Ruhrbenzin Aktiengesellschaft Oberhausen-Rotton

den 5. September 1946

V/Sche

Herrn Dir. Dr. Hagemann!

Eckretariat Hg.

Eingang: 9. 9. 1940

Lid. Nr.: 773

Beantw.: 14

Betrifft: Veränderung der Oktanzahlen von heiß raffinierten Benzinen durch Hydrierung.

Die bei der Hochtemperaturbehandlung olefinischer Benzine auftretende 0.Z.-Steigerung kann zwei Ursachen haben.:

1.) Verschiebung der Doppelbindung nach der Mitte des Molekuls zu

2.) Wahre Isomerisierung unter Bildung verzweigter K.W.Stoffe. Da sch nur eine stärkere Verzweigung im Siedeverhalten kenntlich macht, ist noch immer das beste Merkmal für wahre Isomerisierung der Anstieg der Oktanzahl im hydrierten Zustand. Zur Klärung dieser Frage haben wir daher vor einiger Zeit eingehende Versuche mit Dubbsspaltbenzin durchgeführt.

Wir haben zu diesem Zweck eine größere Menge Dubbsspaltbenzin bei 300⁰ durch Bleicherde durchgeleitet und das Raffinat in folgende Fraktionen unterteilt.:

1.Kennziffer annähernd50 Siedebereich - 800

2. " " ca 75 " " 50-110⁰

3. " " annähernd125 " " 100-160°

4. " " 175 " , " 150–200^C

Zum Vergleich wurde auch das Ausgangsmaterial in die gleichen Fraktionen unterteilt und sämtliche Fraktionen sowohl im Original als auch im hydrierten Zustande untersucht. Die üblichen Analysendaten, wie Spezifisches Gewicht, Siedeverhalten usw. sind in Tabelle eins und zwei zusammen gestellt.

Die Ermittlung der Oktanzahl stieß auf gewisse Schwierigkeiten wegen der niedrigen Werte bei den hydrierten Produkten,. Wir haben infolge dessen die hydrierten Produkte stets in Mischung mit einem besonders geschnittenen Raffinat, dessen Original-Oktanzahl 84 betrug, geprüft. Bei der genauen Untersuchung dieses Raffinates fanden wir, daß es gegenüber niedrig oktanigen Benzinen einen Blendwert besitzt, der weit über die Original-Oktanzahl him maus geht. Es ergab sich für den Blendwert eine praktisch gradlinie Abhängigkeit von der O.Z. des zugemischten Benzins, dier bei einer Mischung 1: 1 für Heptan z.B. zu einem Blendwert von 104 führte .(Fig. 1 und Tabelle 3) Mit Hilfe der so gefundenen Blendwertkurve wurden aus den bei den Mischungen erhaltenen Ok-

Ruhrbenzin Aktiengesellschaft Oberhausen-Holton

000222 950718

tanzahlen, die Werte für die Fraktionen berechnet. Die Zahlen sind in Tabelle vier und graphisch in Figur zwei dargestellt.

Die Oktanzahlen der hydrierten Produkte lassen zweifellos den Schluß zu, daß bei der Hochtemperaturbehandlung mit aktivierter Bleicherde auch eine wahre Isomerisierung der Olefine nach Ptinkt 2 (s.o.) statt gefunden hat. Auch der Blendwert des Original-Raffinats deutet auf Anwesenheit verzweigter Olefine, für die eine Misch-O.Z. besonders charakteristisch ist.

Zusammenfassend kann man auf Grund der vorliegenden Ergebnisse sagen , daß bei der Hochtemperaturbehandlung Sohl eine Verschiebung der Doppelbindung nach der Mitte des Moleküls zu als auch eine wahre Isomerisierung unter Bildung verzweigter Moleküle statfindet . Eine klar auszudrückende Abhängigkeit der Endoktanzahl von Benzinen bestimmter Siedekennziffer vom Olefingehalt weist der auf hin , daß sich im Kontakt eine Art Gleichgewichtszustand einstellt , der dieselben Verzweigungen herbei führt.

Ddr. H. Prof. Dr. Martin

H. Dir. Alberts

y goshilvace

<u>Tabelle 1a</u>

Analysen von Fraktionen des Ausgangsmaterials und des Raffinats.

Ausgangsmaterial

	T			7:	الله وي سير سير الناز نجاز حديد بلدي وي جدي عدي أنزيز حدي الأن الله
*****	Ges.Produk	-80°	50-110°	100-1609	150 - 200°
Datum					
Farbe	gelb	schw.gelb	malh		
d 15		1 1	gelb	- 506	- 540
Olefine	0,724	0,662	0,694	0,726	0,748
S.B.	70	88,5	88	77	56,5
30°	45	21	42	98	153
30		9			
40 ⁰		34			
50°		56	1		•
60°	5	75	13		
70 ⁰		85	40		
80°	16,5	91	65		
90 ⁰			81		
100°	27		8 7	0,5	
110°	32		95	15	·
120 ⁰	37,5			45	
130 ⁰	42,5		`	69	
140 ⁰	47,5			84,5	
150 ⁰	53			93	•
160°	1			96	E
170°	59,5			90	5
180°	67				42
	74				72
190°	83		-	j	89
200°	90				95,5
210°	95				
220°	96		l		
S.E.	X 232	92/94 %	124/97 %	168	207
K•Z•	138,7	50,3	77,5	124,8	53

Tabelle T b.

Analysen von Fraktionen des Ausgangsmaterials und des Raffinats.

		Raff	inat		
60 to pe on the pe be on	Ges.Prod	-80°	50-110°	100 - 160°	150 - 200 ⁰
Datum	24.11.39	•			·
Farbe	wasserl	nell	Wasser	hell	schw. gelb
d 15	0,721	0,671	0,688	0,726	0,750
Olefine	67	77,5	77,5	76	52,5
S.B.	40	25	38	63	156
30°		6,5			,
40 ⁰		28	:	;	
50°	† 	50	7,0	the second second	
60°	6,5	68	24		
70°		7 9	47		
80°	18,0	88	69	1	
90 ⁰		90	83	2,5	
100°	31,5	91	91	7	
110°	37,5		94	20	
120°	42,5		-	48	
130°	48	:	:	70,5	•
140°	55			82,5	
150°	62			91,5	
160°	69,5	•		95	3
170°	78,5	:			•
180°	87,5				41
190°	94				71
200°	96				89,5
S.E.	202		!		97
K.Z.	128,4	102/91,5	117/96	166	205

Tabelle 2.

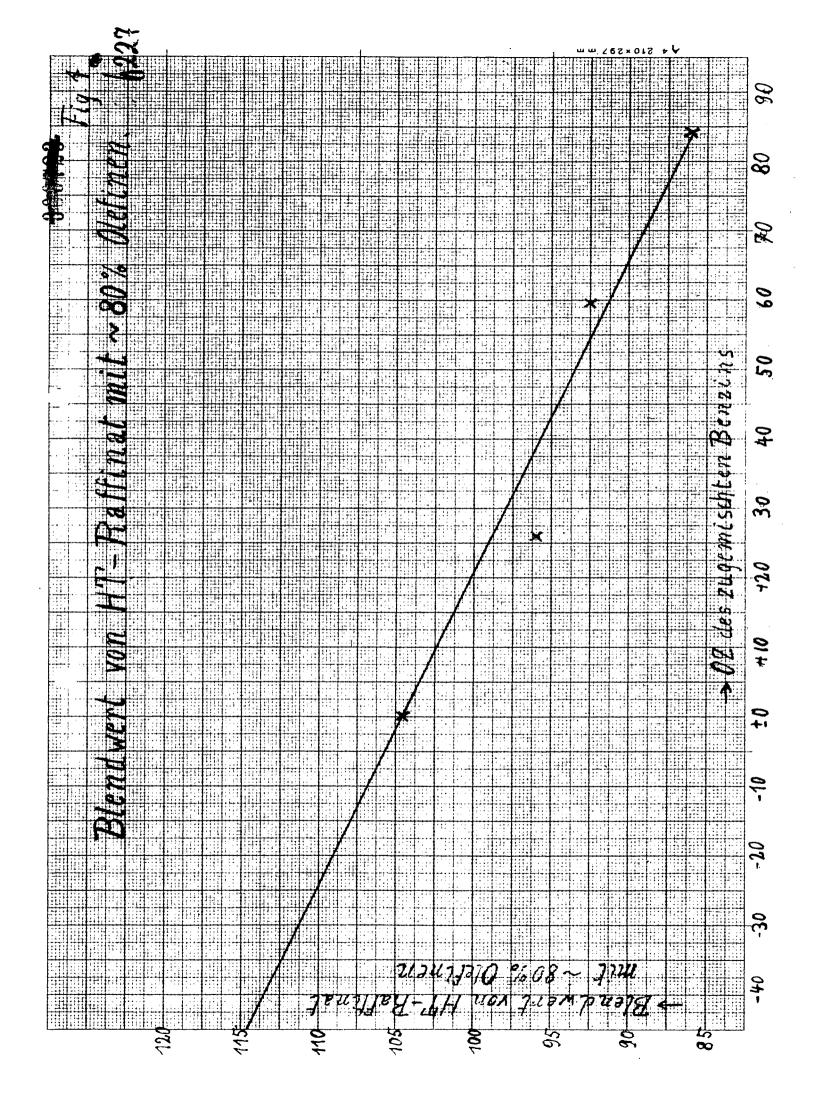
Analysen der hydrierten Fraktionen vom Ausgansmaterial und Raffinat.

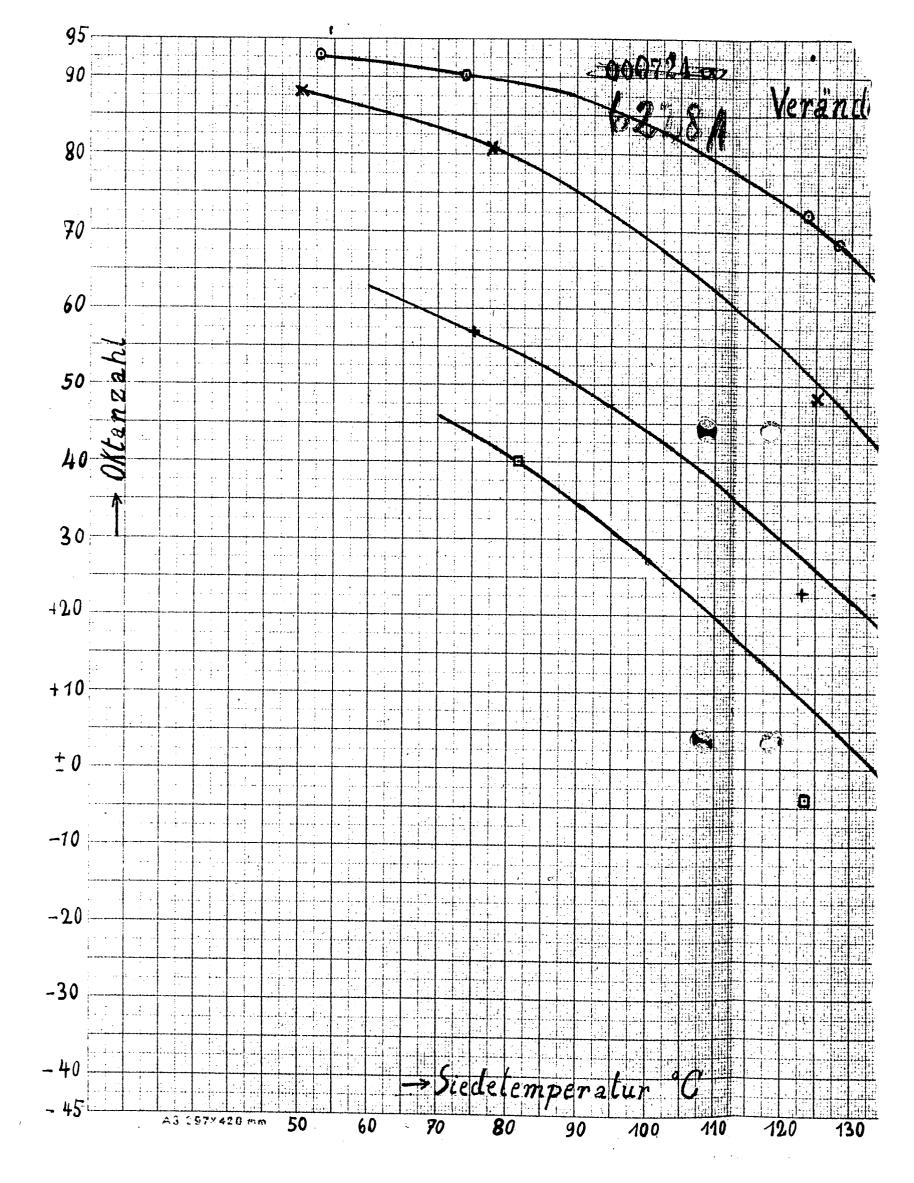
	Ausgansprodukt				Raffinat			
	Ges.	<u> 50-110°</u>	100-160	° 150-200	Ges.	<u> </u>	<u>°100–160</u>	°150-200°
Farbe	Wass	erhell	Wasse	rhell	Wasi	erhell	Wasi	erhell
d 15	0,710	0,680	0,716	0,740	0,709	0,673	ł	0,742
Olefine	3	4,5	5	4	6,5	7	4,5	6,5
S.B.	47	53	6 8	154	39	42	74	152
30				·	/ -			
40								
50					0,5	1,5		
60	2	2			2,5	20	ı	
70	5	24			7,5	44		
80	11	1 55	0,5		13	66,5		
90	18,5	76	2 .	-	20	81,5		
100	26	88	5,5		27	92	6,5	
110	33	94	19	į	33	95	21	
120	39	96	47		39	96,5	45	
130	44	97	69		45	97	69	
140	50		84		51		85	
150	55,5		92		57,5		92	
160	62		95,5	5	65		96	5
170	71	!	e e	39,5	74	-	•	39
180	81			69	84,5			70
190	90	1		88,5	92			00
200	95		•	96	96			96
S.E.	213/97	140		208	210/97	137	167	96 211
K.Z.	136,9	81,6	123,6	175,3	134,4	75,2	123,4	175
							•	

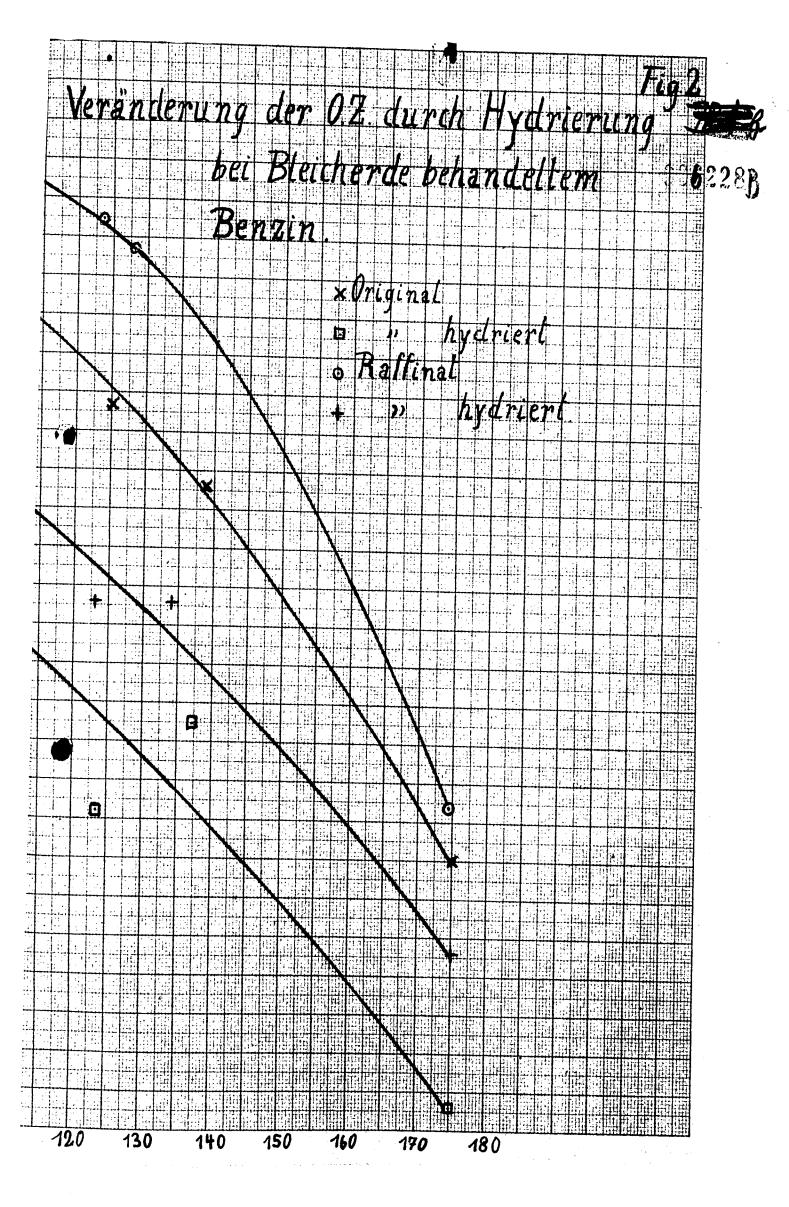
Ruhrbenzin Aktiengesellschaft Oberhausen Holton

Tabelle 3

Blendwert von Dubbs-Raffinat (geschnitten - 1	<u>135°)</u>
Blendwert von Budde Hand	Misch O.Z.	0.Z. 84
Original	84	- •
1 : 1 mit Heptan vermischt	52,2	104,4
1:1 "A.KBi. (59,6 0.Z.)	76	92,4
	61	96
1:1" Primarbi. (26 0.Z.)		


Oktanzahlen raffinierter und hydrierter Benzine.


				a leadainant
	Original		Origi	nal hydriert
S.K Gesamt Produkt 138 -80° 50-110° 100-160° 114	gefZ. 0.Z.	0.Z. 38 68 80,8 48,6	S.K.Z. 136,9 81,6 123,6 175,3	


Original heißraffiniert

Original heißraffiniert hydriert

	S.K.Z.	gef.	wahre	S.K.Z.	•	0.Z.
esamt Produkt	128,4	0.2	68,4	134	6 1	23
30°	53 74		92,8 90,0	75,2	74,1	57,2
o–110 ⁰ oo–160 ⁰	123,5	-	72,4 - 3,0	123,4 175,0	61,0 43,0	23 - 22

