann auf das tiefgekühlte Gefäß (21) geschaltet, wodurch höchstes Vakuum erreicht wird. Das A.K.-Gefäß (4) ist inzwischen in einem elektrischen Ofen bei 350° im Vakuum entgast, nach der Abkühlung gewogen und mit geschlossenem Hahn in die Apparatur eingesetzt. Der Schliff des A.K.-Gefässes (4) ist nurem unteren Rande zu fetten, damit keine Verschmutzung des Röhrchens erfolgt. Das Trockenröhrehen (5) wird zu gleichen Teilen mit Natronkalk und Magnesiumperchlorat beschickt zur Absorption etwa vorhandener CO,- oder H,O-Spuren. Das Vakuumgefäß (b) des Kolonnenmantels wird mit flüssiger Luft gekühlt. Die Probeflasche (23) ist nun anzuschließen. Die Thermosflasche (8) ist bis zur 3/4 Höhe mit flüssiger Luft zu füllen und einzuschrauben. Dewargefäß (15) wird mittels eines Tauchsieders (c) auf 100°C gehalten. Auf guten Kontakt der Anschluß- und Verbindungsstellen des Thermoelementes ist zu achten. So vorbereitet wird die gesamte Apparetur mittels einer Pfeiffer- oder Simplex-Vakuumpumpe auf mindestens 1 mm Druck ausgepumpt, dabei sind die Hähne I bis IX und Hofer-Ventil (17) geöffnet. Die michtigkeit der Apparatur

muß so groß sein, daß 1 mm 12 Stunden lang sicher gehalten wird. Die Dichtigkeitsprobe ist zweckmäßig über Nacht zu machen. Ist die Apparatur dieht, so wird Hahn II auf die beiden Flaschen (19 und 20) umgeschaltet und gleichfalls evakuiert. Dann Schließen des Hofer-Ventils. Umschalten des Hahnes (I) auf die Flaschen (19 u.20) und Adsorbieren der letzten Gasspuren aus den Flaschen (19 u.20) durch das tiefgekühlte A.K.-Gefäß (22). Dann wird Hahn (II) auf das Vakuummeter (18) und Hahn (VII) wählweise auf die Flasche 19 oder 20 geschaltet. Jetzt wird Hahn (IV) geschlossen. Zur Tiefkühlung des Dephlegmators (7) gibt man jetzt einen N2-Strom durch die Thermosflasche (8), deren Menge am Strömungsmesser (12) gemessen wird.

Der Dephlegmater wird bis auf 110°C heruntergekühlt, entsprechend 11-m.V. Diese Temperatur muß während des Einziehens des Probegases gehalten werden. Dann wird das Kölbehen (3) mit flüssiger Luft gekühlt. So verbereitet kann mit-dem Einziehen der Probe begonnen werden.

Ausführung.

Da es sich bei den zur Destillation kommenden Gasproben meistens um komplizierte Gasgemische handelt, ist das Probegas zur ungefähren Orientierung über Art und Zusammensetzung im Orsatapparat zu untersuchen. Man gewinnt auf diese Weise einen Überblick über die Summe der Gesättigten und Ungesättigten und der zu erwarteten Menge an permanenten Gasen. Dementsprechend ist dann der Einsatz zu bemessen. Gleichzeitig ist die Größe der zur Aufnahme der 1. Fraktion verwendeten Gassammelflasche bestimmt. Das im Ausgangsgas vorhandene i-Butylen wird nach der unter Nr.60 der Analysenvorschriften beschriebenen HCl-Methode bestimmt.

Nach dieser Orientierung wird Hahn (X) geöffnet und Druck und Temperatur am Manometer (6) abgelesen.
Hahn (IV) wird nun langsam geöffnet und der Druckabfall am Manometer (6) beobachtet. Das Einziehen der Probe bei Anwendung von ca. 3 l Gas nimmt ungefähr 1/2 Std. in Anspruch. Bei Anwesenheit von größeren Mengen permanenter Gase stellt

sich in der Kolonne und der Probeflasche ein Druckausgleich ein, so das es nicht gelingt, die erforderlichen KW. auszukondensieren. In diesem Falle werden die permanenten Gase durch Einstellen des Hofer-Ventils (17) mit einer Geschwindigkeit von ca. 8 - 10 cm3/Min. in die Gassammelflasche (19) abgezogen, bis die zur Destillation erforderlichen K.W. kondensiert sind. Ist dieser Punkt erreicht, so wird das Hofer-Ventil und Hahn (IV) geschlossen und der Druck am Manometer (6) und die Temperatur abgelesen. Mit der Destillation kann nun begonnen werden. Das flüssige Luftbad des Kölbchens (3) wird entleert und das Dewargefäß wieder eingesetzt. Die Heizung des Kölbchens (3) wird auf 0,2 Amp. eingestellt, dann Binschalten der Kühlungsregelung des Dephlegmators (7) durch das Relais (10). Jetzt wartet man, bis am Kontaktmanometer (11) Druckeusgleich herrscht und nimmt dann durch Einstellung des Hofer-Ventils auf 8 - 10 cm3 per Min. die 1.Fraktion ab. In dieser Fraktion mind enthalten: H2, N2, O2, CO, CH4, C2H6 und C2H4.

Bei der Abnahme der 1. Fraktion ist besonders darauf zu achten, daß die Thermosflasche (8) einen ausreichen den Vorrat an flüssiger Luft enthält. Da die Hauptmenge der nicht kondensierten Gase bereits bei dem Einziehen des Probegases abgenommen worden sind, se fallen im wesentlichen CoH4, CoH6 und perm. Gase in geringeren Mengen an. Der Siedepunkt des Athylens liegt bei -103°C und von Athan bei -88,6°C. Diese beiden Gase sind im Bereiche von 11,0 - 7,8 m.V. abzunehmen. Sind größere Mengen dieser beiden Gase vorhanden, so erhält man bei 10,7 bzw. 9,8 m.V. Haltepunkte. An den Übergangspunkten zur nächsten Fraktion ist die Gasabnahme so weit zu drosseln, dass keine Über- oder Unterdrücke entstehen. Auf diese Weise erhält man die Knickpunkte der einzelnen Fraktionen ziemlich scharf. Der Übergang zur nächsten Fraktion macht sich immer dadurch bemerkbar, daß bei gleichbleibender Abnahme Unterdruck entsteht.

Ist dieser Punkt erreicht, so wird das Hofer-Ventil geschlossen. Durch Umschalten des Hahnes (VII) wird die

nächste Gassammelfalsche eingeschaltet. Ist die 1.Fraktion restlos abdestilliert, so ist es ohne weiteres möglich, die Kolonne mit 100%igem Rückfluß zu fahren. Sind noch geringe Mengen perman. Gase vorhanden, so entsteht bei geschlossenem Hofer-Ventil ein Überdruck in der Kolonne. In diesem Falle sind die letzten Spuren abzunehmen, da sonst durch die automatische Kühlung der Dephlegmator auf den Siedepunkt des betreffenden Gases heruntergekühlt wird. Es ist also in jedem Falle darauf zu achten, daß der Siedepunkt der nächsten Fraktion erreicht wird. In der nachfolgenden Betriebsvorschrift ist der gesamte Destillationsablauf kurz zusammengefaßt.

1

Betriebsverschrift zur Feindestillation.

- 1.) Die gesamte Apparatur bis zur Probeflasche einschließlich der Gassammelflasche ist auf höchstes Vakuum zu bringen.

 (Prüfen auf Dichtigkeit) A.K.-Röhrchen zur Aufnahme der C₅-Fraktion ist verher entgast, gewogen und angeschlossen
- 2.) Anschlußklemmen des Thermoelementes auf 100° aufheizen.
- 3.) Dephlegmator bis 11 mV (ca.-110°) kühlen.
- 4.) Destillationsgefäß mit flüssiger Luft kühlen und den Hahn am Eintrittsstutzen schließen.
- 5.) Hofer-Ventil schließen.
- 6.) Probeflasche öffnen und Druck und Temperatur ablesen.
- 7.) Durch vorsichtiges Öffnen des Hahnes der Zuleitung zum Destillationsgefäß das Probegas langsam einströmen lassen bis Druckausgleich erfolgt oder genügend Gas ausgefroren ist. (Kontrolle am Manometer der Probeflasche). Bei Anwesenheit von permanenten Gamen gelingt es nicht, genügend K.W. zu kondensieren. Das nichtkondensierbare Gas ist dann mit einer Geschwindigkeit von ca. 8 10 cm³/Min. in die Gassammelflasche zu ziehen, bis genügend Gas aus der Probeflasche nachgesaugt ist.

- 8.) Hahn am Eintrittsstutzen mit Hofer-Ventil schließen.
- 9.) Druck und Temperatur der Probeflasche ablesen.
- 10.) Das flüssige Luftbad des Destillationsgefäßes entleeren und wieder einsetzen.
- 11.) Heizung auf 0.2 A einstellen.
- 12.) Nach Druckausgleich ist das Hofer-Ventil auf ca. $8-10~\rm{cm}^3/\rm{Min}$. Abnahme einzustellen und die <u>1.Fraktion</u> bis 7,8 mV = -48,0°C abzunehmen (perm.Gase + $\rm{C_2H_6}$, $\rm{C_2H_4}$) Heizung = 0,2 Amp.
- 13.) <u>Die 2.Fraktion</u> wird von 7,8 5,9 mV = -48° bis -12,0°C abgenommen.

 Abnahme = 5 6 cm³/Min. (C₃H₆ + C₃H₈).

 Heizung = 0,3 Amp.
- (4.) <u>Die 3.Fraktion</u> wird von 5,9 5,4 mV = -12,0°C bis -3,0°C abgenommen. $(1-C_4H_{10}, 1-C_4H_8, 1-C_4H_8) \text{ Heizung = 0,4 Amp.}$
- 15.) Die 4.Fraktion wird von 5,4 4,8 mV. = -3° bis +8°C abgenommen.

 (i-C₃H₈, 2-C₄H₈, n-C₄H₁₀).
- 6.) Der in der Apparatur verbleibende Rückstand wird in das AK-Gefäß gezogen und gewogen.
- 7.) Die Ablesung der Druck und m.V. hat alle 5 Min. zu erfolgen.

 An den Knickpunkten alle 2 3 Min.
- 18.) An den Knickhunkten ist die Abnahme auf 2 3 cm³/Min. zu reduzieren bzw. ganz zu drosseln, damit der Endpunkt einer jeden Fraktion scharf erfaßt wird.

Der Endpunkt einer jeden Fraktion macht sich durch das in der Apparatur auftretende Vakuum bemerkbar.

Den Destillationsverlauf und die Trennschärfe der Kolonne veranschaulicht die Destillationskurve (s.Kurvenblatt (2)). In der folgenden Tabelle sind die notwendigsten physikalischen Konstanten der infrage kommenden Gase zusammengestellt.

Gesart	- Forme 1	Konstitutions- formal	S.P.	eisenkonst gegen 100 ⁰		020	Frak tion	
Wesserstoff	H ₂	H - H	-252,78	1	0,08987		h	Π
Stickstoff	N ₂	N - N	-195,8	1	1,2505	1		
Sauerstoff	O ₂	0 - 0	-183,0		1,4289	l		ļ
Kohlenoxyd	ω	C-0 -	-191,5	15,35	1.2500		1	0,2
tiethan	CH _L	- ç-	-161,4	13,75	0.7168	1	II .	"
Äthan	GH _k	c-c	- 88,3	9,9	1,3560	1		
Äthylen	C ₂ H ₄	C - C	-103,0	10.	1.2605			
Propan	GH8	C-C-C	-12:	7,30	2,019		F_	
Propylen	C ₃ H ₆	C-C-C	- 47,5	7,53	1.9115		ع	0,3
1-Butylen	1-GH8	C • C - C		5,6	•	0,631	ĥΙ	
1-Butylen	1-GH ₈	C- C- C- C	- 6,1			0.624	3	0,4
i-Butzn	2-GH10	C- Ç- C	- 10,2			0.5950		٠,٠
n-Butan	n-GH ₁₀	C - C - C - C	- 0,7	1 . 1	· 1	0,6017	i I	
2-Butylen	2-C ₂ H ₈	C-C-C-C	+ 1,0	'	· 1	0,630	ויל	0,4
n-Pentan	n-C5H12	C-C-C-C-E	+ 36,2	3.35		0,626	1	
-Pontan		<u> </u>	+ 27,95	3,78		0,6197	-	_
eo-Pentan	nec-C-H ₁₂	c - 5 3 c	. 9.4	4,75		0.6130		
-Methylbuten (3)	2-6-10	c = 2 ³ 5- c	20.0	4,2),6284		
enten (1)	P-C5H10	C-C-C-C-C	+ 30,0	3,67		6411	7	1
-lösthylbuten (1)	1-65H ₁₀	c - Ç _{(H3} c - c	+ 31,0	3,62	- 1	6504		- [
enten (2) trans	2-C5H10				1	6540		1
enten (2) cis	2 - CH ₁₀	C-C-C-C-C	+ 36,0	3,36	. 1	.6486		
-Methylbuten (2)	2-C5H ₁₀	c-c-c-c	+ 38,0	3,25	- 1	6620		-
i	210	àL	,,0	المرد		,ספיטו	' i	

Der nach Abnahme der letzten Fraktion im Kölbehen (3) verbleibende Rückstand, der aus C₅ und deren Isomeren besteht, wird in das tiefgekühlte AK-Gefäß (4) adsorbiert und das

Gewicht des adsorbierten Gases bestimmt.

Die Verarbeitung der anfallenden Fraktionen geschieht auf folgende Weise:

Die 1.Fraktion wird in bekannter Weise in dem Orsat-Apparat untersucht.

Da bei sorgfältiger Destillation in der 1.Fraktion neben den permanenten Gasen nur C_1 und C_2 enthalten sein können, ist die Bestimmung dieser beiden Komponenten nicht schwierig. Äthylen wird in Silberschwefelsäure bestimmt, Methan und Äthan durch Verbrennung über Cu O. In jedem Falle ist die Fraktion auf C_3H_6 zu prüfen, da immerhin Spuren der nächstfolgenden Fraktion darin enthalten sein können.

Die 2.Fraktion, die besonders sorgfältig herausgeschält werden muß, enthält $C_3H_6 + C_3H_8$. Zur Trennung dieser beiden Gase genügt die Bestimmung von C_3H_6 . C_3H_6 kann in bekannter Weise im Orsat-Apparat mit 87%iger H_2SO_4 bestimmt werden. M.P. Matuszak hat in Verbindung seiner Arbeit über die Bestimmung von i-Buten mittels Belektiver Säureabsorption darauf hingewiesen, daß die Bestimmung der Olefine in 87%iger H_2SO_4 mit der üblichen Orsat-Methode mit erheblichen Fehlern, besonders bei Anwesenheit von höheren gesättigten KW., in deren Isomeren behaftet ist. Es wurden von uns Differenzen in den Ausgangsgasen gegenüber den Olefinwerten in den Σ -Fraktionen bis zu 15 % gefunden.

Nach Einführung der für die i-Butenbestimmung nach Matuszak (Analysenvorschrift Nr.54) vorgeschriebenen Absorption mit stets frischer Säure erhielten wir gut übereinstimmende Werte.

Ist man nicht sicher, ob in der 2. Fraktion Spuren der nächsten Fraktion vorhanden sind, so wird auf i-Buten und C-Zahl geprüft. Isobuten und i-Butan werden nach der 2. Fraktion zuerst abgenommen, so daß nur diese Gase evtl. in der 2. Fraktion vorhanden sein könnten. Auf keinen Fall darf ein Gas der 2. Fraktion in der 3. Fraktion enthalten sein, da es in diesem Falle nicht mehr erfaßt werden kann.

Wie aus der Destillationskurve ersichtlich, ist eine scharfe Trennung der C_4 -Fraktion nicht möglich. Zur analytischen Erfassung der einzelnen Komponenten genügt ei. Teilung der C_4 -KW. in zwei Schnitten, in die Fraktion III und IV.

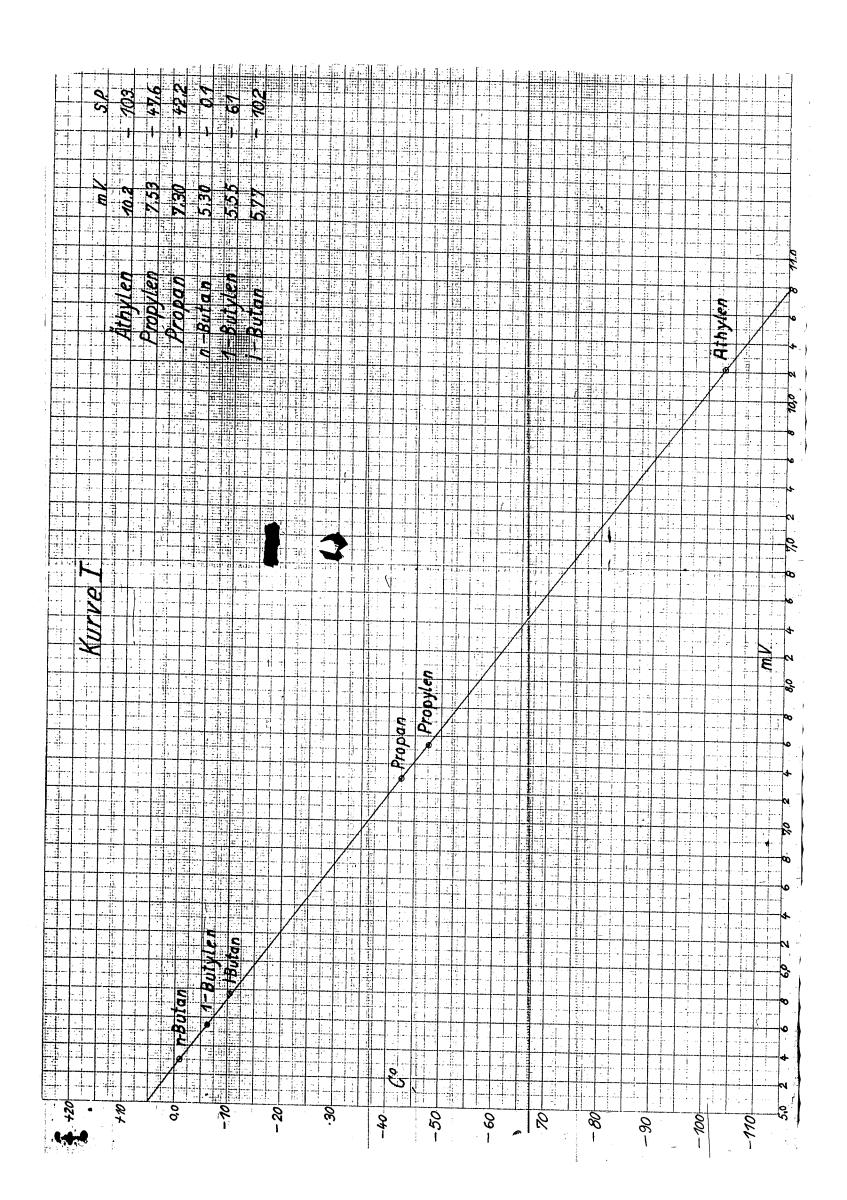
Die Fraktion 3 enthält i-Buten, 1-Buten und i-Buten. Die Bestimmung der Ungesättigten geschieht auf der unter der 2. Fraktion angegebenen Weise. Die Bestimmung des i-Butens erfolgt nach der HCl-Methode. Da in der Fraktion 3 nur i-Buten und 1-Buten enthalten sein können, so ist der Anteil beider Gase aus den angegebenen Bestimmungen gegeben. Der Anteil an i-Butan ergibt sich dann nach Abzug der Ungesättigten.

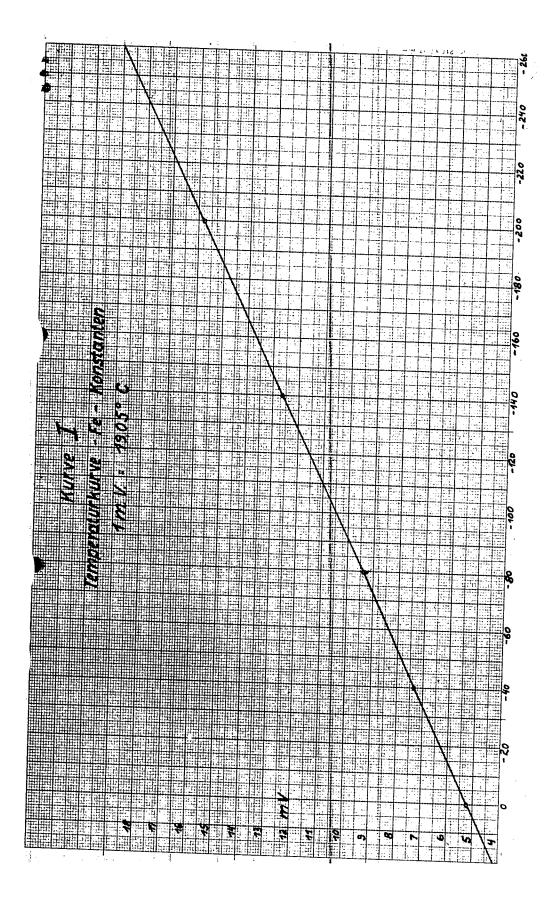
Die <u>Fraktion 4 enthält</u> den Rest des i-Butens, außerdem 2-Buten und n-Buten. Die Bestimmung der einzelnen Komponenten erfolgt in der bei der 3. Fraktion angegebenen Weise.

Die <u>5.Fraktion</u> besteht aus dem an A.K. adsorbierten Destillationsrückstand. Die Identifizierung des Rückstandes erfolgt auf folgende Weise:

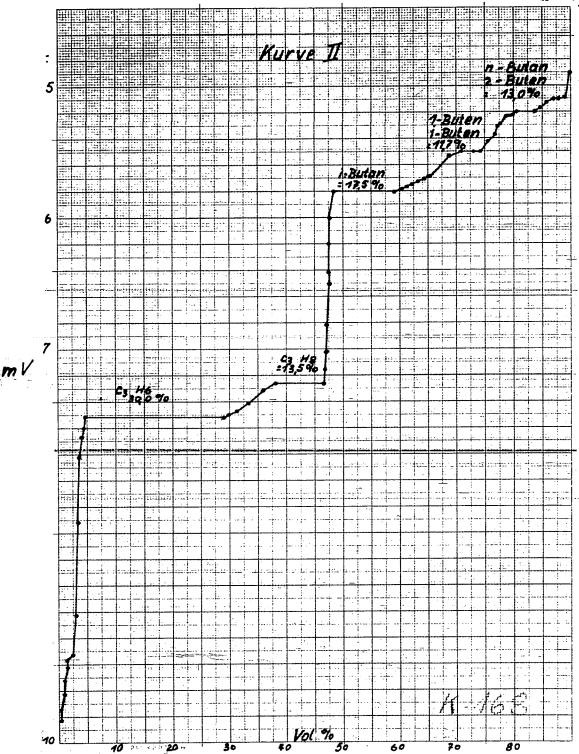
Das AK-Gefäß 4 wird in der in Schema IV gekennzeichneten Anordmung entgast. Ofen (1) wird elektrisch geheizt und mittels Regler auf ca. 350°C gehalten. Die bei dieser Temperatur aus dem AK-Gefäß entweichenden Gase werden in dem Ausfriergefäß (2) mittels flüssiger Luft kondensiert. <u>Das kondensierte Gas wird nach Schließen des AK-Gefäßes in </u> den Kolben (3), der vorher auf höchstes Vakuum ausgepumpt ist, vergast und der Druck am Manometer (4) abgelesen. Aus dem bekannten Volumen des Kolbens, dem Druck und der Temperatur wird dann das dasvolumen im normal-Zustand bestimmt. Das AK-Gefäß wird vor und nach der Entgasung gewogen und das Gewicht des Gases damit bestimmt. Aus dem jetzt bekannten Gewicht und Volumen ist das Litergewicht des Gases zu errechnen. Das Litergewicht gibt bei sorgfältiger Ausführung der Bestimmung zuverlässige Werte, so daß man ohne weiteres erkennt, ob eine reine C5-Fraktion vorliegt, oder ob noch C4 verhanden ist. Da bei der Bestimmung von i-Buten im Ausgangsgas das i-Penten mit erfaßt wird, muß auch in der C5-Fraktion das i-Penten nach der HCl-Methode-bestimmt werden.

Die Bestimmung der Ungesättigten geschieht in der Weise, daß der C5-Fraktion die doppelte Menge Wasserstoff zugemischt wird. Das Gas-Wasserstoff-Gemisch wird durch ein magnetisches Rührwerk (a) gut ca. 1/2 Stunde gemischt. Von dem Gasgemisch gibt man ca. 50 cm3 in die Hydrierungsapparatur und bestimmt die Olefine durch Hydrierung. Befordel:


Zur Hydrierung = 50 cm³ davon 34,1 C₅Frakt. = 17,05 cm³


Kontraktion = 10 cm³ = 58,7 Vol.% Olefine.

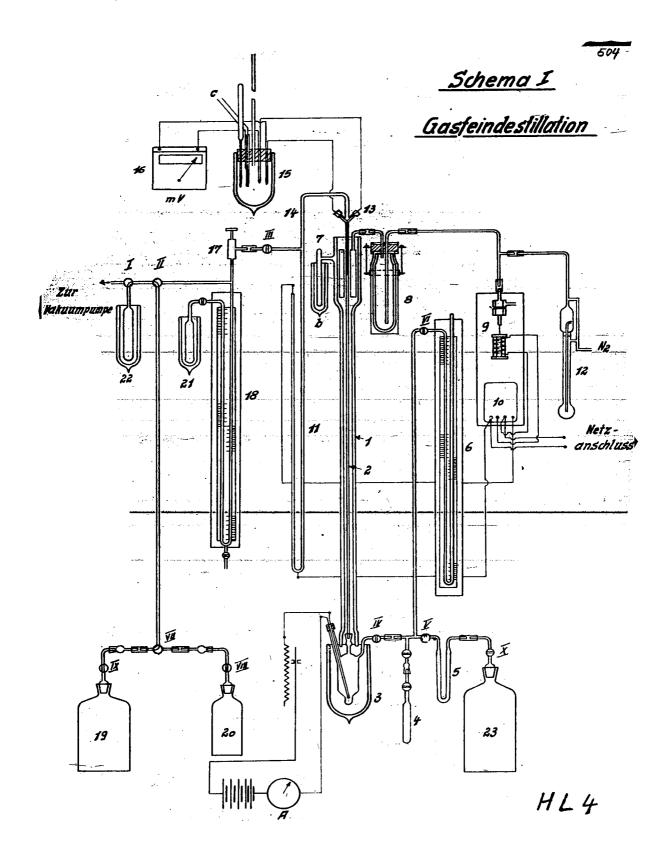
Eine orsatmäßige Erfassung der c_5H_{10} ist ohne Verdünnung nicht möglich, da nur bei einem Unterdruck von 300 mm gearbeitet werden kann, andernfalls das Gas kondensiert. Durch Zumischung von Wasserstoff wird der Partialdruck der C5-KW. so weit erniedrigt, daß die Hydrierung bei normal-Druck ausgeführt werden kann.


Die Auswertung der gesamten Analyse ist aus den beigefügten Vordrucken ersichtlich.

vous themit

Ruhrchemie Aktivagesellechen Oberhausen-Holten

Kopferner Kühler mit Spiral-Gasführung


H. L. 2.

Bemerkung:

Gasfens destillation - Versuchs anlage

16¢ 12,5¢

may Silmer

Ruhrchemie Aktiongosollochest Oberhausen-Holten	Schema <u>st</u> Apparatus den C	zur B	Restimmung	HL 5	
Bemerkung:	der Cs	- <i>n. w.</i>	•		
Kontaktine	rmometer a	Na.	anet Zur Hydr	ar iC4-H8-Bestimma.	729.

Datum: 26.2.1940.

Unter- sucht	Aus- gangs-	g. g		II		II	I	I	V	Τ,	7	Bener-	
auf	gas	а.	Ъ		Ъ	2	ъ	a -	ъ		. ъ	kungen	
CH ₄									-				
O2H6				<i>-</i> ".				- ,, - 7		74 12 13 12	. £ ₁	Q.	
^{С3н} 8	40,0			36									
n-C ₄ H ₁₀								14,4					
1-0 ₄ H ₁₀	an and an engine					61,6		11 12 12 12 12 12 12 12 12 12 12 12 12 1				1 10 to e	
-C2H4	5,6	62,5		1,7							- 1		
C3 ^H 6				62,6								5 C. 18 July 1	
C4H8						15,1		77.1					
1-0 ₄ H ₈	52,9					13,3		8,5					
1-0 ₅ H ₁₀										0,0			
n-C5H10	والمستناد والمستناد والمستناد	سنيس				ستسيمسه			بسندي سند	47,5			
n-0 ₅ H ₁₂										52,5		i it	
് ₂	0,0												
02	0,1	3,5			e ezze ez		1 - 4/4						
CO	0,3	0,0			**************************************		,;-	*.					
H ₂	0,1	0,6	, w		1. 77								
N ₂	3,0	30,0											
	3,76	1991	i seri										
L.G.			112 12						. ,	Terror St.			

A.K. Abtrieb nach = 47,3160 g

vor = 46,5100 g

netto = 0,806 g

Volumen: 252,0 cm³

Datus: 27.2.1940.

1	1050				111		2457.	l Temp.		In	122	کے ا	, ,, _,		HV	:4:	02 a	3	•	
			. 3		"	1	1		1		"		1 4	• 1	11.				1	1
Zei	P	- Y	Ba.	R.	. 20	it p	av.	ca ³	R.	Zeit	9	av.	1 ~~~	n.	Ze	lt. I	, 1	ca ³	H.	
350			. વજ		14	• 00			1	1690	0	5.	_	0,	19	65	+	+	+	╁
925	2	49,8	0	0.1					0,3			_			- 11			36 4,9	0.4	†-
911	4	9.8	_	14	144	5	3,6	4,8	,	1650		5,1			IJ	es 8	_	3 3.8		+-
910	9.5			- N -	44	s q	7.5			166	9	c.			20	40 8	1 5,			
945	444	4.8			435	242	————	1	 : -	11"5	12	6,7			20			-		1
4.50	_	9,34	_	1.	140				1:	4845					10		_		-	┼
453	20,5	9,71	1.3		144			3,9	1	Al		-			10				+ -	+
933			<u> </u>	1_	144	239	3,41	4,2	1.	4845					20	_	-		1	
ે વ કર્જ	115	3,6	-0,6	/ . xi. :			3,40	4,5	1	1848	124	_			1	_	- 17		1	
्वहर्	17.0	9,5	4.3	1	14 2	2.56	3,15	5,3	,	1824	232				204		7-	71	 `	
1007	34	2.45	1.0	. •	141		7,34	3,6	•	1113	241	5,70		•	20	_	4 5,4		 	1
Agab	335	9.4	1.6		4436	16}	7.30	3.0		1726	250	8,30		-/,-	105	-+	0 6.4		1000	10 4, 70
1010	36-	131	-0,8		AU	273	3.25	-3,6-		435	264	E,69		-	21		4 4	-	-	
40 ¹²	38	9.35	4.3		1448		4.28	3,5	1, -	Al 33	275			1,	u		+	1	1	
104	41,6	4.35	4.4		145		3,25	4,3	4	1826		5,60	+	1	หา		1	1.1		-
1010	46	9,32	1.1	-	154		hus	6,0		1840	297	513	5,2	-	21"				7	
10 25	S1 -	9.52		=4 =	150	1	7,45	4.8	74	ARYE	317	6,52	6.5	1	21"	_		A 10 24 . 5		(to express
4030	2,62		4.4	3,5	1561	-	3.0	- o.b.	1 1	AP CO	327	5,51	4	14	A Company		40.00	1.04.5	1.00	
40 40	2,24	-	1,3		160	-	6,8			Vigi Vi			1,2	1	2,911		+-	1	•	
40 12					-			4.2			343	5.50	5,2	1. •	212		5,0	9,0		
	63,0		0,4	. .	Abot	13.	4.5	1.5	• •	1917	361	5,57	5,8	1	พน	248	5,0	0.3	.,	
40 * 5	69.5		1.1	<u> </u>	1605	1	(a, 4)	.A.T	•	1901	173	5,50	3,5	-	2430	ur	4,4	4.6	13	
10 50 -	72;0	87	0.6		7628.	366	6.2	1.0	•	190	386	5.5	۶.٤		u	220	4.9	0.0	1	**********
40 55	>4,0	7.8	0.5		164"	367	6.4	4.0		1948	401	5,49	4.7					1		
W-1					16 43	368	6,8	4.6			†			1.	-	 		† "		
i de la companya di salah s			Section of the Section	***********		· ·					405		<u>-),Ł</u>	-			- Stani	1.00	ansers else-	energy and the second
emper			-		1615	369	6.F	4.5	-		4.4	3 6.7	4.8	•			<u> </u>			
anna	m	щ	nue			-				4913	118	144	. 1,1	•			L			٠,
	•	22 1	:	- :	•	23,5	•c			1928	121	, w	2.4				-			2 35
			- 1,513					7.				.40	2,3						- 	
		+							-1			\vdash			* -			1 350	\rightarrow	
	-	-1	\dashv							1940	128 5	-45	4.4				-			
		_				_	_			\perp										
			\perp				\perp			• 1	2390									
			. [•				.]				
9.00	[. [. f			T	1							- +				-		

Gasfeindestillation.

Bizetchning der Probe: 18/40 Eingang der Probe: 26. 2. 1940

Atoling Dipl.-ing. Stuhipfurrer

Destillations-ir. 100 Fortigatellung der Analyse: 29.2.1910.

Analytilar: v.iba. / Hogo Boss

Frakt.	161. 7	1 161.7 v.Eins	. wi.z	2 101.7 v.Eins.	161.Z	3 \foldar v.Eim.	161.3	ibi.Z v.Eim.	W1.X	5 161.% v.Eins.	Ge	s-Ergebn.
CH_ 1 Gev.0,7168		v								Voc.Ing.		
C, H ₆ 1 Gev. 1,356				1				 		<u> </u>		
C ₃ H ₈ 1 Gev. 2,019			36,0	15,9							15,9	13,9
n-C ₁ H ₁₀ 1 Gay. 2,703							14,4	2,0			1,0	2,3
1-6,11,0 1 684- 2,668					61,6	17,1					13,1	19,8
C.H. 1 684. 1,2605	62,6	2,5	4.4	0,6							3,1	1,7
CH. 1 ³⁶ 6. 1,9115		222	6.2,6.	27,1			era, erap a sessança				-23,3-	23,0
1-GH ₈ 1 600. 2,50					15,1	4,2					4,1	4.6
2-GH ₈ 1 Gay. 2,50							73,1	10, 7			19,7	11.6
1-C.H ₈ 1 689- 2,50					23,3	4,5	8,5	1, 2	-		7,7	8,3
C-H ₁₀ +C-H ₁₂ 1 544. 3,16								·	е; н ₁₉ .	4,8		
CO., 1 Gay. 1,9768					:				1-C2 Hap	5,3 8,0	10,1	14,0
t_ 1 ² Gev.0,0898		by the displace	**					200 - 1 p 11	,	·, become on the c		e i line ingeles
2 Gav.1,4289	7,5	0,3									0,3	0,2
9 Gen. 1,25	0,0	0,0	·							-, -	o,a	σ, σ
² Gev. 1,25	30,0	1.2									1,2	0,6
2 Gav. (),(1889	0,0	0,0									σ,σ	o, o
oomt- ol.	95	r	1095	o	- 694,	v	347	0	2 5 2,	0	100,0	
ol.I. Eine.	\$	0	i, i,	2	27,	8	13,0	9	191			
iterges.	1,30	2							3 &			