ENCLOSURE (B)-11

EXPERIMENTS ON VARIOUS COALS
PRODUCED IN JAPAN

Reference NavTechJap Document No. ND 26-0008.17 ATIS No. 4579

NAVAL LIEUT. COMDR. T. SUZUKI NAVAL ASSIST. ENG. I. TAKAHASHI

Research Period: 1956-1957

Prepared for and Reviewed with Authors by the U. S. Eavel Technical Mission to Japan December 1945

X-38(N)-7

RESTRICTED

ENCLOSURE (B) 11

LIST OF TABLES AND LLUSTRATIONS

Table I(B)11	Properties of Coal Page 10	p
Table II(B)11	Results of Hydrogenation Runs	9

ENCIZISTIRE (R) 11

SUMMARY

High pressure hydrogenation tests were made on coals from NAIBUCHI (Saghalien), BIBAI and URYU (Hokkaido), IWAKI. (Fukushima), KITOMO (Yemagata), MOKUSAN, ZUIHO, TANISHO and NANSHO (Formosa), and AGOCHI (Korea), and the results are presented below.

I. INTRODUCTION

In previous reports, the effect of changing reaction conditions on the hydrogenation of Oyama coal were investigated. In this report various kinds of coals were liquefied under the same conditions and the yields and qualities of the cils were compared with those of Oyama coal.

II. DETAILED DESCRIPTION

A rotating autoclave with a capacity of 2.4 liters was used. The charge to the autoclave consisted of 150 grams of coal (crushed finer than 60 mesh) together with 5 % by wt. of ZnCl2 catalyst. The initial pressure of electrolytic hydrogen was 100 atmospheres. The autoclave was heated to the reaction temperature at a rate of 2.750/min, and was maintained at that temperature for 1 hour.

Analyses of the coals used are given in Table I(B)11 and the experimental results are summarized in Table II(B)11.

III. CONCLUSIONS

- 1. Naibuchi coals were liquefied much easier than Oyama coal and gasoline content of produced oils was good.
- 2. Bibai coals were liquefied easier then Oyana coal and the gasoline content of produced oils was also good.
- 3. In the case of Uryu coal, a higher reaction temperature was required than for Oyama coal and the produced oil was more viscous and had a lower content of gasoline.
- 4. Iwaki and Kitomo coals had high ash contents and required higher reaction temperatures.
- 5. In the case of Mokusan #3 mine coal and Zuiho coal, the reaction temperatures were lower and the yields of oil were higher than for Oyama. Although Taisho and Mokusan #1 mine coals required slightly higher temperatures, the rates of liquefaction and the qualities of the produced oils were good.

Mansho coal was more difficult to liquefy than the others.

6. The rate of liquefaction and the quality of the produced oil from Agochi coal, were almost the same as for Oyama coal.

ENCLOSURE (B)11

Table I(B)11 PROPERTIES OF COAL

	•	Prox	Proximate Analysis(wt %	B(wt : 56)	. 121	q1t	Ultimate	Analysis (wt %)	3 (wt &	
8	Coal	Moisture	Vol. Matter	F.Carbon	Ash	0	H	0	Z	8
.8	Oyeza	5.5	41,1	. 0°97	7.0	79.0	6.2	13.0	1.3	0.5
ä	Maibuchi #3	8.4	0.44	1.64	8.1	76.4	5.9	16.1	1.4	100
뎔	Kalbuoni #5.	9*7	43.9	38.5	13.0	77.5	f. 9	14.8	1.4	
2	Malbuobi 77	5.2	2.44	41.4	9.2	76.4	5.7		1.4	0.2
3	Kalbuahi #8	.0.2	45.8	12.0	7.2	77.6	5.9	15.0	1.3	0.2
8	Bibai, upper	4.0	39.6	0.97	10.4	9.64	6.0	12.5	1.6	0
18	Bibei, lower	2.8	41.8	6.84	6.5	80.8	5.8	11.7	1.4	0
Im	Iwahi	6.3	37.2	29.5	28.0	71.2	5.6	17.5	A 1. 8	4.7
Urya	esers	3.7	35.0	41.8	19.5	79.3	5.7	12.8	1.7	5.
KI	Kitomo	15.0	28.8	17.7	28.5	67.2	5.3	25.3	1.0	1.2
(O)	Kolvissa 👫	2.2	43.3	47.4	7.1	81.3	9.9	7.7	1.6	2.8
ĮQ.	Mokysan 🗗 3	2.3	37.3	47.3	12.7	81.2	0.9	9.5	1.9	1.7
Ē	Talaho	2.3	38.3	9.67	9.8	82.5	5.7	8.4	1.7	1.7
Suffic	2	4.1	42.0	45.0	8.9	80.0	6.7	9.8	1.9	1.6
Med	Келяло	6.7	21.3	73.0	0.1	7 02	0 4	5		

ENCLOSURE (B) 11

Table II(B)11
RESULTS OF HYDROGENATION RUNS

7	R. Temp (00)	Initial P. (atm)	Final P. (atm)	Tield of 011 (wt% of charge)	Tield of 240°C Gasoline (wt% of obsree)
Pushun Oyana	\$21	300	59	8.69	15.5
Maibuobi 43	425	100	99	69.2	15.8
Maibuchi #5	425	100	22	75.8	
Matbuohi #7	425	100	70	73.0	13.8
Falbuchi #8	425	. 001	20	73.5	2.77
Bibef, upper	5द्य	. 001	29	70.3	17.9
Bibei, lower	425.	100	67	78.5	23.7
Impi	425	100	87	58.7	3.8
Orya	. 425	700	76	78.9	10.2
. deoil	425	801	. 76	58.3	5.4
sokusan 👫	425	001	.77	65:1	15.5
Kokusen 🗗	425	100	72	66.0	18.6
Passio	125	100	99	1,99	15.6
Zulho	425	700	29	65.0	1.91
Kanaho	425	200	99	7.97	7.6
Kensho	054	87	65	39.2	10.0
Agooh!	527	100	72]	7.69	19.7
Agoobi	. 001	001	92	71.7	12,8
Agoohl	375	87	9/	71.0	80