STUDIES ON THE MANUFACTURE

OF AVIATION GASOLINE BY HIGH PRESSURE

HYDROCRACKING OF PINE ROOT OIL

рÀ

CHEM. ENG. LIEUT. S. INABA

Research Period: Dec. 1944 to Aug. 1945

Prepared for and Reviewed with Author by the U.S. Naval Technical Mission to Japan

December 1945

X	-38	(N)-4

RESTRICTED

ENCLOSURE (B)7

LIST OF TABLES AND ILLUSTRATIONS

		·		
Table	I(B)7	Results of Autoclave Tests at 100 kg/cm2	Page	105
Table	II(B)7	Results of Autoclave Tests at 200 kg/om ²	Page	106
		Results of Pilot Plant Tests		
 Figure	1(B)7-	Yield and Material Balance (SV of 0.5)	Paga	108
		Yield and Material Balance (SV of 1.0)		
	1		TABO	107

SUMMARY

This project was established to determine the optimum operating conditions for production of aviation gasoline by high pressure hydrocracking of pine root oil. Pilot plant tests were essentially completed and the process was ready for large scale development to increase the supply of high octane aviation gasoline. These experiments were made on a pine root oil out of 185-300°C in a small continuous pilot plant, using MoO3 + NiO catalyst, under reaction conditions of 0.15-1.0 space velocity, hydrogen pressure of 200 kg/cm² and temperature of 400-450°C. An aviation gasoline, with a 95 octane number (with 0.15% of Tetra Ethyl Lead), was obtained in yield of about 50% when SV was 0.5, and 28-30% when SV was 1.0.

I. INTRODUCTION

A. History of Project

The investigation of pine root oil as a source of aviation gasoline started at the end of 1944 as a result of the urgent demands of the war. Since satisfactory aviation fuel could not be obtained directly from the product of dry distillation of pine roots, refining methods of high presure hydrocracking and catalytic cracking were investigated. For the hydrocracking studies described in this report, the oil fraction boiling from 185-300°C, obtained by dry distillation of pine roots, was used as raw material. (The fraction, boiling below 185°C was treated by simple catalytic reforming.) Since very few large scale hydrocracking plants were installed in Japan, these experiments were carried forward with great speed. Pine root oil has many special characteristics, for example, high content of acidic matter and resins, and it was most important to determine the operating conditions for a smooth working process, especially to find a strong and active catalyst with long life. It was expected that a high octane aviation gasoline composed of naphthenic or paraffinic hydrocarbons, would be obtained by the hydrocracking of pine root oil.

B. Research Personnel Working on Project

Chem. Eng. Lt. Comdr. R. YUMEN Chem. Eng. Lt. Comdr. T. IIJIMA Chem. Eng. Lieut. K. SONE Chem. Eng. Lieut. S. INABA

II. DETAILED DESCRIPTION

A. Description of Test Apparatus

Studies were first made in small rotating autoclave to determine the proper conditions for hydrocracking of pine root oil, and finally continuous tests were made in a small scale pilot plant with a 3-10 liters reaction chamber. This plant is described by Chem. Eng. Lieut. K. SONE in his "Study on Hydrocracking of High Temperature Coal Tar".

B. Properties of Raw Material

Pine root oil boiling at 185-300°C, with a brownish-black color, was used as raw material. Properties of this stock are given below:

·B	if P	-(og.)	•				••		***	•••						-88		-4-4-		4.4.8	16	2	
0%	• •	• •	• •	• •	• •	• •	• •	••	• • •	• • •		• •	• • •	••	• • •	• •	• • •	••	• • •	•	• • •	•••	192	2	
0%	•	• •	••	• • •	•	• • •	• •	•••	•				• • •		• • •						• • •		20	}	
0%			• •	• •				• •	• •		٠.	• •		• •	• • •			• •	• • •		• • •	• • •	. 21	5	
0%	•		• •	• •	• • •	• • •	• •	• •	• • •	• • •	• •	• •	• • •	• •	• • •	•	• • •	• •	• • •	• •	• • •	• • •	231		
0% ~	• •	• •	• •	• •	• •	• •	• •	• •	•	• • •	• •	• •	• • •	• •	• • •	• •	• • •	• •	• • •	• •	• • •	•••	28	₹ }	
0% 0%	• •	. • •																				• • •	29	<u> </u>	
0%	•		••	• •	• • •	• • •			• •	• • •	•.•	• •					• • •	• •					• 33	L	
in	11		• •	• •			• •				• •	•,•				•••				• • •	ion		• 33	ર	

C. Reaction Conditions

First, it was established by many tests in small autoclaves (five liters capacity); that the best conditions for the reaction were a temperature of 420-450°C and a hydrogen pressure of 200 kg/cm², using either Nickel and Molybdenum Oxide (NiO + MoO2) or Molybdenum Sulphide (MoS3) catalyst, refer to Tables I(B)? and II(B)?. Although the latter catalyst was better from the standpoint of octane number, the former had a longer period of activity, since the sulphur in MoS3 catalyst escaped within a few days, resulting in loss of activity. Under the condition of 100 kg/cm² of hydrogen pressure, the products were not satisfactory for aviation gasoline, having a comparatively high content of acidic substances (Table I(B)?). By increasing the pressure to 200 kg/cm², the properties of products changed rapidly and very superior aviation gasoline was obtained, with 95 octane number and almost no content of acidic substance. The yield of aviation gasoline was about 70% of total cracked product, and 50% of the raw material in the autoclave tests. In pilot plant test, the yield was about 50% of the product, and about 40% of the raw material for a space velocity of 0.5. When SV was increased to 1.0, the yield dropped to 3% of the product, and 28% of the raw material. (Refer to Tables I(B)?, II(B)?, and III(B)?.)

The procedure for the pilot plant test was as follows. First, the hydrogen pressure was increased gradually by the compresser, until the pressure of the apparatus, --Reaction Chamber, Preheater, High Pressure Separater, Pipes, etc.--reached 200 kg/cm². The reaction chamber temperature was brought to 300°C by electric heating, and oil was gradually charged. After about six hours, 400°C temperature used in the first run was reached. The temperature was raised as slowly as possible to 470°C, which was the maximum temperature for this type apparatus, in order to maintain catalyst activity for one-two months at least. The experimental results (Table III(B)7) were regarded as a satisfactory basis for large scale plant operations at the Second or Third Naval Fuel Depot.

- D. Yield and material balance for pilot plant test are given in Figure 1(B)7 and Figure 2(B)7.
- E. It is understood that a large scale plant performance test in July 1945 at the Third Naval Fuel Depot showed almost the same results as obtained in these pilot plant experiments. It was said that in this plant test aviation gasoline with 91 octane number was obtained in yield of about 50% of pine root oil charged. This test only lasted for one-two weeks. Longer periods of operation were planned, however, to assist in meeting the great demand for aviation fuel in Japan.

III. <u>CONCLUSIONS</u>

High pressure hydrocracking is one of the best methods for obtaining high octane aviation gasoline from pine root oil. However, since very few large hydrocracking plants were installed in Japan, simpler catalytic reforming methods were also to be adopted, though producing less satisfactory products. None of these methods actually resulted in large scale production of aviation gasoline from pine root oil, however. It has been definitely shown that an aviation gasoline of 91-95 octane number (with 0.15% of lead) can be produced in yield of about 50% from pine root oil by means of high pressure hydrocracking. Optimum reaction conditions are hydrogen pressure 200 kg/cm², temperature 400 to 450°C, space velocity 0.5-1.0 and using Nickel and Molybdenum (NiO + MoO₃) cat alyst. In the case of Molybdenum Sulphide (MoS₃), further investigation is necessary with regard to prolonging catalyst, life.

Table I(B)7
RESULTS OF AUTOCLAVE TESTS AT 100 kg/cm²

			Experimen	t No.
·			1	2
Catalyst			Nio ₄ + Moo ₃	MoS ₃
Reaction Conditions	Hydroge Tempera Time (h	n Pressure (kg/cm ²) ture (°C) r)	100 350 3	100 350 5
Products	Yield o Yield o Aoidic Specifi	d Hydrogen (wt % of Raw Oil) f Cracked Oil (wt% f Raw Oil) f Water (wt % of Raw Oil) Matter (vol % in Cracked Oil) c Gravity of Cracked Oil (d;) of Cracked Oil (OC)	2.3 81.9 6.0 7.0 0.846 88 153 177 270 280 283	2.3 83.4 7.1 6.0 0.832 46 94 154 224 274 315
	Yield to	150°C Fraction (vol %) 160°C Fraction (vol %) 170°C Fraction (vol %) 200°C Fraction (vol %)	3 21 36 72	42 53 65 86
Aviation Casoline Cut	Yield f	7.0	42.0	
Octane No. of Aviation Casoline	Clear With O.	15% of Lead	76.0 93.6	75.0 94.0

Table II(B)7 RESULTS-OF-AUTOCIAVE-TESTS-AT-200-kg/om²

te francis ja bilgada Ligada jarah bari	i karajan ili ala Selenik indirektoren para para en eta elemaniarian eta bilande da. 1916 eta bila salaria bil Bilandariarian eta bilandea arrabarriarian eta bilandea eta bilandea arrabarriaria eta bilandea bilandea eta b	Experiment No.				
ه کارگیا و کیا کیا در واکد آرایی اور وزایک و در این این این	kalan kalan di Mangalah perimbah di Mangalah di Kabupatèn di Mangalah di Mangalah di Mangalah di Mangalah di M Milingga dan mengangga di Kabupatèn di Mangalah di Mangalah di Mangalah di Mangalah di Mangalah di Mangalah di		2			
Catalyst		NiO + MOO3	MoS ₃			
Reaction Conditions	Hydrogen Pressure (kg/cm ²) Temperature (°C) Time (hr)	200 450 3	200 450 3			
Products	Absorbed Hydrogen (wt % of Raw 0il) Yield of Cracked 0il (wt % of Raw 0il) Water (wt % of Raw 0il) Acidic Matter (vol % in Cracked 0il) Specific Gravity of Cracked 0il (d2) I.B.P. of Cracked 0il (°C) 10% 50% 90% 97% Final	4.14 76 6.8 0.4 0.812 48 86 130 220 264 293	4.1 74 8.34 0.6 0.7646 20 63.5 120 185 210 230			
	Yield 150°C Fraction (vol %) to 160°C Fraction (vol %) 170°C Fraction (vol %) 200°C Fraction (vol %)	64 75 69 36	73 85 79 94			
Aviation Gasoline Cut	Yield from Cracked Oil (vol %) Acidic Matter in Aviation Gasoline (vol %) Specific Gravity (d 15) I.B.P. (C) 10% 50% 90% 97% Final	70 0 0.804 62 94 117 147 160 170.4	87 0 0.7616 23.4 62.5 104.5 147.5 165.5 168.0			
Composi- tion of Aviation Gasoline	Unsaturate Hydrocarbon (vol %) Aromatic (vol %) Naphthenic Paraffinic Aniline Point (°C)	3.0 31.3 51.4 24.3 49.5	0 24.0 30.4 35.6 58.0			
Octane No. of Aviation Gasoline	Clear With 0.15% of Lead	80.6 95.7	78.0 96.7			

Table III(B)7 RESULTS OF PILOT PLANT TESTS*

_									
		5	1110 + 1600 ₃	200 460 1.0 3.0 6.2.8	2,6 8,0 1,1 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6	0.2 0.6 0.6 17.7 74.9 5.8	0,7488 35.0 35.0 75.0 115 115 173.5 0	52.3	95.4
	•	7 .	N10 + E003	200 450 0.7 2.0 1.6	3.9 86.7 2.9 0.0 91.5 157 221 211 318	1.000 2.000	0.717.7 20.0 34.0 70.5 110 157 170 207 0	111.05 5.05.9 5.25.9	78.1
	Exporteont No.	3	110 + KoC3	200 2,50 11.55 6.8	2.0 95.1 7.0 0.7 2.0 0.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.3 0.5 0.6 0.6 0.6 1.9 1.9	0.7,63 26.0 39.0 11.7 150 173 273 273 273	2000 2000 2000 2000 2000 2000 2000 200	52.0
		2	N10 + 16003	200 430 0.5 1.5 6	4.3 85.3 71.0 71.0 7.0 90.5 77 77 11.2 11.2 11.2 11.2 11.2 11.2 11.	0000 4 5 40 0000 4 5 6 6 0	0.7567 71.24 70.26 60.00 100 158 169 185	1.5 13.8 59.0 25.7 55.6	97.6
		1	B10 + 1609	200 7.20 2.0 6	6.0 33.5 33.5 31.0 31.0 23.5 23.5 23.5 23.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.777 655.0 125.5	0.9 20.6 4.0.6 4.2.9 4.9.1	75.5
		200	7.	Hydrogen Pressure (kg/cm²) Terperature (c) Terperature (c) Grape with solution of the control of	Absorbed Hydrogen (wt \$ of Charged 011) Itel of Gracked 011 (vt) \$ of Charged 011) Held of Gracked 011 (vt) \$ of Charged 011) Held of Gracked 011 (vt) \$ of Charged 011 (vt)	CO2 (vol \$) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Specific Gravity (d½) Itald from Gracked Oil (wt X) IOS. Soft 90X Final Results Aviation Gasoline (vol X)	Unsaturate Hydrocarbon (vol \$) Accountic Rophthemic Parafilinic Aniline Point (%)	Clear With 0.15% of Lead
٠.,			Catalyst	Reaction	Products	Residue Gas Composi- tion	Aviation Gasoline Gut	Composi- tion of Aviation Gasoline	Octane No. of Aviation Gasoline

*Recycle oil used as raw material

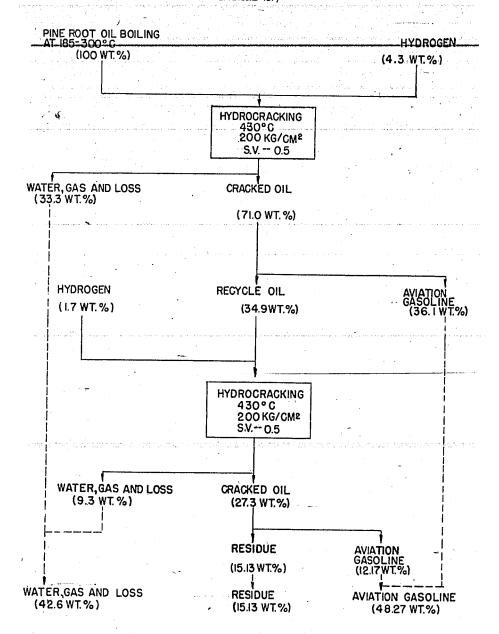


Figure 1(B)7
YIELD AND MATERIAL BALANCE
(S.V. of 0.5)

YIELD AND MATERIAL BALANCE (S.V. OF 1.0)

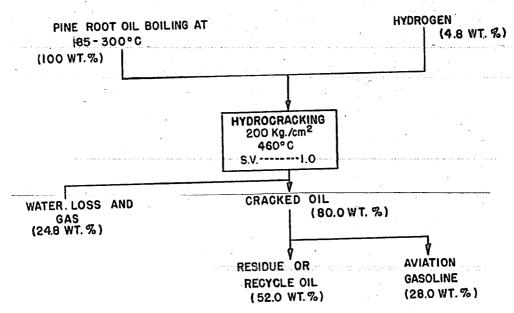


Figure 2(B) 7
YIELD AND MATERIAL BALANCE
(S.V. of 1.0)