EFFECT OF FERRIC OXIDE

ከተ

CHEM. NAV. ENG. T. OCAWA CHEM. NAV. ASSIST. ENG. G. TAKAILASHI

Research Period: March, 1928 - Oct., 1929

Prepared for and Reviewed with Authors by U. S. Haval Technical Mission to Japan.

December 1245

X-38(N)-7

LTST OF TABLES

Table I(B)5	Reaction Conditions and Yields of Products Page 70
Table II(B)5	Gas Analyses (Vol %)
	Yields of Crude Oil and Water Page 71
Table IV(B)5	Distillation of Total 011 (gm) Page 71
Table V(B)5.	Yield of Residue and Its Properties Page 72

SUMMARY

Autoclave experiments were made to determine the effect of ferric oxide as a catalyst in the high-pressure hydrogenation of coal. The results indicated that the yield of oil was increased, and the solid residue decreased when ferric oxide was used.

I. DETAILED DESCRIPTION

The test apparatus and procedure were the same as described in Enclosure (B)3.

Fushun coal, sized below 20 mesh, and heavy oil made by topping 30% of the light oil from the low-temperature tar from Shinbara coal, were used as charge stocks.

Ferric oxide, commercial grade, was used as a catalyst, and hydrogen of 99% purity was employed.

These materials were mixed in the following proportions.

Coal 100grams
Tar 50grams
Ferric oxide 5grams
Hydrogen 19grams (100atm at 0°C).

Experimental results are summarized in the tables below.

Some water should be produced by the reduction of Fe203, but the difference is not apparent from this table. It is not understood why this is so.

Although some difference of yield was caused by the reaction temperature, in general, when Fe203 was used, the yield of oil product was greater.

II. CONCLUSIONS

When Fe203 was used in the high-pressure hydrogenation of coal, the consumption of hydrogen, the volume of saturated hydrocarbons in the produced gas and the yield of oil were greater than when Fe203 was not present.

When no Fe203 was used, solid substances often stuck to the inside of the autoclare and a large percentage of organic residue was contained in the solid residue.

It was concluded that Fe203 had a favorable effect on the hydrogenation of coal.

Table I(B)5 REACTION CONDITIONS AND YIELDS OF PRODUCTS

	元 00年65年	and Maria Maria	105-10145 (IS	manda da ka	ering in Plan	rosvara.	Richerson	ation accords to
Run Number 💮	-:28:-	27	61 -	⊴-:65√-	62	₹66	+ 64	13-
React.conditions:								
Catelyst	Fe203	None	Fe ₂ 0 ₃	Fe ₂ 0 ₃	None	None	Fe ₂ 0.	Fe ₂ 0:
React.Temp.(°C)	430	-450	1.00	450	-455		470	- 480
Initial Press. (atm)	99	• 98	101~"	100	100	100	100	100
Pressure Drop.	17	12	19	20	10	12	21.	.14
Preheating Time (hr)	1-0	1-30	1-45	1-40	1-40	1-40	1-45	1-50
Reaction Time (hr)	2-0	2-10	1-0	3-1-0	1-0	1-07,	1-0	1-0
Yield of Products	(gm):		5 DE CE	•				
Ges	35.2	22.6	35.5	35.2	30.6	29.4	38.1	39.4
Water equation emily:	15.0	- 10.0°	14.0	14.8	15.4	10.3	16.3	13.0
011	76.0	71.6	88.9	80.5	67.8	67.3	68.9	62.0
Residue	22.4	40.5	29.8	30.0	51.8	47.3	37.0	36.7
Total	148.6	144.9	168.0	160.5	165.6	154.6	160.3	151.1.

Table II(B)5 GAS ANALYSES (VOL %)

Run Number	28	27	61	65	62	66	- 64	13
Co ₂	0.4.	0.4	0.5	0.3	. 0.5	0.2	່ ປີ.2	0.8
Cn H2n			0.1		0.1		0.1	0.4
02	1.6.	1.6	0.3	0.2	0.5	0.3	0.2	1.0
CO .	0.8	0.4	0.6	. 0.5	0.6	0.3	0.6	0.8
H2	82.5	89.7	85.5	84.4	88.5	89.2	82.4	84.7
C ₀ H ₂₀₊₂	9.8	2.9	12.5	11.2	7.9	3.5	14.9	7.7
N2	4.9	5.0	- 0.25	3.3	1.9	4.6	O.8	4.6
. jul 🐧 . july	1.4		1.2	1.4	. 1.0	1.5	1.1.3	-1.8

X-38(N)-7

ENCLOSURE (B) 5

Table III(B)5
YIELDS OF CRUDE OIL AND WATER.

Stranger Server and the comment	market of SOUN	Carlo Service	ACCEPTATION OF	ACCESS OF A PARK	在 以及其代表的基本的	Service and services	name and a	
Run Number	28	£27-	61	65	62	~66	64	13
Yield of Crude Oil (gm)								
Crude 011 "A"	117.5	65.0	84.0	105.0	53.0	40.0	108.0 14.2	59.0
Crude 011 "B"		57.1	48.5	20:3	82.0	85.2	.	54.7
Total		122.1	132.5	125.3	135.0	125.2	122.2	111.7
Yield of Water (gm)								
Crude 011 "A"	13.0	10.0	11.5	13.5	13.0	5.5	14.5	13.0
Crude 011 "B"	,2.0	Trace	2.5	1.3	2.4	4.8	1.8	
Total	15.0	10.0	14.0	14.8	15.4	10.3	16.3	13.0

*Part of sample lost;

Table IV(B)5
DISTILLATION OF TOTAL CIL (gm)

Run Number	28	32	41		(0			[-
Mun Munder	20	27	61	65	62	66 '	64	13
-180°C	11.0	6.8	8.9	11.5	6.5	3.6	12.3	5.7
180-2300C	6.5	3.7						5.6
-230-280°C	15.7	13.4	80.0	69.0	59.0	64.0	56.1	14.1
280-360°C	17.2	22.5				-	·.	16.6
Pitch	23.7	25.0					•	17.2
Total .	74.1	71.4	88.9	80.5	65.5	67.6	68.4	59.2

Part of sample lost in distillation

Table V(B)5
YIELD OF RESIDUE AND ITS PROPERTIES

Run Number	28	27	61 -	65	62	66	64	13
Yield of Residue (gm)			es Alderia.					
Crude Oil "A"	19.0	11.2	8.8	18.0	8.1	3.4	18.3	39.5
Crude Oil "B"	5.3	29.5	20.8	12.0	44.4	43.9	19.2	
Total	24.3	40.7	29.6	30.0	52.5	47.3	37.5	39.5
Properties of Residue, (gm)		eninter bytek gar Tribungan Samaran da bindan						
Soluble in Benzene	1.9	0.2	erindra 1 de Propinsion de Propinsion de	jikasan tesa± Segun Sakha Lagaran Sakha	- 0.7		0.5	2.8
Organic Residue	11.0	32.4	17.5	17.8	43.4	39.0	21.9	29.6
Ash	11.4	8.1	12.1	12.2	8.4	8.3	15.1	7.1
Total	24.3	40.7	29.6	30.0	52.5	47.3	37.5	39.5