6

Untersuchung

Restbenzin, ob. Schicht, Schmierölvorlauf, Öl, Destillation, therm. Beständigkeit

Untersuchung des Crackbenzins nach Synthese.

Analyse eines Restbenzins aus Ölanlage (Oktober 42).

- 1) Hauptdaten: d₂₀=0,6923 n D₂₀=1,3940 lK=2,04 SP Zahl=10%, 694 mg/Kg Cl₂ lt. Verbrennung.
- 2) Engleranalyse: siedet ab 40°, 5% bis 54°, 50% bis 107°, 95% bis 173°.
 - 3) Feinschnittdestillstion;

					3376
Fraktion	Gew ≸	^d 20	Sr Zahl	n D ₂₀	рĶ
Tiefkond. +	17,4	0,600	_	1, •••	
31 - 51	2,6	660	9 ;		
51 - 82	18,-	684	8	3868	2,02
82 - 110	21,6	706	11:00	3969	2,03
110 - 135	9,9	716	11	4029	2,05
135 - 160	15,4	725	11 ,	4079	2,07
160 - 174	8,1	734	9	4114	2,11_
Rstd. 174	7,-	738	6 1	4138	2,11
	100%	nominational social services as accommon	To the second section of the section	en galacine es para es que en escapara de maso para para para para para para para par	en verst var e van e van ekvan el en mon have
		:	<u> </u>		

⁺ Tiefkondensat enthält: 13,1% C₄ H₁₀ 2,4% C₄ H₈, 66,5% C₅
18,-% C₆

Untersuchung einer oberen Schicht aus Crackbenzin.

-dufteiling einer oberen Schicht in schmele Destillate und Analyse.

Obere Schicht aus Betrieb enthielt noch etwas Restbenzin; destilliert Vakuum bis 280° (D.). (ing. 42) Jedes 2. Destillat ist hier aufgeführt.

	vgl	. Blatt "Sohm	ierölvor	leuf#	5382
Nr.	Dampf	(v _{2O})	Jodzahl	Stockp.	n D ₂₀
	°C	°E		· oa	,
a) De	stillation w	nter Atmosphäi	rendruok	bis 200° (D.)	
1	bis 120	: V ₂₀ =	i -	-	: -·
3	130 # 140		19,8	! -	-
5		1,01 -	16,4	-57	1,4098
- 7	170 * 180		11,3	- 50	4138
9	190200	•	9,7-	-40	4190
		1.5 mm Hg t	is 280°	D.	•
10	b1s 60	V ₅₀ ,06 -	-	; ı –40	i 4263
12	70 11 80	1,04 -	12	−33	4223
14	90 🕶 100	1,08' -	23	-32	4312
16	110 # 120	1,13 -	44	- 40	4393
18	130 ! 140	1,23 -	62	-41	4493
20	150 " 160	1,35 -	81	- 49	4563
22	170 " 180	1,53	89	-70	4606
24	190 7 200	1,81,1,55	103	> -70	4642
26 .	210 7 220	2,23.1,70	110	>-70.	- 468 0
28	230 * 240	2,95 1,86	109	-61	4706
30		3,99-1,80	111	-58	4731
32	270 7 280	6,02 1,84	105	-53	4752
Ratd.	> 280°	23,3 1,86	66	-32	4798

Untersuchung einer oberen Schicht aus Crackbenzin.

Erläuterung zu vorseitiger Tabelle.

<u>Viscosität</u>: bei allen Destillaten tief; erst bei Nr. 26 (=210-220° Vak.) übersteigt V₅₀ den Wert von 2°E.

Polhöhe: Destillate haben eine bessere Polhöhe als Rickstand.

Molekulargewichte: stetiger Anstieg: Nr. 10=194, Nr. 22=291,

Nr. 32=497, Rickstandsöl = 743.

Jodzahlen: Sehr interessant: Zunichst im Bereich der Restbenzine fallende Tendenz, Nr. 9=9,7, dann steigend bis Nr. 30=111. Rstd.
hat nur 66; je viscoser der Brightstock, umso tiefer die Jodzahl.

Stockpunkte: Ebenfalls wichtig: Vorliegende ob. Schicht war vermutlich paraffinarm: Stockpt. also gunstig. Werte beginnen mit

-57°, verschlechtern sich bis Nr. 14= -32°, fallen sodann wieder bis Nr. 26= -70° und tiefer! Dann heben sich die Werte in Richtung auf den Brightstock. Je nach der Siedelage kann ein Rstdsöldurch Wegnahme der niedrigsiedenden Anteile im Stockpunkt verbessert oder verschlechtert werden.

<u>Dichten</u> steigen stetig; Nr. 5=0,725, Nr. 14=0,766, Nr. 32=0,852.

<u>Brechungsindex: Kurve steigt stetig. 1,4059 --- 1,4798.</u>

<u>Dielektrizitätskonstante</u> steigt stetig 2,00 -- 2,24.

Öl aus Crackbenzin. Untersuchung des Schmierölverlaufs.

Analytische Daten des Schmierölvorlaufs.

Obere Schicht, destilliert, besteht aus 1)Restbenzin 2)Polymerisaten. Der niedrigsiedende Anteil von 2) ist der Schmierölvorlauf, er umfaßt Dieselöl und Spindelöl. Er wurde durch Destillation im Vakuum von 5° zu 5°C etwa aufgeteilt in 26 Fraktionen und einen Rstd. V₅₀=7,9°. Er liegt also zwischen Restbenzin und 10° n-Öl; er fällt in der Lurgianlage als Destillat an. Kinige Fraktionen von den 26 sind herausgegriffen:

			·	~~~~~	289	8
Dampf siedet bei 760 mm	204-220	248–254	290-298	326-332	354 - 358	370 – 375
Nr.	2	7	12	17	22	^ 26
siedet bei 3mm Hg	60-72	94-99	127-132	155-160	178-181	192-196
Gew%	2,6	1,8	4,5	4,7	4,4	0,9
V ₅₀ °E	1,01	1,11	1,23	1,46	1,82	2,28
VPE					1,63	1,75
Molek. Gewicht	159	182	-	-	331	391
^đ 20	0,755	0,781	0,808	0,831	0,838	0,836
Mammp. Og	56	109	137	169	195	221
Jodzahl	.15	18	31	46	58	67
Stockpunkt ⁰ 0	-44	-18	: 11 ₉ 5	-26	-39	-39-
Dielektr. Konst.	1,95	2,01	2,03	2,08	2,15	2,22
n D ₂₀	1,4226	1,4406	1,4557	1,4672	1,4708	.1,4738
Anilinpunkt	77,4	83,7	ca87,-	oa89,-	96,3	100,3
Kohl.Wasserstoff	c ₁₁ '	⁰ 13	ов 0 ₁₆	oa 0 ₁₇	C ₂₄	o ₂₈

Erläuterungen zu vorseitiger Tabelle.

<u>VPH</u>: Soweit messbar, steigt die Polhöhe mit der C-Zahl der Benzimfraktion.

Mol. Gewicht: steigt: Methode ungonau. Konstitution lt. Verbrennung $\mathbf{C_{n}}_{2n-x}$

<u>Dichte</u>; für die Konstitution wichtige Zahl; d₂₀ nimmt stotig zu; Kurve verläuft steiler als erwartet; entfernt sich von den Olefinen 1 und Paraffin-Kohlenwasserstoff und erreicht bei V₅₀=1,6 das Gebiet der cyclischen Mono-clefine.

Flammpunkte, im offenen Tiegel ermittelt; sie steigen. Bei einem bestimmten V_{50} Wert liegt der Flammpunkt umso höher, je schärfer und schmäler die Fraktion gesohnitten wurde. Hier Flammpunkt= 200° bei $V_{50} = 1,95$.

Jodzahl: steigt, Haximum 60-100 liegt bei Rückstandsölen V⁵⁰ 8-12°; fällt dann in Richtung höchstviscoser Rückstandsöle. Jodzahl höher als bei Mineralölen. Schmierölvorlauf ist der Übergang von gesättigten Restbenzinen zu Rückstandsölen mit hoher Jodzahl. Die Schmieröle haben ausgesprochen ungesättigten Charakter.

Stockpunkt: Fraktion Nr. 1 het -68°, es kann also kein n-Paraffin-Kohlenwasserstoff sein, Stockpunkt steigt dann bis -11,5°C bei Fraktion 12, um dann allmählich wieder zu fallen bis ca -40°; bei den Rückstandsölen steigt der Stockpunkt mit der V₅₀.

Dieelektrizitätskonstante: steigt von 1,94-2,22. Schmieröle haben 2,15-2,25.

Brechungsindex: steigt aus dem Gebiet der Paraffine in das der cyclischen Mono-olefine. (vgl. Dichten). Die aus dem Quadrat des Brechungsindex berechneten DK Werte liegen höher als die experimentell gefundenen.

Antlinpunkte: verschieben sich aus dem Gebiet der Methanhomologen, die die höchsten AP haben, in das der Naphthenringe.

Fraktion Nr. 19 enthalt, wenn die Watermannsche Ringanalyse anwendbar ist, etwa 16 % Naphthène.

Untersuchung von synthetischen Ölen.

Destillation eines Rohöles aus Batrieb.

Ausgangsmaterial: Aus Crackbz. hergestelltes $01 \text{ V}_{50} = 5,3^{\circ}$, 30 Jodzahl = 80, Flammp. = 168° August 40.(Vers. 2975).

Ölfraktion Vak. 5mm			Rohölanteil	v ₅₀	Jodzahl	Flammp.	Stockp.
			.Gew %	°E		·°σ	٥a
240	bis	260°	5,2	2,2	75	209	- 69
260	R	280°	6,2	2,9	78	230	-67
280	*	300°	7,1	3,9	78	246	-71
30 0	•	320°	10,3	5,6	74	275	- 67
320	. #	330°	3,7	7,5	69	284	- 56
330	ø	340	5,-	8,7	66	286	- 55

Ol ous Crockbenzin. Untersuchung.

Zerlegen eines 8° Rückstandsöles in 3 Destillete und 1 Brightstock.

Ein normales Betriebsöl ($V_{50} = 8^{\circ}E$, Flpkt. = 214°, Jodzehl = 67) wurde im Vekuum zu 2/3 ebdestilliert, sodeß necheinender ein Destillet von $V_{50} = 2^{\circ}$, denn von 5° und schliesslich von 11°E enfiel. Bei 335° blieb ein Brightstock von $V_{50} = 46^{\circ}E$.

,					•
		leichtes Destill.	mittl. Destill.	schweres Destill.	Bright- stock
siedet (Plüss.	.)	b1s 268°	268-305°	305-335 ⁰	> 335°
Anteil Gev.%		24,8	26,2	16,8	32,2
^d 20		0,837	0,853	0,860	0,871
₹50	°E	2,16	5,-	11,1	45,9
Flemmp.	°c	198	241	273	322
Jodzahl		72	80	69	46
Conradson	*	0,01	0,03	0,06	0,34
0 ₂ Test 140		54°+19,8°.	64'+20,10	68'+20,10	96'+20,1
120 g+40 g con	c. o.				
H ₂ SO ₄ , nech 15	™in.	+1,80	+ 2,3	+4,95	+5,12
Altérung 6 Std		o°C			<u> </u>
0 ₂ verbr.	%	20,7	16,6	15,3	4,4
+ ^V 50	\$	95	112	102	20
VZ		62,8	50,4	55,4	7,5
+ DK	 	1,70	1,10	0,64	0,13
H ₂ 0	cem	6,3	8,1	5,3	0,7
Verbrennung			į		•
1 ₂ je 100 C		15,8	16,-	16,2	16,5

Öl sus Crackbenzin. Untersuchung.

Zerlogen eines 8° Rückstrndsöles in 3 Destillate und 1 Brightstock.

Erläuterungen zu vorstehender Tabelle.

Dichte. Y50. Flammp. steigen naturgemäß en.

Jodzehl het bei dem Brightstock ihren tiefsten Wert.

Conradson ist bei dem Brightstock besonders hoch.

O2 Test 140°: Alle Öle sind gegen O2 empfindlich; besonders des leichte Destillet.

Die Mischungswärme mit $\rm H_2SO_4$ nimmt überreschenderweise in Richtung auf den Brightstock zu; dgl. neigt der Brightstock besonders sterk bei der Reffinetion mit $\rm H_2SO_4$ zur Säureteerbildung; es lieferten bei -5°C des leichte Destillet 7,8 % Säureteer, des mittlere 10,2 %, des schwere 12,9 %, degegen der Brightstock 21,1 %! Durch diese Reffinetion werden die $\rm O_2$ Teste nicht verbessert.

Alterung 150 g 6 Std. 140° mit 15 1/h 02: Der Brightstock ist merklich stebiler els die 3 Destillete. Der Angriff des 02 auf des 8er öl erfolgt elso vornehmlich über die niedrigviscosen, tiefsiedenden Anteile. Die Zunehme der Dielektrizitätskonstente ist auffallend sterk differenziert.

Verbrennungsenelvse: Mit steigender Siedelege nimmt der $\rm H_2-Gehelt$, bezogen auf 100 Gew.T Kohlenstoff, stetig zu und zwer von 15,8 euf 16,5. Olefine = $\rm C_{n}H_{2n}$ haben 16,7 $\rm H_2/100$ C. Die Konstitution der synth. Öle wird ausgedrückt_durch $\rm C_{n}H_{2n}$ -x·Auch Minerelöle haben weniger $\rm H_2$ als $\rm C_{n}H_{2n}$: Grünring 15,7 Stenevo 15,25 Kompressol 15,2 $\rm H_2$ je 100 C.

Cl aus Crackbonzin. Untersuchung.

Untersuchung von Versuchsölen, die für OKH durch Kombination ver-

schicdonor Dostillato horgostellt wurden. (Marz 42)

Ein Botriebsöl $V_{50}=6,7^{\circ}$, das noch das Spindelöl enthielt, wurde aufgeteilt in a) Brightstock $V_{50}=50^{\circ}\mathrm{E}$ b) verbleibendes Destillat: b) wurde nach der Viscosität in 4 Streifen unterteilt, dazu der tiefts siedende Streifen Nr. 1 noch einmal in 2 Hälften. Das $6,7^{\circ}$ - öl setzt sieh wie folgt zusammen:

3314 Verdampf-Frantion Analyso Gow. % barkoit ₫20 V₅₀ VPH 46 96 0,... oE Dostillat 1 (18,7)86,-826 1,54 1,14 18 9,35 97.4 1,37 1ъ 9,35 53,5 1,95 12,-35,-836 2.05 1,64 3 9,80 16.8 843 2,89 1,72 36.-2,-856 10.7 1.68 = Rstd. Brightstock 23,50 0,6 865 48,4 1,78

100,- Gev.%

Mischöl E. 1960 ! Destillate 1b, 2, 3 im Anfallverhältnis mischen, dann soviel von 4 zusetzen, bis des Gesamtöl V₅₀ = 2,6° hat; auf 100 T. Gemisch 5% Brightstock beifügen. Analyse: d₂₀ = 0,842 V₅₀ = 2,93 VPH = 1,71 Verdampfbarkeit = 18,3 %. Weitere Typen K 1953 - 1959.

Abhingigkeit der Dichte von der Fetur des l'enzins bezw. der V50

der Öle.

Es besteht bei Mineralölen u. synth. Ölen eine gegenläufige Bowegung in H₂ Gehalt und Dichte:

H₂ Gehalt= 9,5 | 10,2 | 11,- | 11,8 | 12,6 | 13,3 | 13,7

Dichte d₁₅ =0,960 | 940 | 920 | 900 | 880 | 860 | 850

Unser synth. Ol, das 13,9 Gew & H₂ enthält, schließt sich mit niederer Dichte hier an. 350 Proben wurden ausgewertet, und zwar nur Öle mit der Polhöhe 1,57-1,68. Das Kreislaufbz. war vor der Synthese mit Na, Al₂O₃ oder ZnCl₂ gereinigt. Öle aus Crackbenzin haben eine höhere Dichte als solche aus Kreislaufbenzin; z. B. Flugöl 0,857 gegen 0,846. Bei gleicher Dichte streuen die Werte in weiten Grenzen; die errechneten Mittelwerte haben wohl eine mit der V₅₀ Steigende Tendenz; doch kann von einer linearen Beziehung zwischen d₂₀ und V₅₀ keinesfalls die Rede sein. Die Streuungen sind bei dem Kreislaufbz. (Kobalt) geringer als beim Crackbenzin, bei Ölen aus C₆, C₇....O₁₄ nehmen die Dichten mit der Kettenlänge nicht zu. Aus undestillierten Benzinen ergab sich:

V ₅₀	d ₂₀ Streuung	d ₂₀ Mittely	V ₅₀	d ₂₀ Streuung	d ₂₀ Mittelw.
Öl aus	Crackbenzin		Öl aus	Kreislauf	benzin (Co)
2- 40	0,840-843	0,842	4-60		0,839
6- 8°			6- 8°	0,840-841	0,841
10-12°	0,852-859	0,855	10-12°	0,841-845	0,843
14 - 16 ⁰	0,853-858		14-16	0,843-850	0,845
18-20°	<mark>0,852–862</mark>	0,857	18-20°	0,844-850	0,846
22-24	0,855-861	0,858	22-24	0,845-848	0,846
32 - 34°		0,862	32-34	0,849-851	0,850
! <i>;</i> !					

Untersuchung von Crackbenzin- und Kreisleufbensin-Ölen

Für Rückstandsöle erhaltene Stockpunkte

Stand Juli 1944

Die Tabelle enthält die Mittelwerte aus den in den letzten Jahren durchgeführten Analysen. - Kreislaufbenzin, Siedelage bis höchstens 220°,
Raffination mit Al₂0₃ oder ZnCl₂-Lösung.

						benzin	Typ Co-Kr	eislaui	benzin	Typ Fe-Kr	eisleuf	hongi-
			50	`	An- zahl	Stock- punkt	V ₅₀	An- zahl	Stock- punkt	V ₅₀	An-	Stook
		C	E	,		°c	o ^E		°c	o _E		°c
-	4	р	is	6	6	-55		ı				
i	.6.		99	. 8	15	-50						
-	8_		11	10	56	-49-	bis 9,	9	-48	bis 9,9		l
1	10		Ħ	12	20	-46	10 " 13,9	1 -	-46	H	5	-47
1	12		n	14	18	-44				10 " 13,9	• 4	- 45
i	14			16	24	-44	14 " 17,9	14	-42	and the second s		
1	16	٠	17	18	15	-42				9 2 2		1 (4.14)
ı	18		•	20	. 9.	-41-	18 # 21,9	7	-41			
ı	20	1		25	16	-39	22 " 25,9	-2	-37		ĺ	
ŧ	25		,	30	4	- 39	26 " 29,9	3	-33	· .	1	
	30	**		40	3	-37	33,6	1	- 6	35,2	1	- 36.
	10	. 11		50	1	-35				٦		-36
5	0	-11	••••••	60	4	-26						
	Sun	ותנד	e	ļ	191	- 1		50			10	

Ler Stockpunkt unserer synth. Öle

Der Stockpunkt (Stp.) ist die Temperatur, bei der das Ölso steif wird, dass es unter Einwirkung der Schwerkraft nicht mehr fliesst. Der Trüffehler beträgt nach DIN DVM 3662 "Richtlinien" ± 2°C, Toleranz + 5°C.

Synthesische öle zeichnen sich gegenüber Mineralölen durch einen wesentlich günstigeren Stp. aus: erstere haben z.B. bei $V_{50} = 10^{\circ} E$ Stp. = -46° C, bei 20° E -41° , letztere z.B. Grünring bei 22° E nur -48° C.

Faktoren, die die Lage des Stp. beeinflussen können, sind Reinheitsgrad oder Siedegrenzen des Ausgangsbenzins, Füngung der Synthese, Viskosität des betreffenden Öles. Kanche Anteile des Benzins scheinen verbessernd zu wirken, andere wie Paraffin schaden. Grundsätzliche Wertunterschiede zwischen den beiden Typen Crackbenzin und Kreislaufbenzin bestehen offenbar nicht; dagegen wikt sich innerhalb dessel ben Typs der individuelle Charakter der betreffenden zur Ölgewinnung eingesetzten Benzinprobe bei sonst gleichen Verbältnissen auf den Stp. aus.

Fine einfache Peziehung zwischen Siedeluge des Benzins bezw. der mittleren C - Zehl und dem Stockpunkt besteht nach den Ergebnissen der bisherigen Reihenversuche wie 2909, 3003, 3031, 3127) nicht. In der Synthesereile " Crackbenzin aus Gasol Cg bis C44 lagen die Stp. ziemlich auf konstanter Höhe; nach keinigung des Benzins mittels Natrium wurden die Stp. aus C5, 7, 8 schlechter; die Verunreinigungen wirken demnach als Stockpunkterniedriger. (3137). Ein Optimum bei C, und C10 hebt sich heraus. - In der Versuchsgruppe C6 bis C14 Crackbenzin aus Kaltpressül liegen 🛊 die besten Stockpunktwerte, unabnängig von der Na-Vorreinigung, bei C_{10} und C_{11} (3003, 3031). Bei Fe - Kreislaufbenzin konnte die obere Siedegrenze bis 280° ohne Schadigung des Stp. gehoben werden; bei V₅₀ = 10° E blieb Stp. - 45° c. (3691). - 特別ないけん

In der Heißsynthese 95° hebt sich bei einen bestimmten AlCl₃ - Einsatz ein Optimum des Stp. heraus (3456)

Stellt man aus einer oberen Schicht durch Destillation Rückstendsöle verschiedener Viskosität her, so sinkt mit steigender V₅₀ der Stp. Hier ist die zwangsläufige /bhängigkeit klar und eindeutig. Lockerer ist dagegen diese Relation bei der Auswertung der unabhängig voneinsnder geführten Syntheseversuche. Wohl sinkt der aus 191 versuchen els Mittelwert errechnete Stp. mit steigender Viskosität; (vgl. Blatt 88 a)

<u>v</u> 50	stp. bei Crackbz.
6 bis 8° E	- 50 ⁶
18 # 20 ⁰	- 41°
40 " 50°	- 35°

Jedoch ist die Streuung der Einzelwerte so breit, dass die Lage des Stp. für eine bestimmte v_{50} nicht vorausgesagt werden kann.

Ein verzüglicher Stp. wird erhalten, wenn man anstelle von AlCl₃ mit aktiviertem Aluminium und Chlorwasserstoff=gas polymerisiert; bei V₅₀ = 10° - 51° C (3474). Die tiefsten = besten Stockpunkte haben Destillatöle; bis - 70°C bei V₅₀ = 1,5 bis 2,2° E. Yurden diese Fraktionen aus einem bestimmten öl abgetrennt, so verschlech tern sich die Stp. mit steigender V₅₀.

Werden verschiedene Benzine verlierter Siedelage polymerisiert und die erhaltenen öle analog in eine deile von schmalen Fraktionen aufgeteilt, so zeigt ein Vergleich: Bei gleicher V₅₀ haben die öldestillate, die aus einem Benzin Siedelage 140 bis 160° C stammen, bessere Stp. als solche aus Benzin, unter 60° C siedend (2935 fg). Lange Ketten sind also für ein tiefstockendes Destillatöl

ein besseres Ausgangsmeterial als kurze Ketten. Im Gebiet des normalen Schmierölverlaufs liegt für eng geschnittene Öldestillate ein Stockpunktsmaximum, ausgedrückt in °C, bei etwa V₅₀ = 1,23; beobachtet wurden z.B. - 12°C. Ein Destillat V₅₀ = 2,5° Stp. - 60° wird durch heisse Eintropfsynthese in verbessenter Ausbeute gewonnen. Gegebenenfalls lässt sich ein breitsiedendes Rückstandsöl im Stp. verbessern, wenn man die ersten tiefsiedenden Anteile abdestilliert und durch ein tiefstockendes Spindelöl ersetzt (3140).

Menche Inhibitoren wie Phenthiazin, ß - Thionaphthol, 1,8-Naphthylendiamin oder Diphenylbarnstoff senken den Stp. (3455); dagegen ist die Zugabe von CCl₄ zur Synthese nach unsern Beobachtungen ohne Wirkung.

Durch AlCl₃ - Nachbehandlung wird mitunter der Stp. verschlechtert.

Bestimmung der thermischen Bestandigkeit.

Bei der Methode ist die praktische Arbeitsweise eines Öles im Motor vernachlessigt: die Untersuchung befaßt sich lediglich mit 1 Wirkungsfaktor innerhalb der betrieblichen Bedingungen, namlich mit der Temperatur. Sonstige Einflüsse wie die Art des Werkstoffs, die katalytische Wirkung metallischer Oberflächen u. dgl. sind nicht eingeschaltet.

Die bestimmung der thermischen Stabilität erfolgt so, daß eine 200 g Ölprobe 3 Std. lang ohne Rührung unter N2-Schutz in einem Glaskolben mit aufgesetztem Rohr mittels Gasflamme auf konstant 330° C erhitzt wird. Als Maß der Beständigkeit dient die Veränderung der V50 und des Flammpunktes. Absolut genommen, sind die erhaltenen Zahlen sehr grob; nan betrachtet sie besser als Vergleichswerte, auf Easis Grünring oder Rotring. Exakte Vergleiche müssen mit demselben Aluminiumblook durchgeführt werden, in dessen halbkugelförmiger Aussparung der die Ölprobe enthaltende Glaskolben sitzt.

Eine häufige Fehlerquelle bieten die Hg-Thermometer, deren Kugel oft bei längerem Gebrauch schrumpft; diese Gefahr ist bei der Arbeitsweise der DVL, die den Block 6 Std. lang auf 400° einstellt, besonders groß. Man mißt deshalb Block- und Öl-Temperatur besser mit einem Thermoelement. Siedesteinchen sind zu vermeiden, denn sie begünstigen die Crackung.

Der N₂ als Schutzgas darf nur in langsamem Strom auf das Öl geleitet werden, sonst trägt der Stickstoff die leicht flüchtigen Bestandteile mit sich fort, und die V₅₀ fällt zu hoch d. h. die therm. Stabilität zu günstig aus.

	V ₅₀ sinkt auf	Flpkt. füllt um
· Grunring	91 bis 96 %	6 bis 9° C
RCH Ol 19 bis 210	51 b is 59 %	ca 127 ⁰ C
unser normales, aus	Crackbenzin gewonnenes	Estriebsprodukt
steht also an Hitzeb	estindigkeit erheblich	hinter einem guten
Mineralöl. Unsere Fl	usole $V_{50} = 20$ bis 25°	E zeigten als Mit-
tel von 12 verschied	enen Fässern (Nr. 2049)) **
	nach 3 Std. sinkt \$50	auf 88 %
360° " / 312° "	π	ⁿ 70 %

Bestimmung der thermischen bestandigkeit.

Bei etwa 280° beginnt der Flammekt. etwas abzusinken. In beiden Ölgruppen besteht keine Abhängigkeit der therm. Ieständigkeit von der V⁵⁰. Nur in ganz extremen Grenzgebieten ist ein synth. Öl von 1 bis 4° E stabiler als ein solches von 60 bis 150° E. Grünring ist sehr hitzebeständig: Erst ab 340° (Öl) sinkt V₅₀ unter 90 % des Ausgangswertes (Versuch 1884); bei Dauererhitzung auf diese Temperatur wird es abgebaut, der Rickstand bleibt thermisch stabil. Analog behält der entsprechende Rstd. unserer synth. Öle seine Hitzeempfindlichkeit. Der Abbau der beiden Öltypen erfolgt in etwa linear mit der Zeit.

In dem Maße, in dem mit steigender Temperatur etweige Zersetsungsvorgange zunehmen, entwickeln sich weiße Dampfe aus dem Öl, die immer dichter werden, bis das Öl zu sieden anfangt. Dies geschieht z. B., wenn ein kCH-Öl 4 Std. konstant auf 400° (Block) erhitzt wird; die Siedetemperatur sinkt dann z. B. von 349° allmahlich in Absatzen auf 326° C

Bei der DVL Methode (= 6 Std. 400° Blook) sind die Unterschiede zwischen unbehandeltem, Al Cl₃- nachbehandeltem synth. Öl und Grünring fast verschwunden. Die größten Unterschiede zeigt noch die in charakteristischer Weise abfallende Öltemperatur-Lurve (Nr. 2172, 2190).

Als "Grenzbeständigkeitstemperatur" definieren wir die Öltemperatur, bei der die V₅₀ in 3 stundigem Erhitzen etwa um 5 %, also auf 95 % zurückgeht. Bei Mineralölen sinkt anscheinend dieser Wert mit fallendem H₂-Gehalt:

	T. H ₂ / 100 T. C	Grenzbeständigk.Temp.		
Grünring	15,7	3310		
Stanavo 120	15,25	325 ⁰		
Kompressol	15,2	290° 200° 1		
Aero Shell	14,7	200° t		

Die synth. Öle folgen dieser Regel nicht: bei 16,3 H₂/100 C mißten sie am beständigsten sein; die Grbest.-Temperatur liegt jedoch bei etwa 300° C.

Untersuchung von synth. und Mineralölen.

Bestimmung der thermischen Beständigkeit.

Inhibitoren oder Schwefel verbessern die therm. Beständigkeit nicht. Wird Paraffin 3 Std. auf 400° Block d.h. 340 - 350° Öl erhitzt, so verändert sich seine Erstarrungstemperatur nicht. (Nr. 1870)

Unsere Öle werden auf 2 Wegen, direkt oder indirekt, therm. stabilisiert: 1/ man steigert die Synthesetemperatur allmählich bis 170° oder 2/ man behandelt die ob. Schicht bezw. das Rstdsöl mit Al Cl₃ bei Temperaturen über 170°. Die hohe Stabilität des Grünrings wird nicht ganz erreicht.

Aus AK-Benzin hergestellte 101 ist thermisch nicht beständiger als Öl aus Crackbenzin. (Nr. 1966).

Ein Zusatz von 10 % Grünringöl zu 90 % RCH Öl verbessert die therm. Stabilität im Gebiet 295 - 310° (Öl) nicht. (Nr. 1957).

Erhitzt man Gemischevon (90 Grünring + 10 RCH) bis (10 Grünr. + 90 RCH) je 3 Std. im Al Block auf ca 335° (01), so entsprechen die gefundenen procentualen Veränderungen der V_{50} im ganzen den außden beiden Einzelölen berechneten, anteiligen Zahlen, d.h. ein durch Zumischung verursachter thermischer Sondereffekt tritt nicht auf (Nr. 1884, 1892, 1921).

Untersuchung von synthetischen Ölen

Thermische Stabilität bei 330° von aus Kreislaufbenzin Fraktion 60 - 200° hergestellten Rückstandsölen.

Ausgangsmaterial für die Ölsynthese bildete Co- oder Fe-Kreislaufbenzin, Fraktion 60 - 200°. Nur die Probe 3348/2 war vor der Polymerisation neutralisiert worden.

Zur Untersuchung wurden 200 g Öl 3 Stunden auf 330° erhitzt.

Versuchs-	Denedate	δı	vor Test	Öl na	ch Test
Nr.	Benzintyp	v ₅₀	Flammpunkt	V50 sinkt auf	Flammpunkt fällt um.
		°E	°c	4	°o
3346/1	Co	10,4	233	7 5	28
3348/1	Fe-	7,6	235	79	56
. " 2	, t t	9,7	243	80	38
3389/1		7,-	187	73	42
п 2 .	.41	11,9	260	<i>6</i> 6	7 3
" H 3	n	19,8	303	54	143
3606/1	*	13,_	258	69	64
3607/1	Fe	9,3	242	63	112
3698/1		8,-	241	72	33
3699/1	Co	11,9	242	79	32

Mittel = 71 %

Untersichung von synth. und Mineralölen.

Thermische Stabilitit eines synth. RCH-Öles aus Betrieb bei verschiedenen Temperaturen.

Je 200 g Öl wurden im Al-Block 3 Std. lang auf verschiedene, konstante Temperaturen erhitzt. Öl hatte: $V_{50} = 23.2^{\circ}$ Flp. = 254°

				2013
Temperatur	Temperatur im Block Ø	Blook Nr.	Flammp.	V ₅₀ sinkt
295° C	340 ⁰ C	II	, 6° C	95 %
299	340	IV	19	· . 93
306	340	—III	12	93
307	360	IA	19	92
315 (3x)	360	II., IV		·
325	354	III	84	72
325	360 _.	III	19 .	88
325 ·	373	II	56	72
325	' 378 ·	IV	80	68
328	360	<u>III</u>	92	64
330	360	III		51 - 59
335→} 326	400 ;	IV	126	42
,	:			

Versuch 1947 ergab bei 400° (Blook) = $343 \rightarrow 325^{\circ}$ (Öl) als Mittel von 11 Parallelversuchen einen Rückgang der V_{50} auf 33 %

Thermische Stabilitat eines Mineralöles (Grünring) bei ver-

schiedenen Temperaturen.

Je 200 g Grünringöl ($V_{50} = 22,9^{\circ}$, Flp. = 284°) wurden im Al-Block 3 Std. lang auf verschiedene, konstante Temperaturen erhitzt.

Temperatur im Öl Ø	Temperatur im Block Ø		Flp. fällt	V ₅₀ sinkt
312° C	340 ⁰ C	III	3° C	100 %
315	360	II	2	99
318	370	IV	8	91
325	356	III	6	99
325	36 0 ~		. 4	97
325	373	II	11	96
325	376	IV	14	91
328	370	· •	6	94
330	360	III	6 .	98
336	370	III	16	91
340	<u>-</u>	-	3 6 ;	87
345	380		63	77 -
345	400	IV	119	66
. 350	400	IV	121	60

Thermische Beständigkeit verschiedener (1e bei 325° (01)

Im Al - Block Er. III wurden für jedes öl 3 Parallelbestimmungen durchgeführt. Erhitzung von 200 g auf 3 Std.

	· · · · · · · · · · · · · · · · · · ·		2102		
Öltyp	Al-Block Nr.	Blocktem- peratur	Beim Ölg V ₅₀ auf	ing zurück Flp. um	
Grünring	III	359°	96 %	5° C	
$V_{50} = 23,4^{\circ} E$	III	359	: : 96	. 1	
Flp.= 280° C	III	359	95	3	
RCH nachbehend.	III	359	93	5	
V ₅₀ = 17,-° E	III	359	92	.	
Flp.= 242° C	III	359	92	3	
Stanavo 120	111	358	92	12	
$v_{50} = 23.5^{\circ} E$	III	358	91	8 .	
Flp.= 274° C	III	359 ["]	88	20	
RCH unbehand.	' III	359	69	75	
$V_{50} = 21.9^{\circ} E$	III	359	68	81	
Flp.= 252° 0	III	363 x	63	91	

x Neuer Glaskolben

Untersuchung von synth. und Mineralölen.

Thermische Stabilität von 4 Proben der DVL (2 Methoden)

- 1. Methode: 200 g wurden in N_2 Atmosphäre 3 Std. leng so erhitzt, daß die Temp.im Öl konstant 325° C betrug.
- 2. Methode: 200 g wurden in N_2 Atmosphäre nach 1 stündigem Aufheizen 6 Std. lang so erhitzt, daß die Temp.im Al Block konstant 400° C betrug. (DVL Methode).

		·	2	161
	1	2	3	4
vorher d 20	0,861	0,899	0,822	0,903
v ₅₀ °E —	21,8	22,3	17,1	22,4
1. Methode, Öltemperatur	25° 5			
V ₅₀ sinkt auf %	, 59	67,3	91,8	94
Flp. sinkt um °0	106	39	9	7
2. Methode, Blocktemperatur	r 400° 0	: 1	:	:
V ₅₀ sinkt auf %	27,6	33,9	39,5	41,8
Flp. sinkt um OC	137	132	144	132
Öltemperatur nach 2 Std.	336	347	360	365
4	332	342	. 356	361
6	332	340	. 3 56	352

Beide Methoden geben im bezug auf den Rückgang der v_{50} die gleiche Wertfolge; die Zahlen liegen aber bei Methode 1 weiter auseinander. Die Flp. Depressionen sind nicht verwischt wie bei Methode 2 .

, A.

Thermische Stabilität, im Vergleich festgestellt durch lüngeres Erhitzen auf 325° 0 (gleiche Ölproben wie 2081 - 2093)

Je 1900 g wurden unter Rühren im Rückfl.-Kühler 6 Std. lang auf konstant 325° C unter N₂ - Schutz erhitzt. 2 Parallelversuche.

11.45			2126
	RCH unbehand.	RCH Al Cl ₃	Grünring
V ₅₀ vorher = 100 %	23,2° E	21,65° 3	23,6° E
_nach_1_Std	79 %	96- %	98-%
2	69	92	95,5
3	67	88	94,5
4	59 j	85	93,5
5	5 7	83	91,-
6	, 54	81	86,5
Flp. vorher	254°C	261°c	284°C
_nach_1_Std.	- 50	-18	-8
. 2	- 85	- 22	-10
3	-89	-34	-12
4	-98	-44	14
. 5	-93	- 49	-16
6	- 96	- 54	-29

Bestimmung der bei 340° Dauererhitzung entstehenden Spaltprodukte. (gleiche Ölproben wie 2126)

Je 1900 g wurden in einem bestimmten Rührkolben auf 340° C 9 Std. lang erhitzt. Absteigender Kühler führt die Démpfe unter N_2 - Sohutz a) durch eisgekühlte Vorlage b) durch A-Kohle-Turm. Die Zahlen sind das Mittel von 2 Parallelversuchen.

2081 - 2093 RCH Öl RCH Öl Al Clanachbehand? Grünring unbehand com Destillat nach 3 Std. . 56 14 6 30-.9 169 54 24 Endprodukte Destillat 6,7 % 2,- % in A. Kohle 0,7 * 0,6 4 '0,5-" Rstdsöl 91.3 " 96,8 * 98.2 # 100 Gew % 100 Cew % 100 Gew % Rstdsöl V₅₀ 9,6° E 13,8° E 17,6° E 165⁰⋅ 0 197° 0 234° C Flp.