Hauptlaboratorium

rtin s-(3x) eingegangen: 3.1.35.

Direktor Alberts (3x)
Dr.Fischer

je pesonders:

001459

säurereichen Endgasen der Benzin-Synthese.

Die Gegenwart höherer Kohlensäurekonzentrationen im Reaktiosngas wirft für die Gewinnung des Gasole und seine Eigenschaften eine Reihe von Fragen auf, die in mehreren Untersuchungen teilweise in Gemeinschaft mit der Lurgi bearbeitet wurden. Diese Arbeiten lassen sich in folgende Teilgebiete gliedern:

- 1.) Über die Gasoladsorption bei CO2-reichen Syntheseendgasen in Abhängigkeit von
 - a.) CO,-Konzentration
 - b.) Strömungsgeschwindigkeit
 - c.) Benzinzusatzbeladung
 - d.) Kohlefeuchtigkeit.
 - 2.) Versuche über Kompression und Verflüssigung von CO2reichem Gasolgas.
 - 3.) Kohlengaureentfernung aus Flüssiggasol durch Entgasen bei Druckverminderung.
 - 4.) Kohlensaureauswaschung aus Flüssiggasol
 - a.) mit Wasser
 - b.) mit NH3-Wasser
 - c.) mit K2003-Losung.

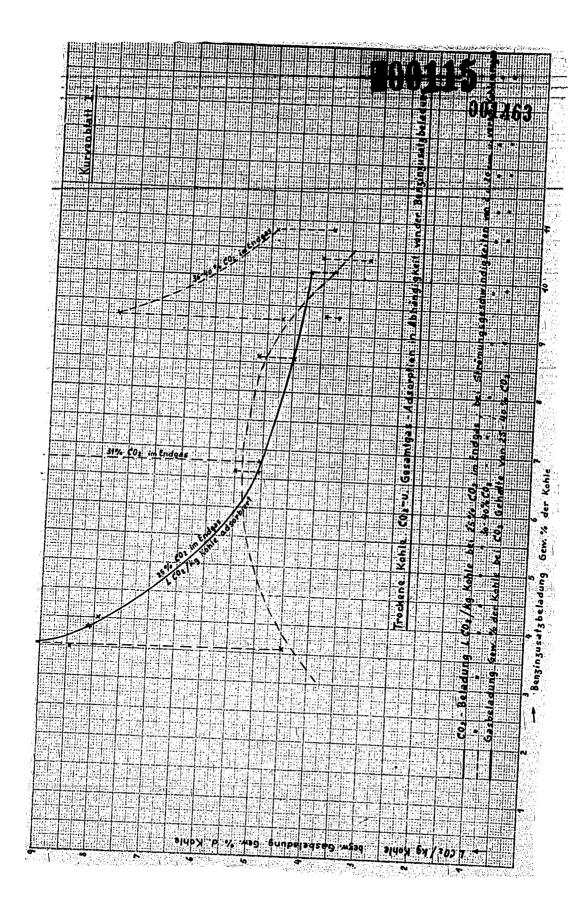
Nach dieser Unterteilung sind in folgendem die Ergebnisse der bisherigen Arbeiten zusammengestellt.

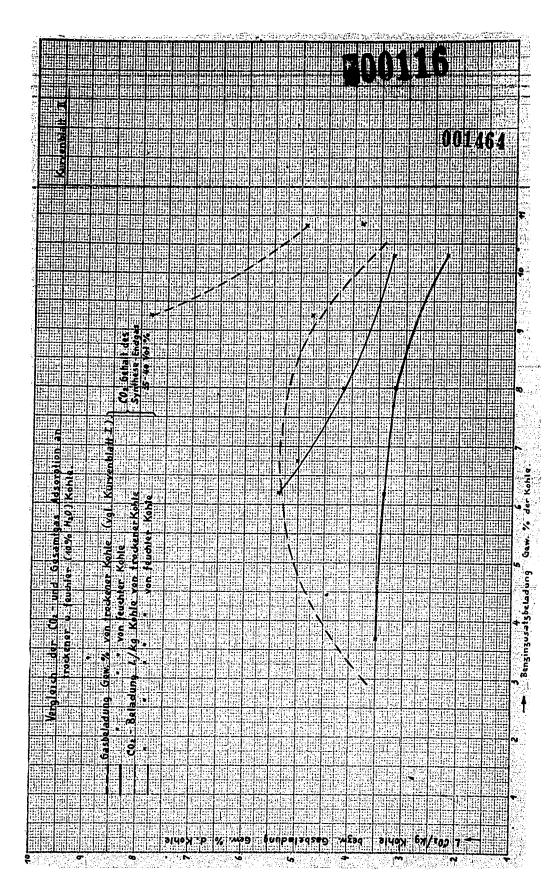
Manual grimme

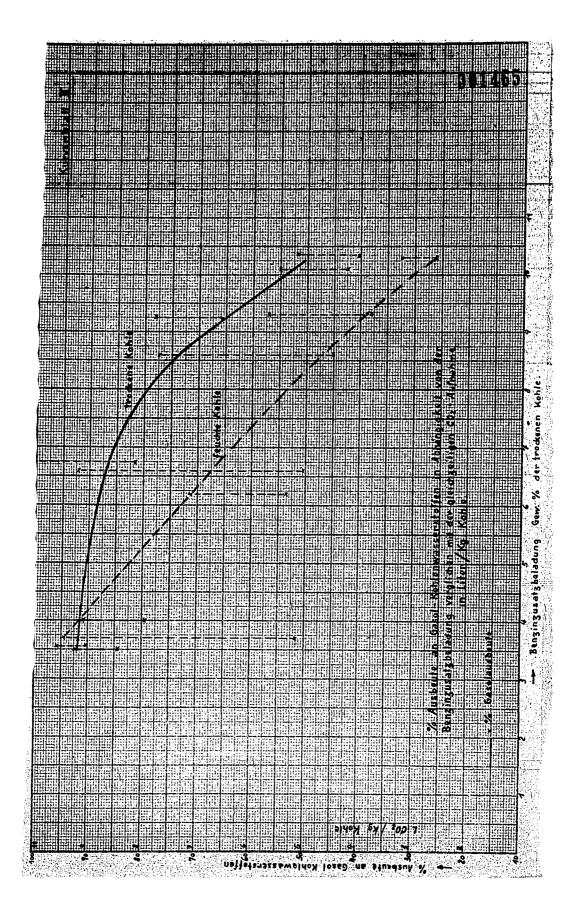
1.) Über Gasoladsorption aus CO2-r

Während der Verbleib der Kohlensaure bei der Benzinund Gasoladsorption 10 - 12% im Syntheseendgas durch den Betrieb der Adsorberanlage der Benzin-Versuchsanlage und durch eine Reihe von Versuchen mit kleinen Versuchsadsorbern bekannt war, wurden gemeinsam mit der Lurgi weitere Versuche bei höheren CO2 Konzentrationen ausgeführt. Zu diesem Zweck wurde kleinen Teilströmen des Syntheseendgases reine Kohlensaure zugemischt und das CO2-reiche Gemisch Versuchsadsorbern von 95 cm Höhe und 8 om Durchmesser (Kohleninhalt 1,76 kg F.S.-Supersorban) zugeführt. Zur Bestimmung der Gasolausbeute wurde ein 2ter Adsor ber mit Carbotonkohle nachgeschaltet, mit dem die durchbrechenden Propylenanteile ermittelt wurden. Die Versuche wurden bei CO2-Konzentrationen des Endgases von 25 - 38% in Abhängigkeit von Strömungsgeschwindigkeit, Benzinzusatzbeladung und Kohlefeuchtigkeit gefahren. Die Ergebnisse sind in der beiliegenden Tabelle zusammengestellt und in den Kurvenblättern I bis III ausgewertet.

Kurvenblatt I lässt erkennen, dass die CO₂-Beladung der Kohle sehr stark vom CO₂-Gehalt im Endgas abhängt, solange die Benzinzusatzbeladung klein ist, bei höheren Benzinbeladungen über 10% scheint die CO₂-Aufnahme der Kohle auf einen allgemein gültigen Wert von ca², 3-4 L/kg Kohle abzufallen. Im Gegensatz zu dem starken Wechsel der CO₂-Aufnahme ist die Beladung mit Gesamtgas, in dem neben der Kohlensäure hauptsächlich Gasolkohlenwasserstoffe, Aethan und Methan enthalten sind, fast unabhängig von der CO₂-Konzentration des Synthese-Endgases und durchläuft bei 5 - 8% Benzin-Beladung ein Maximum von ca 5 Geweproz. der Kohle. Dabei ist ein Gasolgehalt von 30 - 40 g/m³ Endgas vorausgesetzt.


Kurvenblatt II zeigt die grossen Unterschiede in der Aufhanmefähigkeit von trockener und feuchter Kohle mit einem mittleren Wassergehalt von 10% H20. Die Aufhahme an Kohlensäure wird durch den Feuchtigkeitsgehalt stärker vermindert als die des Gesamtgases, die um ca 30 - 40% abfällt, so dass für den Gasolgehalt des Gesamtgases eine noch geringere Abhängigkeit zu erwarten ist.


Dafür sprechen auch die Ergebnisse des Kurvenblattes III, das die prozentuale Ausbeute an Gasolkohlenwasserstoffen in Abhämgigkeit von der Benzinzusatzbeladung bei feuchter und trockener Kohle darstellt.Bei let: Durchfuch des Gasols etwas später ein und ergibt dann bei gleicher Benzinzusatzbeladung Ausbeuten, die um 20 - 25% höher liegen, als bei feuchter Kohle.Gleichzeitig lässt auch dieses Kürvenblatt aus den eingezeichneten, sehr verstreut liegenden CO₂-Beladungen erkennen, wie wenig die Gasolausbeute von dem CO₂-Gehalt des Endgases beeinflusst wird.


Die Variation der Strömungsgeschwindigkeit von 2 - 20 cm/sed lässt keinen merklichen Einfluss auf die Gasol-und CO₂-Adsorption erkennen.

Für den CO2-Gehalt im abgetriebenen Rohgasol gilt bei normaler Benzinbeladung angenähert die Regel, dass derselbe so hoch ist wie im Synthese-Endgas. Die gleiche Regel wird auch bei niedrigeren CO2-Konzentrationen im Endgas beobachtet.

Kohlefeyohtigkeit	Angewandte Kohlemenge: Kohlefeuchtigkeit	1,76	6 F S	Super	1.76 F.S.Supersorbon =		hoher GO2 -		Konzentrationen. 5 om hoher Schic	ionen. Schic	Schicht.4 kg	200 41 2	***	
Gasgesonwindigkeit	000/4000		0			1.			5	10,5	S.		4.4	8.4
Bin-	• DBG ATO 1				6	ces mo	9 17-20) II	Sec				18,5	- 8
trittsgas:	ca 25Vol.%	100		(C)	56-40V.%	oa 25	V. %	\ \ \ \ \ \ \ \	8 0	55 V 3	36%	35.9	4	, K
. 1	53 61	63	69	70,5	67	63,5	70,5	29,5	63,8	29	52.6		11 G	
Benzin-Zus.Beldg. Gesamtfer. Gew.% Gesamtfer. Gew.% Gew.% Gow.% Gow.% Gow.% Gow.% Gow.% Gow.% Gow.% In/kg. Gasol-Abtrieb I. mit % Go. Hm mit % Go. Too) (00 760)	3,5 4,0 6 8,45 7,95 5 100 100 1 92,5 90,7 9 5,65 4,65 2 43,5 74,9 1 17,5 19,6 7 1,7 1,0 1	5,6 5,6 6,0 6,0 7,7 7,7 7,7 7,9 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5	8,6 5,2 4,52 100 77,4 1,46 46 17,5 17,3 0,9	10,1 2,8 4,26 1000 55 1,32 33,5 33,5 31,9 11,99	9,25 4,73 7,8 100 66 1,58 41 73,5 24,0	10,8 7,85 4,9 100 51 0,73 24,5 25,5 0,5 1,0	9,3 3,7 3,8 1,08 1,08 2,2,5 2,00 2,00	3,55 4,5 9,55 100 90,2 3,0 41 41,0 14,7 0,8	100 100 100 100 100 100 100 100 100 100		5,44 10,02 10,03 11,00 11,92	2,23 2,25 100 100 26 0,67 19,5 21,6 21,6 21,6	2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	4,25 100 100 100 100 100 100 100 100 100 10

2.) Kompression und Verflüssigung von CO2-reichem Gasolgas.

Aus 690 m³ normalem Syntheseendgas mit 12% CO₂ wurden im Lauf von 6 Stunden bei 3 Abtrieben 16,5 m³ Rohgasol (Litergew.l,82) = 30 kg gewonnen.Angewandt wurden 2 Adsorber mit je 365 kg A.-Kohle (F.S.Supersorbon).

Rohgasolausbeute pro Abtrieb 10 kg = 2575% Gasolzusatz-

Benzinausbeute pro Abtrieb

25 kg = 7,1 % Benzinzusatzbeladung

Das Rohgasol hatte einen Gehalt von 12% CO2,22,9%CnHm, 2,1% C2H4. Über Kompression won derartigem Rohgasol vgl. Bericht v.18, und 31.0kt.1935.

Diesem Rohgasol wurde CO₂ zugemischt bis der Durchschnittsgehalt des Gases 34 - 35% CO₂ betrug.Dadurch stieg die Menge des Rohgasols auf 22 m³.Eine derartige Menge und Zusammensetzung ist bei Verarbeitung von Syntheseendgas mit ca 35% CO₂ zu erwarten.

Von diesem Gas wurden 13,99 m³ in 2 Stufen in der früher beschriebenen Weise auf 30 atu komprimiert.

1.Stufe (5.5 atu) Druckbenzin

nach Entspannung auf Normaldruck

3,2 kg bei 3,50

2.Stufe (27-30 atu)Flüssiggasol

Flüssiggasol+Gasanteil bei 30 atu = 17,47 kg

Gasanteil allein gerechnet aus Druck + spez.Gew.+ Freivolumen der Flaschen

= 4.05 kg

Flüssiggasol

Unverfl.Abgas:

a.) in den Flaschen 4,05kg Abgas a.Gasolfl.

b.) unmittelbar aus II.Stufe d.Kompr abgebl.

<u>3.2 "</u>unter 18,2 atii

7,25

Bis zum Eintritt in den Kompresson hatte das Gas durch Absorption im Gasometer-Sperrwasser bereits stark CO2 verloren, so dass der CO2-Gehalt des angesaugten Rohgasols nur noch 26 = 27% betrug.

Die Gasanalyse der verschiedenen Produkte sind folgende:

	Rohgasol	Entspanntes 1.Flasche.	Flüssiggasol 2.Flasche	1
	nach CO2-Zusatz	17,9%	13,2%	47,76
02	26,9%	30,6%	32,4%	6,3%
n ^H m	18,9%	1,9%	0,7%	0,7%
2 ^H 4	1,2%	0,6%	0,2%	0,8%
)2	0,9%	0,5%	0,7%	5,6%
ō	2,5%	0,0%	0,6%	12,1%
¹ 2	5,2%	45,5%	51,4% 5	20,6%
3 _n H _{2n+2}	31,8%	2,5%	0,8%	6,2%
N ₂	10,6%	3,35	3,30	2,42
CZahl	3,08	and the second of the second o	2,20	1,55
TGew_(00760)	1,76	2,14		
Ans ó	len ausgewogenen M	engen ergibt s	ich folgende	00 ₂ -Bi-
				学 上连接。
lanz: Einsatz:	13,99 m ³ = 24,6 kg	mit 7,35 kg C	02	
Ausbringen				

			7,25									
Flüssig- Gasol	6,2	m ³ =	13,42	kg	n	1,	88,	kg	co2	=	25%	11
Benzin		:. :,• 	3,2					- "	n Fri			
		1 1	23.87	kg.		بند	4					-+-

Der CO2-Verlust gegenüber dem Kohlensäureeinsatz ist viel leicht durch weitere Absorption im Gasometer-Sperrwasser be-

3.) Entgasen von Flüssiggasol bei Druckverminderung.

Durch die analytisch leichte Beobachtung der Kohlensäureverteilung im Gas- und Flüssigkeitsraum von Gasolbehaltern
lässt sich ein Bild vom Verlauf der Entgasung gelöster Gase
aus Flüssiggasol gewinnen. Die Kenntnis dieser Erscheinungen ist
von Wichtigkeit, da das Gasol (aus Koksgas oder Benzinendgas)
im allgemeinen bei höherem Druck verflüssigt wird, als dem Eigendruck des Flüssiggasols entspricht und die Weiterbehandlung
bezw.der Verbrauch bei tieferem Druck erfolgt, so dass auf dem
Wege dieses Druckgefälles Veränderungen der Zusammensetzung und
Verdampfungsverluste möglich sind. Insbesondere sollte in der
vorliegenden Versuchsreihe die Veränderung der Kohlensäurelöslichkeit des Gasols bei verschiedenen Drucken festgestellt werden.

Zur Untersuchung diente eine Gasolflasche von 109 Ltr. die mit Flüssiggasol (ca 13 kg = 21,5 Ltr.) und Gas unter einem Druck von 22 atu gefüllt war Das Flüssiggasol enthielt anfangs 8,2 Mol%CO, und war beim Komprimieren von CO,-armen Rohgasol mit ca 12%CO, gewonnen worden.Die Flasche wurde stehend stufenweise abgeblasen unter Kontrolle des Druckabfalles, der Gewichtsabnahme, der Menge und Zusammensetzung des entwickelten Gases.In längeren Abständen wurde in Proben des Flüssiggasols der Abfall des CO2-Gehaltes festgestellt.Nach Unterbrechung des Abblasens stieg der Druck im Lauf von 1 - 2 Stunden infolge Nachentgasung wieder an, und zwar bis um 1 Atmosphäre, solange der Gesamtdruck hoch lag.Die Beobachtungsergebnisse sind in der beiliegenden Tabelle zusammengestellt.Anfänglich ist die Zusammensetzung des abblasenden Gases die gleiche wie die des unverflüssigt bleibenden Abgases beim Komprimieren. Die steigenden Propylengehalte der späteren Gasproben zeigen aber, wie die Verdampfung des Flüssiggasols schon bei höheren Drucken rasch zunimmt.

Die in der Flüssigkeit gelöste CO2-Menge fällt bedeutend rascher ab, als es der CO2-Konzentration im Gasraum entspricht. Ein konstantes Teilungsverhältnis für CO2 tritt nicht auf, wie folgende Zusammenstellung zeigt.

Gasdruck atu	Menge Flüssig- Gasol kg	Mol.%Coim Flu	0 ₂ = Ltr.CC ssiggasol <i>lorc</i>	2 CO2-Partialdruck im Gasraum
22,3	13,0	8,1	500	5.0 001469
13,5 7,6	11,5 9,1	4,7 1,8	27o 82	3,25 1,44

Die beschleunigte Kohlensäureabgabe aus der Flüssigkeit ist vielleicht dadurch zu erklären, dass die zuerst verdampfneden leichten Anteile des Gasols (Propylen u.Propan) das beste Lösungsvermögen für CO2 besitzen.

Trotz der bevorzugten CO2-Abgabe werden nämlich im vorliegenden Falle von 13 kg Flüssiggasol oa 2,9 kg verdampft, um 500 - 82 = 418 L.CO2 (= 84% der anfangs gelösten Menge) zu entfernen. Dieses Verhältnis ist vielleicht infolge des grossen Gasraumes in der Gasolflasche besonders ungünstig, doch ist daraus zu schliessen, dass die CO2-Entfernung durch einfaches Entgasen nur unter erheblichen Verdampfungsverlusten an Flüssiggasol erreicht werden kann, dagegen wird sie bei fraktionlerter Entspannung (Stabiliser.) gelingen.

	2-35.00 M.A.Y		siggasol bei Dru ascheninhalt 109		
Menge Gaso + Gas, kg. in der Fluiche	l Abnahme kg Gas	Druck in der Fla ata bei 20 sofort n.E	iscne entwickelt	,760) Analyse des Gases A %CO ₂ ,C _{n-m} C ₂ H ₄	Analyse des Flüssiggaso %GO2,CHm C
14,69	°C,30	22,3			
	0.30		227	22,5 8,7 0,3	8,1 39,5 0,
14,39		20,7		22,00,10,0	
	0.25		225	21,7 9,0 0,3	
14,14 -		18,8		2291 390 093	
	ۥ35		230	23,4 97 0,6	
13,79		17,0,17,8			
	0.33		234	23.0 11,5 0,5	7,2 40,1 0,
13,46		16,25			
	0 • 35		261	23,5 10,5 0,3	
13,11		14,5;15,4	n.12 St.		
	0.36		227	24,0 12,1 0,4	
12,75		13,6;14,1	n.2 St.		5.2 41,8 0,2
병하는 모두 하다. 발생하는 것들이 되었다.	0.31		231	24,4 13,6 0,3	
12,45		12,6;13,5	n.16 St.		4,7 41,7 0,3
	0,345		231	23,8 17,7 0,3	
12.11		12,2			
	0,377		238	23,5 19,1 0,2	
11,73		10,9;11,4	n.2 St.		
	0∙38	•	255	22,5 21,2 0,5	
11,35		10			
0	0,37		234	20,6 24,4 0,3	
lo , 98		9,2;9,2 r	1.14 St.		
	0.38		263	20,6 25,9 0,2	
lo,6		8,0;8,2 n	1.2 St.		1,8 44,7 0,3
Lo.16	Q•44		254	19,0 27,5 0,3	
ro-70		7,5; 7,6			1,8 44,2 0,5
	4,53	14,8 ata	3110 L.		
17:	特性的問題		生活的过去式和过去分词 人员工人员	rflussigtes Gaspo	

200121₀₀₁₄₇₁

Überschlagsgemass ergibt sich aus dem Druckabfall von 14,8 ata bei dem freien Gasraum der Flasche von 109 - 17 L.= ca 92 L., dass 1360 L des Gaspolsters abgeblasen sind, mit einem Liter-Gewicht von 1,20 k. 1,63 kg.Der Rest der Gewichtsabnahme von 4,53 - 1,63 = 2,90 kg besteht aus verdampften Gasolbestandteilen, die bei einem Litergewicht von 2900 = 1,66 (20°0) von leichter Art sein müssen.

N. G

4.) Auswaschung von CO aus Flüssiga (1)

1.) Auswaschung mit Wasser.

. 001472

Zwecks Entfernung der im Flüssiggasol gelösten Kohlensäure wurden auf Anregung der Lurgi mehrere Auswaschversuche mit Wasser durchgeführt, die die Bestimmung der erforderlichen Wassermenge und der durch Löslichkeit der Kohlenwasserstoffe bedingten Gasolverluste zum Ziel hatten.

Die Arbeitsweise war in allen Fällen folgende:

In eine evakuierte Stahlflasche von 2 L.Inhalt wurde eine gemessene Menge Wasser (ca 300 g) eingefallt und Flüssiggasol aufgepresst. Nach Bestimmung des Drucks wurde das Gemisch auf der Schüttelmaschine mehrere Stunden lang behandelt. Aus der nach unten gerichteten Flasche wurde sodann ein Teil des mit Gas gesättigten Wassers in eine Glasflasche von bekanntem Inhalt, die zuvor bis auf bekanntes hohes Vakuum leer gepumpt war, abgezogen. Nach dem voll ständigen Entgasen des abgezogenen Wassers wurde Druck und Temperatur in der Flasche gemessen und eine Probe des Gasinhalts mit der Töplerpumpe abgepumpt, um durch Analyse die Zusammensetzung des Gases zu bestimmen. Nach Öffnen der Glasflasche wurde die abgezogene Wassermenge bestimmt und aus Gasdruck, Temperatur und Flascheninhalt (nach Abzug des Wasservolumens) die Menge des aus diesem Wasser entwickelten Gases errechnet.Die im Wasser gelöst gebliebene. geringe Menge CO, wurde durch Titration ermittelt. Für die Versuche wurden Flüssiggasole von der Benzinsynthese mit verschiedenen Co-Gehalten und Nordsterngasol verwandt.Die mit den verschiedenen Produkten gewonnenen Ergebnisse stimmen miteinander überein und sind in der beiliegenden Tabelle zusammengestellt.

Die Versuche ergeben, dass bei Anwendung konstanter Wasser- und Gasolmengen die im Wasser sich lösenden Gasmengen mit der CO2-Konzentration ungefähr parallel gehen. Es kommt also für die CO2-Verteilung zwischen Wasser und Gasol der Verteilungssatz zur Geltung, so dass zur Auswaschung des Gasols mit Wasser im Gegenstrom unabhängig von der CO2-Konzentration eine bestimmte Wassermenge erforderlich ist. Diese Menge beträgt bei Zimmertemperatur nach den vorliegenden Resultaten ca 9 - 12 Liter Wasser pro kg angewandtes Gasol.

Die Menge der gleichzeitig mit der CO₂ in Lösung gehenden Gasolkohlenwasserstoffe ist trotz ihrer viel höheren Konzentration bedeutend geringer und beträgt bei Zimmertemperatur bei Verwendung der zur restlosen CO2-Auswaschung theoretisch erforderlichen Wassermenge je nach dem Druck des Gasols 5 bis 2,5 Gew.%. Dabei ist zu berücksichtigen, dass verschiedene Drucke des Gasols durch Anwesenheit mehr oder minder leicht kondensierberer Kohlenwasserstoffe (Aethan, Propan, Butan) zu stande kommt, deren Löslichkeit in Wasser nicht die gleiche ist.

Iv. g

						TOTAL	•			
	÷	H		TII.	IV.	all to the		Þ		
			Gasol	Von Benzin	synt			No # 0 # 0 W	T	•
g H2O angewandt	295	295		208				TORUS TO	Kunrgasol	I RCH.
g.Gasol angewandt	714	714		W (100	ט ∂יו אין נא	4		295	572	
Mol.% GO, 1.Flussig-		• = '=			700	Lugae	T.	610	229	
Cogeo	17,4	17,4		α	. i	e e e e e e e e e e e e e e e e e e e				
Wasohdruok ata	덚	18.7) α	ָרָ בְּיִרְ מַנְיּיִנְ	1 1/1		7,0	1	
com Gas im ange-			,1	}	7 607	in the second	1 - Lul	75	12,5	10
wanaten wasser gelkate				 						******
	2 (20	2890	!	1710	1490	بيدون		1400	C	
Analyse %002	76,0	77,6	• 14. • •	72.5	, x 72	- State of the) }	<u>.</u>	
aldsten on m	o.k. o΄π	ָּמֻר מַע		יבו יסי	12,6	l Laborate		ר סת פת		
Gases: //on ^H 2n+2		0611	-	1,51	12,8	Service Control		ļ	21,1	
ser gelöst .	7020	7600		7,00) (C		e a constitue de la constitue			
		-	}	3	07.1.0		W.	490	1	
Schung der GO		- : : : :				n kanca	30 Ferri			T.
forder1.Wenge						ر از در از			-No-	1
O in Litern.	11,5	10.7	o		,		1			¥.
ocm Kohlenwasser-		- H= 	•))	0627	e de		8,7	1	ij
stoffe pro L. Wasser		**						T.		I,
gelöst:	2080	2010	15	1550	1070	ا دغرها دغرها				J:
Waschverleg Kohlenwas-			•	i i i i i i i i i i i i i i i i i i i	2			1290	1570	(44) (34)
rstoffe pro kg.Gasol							459/50			
T. Ges. Auswaschg. d. CC	_0			A long			a tripi nga ma Taganan Taganan Taganan			4
• Geweder Gasolk.W.			•		1					
7262	52	47.5		עי		The same of the sa		1000年,1000年,1000年	1	

2.) Auswaschung mit NH2-Wasser-

001475

Anstelle des reinen Wassers wurde 3%iges NH3-Wasser angewandt. Im übrigen stimmte die Arbeitsweise mit der bei reinem Wasser überein. Das Wasser wurde nach der Auswaschung in eine 10 Liter-Flasche entspannt, die 2n-Schwefelsäure enthielt, um das NH3 zu binden und um die gebildeten Carbonate zunzersetzen. Die Versuchszahlen sind folgende:

g NH ₃ -Wasser angewandt NH ₃ -Gehalt des Wassers g Flüssiggasol angewand	295 g• 7,7	II. Benzin-Synthese. 295 7,7 756
Mol.%CO ₂ im Flüssiggaso Waschdruck ata		8,1
ccm Gas im angewandten Wasser gelöst:	18	18
Analyse des gelösten Gases: CO2%	9890	9060
C _n H _m %	97,2	97,1
$^{\mathrm{C}}_{\mathrm{n}^{\mathrm{H}}_{\mathrm{2n+2}}}$		0,4
ccm CO ₂ pro L.H ₂ O gelöst zur Gesamtauswertung der	•	31400
ten Gasol erforderliche	- -	
as ing-mainer:	1,15	1,20
ccm Kohlenwasserstoff p NH3-Wasser gelöst:	235	244

Die Angabe der erforderlichen NH3-Wassermenge ist nicht allgemein gültig, da im Gegensetz zur Wasserwäsche die zur Absorption unter Carbonatbildung erforderliche NH3-Wassermenge bei konstantem NH3-Gehalt vor der CO2-Konzentration des Flüssiggasols abhängt.

Die Titration des entspannten Wassers ergab in den vorstehenden Versuchen die gleiche NH3-Menge, die eingesetzt worden war.NH3-Verluste treten also nicht auf, solange die Kohlensaure im Flüssiggasol im Überschuss vorliegt.Im anderen Falle, bei NH3-Uberschuss, wurde bei einem anderen Versuch ein Verlust an NH3 von ungefähr 10% des Einsatzes beobachtet, da freies NH3 zu kleinem Teil im Flüssiggasol gelöst wird.

In den vorstehenden Versuchen mit CO2-Uberschuss erfolgt

die CO2-Absorption bis zur restlocht bildung des Bikarbonats.

Auffällig ist die geringe Löslichkeit der Gasolkohlenwasserstoffe, die bei 18 ata Waschdruck nur ca 250 com pro 1 Ltr.

NH2-Wasser beträgt gegenüber ca 1500 ccm in Wasser unter geeichen Bedingungen. Anscheinend tritt eine starke Löslichkeitsverminderung für Kohlenwasserstoffe in Gegenwart der gebildeten
Carbonate ein.

3.) Auswaschung mit Kaliumearbonatlös

- Die Arbeitsweise war die gleiche wie in den übrigen Auswaschversuchen.

Die wässerige Carbonatlösung entwickelte beim Entspannen 980 com Gas von folgender Zusammensetzung:

Die Carbonatlösung enthielt K2002 = 21,8 g

die CO2-Aufnahme der Lösung ist also:

$$73.4 \times 22.25$$
 = 8,2 L.Co₂

Die Gesamtaufnahme an CO, ist: 8,2 L.als Bikarbonat

o.78 L.im Entgasergas

8,98 L. = 99% der durch Gasanalyse im Ausgangsgasol bestimmten Kohlensaure.

Das gewaschene Gasol ergab einen Gehalt von 0,2% CO, Es ist akso praktisch vollkommene Entfernung der CO, erreicht.

Die Kohlenwasserstoffaufnahme der Lösung beträgt 196 ccm = 0,43 g,das sind 0,1 Gew. % des angewandten Gasols.

Ahnlich wie bei der NH2-Wäsche tritt also starke Verminderung der Kohlenwasserstofflöslichkeit gegenüber den Verhältnissen mit Ry.-Wasser ein.