### I. G. Farbenindustrie Aktiengesellschaft Ludwigshafen a. Rh.

Beheime Kommandolade

# Bericht des Technischen Prüfstandes Oppau

Nr. 493

Versuche mit dem Ringverfahren bei verschiedenen

Verdichtungsverhältnissen

<u>Übersicht:</u> is wird zunachst festgestellt, dass R 300 und Gasöl im Dieselbetrieb gleiche Leistungen ergeben, wenn durch entsprechende auswahl der Düsen dafür gesorgt wird, dass die Einspritzzeit etwa gleich dem Zündverzug ist. Die Verbrennung von R 300 (CaZ 188) geht langsamer vor sich als die von Gasöl (CaZ 40), sodass die Verbrennung bereits v.o.T. eingeleitet werden muss und zwar umso früher, je höher das Verdichtungsverhältnis ist.

Im Klopfverhalten ist das Ringverfahren dem Otto-Verfahren bei Verdichtung 1:8 gleich, bei höneren Verdichtungsverhältnissen jedoch merklich überlegen. Wählt man praktisch in Frage kommende unveränderliche Einstellungen von Vorzündung und R-Einspritzung, so kann bei  $\lambda = 0.7$  eine Mehrleistung von 30% auch bei Verdichtung 1:8 beobachtet werden.

Wird das Ringverfahren bei hohen Verdichtungsverhältnissen durchgeführt, so ist Gasöl ebensogut wie R 300 als R-Stoff geeignet. Dieselmotoren können erneblich in den Leistungen gesteigert werden, wenn sie nach dem R-Verfahren mit hochklopffesten Kraftstoffen betrieben werden.

Abgeschlossen am: 13.Februar 1942 Gr.

Bearbeiter: Dipl.-Ing.F.Penzig

ks.

Die vorliegende Ausfertigung

14 Textblatter

13 Bildblätter

Verteiler

| 하는 사는 그는 사람들은 사람들은 사람들이 되는 것을 하는 다른 <mark>'Xerteller'</mark> 들은 다른 그런 그는 다른 바로 하는 것 같습니다. 그 |           |                               |     |           |                               |
|---------------------------------------------------------------------------------------------|-----------|-------------------------------|-----|-----------|-------------------------------|
| Nr.                                                                                         | am        | Empfänger                     | Nr. | am        | Empfänger                     |
| 1                                                                                           |           | Argus, Berlin, Dr. Christian  | 11  |           | Luftkriegsakademie Gatow,     |
| 2                                                                                           |           | BMW, München, Dr. Löhner      | -   |           | Prof.Dr.Holfelder             |
| - 3                                                                                         | V         | BMW, Spandaw, Dr. Stieglitz   | 12  |           | RLM, GL/A-M, DI. Keilpflug    |
| 4                                                                                           |           | DB., Stuttgart, Dr. Schmidt   | 13  | $\lambda$ | RLM, Abt. LC 2, DI. Gebhardt  |
| -5                                                                                          |           | DVL, Dipl. Ing. Caroselli     | 14  | 7         | RLM, Abt.LC 3, Dr. Stiebling  |
| 6                                                                                           |           | DVL, Dr. v. Philippowich      | 15  | 2.1       | TH.Berlin, Prof.Dr. Triebnigg |
| 7                                                                                           |           | E'stelle Rechlin, DI. Lange   | 16  | 1         | TH.Dresden, Prof.Dr.List      |
| 8                                                                                           | · · · · · | Hirth, Stuttgart, Dr. Bentele | 17  | 1         | Dir.Dr.Müller-Cunradi         |
| 9                                                                                           |           | Junkers, Dessau, Dr. Gerlach  | 18  |           | Dipl.Ing.Penzig               |
| 10                                                                                          | * .       | Junkers, Dessau, Dr. Lichte   | 19  | 1         | Techn.Prufstand               |
|                                                                                             |           |                               | 20  |           | DB. Stuttgart, DI. Hofmann    |
|                                                                                             |           |                               | 21  | 7.        |                               |
|                                                                                             |           |                               | 22  |           |                               |
|                                                                                             | 1         |                               | 23  |           | 29505                         |
|                                                                                             |           |                               | 24  |           |                               |

#### Inhaltsverzeichnis

Einleitung

- A. Versuche nach dem Dieselverfahren
  - 1.) Auswahl der Düsen
    - a) Versuchsbedingungen
      b) Ergebnisse
  - 2.) Vergleich zwischen R 300 und Gasöl im Dieselbetrieb
    a)- Versuchsbedingungen
    - b) Ergebnisse
    - im Dieselbetrieb

      a) Versuchsbedingungen
    - b) Ergebnisse
- B. Versuche nach dem Ringverfahren

  1.) Versuche mit verschiedenen R-Stoffdüsen
  - a) Versuchsbedingungen
  - b) Ergebnisse

    2.) Vergleich über das Klopfverhalten des Otto- und
  - Ring-Verfahrens
    - a) Versuchsbedingungen
    - b) Ergebnisse mit R 300 bei verschiedenen Verdichtungen

3.) Versuche bei verschiedenen Verdichtungsverhältnissen

c) Ergebnisse der Vergleichsversuche von R 300 und Gasöl als R-Stoff

#### Versuche mit dem Ringverfahren bei verschiedenen

#### Verdichtungsverhältnissen

#### **Einleitung**

Die Versuche mit dem Ringverfahren waren bisher stets bei einer Verdichtung von 1:8 durchgeführt worden. Dieses Verdichtungsverhältnis lässt sich an vorhandenen Baumustern durch Auswechseln der Kolben leicht einrichten, es stellt keine zu hohen Anforderungen an die Klopffestigkeit des Otto-Kraftstoffes und an die bisher erreichte Zündwilligkeit der R-Stoffe.

Die Erfahrung hat gezeigt, dass im jetzigen Stand der Entwicklung die Klopfneigung eines nach dem Ringverfahren arbeitenden Motors dem des Otto-Motors etwa gleich ist. Es war nun zu untersuchen, ob beide Arbeits-verfahren sich auch bei höheren Verdichtungsverhältnissen annähernd gleich verhalten oder ob das eine oder das andere im Vorteil ist. Es stand allerdings von vorneherein fest, dass höhere Verdichtungsverhältnisse auch höhere Ansprüche an die Klopffestigkeit der Kraftstoffe stellen und somit bei höheren Verdichtungsverhältnissen keinesfalls höhere Leistungen zu erwarten waren. Anlass zu diesen Versuchen war auch die Beobachtung von Daimler-Benz, dass ein Diesel-Flugmotor bei einer Verdichtung von 1:14 mit B 4 klopffrei betrieben werden konnte.

Untersuchungen über die Zündwilligkeit von üblichen Dieselkraftstoffen und den sehr zündwilligen R-Stoffen hatten stets einen startk voneinander abweichenden Verbrennungsverlauf im Dieselbetrieb ergeben. Die vorliegenden Versuche hatten auch den Zweck festzustellen, ob ein grundsätz licher Unterschied in der Zündung von Otto-Gemischen durch Gasöl gegenüber
Zündung durch R-Stoff besteht.

#### A. Versuche nach dem Dieselverfahren

Die Versuche bei höheren Verdichtungsverhältnissen machten es möglich, R-Stoff und Gasöl unmittelbar bei den gleichen Versuchsbedingungen vergleichen zu können. Es wurden deshalb vorerst Vergleichsversuche ohne Otto-Kraftstoff, also bei reinem Dieselbetrieb durchgeführt, um festzu stellen, wie weit Leistung und Verbrauch eines Dieselmotors von der Zündwilligkeit des Kraftstoffes abhängig ist.

#### 1.) Auswahl der Düsen

Es war zunächst notwendig, geeignete Düsen zu ermitteln, da die üblichen R-Stoffdüsen für nur kleine Mengen bestimmt sind, während der Dieselbetrieb bis zur vollen Last untersucht werden sollte.

#### a) Versuchsbedingungen

Wegen Neueinrichtung der Einzylinder-Prüfstände mussten die Versuche an einem I.G.-Prüfdiesel durchgeführt werden. Der Motor arbeitete unter folgenden Bedingungen:

> Hubraum Verdichtungsverhältnis Kühlstofftemperatur Drehzahl Lufttemperatur Luftdruck Einspritzpumpe

Kraftstoffmenge Voreinspritzwinkel Zinlass Auslass Gemischbildung

1 ltr.

1:8 bis 1:19 800

1400 200

frei ansaugend

PE 1b mit Nocken use. Kolben 8 mm Ø

13 bis 150 mm3 je Arbeitsspiel

Bestwert

öffnet Ov.o.T., schliesst 43 n.u.T. öffnet 48v.u.T., schliesst 10 n.o.T. Vergaser mit Verstelldüse

(40° Zerstäubungswinkel)

Es wurden folgende Düsen benutzt:

Bosch-Zapfendüse DN 4 S 1 " -Lochdüse DLOS 103

160 at

Abspritzdruck Als Kraftstoff wurde verwendet:

> Dieselkraftstoff II (DK II) (R 300) R-Stoff

Cetanzahl 40 Cetanzahl 186

(0,3 Loch-Ø)

Ausser Leistung und Verbranch wurde auch der Druckverlauf im Zylinder und der Badelhub beobachtet, um den wahren Einspritzbeginn ermitteln zu können. Der Voreinspritzwinkel wurde jeweils für die beste Leistung eingestellt, wobei zum Teil harter Motorengang in Kauf genommen wurde.

#### b) Ergebnis der Düsen-Versuche

Die Versuche wurden lediglich bei dem Verdichtungsverhältnis 1:14 durchgeführt. Die Ergebnisse sind auf Blatt 1 dargestellt.

Die ohne Rücksicht auf die Rauchgrenze erzielbaren Höchstlei - stungen liegen bei einem Nutzdruck von 5 bis 6 kg/mm<sup>2</sup>. Der günstigste Verbrauch liegt bei etwa 3000 kcal/PS. Da der Motor nicht mit der für normalen Betrieb vorgesehenen Vorkammer, sondern mit einer nicht besonders durchgebildeten Strahleneinspritzung arbeitete, können die Ergebnisse als zulässig angesehen werden.

Die besten Werte wurden mit Gasöl erzielt (Blatt 1). Es ist hier ziemlich gleichgültig, ob die Zapfen- oder die Lochdüse verwendet wird. Bei R 300 ist jedoch die Lochdüse wesentlich ungünstiger. Diese Feststellung hat jedoch nur Bezug auf den hier untersuchten Dieselbetrieb, da die beim Ring-verfahren im Leerlauf angewandten Mengen in einem Bereich liegen, in dem, wie eingetragen, sich keine Unterschiede zwischen den Stoffen und den Düsen ergeben.

Die Ursachen für den starken Einfluss der Düsenart auf den Betrieb mit R 300 geht aus Bild 2 hervor. Es ist dort das Öffnen und Schliessen der Düsennadel dargestellt in Abhängigkeit von der Kraftstoffmenge, also auch von der Leistung. Da die Bewegung der Düsennadel das sicherste Merkmal für Anfang und Ende der Einspritzung darstellt, kann aus den Auftragungen ersehen werden, wie lange die Einspritzung dauert und wann sie beginnt und endet. Gleichzeitig ist auch der Zeitpunkt des Druckanstieges dargestellt, sodass man sehen kann, welcher Anteil des Kraftstoffes noch nach Beginn der Ver-brennung in den Zylinder gelangt.

Es zeigt sich nun, dass bei R 300 unter Verwendung der Lochdüse sehr zeitig mit dem Einspritzen begonnen werden muss, um die auf Blatt 1 dargestellten Leistungen zu erzielen. Der Kraftstoffluss durch die enge Bohrung ist offenbar stark gehemmt, sodass das Einspritzen der verhältnismässig grossen Mengen eines Kraftstoffes von geringem Heizwert ziemlich lange dauert. Nimmt man etwa gleichmässige Fördermenge an, so sieht man, dass bis zum Druckanstieg nur etwa 1/3 der Kraftstoffmenge sich im Zylinder befindet, ein zweites Drittel bis zum Totpunkt in die Verbrennung gespritzt und das letzte Drittel schliesslich erst während des Dehnungshubes in den Zylinder gelangt. Hieraus ist die schlechte Leistung der Lochdüse bei Dieselbetrieb mit R 300 erklärlich. Das Nachbrennen ist aus dem Verhalten der Abgastemperatur (Blatt 1) zu erkennen, die trotz schlechter Leistung ziemlich hoch liegt.

Mit der Zapfendüse gelingt es zunächst, den gesamten Kraftstoff bis zum Totpunkt einzuspritzen, wobei die Verbrennung mit etwa der Hälfte der R-Stoffmenge einsetzt. Der Einspritzbeginn kann wesentlich später verlegt werden, was auch den Zündverzug merklich verkürzt. Die Abgastemperatur liegt verhältnismässig hoch und zwar als Folge der trägen Verbrennung höher als bei Gasöl. Leistung und Verbrauch erreichen nahezu die Jerte von Gasöl.

Aus diesen beiden Versuchsreihen ergibt sich bereits eine Schlussfolgerung für das Anlassen. Das Anlassen des R-Motors erfolgt nach dem
Dieselverfahren und zwar mit einer möglichst grossen R-Stoffmenge, da die geforderte Leistung anfänglich hoch und die Verbrennung bei kalter Maschine
noch unvollkommen ist. Es bestätigen sich nun die praktischen Erfahrungen,
dass die für den Betrieb günstigen engen Lochdüsen für das Anlassen nicht geeignet sind, da sie das Einbringen verhältnismässig grosser R-Stoffmengen in
kurzer Zeit nicht zulassen. Es muss also stets danach gestrebt werden, mit
möglichst weiten Düsen auszukommen bezw. die Düsen zu verwenden, die bei
kleinen Mengen einen geschlossenen Strahl von grosser Eindringtiefe, bei
grossen Mengen für das Anlassen eine weite Öffnung mit möglichst guter Zerstäubung liefern. Bosch wurde veranlasst, sich mit dieser Frage zu befassen.

Bei Gasöl ergaben die auf Blatt 1 und 2 dargestellten Versuche, dass die günstigste Leistung offensichtlich dann erzielt wird, wenn der Druckanstieg nahe dem Totpunkt erfolgt. Der Voreinspritzwinkel ist deshalb trotz der niederen Cetanzahl etwa derselbe wie bei R 300. Es liegt dies auch daran, dass bei dem träge verbrennenden R 300 die Entzündung beträchtlich vor oberem Totpunkt eingeleitet werden muss. Bei der Zapfendüse und Gasöl liegen Druckanstieg und Einspritzende etwa im Totpunkt. Es wurden deshalb mit dieser Düse die besten Werte erzielt. Bei der Lochdüse muss der Beginn des Druckanstieges vor o.T. gelegt werden, da der Anteil des Kraftstoffes, der bei der engen Düse erst während des Dehnungshubes in den Zylinder gelangt, sonst zu gross wird und schlechte Verbrennung ver ursacht. Bei Teillast wirkt sich die grössere Dauer der Einspritzung bei der Lochdüse offensichtlich vorteilhaft auf die Verbrennung aus, was an den günstigen Verbräuchen und geringen Abgastemperaturen erkennbar ist (Blatt 1). Im Vergleich zu R 300 ist festzustellen, dass durch die Lochdüse bis zum Beginn des Druckanstieges etwa die Hälfte des Kraftstoffes einge spritzt werden kann, da der Heizwert des Gasöles beträchtlich über dem des R 300 liegt.

# 2.) Vergleich zwischen R 300 und Gasöl im Dieselbetrieb

Es wurden nun Versuchsreihen gefahren um einen guten Vergleich zwischen dem Verbrennungsablauf eines mit R 300 und eines mit Gasöl getriebenen Dieselmotors zu ermöglichen.

#### a) Versuchsbedingungen

Nachdem festgestellt war, dass Dieselbetrieb nur mit der Zapfendüse bei R 300 durchgeführt werden konnte, wurden die folgenden Versuche zwar mit den Versuchsbedingungen unter A 1 a, jedoch nur mit der Zapfendüse DM 4 S.1 und einem Verdichtungsverhältnis von 1:16 durchgeführt.

#### b) Ergebnisse

Auf den Blättern 3 und 4 sind einige Verbrennungsdiagramme dargestellt und zwar gleichzeitig mit den dazugehörigen Vermagerungsschleifen. Versuche dieser Art wurden, wie später noch erwähnt, mit verschiedenen Verdichtungsverhältnissen durchgeführt. Hieraus wurden die Versuche für Verdichtung 1:16 ausgesucht, da hier die Aufnahmen am besten gelungen waren. Die Verhältnisse liegen bei den übrigen Verdichtungsverhältnissen übrigens grundsätzlich ähnlich.

Bei Gasöl DK II (Blatt 3) ist der Druckanstieg ausserordentlich heftig, da sich der gesamte Kraftstoff im Augenblick der Entzündung im Zylinder befindet. Die Leistung und der Verbrauch sind befriedigend, doch muss dies mit hartem Lauf erkauft werden, wie er praktisch nicht durch führbar ist. Die Diagramme zeigen deshalb sehr heftige Schwingungen, sodass häufig Störungen am Quarzgeber auftraten.

Die beste Leistung wird offensichtlich dann erreicht, wenn der Höchstwert des Druckes im Totpunkt oder kurz danach liegt. Obgleich nun auch bei R 300 sich im Totpunkt die gesamte Kraftstoffmenge im Zylinder befindet, ist die Verbrennung sehr weich (Blatt 4). R 300 verbrennt offensichtlich sehr viel langsamer als Gasöl. Wie erwähnt, tritt bei Gasöl sehr schnelle Verbrennung ein wenn diese im Totpunkt einsetzt, und es würde heftiges-Klopfen ergeben, wenn sie, wie bei R 300 notwendig, bereits v.o.T. eingeleitet würde. Die Verbrennung während des Verdichtungshubes bedeutet Verluste, sowohl in thermischer wie mechanischer Hinsicht, sodass bei R 300 nicht die gleichen Leistungen wie bei Gasöl erzielbar sind.

Beim Ringverfahren spielt die träge Verbrennung von R 300 nur beim Anlassen, Leerlauf und Warmlaufen eine Rolle. Man könnte nun folgern, dass für den Dieselbetrieb eine gewisse Zeit für die Gemischbildung not — wendig sei und dass diese bei Kraftstoffen hoher Zündwilligkeit nicht gegeben ist, weil die Verbrennung einsetzt, bevor der gesamte Kraftstoff sich im Zylinder befindet. Die Verbrennung setzt also mit einer kleinen Energiemenge ein und der Druckanstieg verläuft nach Massgabe des Einspritzgesetzes. Dass diese Annahme nicht richtig ist, beweisen Versuche, bei denen durch einen grösseren Pumpenstempel auch bei R 300 eine kurze Einspritzzeit erzielt wurde. Die gesamte Kraftstoffmenge befand sich dann vor der Verbrennung im Zylinder. Trotzdem verlief die Verbrennung langsamer als wenn die gleiche Energiemenge in Form von Gasöl ebenfalls vor Ver — brennungsbeginn eingespritzt wurde.

Der Grund für die trägere Verbrennung kann also nur im Aufbau der Stoffe gesucht werden. Möglicherweise verläuft die Oxydation des R 300 über zahlreiche Zwischenstufen, bei denen vielleicht häufig Kettenabbrüche auftreten oder auch sehr zeitig CO<sub>2</sub> oder H<sub>2</sub>O entstehen, die die Verbrennung hemmen.

#### 3.) Versuche bei verschiedenen Verdichtungsverhätlnissen

Nachden durch die bisher beschriebenen Versuche festgestellt worden war, welche grundsätzlichen Unterschiede im Betrieb eines Dieselmotors mit Gasöl und mit R 300 auftreten, sollte nun untersucht werden, wie sich verschiedene Verdichtungsverhältnisse auf das Verhalten dieser beiden Kraftstoffe auswirken.

#### a) Versuchsbedingungen

Die Versuche wurden unter den in Abschnitt A 1 a angeführten Bedingungen durchgeführt, jedoch nur mit der Zapfendüse DM 4 S 1. Das Verdichtungsverhältnis wurde von 1:8 bis 1:19 verändert, doch war bei Gasölein Betrieb erst ab 1:11 möglich.

#### b) Versuchsergebnisse

Aus den auf den Blättern 5 und 6 dargestellten Versuchen ist zu ersehen, dass die besten Leistungen mit Gasöl (Blatt 5) erzielt werden. Die höchsten Leistungen allerdings bei Verdichtungsverhältnissen von 1:11 bezw. 1:12, die praktisch nicht mehr in Frage kommen, da der Motor hiermit nicht-mehr angelassen werden kann.

Die erzielbare Höchstleistung nimmt infolge steigender Reibungsverluste mit zunehmendem Verdichtungsverhältnis ab (Blatt 5 und 6). Gasöl ergibt bei 1:11 unsichere Zündungen, sodass ausnahmsweise mit der höheren Verdichtung 1:12 höhere Leistungen erzielt werden. Bei beiden Kraftstoffen liegt der günstigste Wert etwa bei 3000 kcal/PSh. Dieser Wert wird nur von R 300 (Blatt 6) bei 1:8 nicht erreicht.

Auf den Blättern 5 und 6 sind auch Zündverzüge bei verschiedenen-Verdichtungsgraden dargestellt. Da die Einstellung des für die Leistung günstigsten Voreinspritzwinkels gefühlsmässig erfolgte, sind die Streuungen ziemlich gross. Es wurden deshalb die Kurven in ihrer wahrscheinlichsten Lage eingetragen.

Es zeigt sich zunächst, dass bei 2 300 eine eindeutige Abhängigkeit des Zündverzuges vom Verdichtungsverhältnis nicht vorhanden ist. Im Gegensatz hierzu ist bei Gasöl eine eindeutige Verminderung des Zündverzuges mit steigendem Verdichtungsverhältnis zu beobachten. Der Grund liegt darin, dass bei Gasöl die Zündung im Totpunkt erfolgt und sich deshalb die vom Verdichtungsverhältnis abhängige Verdichtungsendtemperatur stark auswirkt. Bei R 300 muss der langsamen Verbrennung wegen die Zündung bereits im Verdichtungshub erfolgen. Der Zündverzug liegt also in einem Gebiet, in dem sich die Temperaturen der Ladung bei verschiedem Verdichtungsverhältnis nicht so sehr unterscheiden wie nahe dem Totpunkt. Ein Vergleich der aufgenommenen Diagramme zeigte, dass beim Gasöl der Druckanstieg am besten im Totpunkt erfolgt, während bei R 300 offensichtlich der Verbrennung umso zeitiger eingeleitet werden muss, je höher das Verdichtungsverhältnis ist.

## B. Versuche nach dem Ringverfahren

Nachdem die Verhältnisse bei reinem Dieselbetrieb geklärt waren, wurden die bei verschiedenen Verdichtungsverhältnissen im Ringverfahren erzielbaren Leistungen und Verbräuche ermittelt.

## 1.) Versuche mit verschiedenen R-Stoffdüsen

Während beim Dieselbetrieb für die Auswahl der Düse massgebend war, dass auch grössere Kraftstoffmengen in kurzer Zeit in den Zylinder gelangten, so war beim R-Betrieb nötig, diejenige Düse zu ermitteln, die mit möglichst kleinen R-Stoffmengen und geringen Zündverzügen arbeitet.

### a) Versuchsbedingungen

Die Versuchsbedingungen waren die gleichen wie unter A 1 a angegeben. Es wurde das für das Ringverfahren übliche Verdichtungsverhältnis von 1:8 gewählt. Die R-Stoffmenge betrug 20 und 35 mm<sup>3</sup> R 300 je Arbeitsspiel.

Als Kraftstoff wurde B 4 benutzt. Die Leistung wurde durch Änderung der Kraftstoffmenge erzielt. Bei den Versuchen ergab sich, dass bei dem kleinen Zylinder ohne Luftvorwärmung gefahren werden konnte im Gegensatz zu den bisherigen Versuchen an Flugmotorenzylindern, wo stets eine Lufttemperatur von 80° eingestellt wurde.

#### b) Ergebnisse

Der Vergleich der Düsen ergab folgendes:

Bei der Zapfendüse ist die Eindringtiefe offensichtlich unge nügend, wenn die Menge 20 mm<sup>3</sup> je Spiel betrug (Blatt 7). Leistung und Verbrauch werden wesentlich günstiger, wenn die Menge auf 35 mm<sup>3</sup> erhöht wird.

Die grössere Menge des R-Stoffes ist jedoch nicht die Ursache, denn die
Lochdüse erreicht auch mit der kleineren Menge von 20 mm<sup>3</sup> die günstigsten
Werte dieser Versuchsreihe. Bei 35 mm<sup>3</sup> unterschieden sich die beiden Düsenarten nicht. Es bestä tigt sich also, dass beim Ringverfahren die hart
arbeitende Lochdüse die bessere ist, zum mindesten dann, wenn kleine R-Stoffmengen angewandt werden sollen. Für das Anlassen ist jedoch, wie bei den
Dieselversuchen gezeigt, die weichere Düse vorteilhafter.

Die schlechte Verbrennung bei der Zapfendüse mit kleiner R-Stoffmenge wirkt sich bei Vollast in einer Steigerung der Abgastemperatur aus,
die entsprechend der stark abfallenden Leistung bei Überlast ebenfalls kleiner wird. Der Zündverzug ist bei der Lochdüse allerdings beträchtlich grös ser, sodass die Zapfendüse in dieser Beziehung günstiger ist, sofern man auf
Anwendung kleiner mengen verzichtet. Trotzdem wurde bei den weiteren Ver suchen die Lochdüse verwendet. Gleichzeitig aufgenommene Diagramme zeigen,
dass bei 20 mm<sup>3</sup> bei Verwendung der Zapfendüse die Verbrennung nur bei geringenBenzinmengen sicher erfolgt. Schon bei einem Nutzdruck von 5 kg/cm<sup>2</sup> an treten
in steigendem Masse Aussetzer auf, die bei 35 mm<sup>3</sup> je Spiel völlig verschwinden.

## 2.) Vergleich über das Klopfverhalten des Otto- und Ring-Verfahrens

Bei vergleichenden Versuchen über das Klopfverhalten muss darauf geachtet werden, dass sowohl beim Otto-, wie auch beim Ringverfahren die jeweils günstigsten Bedingungen gewählt werden. Bei den ersten tastenden Versuchen (Bericht 394) war das Otto-Verfahren bei 32° Vorzündung verglichen worden mit dem Ringverfahren unter solchen Bedingungen, dass der Druckanstieg im Totpunkt erfolgte. Dieses Verfahren ist anfechtbar, da die Klopfgrenze stark vom Zeitpunkt abhängt, in dem die Verbrennung eingeleitet wird. Die vorliegenden Versuche wurden deshalb in anderer Weise durchgeführt.

#### a) Versuchsbedingungen

Es wurde die Aufgabe gestellt, mit dem wenig klopffesten Kraftstoff B 4 jeweils den Höchstwert an Leistung bei verschiedenen Mischungsverhältnissen herauszuholen. Die Zündung bezw. der Voreinspritzwinkel wurde
immer so eingestellt, dass entweder die Höchstleistung oder die Klopfgrenze
erreicht wurde. Dasjenige Verfahren, das die höhere Leistung zuliess, musste
das bessere sein. Die Versuche wurden bei verschiedenen Verdichtungsverhältnissen durchgeführt, wobei sowohl R 300 als auch Gasöl als R-Stoff verwendet
wurde. Als R-Stoff-Düse wurde die Lochdüse DLOS 103, als Zündkerze # 240 T 1
bei einem Verdichtungsverhältnis von 1:8 verwendet, während bei Verdichtungen
1:10 und 1:12 das Muster # 300 G und bei noch höheren Verdichtungsverhältnissen # 380 G benutzt wurde. Die R-Stoffmenge betrug unverändert 20 mm je
Spiel. Die übrigen Bedingungen sind im Abschnitt B 1 a bezw. A 1 a angeführt.

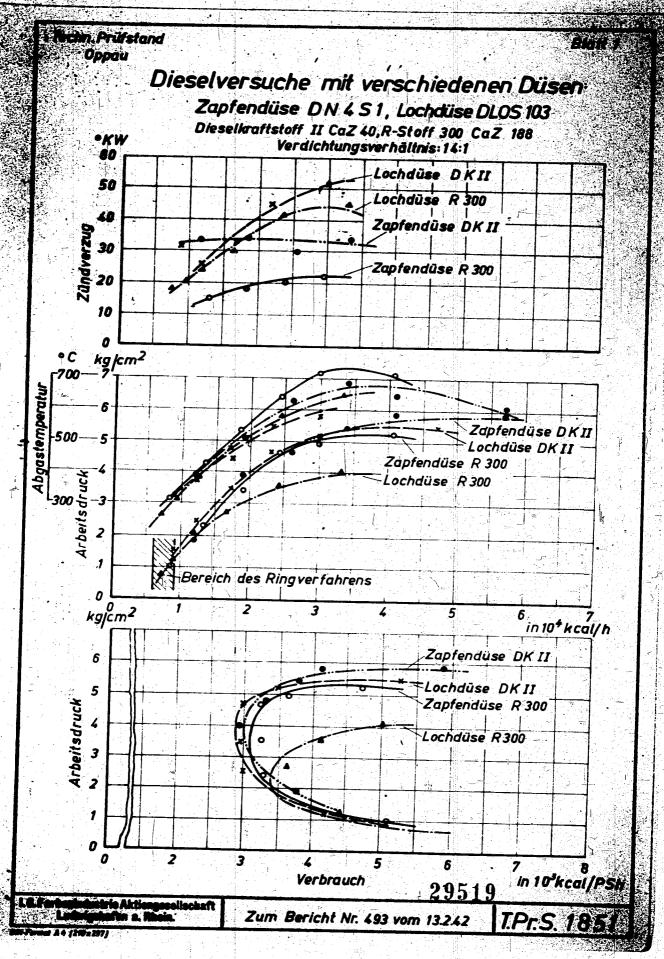
b) Ergebnisse mit R 300 bei verschiedenen Verdichtungsverhältnissen.

Bei einem Verdichtungsverhältnis von 1:8 (Blatt 8 unten) trat weder beim Otto- noch beim Ringverfahren Klopfen bei Verwendung von B 4 ein. Es sind also erst bei höheren Verdichtungen Vergleiche über das Klopfver - halten möglich.

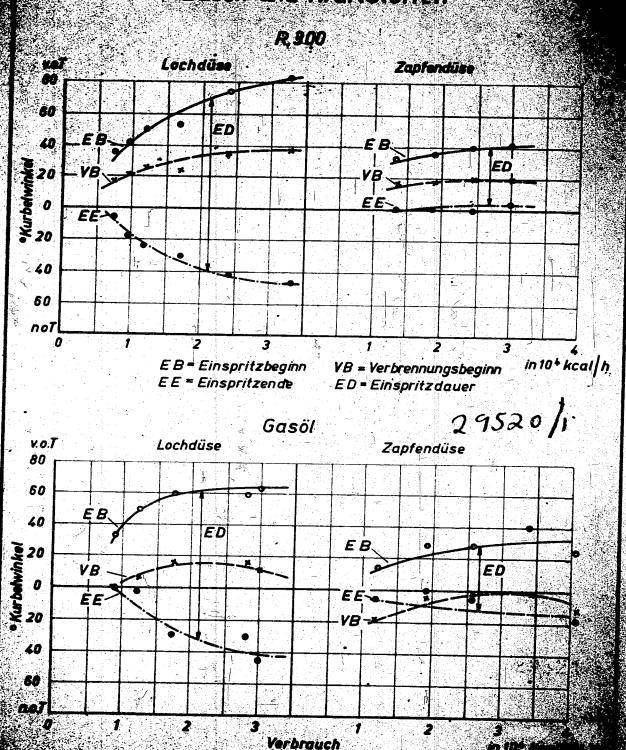
Bei dem Verdichtungsverhältnis 1:10 (Blatt 8/oben) ist das Ringverfahren eindeutig überlegen. Dies tritt bei 1:12 (Blatt 9 unten) und 1:14 (Blatt 9 oben) noch deutlicher hervor. Bei 1:16 und 1:18 (Blatt 10 oben) versagt der Otto-Betrieb vollkommen, da zu starkes Klopfen auftritt. Es muss beachtet werden, dass bei höheren Verdichtungsgraden die Kerzen - zündung nicht mehr einwandfrei arbeitet, weil die notwendigen Durchbruchs- spannungen von den üblichen Zündgeräten nicht geliefert werden und die Isolatoren besonders an den Zündkerzen nicht mehr ausreichen. Bei den Ver - suchen konnten hörbare Aussetzer nicht festgestellt werden, doch zeigen die Diagramme, dass die Zündung mit zunehmenden Verdichtungsverhältnis unsicher wird. Die gleichzeitig aufgenommenen Diagramme zeigten übrigens stets eine ruhigere Verbrennung beim Ringverfahren.

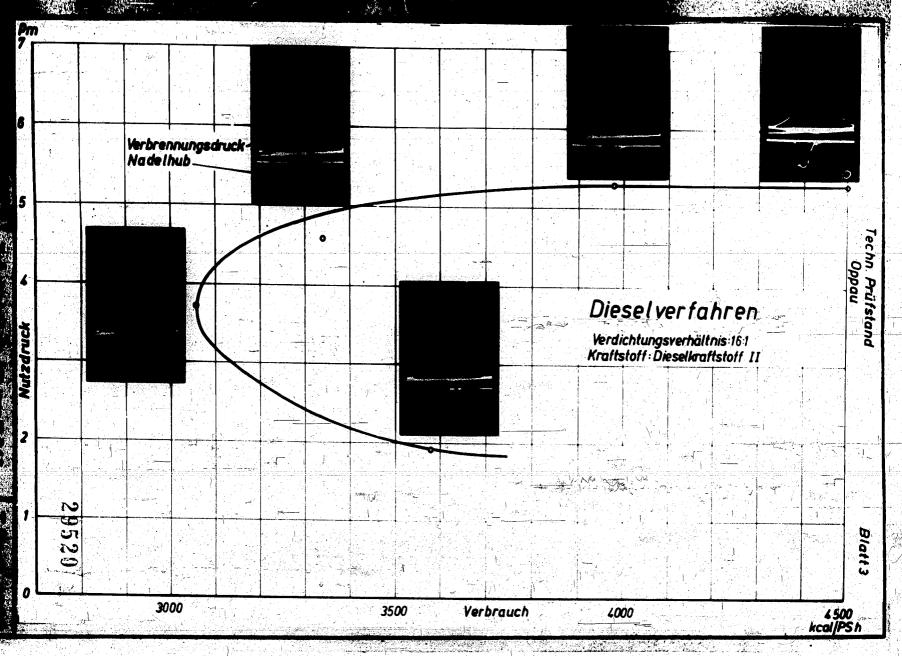
Auf Blatt 10 sind nochmals alle Versuche, jedoch ohne die mit Verdichtungsverhältnis 1:16 und 1:18 ausgeführten, zusammengefasst.

Zur Ergänzung ist auf Blatt 11 ein Versuch im DB 6001 dargestellt, bei dem das Klopfverhalten von B 4 mit Hilfe der zulässigen Überladung festgestellt worden. Hierbei wurde die für den DB-Motor übliche Vorzündung von 38° beim Ringverfahren die in fast allen Fällen zweckmässigste Vorein - spritzung von 70° angewandt. Vergleicht man die beiden Arbeitsverfahren unter diesen aus der Praxis stammenden Voraussetzungen, so ergibt sich auch beim Verdichtungsverhältnis 1:8 eine Überlegenheit des Ringverfahrens. Die Mehrleistung liegt hier im Gebiet der Startleistunge, sie beträgt 30% gegenüber dem Otto-Verfahren. Bei den im Bericht Nr. 394 beschriebenen Versuchen war unter Verwendung eines luftgekühlten Flugmotorenzylinders (BMW 132) die Mehrleistung hauptsächlich bei Reiseleistung aufgetreten. Allerdings war dort mit veränderlicher Voreinspritzung gearbeitet worden.

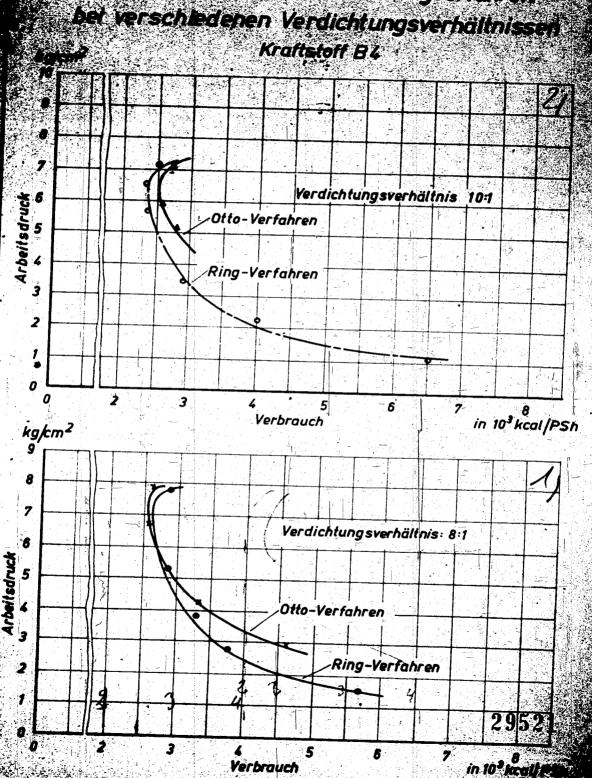

c) Ergebnisse der Vergleichsversuche von R 300 und Gasöl als R-Stoff

Es war nun noch wichtig zu untersuchen, ob Gasöl gegenüber R 300 einen Unterschied im Klopfverhalten des damit gezündeten Otto-Gemisches besitzt.


Wie im Abschnitt 13 gezeigt wurde, zündet Gasöl im Dieselbetrieb noch bei einer Verdichtung von 1:12. Wird die Verdichtungsendtemperatur aber durch den im Saughub eingespritzten Otto-Kraftstoff gesenkt, so ist eine Zündung nicht mehr möglich. Die Versuche wurden deshalb mit einer Ver - dichtung von 1:14 durchgeführt.

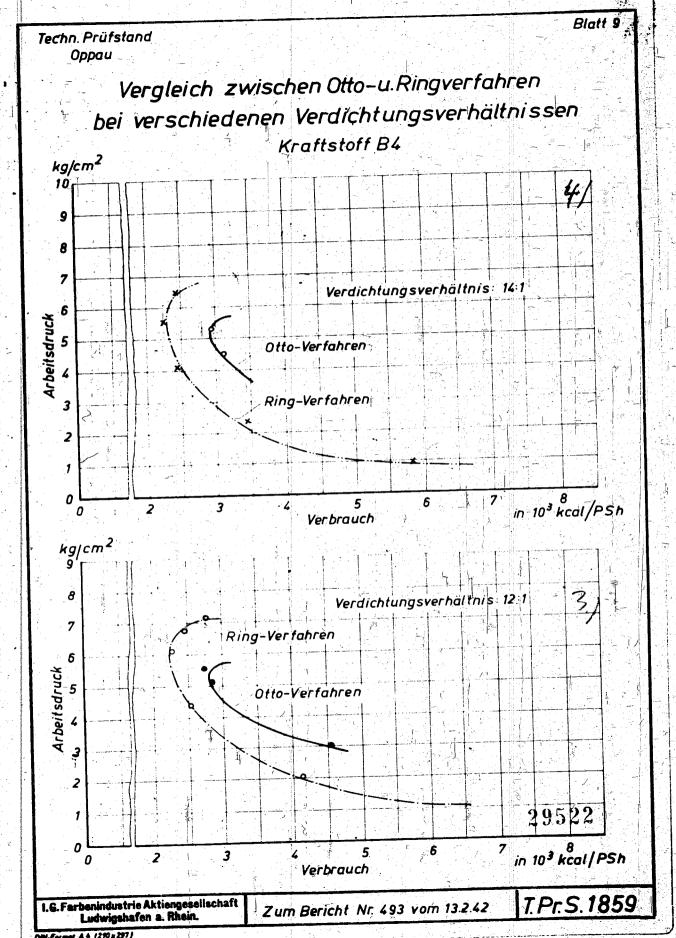

Bei den Versuchen wurde die Lochdüse angewandt, sodass, wie schon im Abschnitt A a) gezeigt, mit R 300 (Blatt 12 unten) geringere Leistungen im Dieselbetrieb erreicht wurden wie mit Gasöl (Blatt 12 oben). Von verschiedenen Punkten der Dieselkurve aus, die 13, 20, 35 und 60 mm<sup>3</sup>/Spiel entsprachen, wurden durch Zusatz von B 4-Kurven im Ringverfahren gefahren. Bei Annäherung an die Klopfgrenze wurde das Klopfen durch Späteinspritzung des R-Stoffes vermieden. Die Kurven wurden ungefähr bis zu dem Punkt gefahren, in dem die Einspritzung nahe dem Totpunkt erfolgen musste.

Es zeigt sich, dass mit beiden R-Stoffen praktisch dieselbe Leistung und die gleichen Verbräuche erzielt, werden. Bei Gasöl mit 60 mm /Spiel durchgeführte Versuche zeigen deutlich, dass die des Klopfens wegen erreichbare Höchstleistung mit zunehmender R-Stoffmenge absinkt. Es ist also mög lich, wie angedeutet, eine Grenzkurve zu ziehen, die von der höchsten im Ringverfahren mit der günstigsten R-Stoffmenge erzielbaren Leistung ausgeht und in die Kurve des reinen Dieselbetriebes einmündet. Die Versuche wurden auch mit klopffesterem Kraftstoff durchgeführt, wobei selbstverständlich höhere Leistungen erzielt werden konnten; so zeigt Bild 13 ein Beispiel, bei dem der Nutzdruck des Dieselmotors von etwa 5 auf 9 kg/cm² gesteigert wurde. Bei einem sorgfältig durchgebildeten Dieselmotor liegen die Nutzdrucke etwabei 6 bis 7 at, trotzdem können durch Einspritzung von Otto-Kraftstoff Mehrleistungen von 20% erwartet werden. Ob sie anwendbar sind hängt vom Triebwerk, insbesondere vom Kolben ab und vor allem davon, dass ein Kraftstoff von so hoher Klopffestigkeit zur Verfügung steht, dass er auch bei dem Verdichtungsverhältnis eines Dieselmotors nicht klopft.



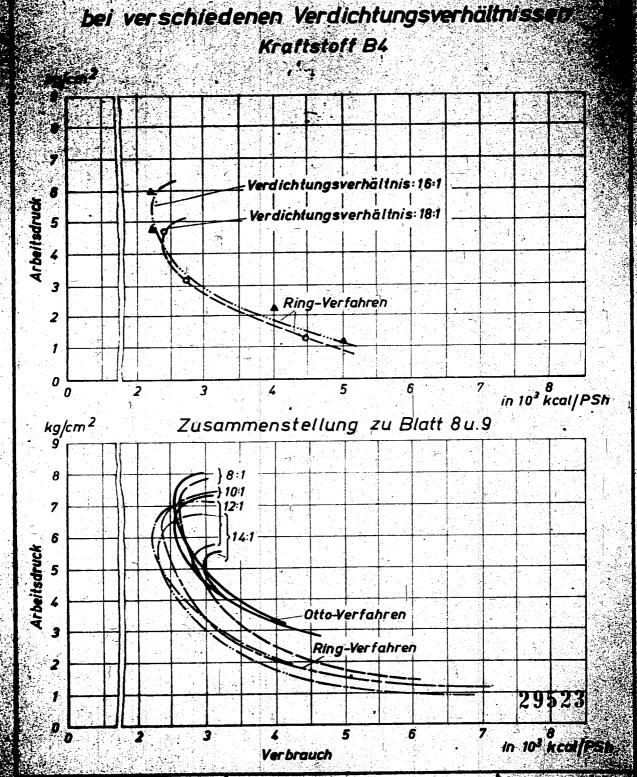

# Einspritzverhältnisse bei verschiedenen Düsen und Kraftstöffen





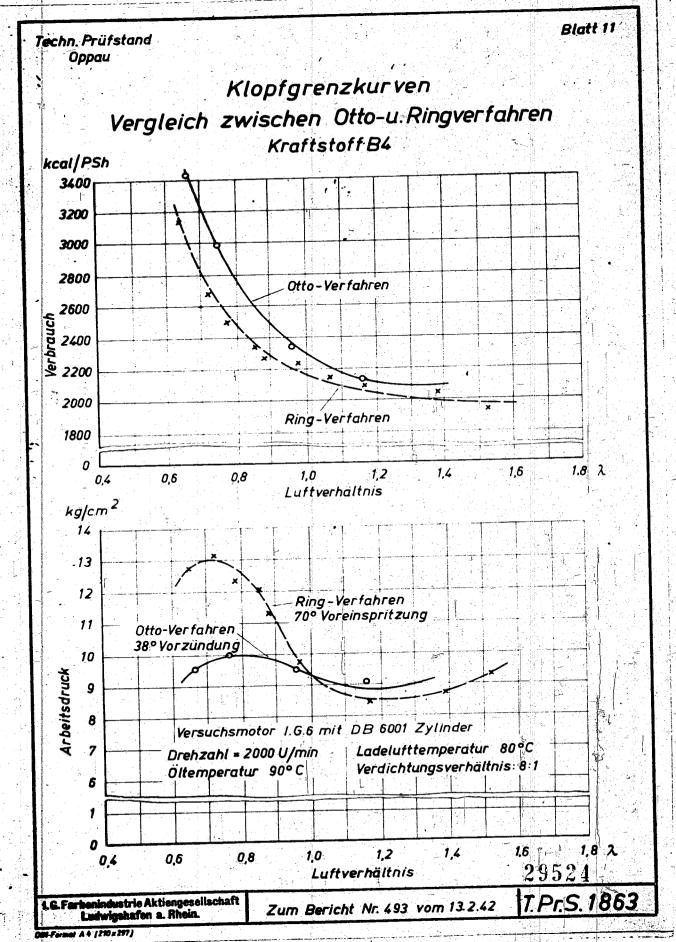

# Vergleich zwischen Otto-u. Ringverfahren




Zum:Bericht Nr. 493 vom 13.2.42

TPES



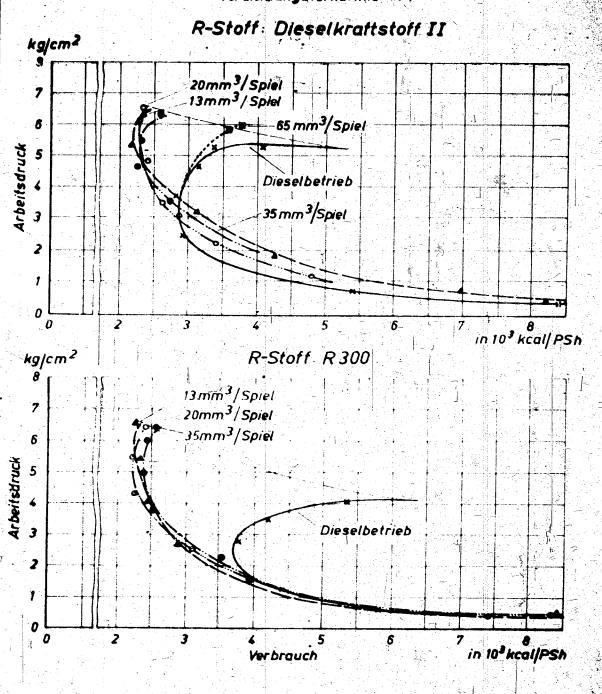



# Vergleich zwischen Otto-u Ringverfahren



Zum Bericht Nr. 493 vom 13.2.42

TP-S TIE

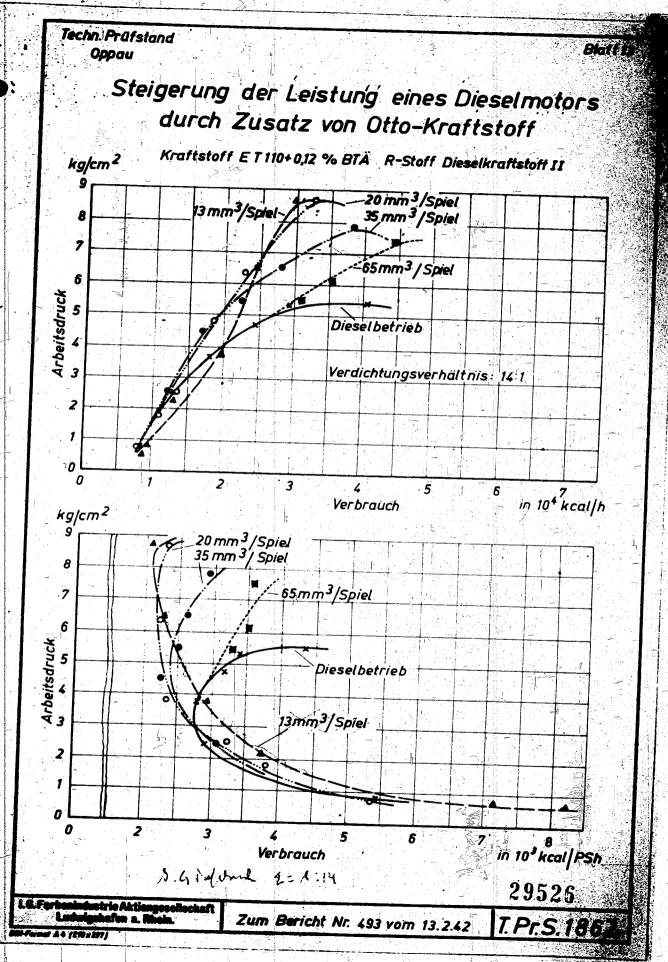





## Statt 12

# Ringverfahren mit verschiedenen R-Stoffmengen Kraftstoff B4 R-Stoff Düse Bosch DLOS 103

Verdichtungaverhältnis: 14:1




I.G. Parbenindustrie Aktiengesellechaft

Zum Bericht Nr. 493 vom 13. 2.42

T.Pr.S. 1861

29525

